A Trapping Approach Reveals Novel Substrates and Physiological Functions of the Essential Protease FtsH in Escherichia coli

Proteolysis is a universal strategy to rapidly adjust the amount of regulatory and metabolic proteins to cellular demand. FtsH is the only membrane-anchored and essential ATP-dependent protease in Escherichia coli. Among the known functions of FtsH are the control of the heat shock response by prote...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 287; no. 51; pp. 42962 - 42971
Main Authors Westphal, Kai, Langklotz, Sina, Thomanek, Nikolas, Narberhaus, Franz
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 14.12.2012
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Proteolysis is a universal strategy to rapidly adjust the amount of regulatory and metabolic proteins to cellular demand. FtsH is the only membrane-anchored and essential ATP-dependent protease in Escherichia coli. Among the known functions of FtsH are the control of the heat shock response by proteolysis of the transcription factor RpoH (σ32) and its essential role in lipopolysaccharide biosynthesis by degradation of the two key enzymes LpxC and KdtA. Here, we identified new FtsH substrates by using a proteomic-based substrate trapping approach. An FtsH variant (FtsHtrap) carrying a single amino acid exchange in the proteolytic center was expressed and purified in E. coli. FtsHtrap is devoid of its proteolytic activity but fully retains ATPase activity allowing for unfolding and translocation of substrates into the inactivated proteolytic chamber. Proteins associated with FtsHtrap and wild-type FtsH (FtsHWT) were purified, separated by two-dimensional PAGE, and subjected to mass spectrometry. Over-representation of LpxC in the FtsHtrap preparation validated the trapping strategy. Four novel FtsH substrates were identified. The sulfur delivery protein IscS and the d-amino acid dehydrogenase DadA were degraded under all tested conditions. The formate dehydrogenase subunit FdoH and the yet uncharacterized YfgM protein were subject to growth condition-dependent regulated proteolysis. Several lines of evidence suggest that YfgM serves as negative regulator of the RcsB-dependent stress response pathway, which must be degraded under stress conditions. The proteins captured by FtsHtrap revealed previously unknown biological functions of the physiologically most important AAA+ protease in E. coli. Background: Only few substrates of the essential membrane-anchored protease FtsH are known. Results: New cytoplasmic and membrane-bound substrates of FtsH were trapped in vivo. Conclusion: FtsH is involved in the sulfatation of molecules, d-amino acid metabolism, and adaptation to anaerobiosis and stress conditions. Significance: The novel FtsH substrates significantly expand our knowledge on the biological functions of this fundamentally important protease.
AbstractList Proteolysis is a universal strategy to rapidly adjust the amount of regulatory and metabolic proteins to cellular demand. FtsH is the only membrane-anchored and essential ATP-dependent protease in Escherichia coli. Among the known functions of FtsH are the control of the heat shock response by proteolysis of the transcription factor RpoH (σ32) and its essential role in lipopolysaccharide biosynthesis by degradation of the two key enzymes LpxC and KdtA. Here, we identified new FtsH substrates by using a proteomic-based substrate trapping approach. An FtsH variant (FtsHtrap) carrying a single amino acid exchange in the proteolytic center was expressed and purified in E. coli. FtsHtrap is devoid of its proteolytic activity but fully retains ATPase activity allowing for unfolding and translocation of substrates into the inactivated proteolytic chamber. Proteins associated with FtsHtrap and wild-type FtsH (FtsHWT) were purified, separated by two-dimensional PAGE, and subjected to mass spectrometry. Over-representation of LpxC in the FtsHtrap preparation validated the trapping strategy. Four novel FtsH substrates were identified. The sulfur delivery protein IscS and the d-amino acid dehydrogenase DadA were degraded under all tested conditions. The formate dehydrogenase subunit FdoH and the yet uncharacterized YfgM protein were subject to growth condition-dependent regulated proteolysis. Several lines of evidence suggest that YfgM serves as negative regulator of the RcsB-dependent stress response pathway, which must be degraded under stress conditions. The proteins captured by FtsHtrap revealed previously unknown biological functions of the physiologically most important AAA+ protease in E. coli. Background: Only few substrates of the essential membrane-anchored protease FtsH are known. Results: New cytoplasmic and membrane-bound substrates of FtsH were trapped in vivo. Conclusion: FtsH is involved in the sulfatation of molecules, d-amino acid metabolism, and adaptation to anaerobiosis and stress conditions. Significance: The novel FtsH substrates significantly expand our knowledge on the biological functions of this fundamentally important protease.
Background: Only few substrates of the essential membrane-anchored protease FtsH are known. Results: New cytoplasmic and membrane-bound substrates of FtsH were trapped in vivo . Conclusion: FtsH is involved in the sulfatation of molecules, d -amino acid metabolism, and adaptation to anaerobiosis and stress conditions. Significance: The novel FtsH substrates significantly expand our knowledge on the biological functions of this fundamentally important protease. Proteolysis is a universal strategy to rapidly adjust the amount of regulatory and metabolic proteins to cellular demand. FtsH is the only membrane-anchored and essential ATP-dependent protease in Escherichia coli . Among the known functions of FtsH are the control of the heat shock response by proteolysis of the transcription factor RpoH (σ 32 ) and its essential role in lipopolysaccharide biosynthesis by degradation of the two key enzymes LpxC and KdtA. Here, we identified new FtsH substrates by using a proteomic-based substrate trapping approach. An FtsH variant (FtsH trap ) carrying a single amino acid exchange in the proteolytic center was expressed and purified in E. coli . FtsH trap is devoid of its proteolytic activity but fully retains ATPase activity allowing for unfolding and translocation of substrates into the inactivated proteolytic chamber. Proteins associated with FtsH trap and wild-type FtsH (FtsH WT ) were purified, separated by two-dimensional PAGE, and subjected to mass spectrometry. Over-representation of LpxC in the FtsH trap preparation validated the trapping strategy. Four novel FtsH substrates were identified. The sulfur delivery protein IscS and the d -amino acid dehydrogenase DadA were degraded under all tested conditions. The formate dehydrogenase subunit FdoH and the yet uncharacterized YfgM protein were subject to growth condition-dependent regulated proteolysis. Several lines of evidence suggest that YfgM serves as negative regulator of the RcsB-dependent stress response pathway, which must be degraded under stress conditions. The proteins captured by FtsH trap revealed previously unknown biological functions of the physiologically most important AAA + protease in E. coli .
Proteolysis is a universal strategy to rapidly adjust the amount of regulatory and metabolic proteins to cellular demand. FtsH is the only membrane-anchored and essential ATP-dependent protease in Escherichia coli. Among the known functions of FtsH are the control of the heat shock response by proteolysis of the transcription factor RpoH (σ(32)) and its essential role in lipopolysaccharide biosynthesis by degradation of the two key enzymes LpxC and KdtA. Here, we identified new FtsH substrates by using a proteomic-based substrate trapping approach. An FtsH variant (FtsH(trap)) carrying a single amino acid exchange in the proteolytic center was expressed and purified in E. coli. FtsH(trap) is devoid of its proteolytic activity but fully retains ATPase activity allowing for unfolding and translocation of substrates into the inactivated proteolytic chamber. Proteins associated with FtsH(trap) and wild-type FtsH (FtsH(WT)) were purified, separated by two-dimensional PAGE, and subjected to mass spectrometry. Over-representation of LpxC in the FtsH(trap) preparation validated the trapping strategy. Four novel FtsH substrates were identified. The sulfur delivery protein IscS and the d-amino acid dehydrogenase DadA were degraded under all tested conditions. The formate dehydrogenase subunit FdoH and the yet uncharacterized YfgM protein were subject to growth condition-dependent regulated proteolysis. Several lines of evidence suggest that YfgM serves as negative regulator of the RcsB-dependent stress response pathway, which must be degraded under stress conditions. The proteins captured by FtsH(trap) revealed previously unknown biological functions of the physiologically most important AAA(+) protease in E. coli.
Proteolysis is a universal strategy to rapidly adjust the amount of regulatory and metabolic proteins to cellular demand. FtsH is the only membrane-anchored and essential ATP-dependent protease in Escherichia coli. Among the known functions of FtsH are the control of the heat shock response by proteolysis of the transcription factor RpoH (σ(32)) and its essential role in lipopolysaccharide biosynthesis by degradation of the two key enzymes LpxC and KdtA. Here, we identified new FtsH substrates by using a proteomic-based substrate trapping approach. An FtsH variant (FtsH(trap)) carrying a single amino acid exchange in the proteolytic center was expressed and purified in E. coli. FtsH(trap) is devoid of its proteolytic activity but fully retains ATPase activity allowing for unfolding and translocation of substrates into the inactivated proteolytic chamber. Proteins associated with FtsH(trap) and wild-type FtsH (FtsH(WT)) were purified, separated by two-dimensional PAGE, and subjected to mass spectrometry. Over-representation of LpxC in the FtsH(trap) preparation validated the trapping strategy. Four novel FtsH substrates were identified. The sulfur delivery protein IscS and the d-amino acid dehydrogenase DadA were degraded under all tested conditions. The formate dehydrogenase subunit FdoH and the yet uncharacterized YfgM protein were subject to growth condition-dependent regulated proteolysis. Several lines of evidence suggest that YfgM serves as negative regulator of the RcsB-dependent stress response pathway, which must be degraded under stress conditions. The proteins captured by FtsH(trap) revealed previously unknown biological functions of the physiologically most important AAA(+) protease in E. coli.Proteolysis is a universal strategy to rapidly adjust the amount of regulatory and metabolic proteins to cellular demand. FtsH is the only membrane-anchored and essential ATP-dependent protease in Escherichia coli. Among the known functions of FtsH are the control of the heat shock response by proteolysis of the transcription factor RpoH (σ(32)) and its essential role in lipopolysaccharide biosynthesis by degradation of the two key enzymes LpxC and KdtA. Here, we identified new FtsH substrates by using a proteomic-based substrate trapping approach. An FtsH variant (FtsH(trap)) carrying a single amino acid exchange in the proteolytic center was expressed and purified in E. coli. FtsH(trap) is devoid of its proteolytic activity but fully retains ATPase activity allowing for unfolding and translocation of substrates into the inactivated proteolytic chamber. Proteins associated with FtsH(trap) and wild-type FtsH (FtsH(WT)) were purified, separated by two-dimensional PAGE, and subjected to mass spectrometry. Over-representation of LpxC in the FtsH(trap) preparation validated the trapping strategy. Four novel FtsH substrates were identified. The sulfur delivery protein IscS and the d-amino acid dehydrogenase DadA were degraded under all tested conditions. The formate dehydrogenase subunit FdoH and the yet uncharacterized YfgM protein were subject to growth condition-dependent regulated proteolysis. Several lines of evidence suggest that YfgM serves as negative regulator of the RcsB-dependent stress response pathway, which must be degraded under stress conditions. The proteins captured by FtsH(trap) revealed previously unknown biological functions of the physiologically most important AAA(+) protease in E. coli.
Author Narberhaus, Franz
Westphal, Kai
Langklotz, Sina
Thomanek, Nikolas
Author_xml – sequence: 1
  givenname: Kai
  surname: Westphal
  fullname: Westphal, Kai
– sequence: 2
  givenname: Sina
  surname: Langklotz
  fullname: Langklotz, Sina
– sequence: 3
  givenname: Nikolas
  surname: Thomanek
  fullname: Thomanek, Nikolas
– sequence: 4
  givenname: Franz
  surname: Narberhaus
  fullname: Narberhaus, Franz
  email: franz.narberhaus@rub.de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23091052$$D View this record in MEDLINE/PubMed
BookMark eNp1UU1r2zAYFqOjTT_Ouw0dd3GqDyu2LoNQmrbQbmVrYTchy69jFUfyJDlQ9uenkHZsg-qiw_P18jzH6MB5Bwh9oGROSVWePzVmfkcpm_O6LivyDs0oqXnBBf1xgGaEMFpIJuojdBzjE8mvlPQQHTFOJCWCzdCvJX4IehytW-PlOAavTY-_wRb0EPEXv4UBf5-amIJOELF2Lb7vn6P1g19bowe8mpxJ1ruIfYdTD_gyRnDJZug--AQ6Al6leI2ty5DpIVjTW42NH-wpet_lGDh7-U_Q4-ry4eK6uP16dXOxvC2MIDIVopNE6kVHOtGKqq0EMKO14VJCLeRCtkRDWUtTEcGJAA6kbbuy0nUDmi26hp-gz3vfcWo20Jp8X9CDGoPd6PCsvLbqX8TZXq39VnHBGJM0G3x6MQj-5wQxqY2NBoZBO_BTVJSVuekFF2Wmfvw760_Ia-OZIPYEE3yMATplbNK7CnO0HRQlaresysuq3bJqv2zWnf-ne7V-WyH3Csjdbi0EFY0FZ6C1AUxSrbdvan8Dvo279Q
CitedBy_id crossref_primary_10_1016_j_micpath_2021_105123
crossref_primary_10_1002_bip_22831
crossref_primary_10_1016_j_bbabio_2012_12_010
crossref_primary_10_1128_mSystems_01296_20
crossref_primary_10_1016_j_celrep_2021_110080
crossref_primary_10_1038_s44318_025_00408_1
crossref_primary_10_1038_s41467_022_32277_1
crossref_primary_10_1002_pmic_201600316
crossref_primary_10_1002_pmic_201800080
crossref_primary_10_1128_JB_02134_12
crossref_primary_10_3389_fmicb_2021_656380
crossref_primary_10_1002_pmic_201300338
crossref_primary_10_1016_j_jprot_2015_03_016
crossref_primary_10_1016_j_lwt_2022_114394
crossref_primary_10_1002_cbic_202500048
crossref_primary_10_1016_j_bbrc_2017_11_158
crossref_primary_10_1016_j_bbabio_2023_149017
crossref_primary_10_1038_s41598_017_08774_5
crossref_primary_10_7554_eLife_28507
crossref_primary_10_1016_j_micres_2024_127783
crossref_primary_10_1371_journal_pgen_1011408
crossref_primary_10_1111_gtc_12383
crossref_primary_10_1128_JB_00161_20
crossref_primary_10_1515_hsz_2016_0302
crossref_primary_10_1242_jcs_200733
crossref_primary_10_1093_plphys_kiab074
crossref_primary_10_3390_molecules27123772
crossref_primary_10_1038_s42003_022_03213_2
crossref_primary_10_1146_annurev_micro_091014_104457
crossref_primary_10_1074_jbc_M115_648550
crossref_primary_10_1111_hel_12140
crossref_primary_10_1111_febs_15467
crossref_primary_10_1038_s41467_024_49920_8
crossref_primary_10_1016_j_bbabio_2013_05_001
crossref_primary_10_1093_femsle_fnz198
crossref_primary_10_1074_jbc_M113_541672
crossref_primary_10_1016_j_bbapap_2023_140969
crossref_primary_10_1107_S1399004715005945
crossref_primary_10_1021_acs_jproteome_7b00809
crossref_primary_10_1111_mmi_15009
crossref_primary_10_1016_j_tibs_2018_12_006
crossref_primary_10_1074_mcp_M116_065482
crossref_primary_10_1371_journal_pgen_1008059
crossref_primary_10_3389_fmicb_2018_03285
crossref_primary_10_3389_fmicb_2019_01372
crossref_primary_10_1111_mmi_15005
crossref_primary_10_1186_1754_6834_6_131
crossref_primary_10_3390_ijms18112455
crossref_primary_10_3389_fmicb_2017_02605
crossref_primary_10_1073_pnas_1912628116
crossref_primary_10_1146_annurev_arplant_043014_115547
Cites_doi 10.1146/annurev-biochem-060408-172623
10.1016/j.jsb.2006.02.003
10.1016/0005-2736(92)90417-K
10.1016/S1097-2765(03)00060-1
10.1038/nrmicro2669
10.1074/jbc.271.49.31196
10.1016/j.jmb.2007.06.083
10.1016/j.bbrc.2008.07.050
10.1046/j.1365-2958.2003.03952.x
10.1002/pmic.200701184
10.1186/1471-2180-10-251
10.1016/j.resmic.2009.08.011
10.1073/pnas.94.11.5544
10.1101/gad.1219204
10.1111/j.1574-6976.2010.00240.x
10.1111/j.1574-6968.2008.01423.x
10.1093/jb/mvp071
10.1101/gad.12.24.3889
10.1111/j.1365-2958.2005.04994.x
10.1128/jb.178.4.1204-1206.1996
10.1128/jb.176.5.1500-1510.1994
10.1074/jbc.M308327200
10.1093/nar/21.15.3391
10.1128/JB.185.19.5735-5746.2003
10.1073/pnas.0600031103
10.1146/annurev.biochem.74.082803.133518
10.1111/j.1365-2958.2011.07646.x
10.1128/JB.186.22.7474-7480.2004
10.1128/JB.05942-11
10.1021/pr101105c
10.1111/j.1432-1033.1990.tb15450.x
10.1016/S0969-2126(02)00806-7
10.1146/annurev.micro.59.030804.121316
10.1016/j.resmic.2009.08.021
10.1016/0003-2697(84)90782-6
10.1128/JB.180.6.1573-1577.1998
10.1128/JB.180.24.6625-6634.1998
10.1073/pnas.95.9.4953
10.1073/pnas.96.25.14264
10.1002/j.1460-2075.1996.tb00393.x
10.1016/j.jmb.2005.12.088
10.1002/j.1460-2075.1995.tb07253.x
10.1128/JB.187.11.3807-3813.2005
10.1016/S0021-9258(19)85517-5
10.1128/JB.184.17.4775-4782.2002
10.1128/JB.188.9.3175-3181.2006
10.1016/0003-2697(76)90527-3
10.1046/j.1365-2443.2001.00447.x
10.1128/JB.05040-11
10.1128/JB.00871-08
10.1046/j.1365-2958.2002.03203.x
10.1016/j.molcel.2006.03.007
10.1038/nature04412
10.1007/s00438-010-0542-7
10.1016/S1097-2765(03)00068-6
10.1016/S0021-9258(19)40989-7
10.1101/gad.5.10.1912
10.1128/jb.177.24.7141-7149.1995
10.1002/jobm.200610236
10.1016/j.bbamcr.2011.08.015
10.1128/jb.175.5.1352-1357.1993
10.1021/bi015748o
10.1126/science.1178123
10.1073/pnas.92.8.3516
10.1016/S0014-5793(96)01283-5
10.1128/jb.179.2.358-363.1997
10.1002/elps.200500912
10.1016/j.molcel.2008.09.016
10.1046/j.1365-2958.1999.01221.x
ContentType Journal Article
Copyright 2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012
Copyright_xml – notice: 2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
– notice: 2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1074/jbc.M112.388470
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate Identification of Novel FtsH Substrates
EISSN 1083-351X
EndPage 42971
ExternalDocumentID PMC3522291
23091052
10_1074_jbc_M112_388470
S0021925820437858
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-ET
-~X
0SF
18M
29J
2WC
34G
39C
4.4
53G
5BI
5GY
5RE
5VS
6I.
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
ABDNZ
ABOCM
ABPPZ
ABRJW
ACGFO
ACNCT
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFOSN
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
KQ8
L7B
N9A
OK1
P0W
P2P
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
VQA
W8F
WH7
WOQ
XSW
YQT
YSK
YWH
YZZ
ZA5
~02
~KM
.55
.7T
.GJ
0R~
186
3O-
41~
6TJ
AALRI
AAYJJ
AAYOK
AAYWO
AAYXX
ABFSI
ACSFO
ACVFH
ACYGS
ADCNI
ADVLN
ADXHL
AEUPX
AFFNX
AFPUW
AI.
AIGII
AITUG
AKBMS
AKRWK
AKYEP
C1A
CITATION
E.L
FA8
H13
J5H
MVM
NHB
OHT
P-O
QZG
UQL
VH1
WHG
X7M
XJT
Y6R
YYP
ZE2
ZGI
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
Z5M
7X8
5PM
ID FETCH-LOGICAL-c509t-5f909a6f0f5d57d75e2caac399e85969d0ae489c705305e3e0ddf47a8bea26fb3
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 17:49:13 EDT 2025
Thu Jul 10 19:12:39 EDT 2025
Wed Feb 19 02:30:09 EST 2025
Tue Jul 01 00:40:57 EDT 2025
Thu Apr 24 22:54:32 EDT 2025
Fri Feb 23 02:45:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords Bacteria
Iron-Sulfur Protein
Escherichia coli
Enzyme Turnover
ATP-dependent Protease
Lipopolysaccharide (LPS)
Language English
License This is an open access article under the CC BY license.
http://creativecommons.org/licenses/by/4.0
https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-5f909a6f0f5d57d75e2caac399e85969d0ae489c705305e3e0ddf47a8bea26fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1074/jbc.M112.388470
PMID 23091052
PQID 1240216354
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3522291
proquest_miscellaneous_1240216354
pubmed_primary_23091052
crossref_citationtrail_10_1074_jbc_M112_388470
crossref_primary_10_1074_jbc_M112_388470
elsevier_sciencedirect_doi_10_1074_jbc_M112_388470
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-14
PublicationDateYYYYMMDD 2012-12-14
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2012
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Van Melderen, Aertsen (bib44) 2009; 160
Wu, Li, Wu (bib47) 2008; 374
Herman, Thévenet, D'Ari, Bouloc (bib18) 1995; 92
Herman, Thévenet, D'Ari, Bouloc (bib21) 1997; 179
Langklotz, Narberhaus (bib26) 2011; 80
Enoch, Lester (bib54) 1975; 250
Joly, Engl, Jovanovic, Huvet, Toni, Sheng, Stumpf, Buck (bib40) 2010; 34
Johnson, Dean, Smith, Johnson (bib46) 2005; 74
Akiyama (bib15) 2009; 146
Kihara, Akiyama, Ito (bib22) 1997; 94
Ogura, Wilkinson (bib6) 2001; 6
Ito, Akiyama (bib12) 2005; 59
Leffers, Gottesman (bib23) 1998; 180
Bieniossek, Schalch, Bumann, Meister, Meier, Baumann (bib9) 2006; 103
Chiba, Akiyama, Ito (bib67) 2002; 184
Srinivasan, Ajitkumar (bib70) 2007; 47
Saikawa, Ito, Akiyama (bib11) 2002; 41
Majdalani, Hernandez, Gottesman (bib63) 2002; 46
Sledjeski, Gottesman (bib64) 1996; 178
Führer, Müller, Baumann, Langklotz, Kutscher, Narberhaus (bib25) 2007; 372
Pommier, Mandrand, Holt, Boxer, Giordano (bib58) 1992; 1107
Tomoyasu, Yamanaka, Murata, Suzaki, Bouloc, Kato, Niki, Hiraga, Ogura (bib4) 1993; 175
Bandow, Baker, Berth, Painter, Sepulveda, Clark, Kilty, VanBogelen (bib34) 2008; 8
Herman, Prakash, Lu, Matouschek, Gross (bib45) 2003; 11
Abaibou, Pommier, Benoit, Giordano, Mandrand-Berthelot (bib55) 1995; 177
Rodriguez, Arsène-Ploetze, Rist, Rüdiger, Schneider-Mergener, Mayer, Bukau (bib66) 2008; 32
Lasserre, Beyne, Pyndiah, Lapaillerie, Claverol, Bonneu (bib59) 2006; 27
Yamada-Inagawa, Okuno, Karata, Yamanaka, Ogura (bib8) 2003; 278
Neher, Villén, Oakes, Bakalarski, Sauer, Gygi, Baker (bib43) 2006; 22
Langklotz, Baumann, Narberhaus (bib13) 2012; 1823
Führer, Langklotz, Narberhaus (bib24) 2006; 59
Tomoyasu, Gamer, Bukau, Kanemori, Mori, Rutman, Oppenheim, Yura, Yamanaka, Niki (bib10) 1995; 14
Olsiewski, Kaczorowski, Walsh (bib48) 1980; 255
Akiyama, Kihara, Tokuda, Ito (bib52) 1996; 271
Krzywda, Brzozowski, Verma, Karata, Ogura, Wilkinson (bib5) 2002; 10
Sambrook, Russell (bib36) 2001
Matern, Barion, Behrens-Kneip (bib61) 2010; 10
Jishage, Ishihama (bib41) 1998; 95
Gur, Biran, Ron (bib1) 2011; 9
Okuno, Yamanaka, Ogura (bib7) 2006; 156
Gonzalez, Frank, Levine, Woodgate (bib68) 1998; 12
Flynn, Neher, Kim, Sauer, Baker (bib31) 2003; 11
Erbse, Schmidt, Bornemann, Schneider-Mergener, Mogk, Zahn, Dougan, Bukau (bib69) 2006; 439
Peterson, Carabetta, Chowdhury, Silhavy (bib65) 2006; 188
Benoit, Abaibou, Mandrand-Berthelot (bib53) 1998; 180
Katz, Ron (bib16) 2008; 190
Johnson, Burton, Gutiérrez, Painter, Lund (bib37) 2011; 193
Kuroda, Tanaka, Ikeda, Kato, Takiguchi, Ohtake (bib38) 1999; 96
Weiner, Brissette, Model (bib39) 1991; 5
Hagiwara, Sugiura, Oshima, Mori, Aiba, Yamashino, Mizuno (bib62) 2003; 185
Singh, Darwin (bib42) 2011; 193
Ogura, Inoue, Tatsuta, Suzaki, Karata, Young, Su, Fierke, Jackman, Raetz, Coleman, Tomoyasu, Matsuzawa (bib3) 1999; 31
Shah, Wolf (bib20) 2006; 357
Wessel, Flügge (bib33) 1984; 138
Horikoshi, Yura, Tsuchimoto, Fukumori, Kanemori (bib30) 2004; 186
Lam, Oh, Cava, Takacs, Clardy, de Pedro, Waldor (bib49) 2009; 325
Obrist, Narberhaus (bib29) 2005; 187
Griffith, Shah, Wolf (bib19) 2004; 51
Lobocka, Hennig, Wild, Kłopotowski (bib50) 1994; 176
Sauer, Baker (bib2) 2011; 80
Obrist, Langklotz, Milek, Führer, Narberhaus (bib28) 2009; 290
Bradford (bib32) 1976; 72
Klüsener, Hacker, Tsai, Bandow, Gust, Lai, Narberhaus (bib35) 2010; 283
Gamer, Multhaup, Tomoyasu, McCarty, Rüdiger, Schönfeld, Schirra, Bujard, Bukau (bib17) 1996; 15
Maddalo, Stenberg-Bruzell, Götzke, Toddo, Björkholm, Eriksson, Chovanec, Genevaux, Lehtiö, Ilag, Daley (bib60) 2011; 10
Iobbi-Nivol, Santini, Blasco, Giordano (bib56) 1990; 188
Guisbert, Herman, Lu, Gross (bib27) 2004; 18
Plunkett, Burland, Daniels, Blattner (bib57) 1993; 21
Narberhaus, Obrist, Führer, Langklotz (bib14) 2009; 160
Akiyama, Kihara, Ito (bib51) 1996; 399
Olsiewski (10.1074/jbc.M112.388470_bib48) 1980; 255
Gur (10.1074/jbc.M112.388470_bib1) 2011; 9
Wu (10.1074/jbc.M112.388470_bib47) 2008; 374
Abaibou (10.1074/jbc.M112.388470_bib55) 1995; 177
Gonzalez (10.1074/jbc.M112.388470_bib68) 1998; 12
Enoch (10.1074/jbc.M112.388470_bib54) 1975; 250
Katz (10.1074/jbc.M112.388470_bib16) 2008; 190
Kuroda (10.1074/jbc.M112.388470_bib38) 1999; 96
Lasserre (10.1074/jbc.M112.388470_bib59) 2006; 27
Peterson (10.1074/jbc.M112.388470_bib65) 2006; 188
Obrist (10.1074/jbc.M112.388470_bib28) 2009; 290
Hagiwara (10.1074/jbc.M112.388470_bib62) 2003; 185
Okuno (10.1074/jbc.M112.388470_bib7) 2006; 156
Akiyama (10.1074/jbc.M112.388470_bib15) 2009; 146
Langklotz (10.1074/jbc.M112.388470_bib13) 2012; 1823
Narberhaus (10.1074/jbc.M112.388470_bib14) 2009; 160
Guisbert (10.1074/jbc.M112.388470_bib27) 2004; 18
Kihara (10.1074/jbc.M112.388470_bib22) 1997; 94
Flynn (10.1074/jbc.M112.388470_bib31) 2003; 11
Herman (10.1074/jbc.M112.388470_bib21) 1997; 179
Weiner (10.1074/jbc.M112.388470_bib39) 1991; 5
Klüsener (10.1074/jbc.M112.388470_bib35) 2010; 283
Tomoyasu (10.1074/jbc.M112.388470_bib4) 1993; 175
Herman (10.1074/jbc.M112.388470_bib18) 1995; 92
Tomoyasu (10.1074/jbc.M112.388470_bib10) 1995; 14
Ito (10.1074/jbc.M112.388470_bib12) 2005; 59
Lobocka (10.1074/jbc.M112.388470_bib50) 1994; 176
Horikoshi (10.1074/jbc.M112.388470_bib30) 2004; 186
Maddalo (10.1074/jbc.M112.388470_bib60) 2011; 10
Yamada-Inagawa (10.1074/jbc.M112.388470_bib8) 2003; 278
Shah (10.1074/jbc.M112.388470_bib20) 2006; 357
Langklotz (10.1074/jbc.M112.388470_bib26) 2011; 80
Sambrook (10.1074/jbc.M112.388470_bib36) 2001
Herman (10.1074/jbc.M112.388470_bib45) 2003; 11
Bandow (10.1074/jbc.M112.388470_bib34) 2008; 8
Griffith (10.1074/jbc.M112.388470_bib19) 2004; 51
Führer (10.1074/jbc.M112.388470_bib24) 2006; 59
Ogura (10.1074/jbc.M112.388470_bib6) 2001; 6
Srinivasan (10.1074/jbc.M112.388470_bib70) 2007; 47
Sauer (10.1074/jbc.M112.388470_bib2) 2011; 80
Ogura (10.1074/jbc.M112.388470_bib3) 1999; 31
Akiyama (10.1074/jbc.M112.388470_bib52) 1996; 271
Leffers (10.1074/jbc.M112.388470_bib23) 1998; 180
Johnson (10.1074/jbc.M112.388470_bib37) 2011; 193
Gamer (10.1074/jbc.M112.388470_bib17) 1996; 15
Obrist (10.1074/jbc.M112.388470_bib29) 2005; 187
Wessel (10.1074/jbc.M112.388470_bib33) 1984; 138
Rodriguez (10.1074/jbc.M112.388470_bib66) 2008; 32
Matern (10.1074/jbc.M112.388470_bib61) 2010; 10
Führer (10.1074/jbc.M112.388470_bib25) 2007; 372
Iobbi-Nivol (10.1074/jbc.M112.388470_bib56) 1990; 188
Pommier (10.1074/jbc.M112.388470_bib58) 1992; 1107
Majdalani (10.1074/jbc.M112.388470_bib63) 2002; 46
Benoit (10.1074/jbc.M112.388470_bib53) 1998; 180
Sledjeski (10.1074/jbc.M112.388470_bib64) 1996; 178
Bieniossek (10.1074/jbc.M112.388470_bib9) 2006; 103
Plunkett (10.1074/jbc.M112.388470_bib57) 1993; 21
Neher (10.1074/jbc.M112.388470_bib43) 2006; 22
Akiyama (10.1074/jbc.M112.388470_bib51) 1996; 399
Saikawa (10.1074/jbc.M112.388470_bib11) 2002; 41
Chiba (10.1074/jbc.M112.388470_bib67) 2002; 184
Johnson (10.1074/jbc.M112.388470_bib46) 2005; 74
Krzywda (10.1074/jbc.M112.388470_bib5) 2002; 10
Van Melderen (10.1074/jbc.M112.388470_bib44) 2009; 160
Bradford (10.1074/jbc.M112.388470_bib32) 1976; 72
Lam (10.1074/jbc.M112.388470_bib49) 2009; 325
Joly (10.1074/jbc.M112.388470_bib40) 2010; 34
Singh (10.1074/jbc.M112.388470_bib42) 2011; 193
Jishage (10.1074/jbc.M112.388470_bib41) 1998; 95
Erbse (10.1074/jbc.M112.388470_bib69) 2006; 439
References_xml – volume: 27
  start-page: 3306
  year: 2006
  end-page: 3321
  ident: bib59
  article-title: A complexomic study of
  publication-title: Electrophoresis
– volume: 180
  start-page: 6625
  year: 1998
  end-page: 6634
  ident: bib53
  article-title: Topological analysis of the aerobic membrane-bound formate dehydrogenase of
  publication-title: J. Bacteriol.
– volume: 21
  start-page: 3391
  year: 1993
  end-page: 3398
  ident: bib57
  article-title: Analysis of the
  publication-title: Nucleic Acids Res.
– volume: 15
  start-page: 607
  year: 1996
  end-page: 617
  ident: bib17
  article-title: A cycle of binding and release of the DnaK, DnaJ, and GrpE chaperones regulates activity of the
  publication-title: EMBO J.
– volume: 10
  start-page: 251
  year: 2010
  ident: bib61
  article-title: PpiD is a player in the network of periplasmic chaperones in
  publication-title: BMC Microbiol.
– volume: 278
  start-page: 50182
  year: 2003
  end-page: 50187
  ident: bib8
  article-title: Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 671
  year: 2003
  end-page: 683
  ident: bib31
  article-title: Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals
  publication-title: Mol. Cell
– volume: 12
  start-page: 3889
  year: 1998
  end-page: 3899
  ident: bib68
  article-title: Lon-mediated proteolysis of the
  publication-title: Genes Dev.
– volume: 185
  start-page: 5735
  year: 2003
  end-page: 5746
  ident: bib62
  article-title: Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in
  publication-title: J. Bacteriol.
– volume: 180
  start-page: 1573
  year: 1998
  end-page: 1577
  ident: bib23
  article-title: λ Xis degradation
  publication-title: J. Bacteriol.
– volume: 156
  start-page: 109
  year: 2006
  end-page: 114
  ident: bib7
  article-title: Characterization of mutants of the
  publication-title: J. Struct. Biol.
– volume: 178
  start-page: 1204
  year: 1996
  end-page: 1206
  ident: bib64
  article-title: Osmotic shock induction of capsule synthesis in
  publication-title: J. Bacteriol.
– volume: 92
  start-page: 3516
  year: 1995
  end-page: 3520
  ident: bib18
  article-title: Degradation of σ
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 283
  start-page: 575
  year: 2010
  end-page: 589
  ident: bib35
  article-title: Proteomic and transcriptomic characterization of a virulence-deficient phosphatidylcholine-negative
  publication-title: Mol. Genet. Genomics
– volume: 96
  start-page: 14264
  year: 1999
  end-page: 14269
  ident: bib38
  article-title: Inorganic polyphosphate kinase is required to stimulate protein degradation and for adaptation to amino acid starvation in
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 374
  start-page: 399
  year: 2008
  end-page: 404
  ident: bib47
  article-title: Regulation of
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 187
  start-page: 3807
  year: 2005
  end-page: 3813
  ident: bib29
  article-title: Identification of a turnover element in region 2.1 of
  publication-title: J. Bacteriol.
– volume: 160
  start-page: 645
  year: 2009
  end-page: 651
  ident: bib44
  article-title: Regulation and quality control by Lon-dependent proteolysis
  publication-title: Res. Microbiol.
– volume: 80
  start-page: 587
  year: 2011
  end-page: 612
  ident: bib2
  article-title: AAA
  publication-title: Annu. Rev. Biochem.
– volume: 357
  start-page: 718
  year: 2006
  end-page: 731
  ident: bib20
  article-title: Sequence requirements for Lon-dependent degradation of the
  publication-title: J. Mol. Biol.
– volume: 250
  start-page: 6693
  year: 1975
  end-page: 6705
  ident: bib54
  article-title: The purification and properties of formate dehydrogenase and nitrate reductase from
  publication-title: J. Biol. Chem.
– volume: 175
  start-page: 1352
  year: 1993
  end-page: 1357
  ident: bib4
  article-title: Topology and subcellular localization of FtsH protein in
  publication-title: J. Bacteriol.
– year: 2001
  ident: bib36
  publication-title: Molecular Cloning: A Laboratory Manual
– volume: 271
  start-page: 31196
  year: 1996
  end-page: 31201
  ident: bib52
  article-title: FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins
  publication-title: J. Biol. Chem.
– volume: 47
  start-page: 251
  year: 2007
  end-page: 259
  ident: bib70
  article-title: Bacterial cell division protein FtsZ is stable against degradation by AAA family protease FtsH in
  publication-title: J. Basic Microbiol.
– volume: 188
  start-page: 3175
  year: 2006
  end-page: 3181
  ident: bib65
  article-title: LrhA regulates
  publication-title: J. Bacteriol.
– volume: 1107
  start-page: 305
  year: 1992
  end-page: 313
  ident: bib58
  article-title: A second phenazine methosulphate-linked formate dehydrogenase isoenzyme in
  publication-title: Biochim. Biophys. Acta
– volume: 22
  start-page: 193
  year: 2006
  end-page: 204
  ident: bib43
  article-title: Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon
  publication-title: Mol. Cell
– volume: 184
  start-page: 4775
  year: 2002
  end-page: 4782
  ident: bib67
  article-title: Membrane protein degradation by FtsH can be initiated from either end
  publication-title: J. Bacteriol.
– volume: 5
  start-page: 1912
  year: 1991
  end-page: 1923
  ident: bib39
  article-title: Stress-induced expression of the
  publication-title: Genes Dev.
– volume: 193
  start-page: 3653
  year: 2011
  end-page: 3656
  ident: bib37
  article-title: RcsB is required for inducible acid resistance in
  publication-title: J. Bacteriol.
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  ident: bib32
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
  publication-title: Anal. Biochem.
– volume: 6
  start-page: 575
  year: 2001
  end-page: 597
  ident: bib6
  article-title: AAA
  publication-title: Genes Cells
– volume: 138
  start-page: 141
  year: 1984
  end-page: 143
  ident: bib33
  article-title: A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids
  publication-title: Anal. Biochem.
– volume: 186
  start-page: 7474
  year: 2004
  end-page: 7480
  ident: bib30
  article-title: Conserved region 2.1 of
  publication-title: J. Bacteriol.
– volume: 177
  start-page: 7141
  year: 1995
  end-page: 7149
  ident: bib55
  article-title: Expression and characterization of the
  publication-title: J. Bacteriol.
– volume: 188
  start-page: 679
  year: 1990
  end-page: 687
  ident: bib56
  article-title: Purification and further characterization of the second nitrate reductase of
  publication-title: Eur. J. Biochem.
– volume: 59
  start-page: 211
  year: 2005
  end-page: 231
  ident: bib12
  article-title: Cellular functions, mechanism of action, and regulation of FtsH protease
  publication-title: Annu. Rev. Microbiol.
– volume: 1823
  start-page: 40
  year: 2012
  end-page: 48
  ident: bib13
  article-title: Structure and function of the bacterial AAA protease FtsH
  publication-title: Biochim. Biophys. Acta
– volume: 59
  start-page: 1025
  year: 2006
  end-page: 1036
  ident: bib24
  article-title: The C-terminal end of LpxC is required for degradation by the FtsH protease
  publication-title: Mol. Microbiol.
– volume: 9
  start-page: 839
  year: 2011
  end-page: 848
  ident: bib1
  article-title: Regulated proteolysis in Gram-negative bacteria-how and when?
  publication-title: Nat. Rev. Microbiol.
– volume: 80
  start-page: 1313
  year: 2011
  end-page: 1325
  ident: bib26
  article-title: The
  publication-title: Mol. Microbiol.
– volume: 51
  start-page: 1801
  year: 2004
  end-page: 1816
  ident: bib19
  article-title: Proteolytic degradation of
  publication-title: Mol. Microbiol.
– volume: 290
  start-page: 199
  year: 2009
  end-page: 208
  ident: bib28
  article-title: Region C of the
  publication-title: FEMS Microbiol. Lett.
– volume: 399
  start-page: 26
  year: 1996
  end-page: 28
  ident: bib51
  article-title: Subunit
  publication-title: FEBS Lett.
– volume: 41
  start-page: 1861
  year: 2002
  end-page: 1868
  ident: bib11
  article-title: Identification of glutamic acid 479 as the gluzincin coordinator of zinc in FtsH (HflB)
  publication-title: Biochemistry
– volume: 74
  start-page: 247
  year: 2005
  end-page: 281
  ident: bib46
  article-title: Structure, function, and formation of biological iron-sulfur clusters
  publication-title: Annu. Rev. Biochem.
– volume: 103
  start-page: 3066
  year: 2006
  end-page: 3071
  ident: bib9
  article-title: The molecular architecture of the metalloprotease FtsH
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 95
  start-page: 4953
  year: 1998
  end-page: 4958
  ident: bib41
  article-title: A stationary phase protein in
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 325
  start-page: 1552
  year: 2009
  end-page: 1555
  ident: bib49
  article-title: -Amino acids govern stationary phase cell wall remodeling in bacteria
  publication-title: Science
– volume: 190
  start-page: 7117
  year: 2008
  end-page: 7122
  ident: bib16
  article-title: Dual role of FtsH in regulating lipopolysaccharide biosynthesis in
  publication-title: J. Bacteriol.
– volume: 179
  start-page: 358
  year: 1997
  end-page: 363
  ident: bib21
  article-title: The HflB protease of
  publication-title: J. Bacteriol.
– volume: 176
  start-page: 1500
  year: 1994
  end-page: 1510
  ident: bib50
  article-title: Organization and expression of the
  publication-title: J. Bacteriol.
– volume: 372
  start-page: 485
  year: 2007
  end-page: 496
  ident: bib25
  article-title: Sequence and length recognition of the C-terminal turnover element of LpxC, a soluble substrate of the membrane-bound FtsH protease
  publication-title: J. Mol. Biol.
– volume: 14
  start-page: 2551
  year: 1995
  end-page: 2560
  ident: bib10
  article-title: FtsH is a membrane-bound, ATP-dependent protease that degrades the heat-shock transcription factor σ
  publication-title: EMBO J.
– volume: 8
  start-page: 3030
  year: 2008
  end-page: 3041
  ident: bib34
  article-title: Improved image analysis workflow for 2-D gels enables large-scale 2-D gel-based proteomics studies–COPD biomarker discovery study
  publication-title: Proteomics
– volume: 193
  start-page: 6436
  year: 2011
  end-page: 6442
  ident: bib42
  article-title: FtsH-dependent degradation of phage shock protein C in
  publication-title: J. Bacteriol.
– volume: 439
  start-page: 753
  year: 2006
  end-page: 756
  ident: bib69
  article-title: ClpS is an essential component of the N-end rule pathway in
  publication-title: Nature
– volume: 32
  start-page: 347
  year: 2008
  end-page: 358
  ident: bib66
  article-title: Molecular basis for regulation of the heat shock transcription factor σ
  publication-title: Mol. Cell
– volume: 18
  start-page: 2812
  year: 2004
  end-page: 2821
  ident: bib27
  article-title: A chaperone network controls the heat shock response in
  publication-title: Genes Dev.
– volume: 10
  start-page: 1073
  year: 2002
  end-page: 1083
  ident: bib5
  article-title: The crystal structure of the AAA domain of the ATP-dependent protease FtsH of
  publication-title: Structure
– volume: 11
  start-page: 659
  year: 2003
  end-page: 669
  ident: bib45
  article-title: Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH
  publication-title: Mol. Cell
– volume: 34
  start-page: 797
  year: 2010
  end-page: 827
  ident: bib40
  article-title: Managing membrane stress. The phage shock protein (Psp) response, from molecular mechanisms to physiology
  publication-title: FEMS Microbiol. Rev.
– volume: 31
  start-page: 833
  year: 1999
  end-page: 844
  ident: bib3
  article-title: Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in
  publication-title: Mol. Microbiol.
– volume: 46
  start-page: 813
  year: 2002
  end-page: 826
  ident: bib63
  article-title: Regulation and mode of action of the second small RNA activator of RpoS translation, RprA
  publication-title: Mol. Microbiol.
– volume: 146
  start-page: 449
  year: 2009
  end-page: 454
  ident: bib15
  article-title: Quality control of cytoplasmic membrane proteins in
  publication-title: J. Biochem.
– volume: 160
  start-page: 652
  year: 2009
  end-page: 659
  ident: bib14
  article-title: Degradation of cytoplasmic substrates by FtsH, a membrane-anchored protease with many talents
  publication-title: Res. Microbiol.
– volume: 10
  start-page: 1848
  year: 2011
  end-page: 1859
  ident: bib60
  article-title: Systematic analysis of native membrane protein complexes in
  publication-title: J. Proteome Res.
– volume: 94
  start-page: 5544
  year: 1997
  end-page: 5549
  ident: bib22
  article-title: Host regulation of lysogenic decision in bacteriophage λ. Transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA)
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 255
  start-page: 4487
  year: 1980
  end-page: 4494
  ident: bib48
  article-title: Purification and properties of
  publication-title: J. Biol. Chem.
– volume: 80
  start-page: 587
  year: 2011
  ident: 10.1074/jbc.M112.388470_bib2
  article-title: AAA+ proteases: ATP-fueled machines of protein destruction
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060408-172623
– volume: 156
  start-page: 109
  year: 2006
  ident: 10.1074/jbc.M112.388470_bib7
  article-title: Characterization of mutants of the Escherichia coli AAA protease, FtsH, carrying a mutation in the central pore region
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2006.02.003
– volume: 1107
  start-page: 305
  year: 1992
  ident: 10.1074/jbc.M112.388470_bib58
  article-title: A second phenazine methosulphate-linked formate dehydrogenase isoenzyme in Escherichia coli
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(92)90417-K
– volume: 11
  start-page: 671
  year: 2003
  ident: 10.1074/jbc.M112.388470_bib31
  article-title: Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00060-1
– volume: 9
  start-page: 839
  year: 2011
  ident: 10.1074/jbc.M112.388470_bib1
  article-title: Regulated proteolysis in Gram-negative bacteria-how and when?
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2669
– year: 2001
  ident: 10.1074/jbc.M112.388470_bib36
– volume: 271
  start-page: 31196
  year: 1996
  ident: 10.1074/jbc.M112.388470_bib52
  article-title: FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.49.31196
– volume: 372
  start-page: 485
  year: 2007
  ident: 10.1074/jbc.M112.388470_bib25
  article-title: Sequence and length recognition of the C-terminal turnover element of LpxC, a soluble substrate of the membrane-bound FtsH protease
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.06.083
– volume: 374
  start-page: 399
  year: 2008
  ident: 10.1074/jbc.M112.388470_bib47
  article-title: Regulation of Escherichia coli IscS desulfurase activity by ferrous iron and cysteine
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2008.07.050
– volume: 51
  start-page: 1801
  year: 2004
  ident: 10.1074/jbc.M112.388470_bib19
  article-title: Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2003.03952.x
– volume: 8
  start-page: 3030
  year: 2008
  ident: 10.1074/jbc.M112.388470_bib34
  article-title: Improved image analysis workflow for 2-D gels enables large-scale 2-D gel-based proteomics studies–COPD biomarker discovery study
  publication-title: Proteomics
  doi: 10.1002/pmic.200701184
– volume: 10
  start-page: 251
  year: 2010
  ident: 10.1074/jbc.M112.388470_bib61
  article-title: PpiD is a player in the network of periplasmic chaperones in Escherichia coli
  publication-title: BMC Microbiol.
  doi: 10.1186/1471-2180-10-251
– volume: 160
  start-page: 652
  year: 2009
  ident: 10.1074/jbc.M112.388470_bib14
  article-title: Degradation of cytoplasmic substrates by FtsH, a membrane-anchored protease with many talents
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2009.08.011
– volume: 94
  start-page: 5544
  year: 1997
  ident: 10.1074/jbc.M112.388470_bib22
  article-title: Host regulation of lysogenic decision in bacteriophage λ. Transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA)
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.94.11.5544
– volume: 18
  start-page: 2812
  year: 2004
  ident: 10.1074/jbc.M112.388470_bib27
  article-title: A chaperone network controls the heat shock response in E. coli
  publication-title: Genes Dev.
  doi: 10.1101/gad.1219204
– volume: 34
  start-page: 797
  year: 2010
  ident: 10.1074/jbc.M112.388470_bib40
  article-title: Managing membrane stress. The phage shock protein (Psp) response, from molecular mechanisms to physiology
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2010.00240.x
– volume: 290
  start-page: 199
  year: 2009
  ident: 10.1074/jbc.M112.388470_bib28
  article-title: Region C of the Escherichia coli heat shock σ factor RpoH (σ32) contains a turnover element for proteolysis by the FtsH protease
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2008.01423.x
– volume: 146
  start-page: 449
  year: 2009
  ident: 10.1074/jbc.M112.388470_bib15
  article-title: Quality control of cytoplasmic membrane proteins in Escherichia coli
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvp071
– volume: 12
  start-page: 3889
  year: 1998
  ident: 10.1074/jbc.M112.388470_bib68
  article-title: Lon-mediated proteolysis of the Escherichia coli UmuD mutagenesis protein. In vitro degradation and identification of residues required for proteolysis
  publication-title: Genes Dev.
  doi: 10.1101/gad.12.24.3889
– volume: 59
  start-page: 1025
  year: 2006
  ident: 10.1074/jbc.M112.388470_bib24
  article-title: The C-terminal end of LpxC is required for degradation by the FtsH protease
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2005.04994.x
– volume: 178
  start-page: 1204
  year: 1996
  ident: 10.1074/jbc.M112.388470_bib64
  article-title: Osmotic shock induction of capsule synthesis in Escherichia coli K-12
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.178.4.1204-1206.1996
– volume: 176
  start-page: 1500
  year: 1994
  ident: 10.1074/jbc.M112.388470_bib50
  article-title: Organization and expression of the Escherichia coli K-12 dad operon encoding the smaller subunit of d-amino acid dehydrogenase and the catabolic alanine racemase
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.176.5.1500-1510.1994
– volume: 278
  start-page: 50182
  year: 2003
  ident: 10.1074/jbc.M112.388470_bib8
  article-title: Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M308327200
– volume: 21
  start-page: 3391
  year: 1993
  ident: 10.1074/jbc.M112.388470_bib57
  article-title: Analysis of the Escherichia coli genome. III. DNA sequence of the region from 87.2 to 89.2 minutes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/21.15.3391
– volume: 185
  start-page: 5735
  year: 2003
  ident: 10.1074/jbc.M112.388470_bib62
  article-title: Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.185.19.5735-5746.2003
– volume: 103
  start-page: 3066
  year: 2006
  ident: 10.1074/jbc.M112.388470_bib9
  article-title: The molecular architecture of the metalloprotease FtsH
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0600031103
– volume: 74
  start-page: 247
  year: 2005
  ident: 10.1074/jbc.M112.388470_bib46
  article-title: Structure, function, and formation of biological iron-sulfur clusters
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.74.082803.133518
– volume: 80
  start-page: 1313
  year: 2011
  ident: 10.1074/jbc.M112.388470_bib26
  article-title: The Escherichia coli replication inhibitor CspD is subject to growth-regulated degradation by the Lon protease
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2011.07646.x
– volume: 186
  start-page: 7474
  year: 2004
  ident: 10.1074/jbc.M112.388470_bib30
  article-title: Conserved region 2.1 of Escherichia coli heat shock transcription factor σ32 is required for modulating both metabolic stability and transcriptional activity
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.186.22.7474-7480.2004
– volume: 193
  start-page: 6436
  year: 2011
  ident: 10.1074/jbc.M112.388470_bib42
  article-title: FtsH-dependent degradation of phage shock protein C in Yersinia enterocoliticaEscherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.05942-11
– volume: 10
  start-page: 1848
  year: 2011
  ident: 10.1074/jbc.M112.388470_bib60
  article-title: Systematic analysis of native membrane protein complexes in Escherichia coli
  publication-title: J. Proteome Res.
  doi: 10.1021/pr101105c
– volume: 188
  start-page: 679
  year: 1990
  ident: 10.1074/jbc.M112.388470_bib56
  article-title: Purification and further characterization of the second nitrate reductase of Escherichia coli K12
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1990.tb15450.x
– volume: 10
  start-page: 1073
  year: 2002
  ident: 10.1074/jbc.M112.388470_bib5
  article-title: The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 Å resolution
  publication-title: Structure
  doi: 10.1016/S0969-2126(02)00806-7
– volume: 59
  start-page: 211
  year: 2005
  ident: 10.1074/jbc.M112.388470_bib12
  article-title: Cellular functions, mechanism of action, and regulation of FtsH protease
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.59.030804.121316
– volume: 160
  start-page: 645
  year: 2009
  ident: 10.1074/jbc.M112.388470_bib44
  article-title: Regulation and quality control by Lon-dependent proteolysis
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2009.08.021
– volume: 138
  start-page: 141
  year: 1984
  ident: 10.1074/jbc.M112.388470_bib33
  article-title: A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(84)90782-6
– volume: 180
  start-page: 1573
  year: 1998
  ident: 10.1074/jbc.M112.388470_bib23
  article-title: λ Xis degradation in vivo by Lon and FtsH
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.180.6.1573-1577.1998
– volume: 180
  start-page: 6625
  year: 1998
  ident: 10.1074/jbc.M112.388470_bib53
  article-title: Topological analysis of the aerobic membrane-bound formate dehydrogenase of Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.180.24.6625-6634.1998
– volume: 95
  start-page: 4953
  year: 1998
  ident: 10.1074/jbc.M112.388470_bib41
  article-title: A stationary phase protein in Escherichia coli with binding activity to the major σ subunit of RNA polymerase
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.95.9.4953
– volume: 96
  start-page: 14264
  year: 1999
  ident: 10.1074/jbc.M112.388470_bib38
  article-title: Inorganic polyphosphate kinase is required to stimulate protein degradation and for adaptation to amino acid starvation in Escherichia coli
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.96.25.14264
– volume: 15
  start-page: 607
  year: 1996
  ident: 10.1074/jbc.M112.388470_bib17
  article-title: A cycle of binding and release of the DnaK, DnaJ, and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor σ32
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb00393.x
– volume: 357
  start-page: 718
  year: 2006
  ident: 10.1074/jbc.M112.388470_bib20
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2005.12.088
– volume: 14
  start-page: 2551
  year: 1995
  ident: 10.1074/jbc.M112.388470_bib10
  article-title: Escherichia coli FtsH is a membrane-bound, ATP-dependent protease that degrades the heat-shock transcription factor σ32
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1995.tb07253.x
– volume: 187
  start-page: 3807
  year: 2005
  ident: 10.1074/jbc.M112.388470_bib29
  article-title: Identification of a turnover element in region 2.1 of Escherichia coli σ32 by a bacterial one-hybrid approach
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.187.11.3807-3813.2005
– volume: 255
  start-page: 4487
  year: 1980
  ident: 10.1074/jbc.M112.388470_bib48
  article-title: Purification and properties of d-amino acid dehydrogenase, an inducible membrane-bound iron-sulfur flavoenzyme from Escherichia coli B
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)85517-5
– volume: 184
  start-page: 4775
  year: 2002
  ident: 10.1074/jbc.M112.388470_bib67
  article-title: Membrane protein degradation by FtsH can be initiated from either end
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.184.17.4775-4782.2002
– volume: 188
  start-page: 3175
  year: 2006
  ident: 10.1074/jbc.M112.388470_bib65
  article-title: LrhA regulates rpoS translation in response to the Rcs phosphorelay system in Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.188.9.3175-3181.2006
– volume: 72
  start-page: 248
  year: 1976
  ident: 10.1074/jbc.M112.388470_bib32
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(76)90527-3
– volume: 6
  start-page: 575
  year: 2001
  ident: 10.1074/jbc.M112.388470_bib6
  article-title: AAA+ superfamily ATPases. Common structure-diverse function
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.2001.00447.x
– volume: 193
  start-page: 3653
  year: 2011
  ident: 10.1074/jbc.M112.388470_bib37
  article-title: RcsB is required for inducible acid resistance in Escherichia coli and acts at gadE-dependent and -independent promoters
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.05040-11
– volume: 190
  start-page: 7117
  year: 2008
  ident: 10.1074/jbc.M112.388470_bib16
  article-title: Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00871-08
– volume: 46
  start-page: 813
  year: 2002
  ident: 10.1074/jbc.M112.388470_bib63
  article-title: Regulation and mode of action of the second small RNA activator of RpoS translation, RprA
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2002.03203.x
– volume: 22
  start-page: 193
  year: 2006
  ident: 10.1074/jbc.M112.388470_bib43
  article-title: Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.03.007
– volume: 439
  start-page: 753
  year: 2006
  ident: 10.1074/jbc.M112.388470_bib69
  article-title: ClpS is an essential component of the N-end rule pathway in Escherichia coli
  publication-title: Nature
  doi: 10.1038/nature04412
– volume: 283
  start-page: 575
  year: 2010
  ident: 10.1074/jbc.M112.388470_bib35
  article-title: Proteomic and transcriptomic characterization of a virulence-deficient phosphatidylcholine-negative Agrobacterium tumefaciens mutant
  publication-title: Mol. Genet. Genomics
  doi: 10.1007/s00438-010-0542-7
– volume: 11
  start-page: 659
  year: 2003
  ident: 10.1074/jbc.M112.388470_bib45
  article-title: Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00068-6
– volume: 250
  start-page: 6693
  year: 1975
  ident: 10.1074/jbc.M112.388470_bib54
  article-title: The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)40989-7
– volume: 5
  start-page: 1912
  year: 1991
  ident: 10.1074/jbc.M112.388470_bib39
  article-title: Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on σ54 and modulated by positive and negative feedback mechanisms
  publication-title: Genes Dev.
  doi: 10.1101/gad.5.10.1912
– volume: 177
  start-page: 7141
  year: 1995
  ident: 10.1074/jbc.M112.388470_bib55
  article-title: Expression and characterization of the Escherichia coli fdo locus and a possible physiological role for aerobic formate dehydrogenase
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.177.24.7141-7149.1995
– volume: 47
  start-page: 251
  year: 2007
  ident: 10.1074/jbc.M112.388470_bib70
  article-title: Bacterial cell division protein FtsZ is stable against degradation by AAA family protease FtsH in Escherichia coli cells
  publication-title: J. Basic Microbiol.
  doi: 10.1002/jobm.200610236
– volume: 1823
  start-page: 40
  year: 2012
  ident: 10.1074/jbc.M112.388470_bib13
  article-title: Structure and function of the bacterial AAA protease FtsH
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2011.08.015
– volume: 175
  start-page: 1352
  year: 1993
  ident: 10.1074/jbc.M112.388470_bib4
  article-title: Topology and subcellular localization of FtsH protein in Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.175.5.1352-1357.1993
– volume: 41
  start-page: 1861
  year: 2002
  ident: 10.1074/jbc.M112.388470_bib11
  article-title: Identification of glutamic acid 479 as the gluzincin coordinator of zinc in FtsH (HflB)
  publication-title: Biochemistry
  doi: 10.1021/bi015748o
– volume: 325
  start-page: 1552
  year: 2009
  ident: 10.1074/jbc.M112.388470_bib49
  article-title: d-Amino acids govern stationary phase cell wall remodeling in bacteria
  publication-title: Science
  doi: 10.1126/science.1178123
– volume: 92
  start-page: 3516
  year: 1995
  ident: 10.1074/jbc.M112.388470_bib18
  article-title: Degradation of σ32, the heat shock regulator in Escherichia coli, is governed by HflB
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.92.8.3516
– volume: 399
  start-page: 26
  year: 1996
  ident: 10.1074/jbc.M112.388470_bib51
  article-title: Subunit a of proton ATPase F0 sector is a substrate of the FtsH protease in Escherichia coli
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(96)01283-5
– volume: 179
  start-page: 358
  year: 1997
  ident: 10.1074/jbc.M112.388470_bib21
  article-title: The HflB protease of Escherichia coli degrades its inhibitor λ cIII
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.179.2.358-363.1997
– volume: 27
  start-page: 3306
  year: 2006
  ident: 10.1074/jbc.M112.388470_bib59
  article-title: A complexomic study of Escherichia coli using two-dimensional blue native/SDS-polyacrylamide gel electrophoresis
  publication-title: Electrophoresis
  doi: 10.1002/elps.200500912
– volume: 32
  start-page: 347
  year: 2008
  ident: 10.1074/jbc.M112.388470_bib66
  article-title: Molecular basis for regulation of the heat shock transcription factor σ32 by the DnaK and DnaJ chaperones
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.09.016
– volume: 31
  start-page: 833
  year: 1999
  ident: 10.1074/jbc.M112.388470_bib3
  article-title: Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1999.01221.x
SSID ssj0000491
Score 2.3200717
Snippet Proteolysis is a universal strategy to rapidly adjust the amount of regulatory and metabolic proteins to cellular demand. FtsH is the only membrane-anchored...
Background: Only few substrates of the essential membrane-anchored protease FtsH are known. Results: New cytoplasmic and membrane-bound substrates of FtsH were...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 42962
SubjectTerms ATP-dependent Protease
ATP-Dependent Proteases - isolation & purification
ATP-Dependent Proteases - metabolism
Bacteria
Enzyme Turnover
Escherichia coli
Escherichia coli - cytology
Escherichia coli - enzymology
Escherichia coli - growth & development
Escherichia coli Proteins - isolation & purification
Escherichia coli Proteins - metabolism
Iron-Sulfur Protein
Lipopolysaccharide (LPS)
Microbial Viability
Microbiology
Models, Biological
Osmotic Pressure
Oxygen - metabolism
Phenotype
Protein Stability
Proteolysis
Proteome - metabolism
Proteomics - methods
Reproducibility of Results
Substrate Specificity
Title A Trapping Approach Reveals Novel Substrates and Physiological Functions of the Essential Protease FtsH in Escherichia coli
URI https://dx.doi.org/10.1074/jbc.M112.388470
https://www.ncbi.nlm.nih.gov/pubmed/23091052
https://www.proquest.com/docview/1240216354
https://pubmed.ncbi.nlm.nih.gov/PMC3522291
Volume 287
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIAXBBuXMkBGQgipSknTOJfHampVwVZAtFLfIidx1mglqZp00sZ_4Ddzjh0n7bZKg5eoyl39vpzz2T4XQj4wTzjcC7mRCC80bOEmBneFbYDz4j64s9jlmCh8NnHGM_vLnM1brT9bUUubMuxG13fmlfwPqrAPcMUs2X9Atr4p7IDfgC9sAWHY3gvjAXZ4WMmMJ10bHHNRBJZEzvJLsewUYBdk_VlVilnOY9TmDn1aHQgngzsKTEXCOXRZvgEcXGdUFmOcExkWiG6KkdEd4E66LWqb9DIpbMPmCZFuJ9csABXlasFVShBP63Agnp1fLHPZW7bzs-roreNVeCZUo6D0Asbh9RhgwtehWC_4ptAC_Hp7CqMnu6mo1NHK6oIOxJSCuXJKd-yrTLVVOWfFyapSrbK84FeVWb_lE0AkoU8Io-4ZiMtu3wOHbDbuTy_5T74Fo9npaTAdzqcPyEMLhh1oN7_-aKrPw2iqpxI21KvpUlGu_fnG7fepnNujmJvBuFvqZvqUPKnQowPFsWekJbJDcjTIeJn_uqIf6XdNnKtD8uhEo3pEfg-opiDVFKQVBamkIG0oSIGCdIeCtKYgzRMKFKQ1BammIEUK0jSjWxSkSMHnZDYaTk_GRtXPw4hAlpYGS3zT505iJixmbuwyYUWcRyCRhcd8x49NLmzPj1xwDCYTfWHGcWK7YEoEt5wk7L8gB1meiVeEgogWgoVhhH22TEuEsddPTIfHvh0Jnvht0tX_fxBVxe6x58oykEEXrh0AYAECFijA2uRTfcFK1XnZf6qlAQ0qmarkZwCM23_Rew19ABDhqhx8PfmmCHq4vgmjIma3yUtFhfoNrD7KeWa1ibtDkvoELA6_eyRLF7JIPA6sLL_3-h7PPSaPm6_yDTko1xvxFqR2Gb6T_P8LDW_ePA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+trapping+approach+reveals+novel+substrates+and+physiological+functions+of+the+essential+protease+FtsH+in+Escherichia+coli&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Westphal%2C+Kai&rft.au=Langklotz%2C+Sina&rft.au=Thomanek%2C+Nikolas&rft.au=Narberhaus%2C+Franz&rft.date=2012-12-14&rft.issn=1083-351X&rft.eissn=1083-351X&rft.volume=287&rft.issue=51&rft.spage=42962&rft_id=info:doi/10.1074%2Fjbc.M112.388470&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon