A Trapping Approach Reveals Novel Substrates and Physiological Functions of the Essential Protease FtsH in Escherichia coli
Proteolysis is a universal strategy to rapidly adjust the amount of regulatory and metabolic proteins to cellular demand. FtsH is the only membrane-anchored and essential ATP-dependent protease in Escherichia coli. Among the known functions of FtsH are the control of the heat shock response by prote...
Saved in:
Published in | The Journal of biological chemistry Vol. 287; no. 51; pp. 42962 - 42971 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
14.12.2012
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Proteolysis is a universal strategy to rapidly adjust the amount of regulatory and metabolic proteins to cellular demand. FtsH is the only membrane-anchored and essential ATP-dependent protease in Escherichia coli. Among the known functions of FtsH are the control of the heat shock response by proteolysis of the transcription factor RpoH (σ32) and its essential role in lipopolysaccharide biosynthesis by degradation of the two key enzymes LpxC and KdtA. Here, we identified new FtsH substrates by using a proteomic-based substrate trapping approach. An FtsH variant (FtsHtrap) carrying a single amino acid exchange in the proteolytic center was expressed and purified in E. coli. FtsHtrap is devoid of its proteolytic activity but fully retains ATPase activity allowing for unfolding and translocation of substrates into the inactivated proteolytic chamber. Proteins associated with FtsHtrap and wild-type FtsH (FtsHWT) were purified, separated by two-dimensional PAGE, and subjected to mass spectrometry. Over-representation of LpxC in the FtsHtrap preparation validated the trapping strategy. Four novel FtsH substrates were identified. The sulfur delivery protein IscS and the d-amino acid dehydrogenase DadA were degraded under all tested conditions. The formate dehydrogenase subunit FdoH and the yet uncharacterized YfgM protein were subject to growth condition-dependent regulated proteolysis. Several lines of evidence suggest that YfgM serves as negative regulator of the RcsB-dependent stress response pathway, which must be degraded under stress conditions. The proteins captured by FtsHtrap revealed previously unknown biological functions of the physiologically most important AAA+ protease in E. coli.
Background: Only few substrates of the essential membrane-anchored protease FtsH are known.
Results: New cytoplasmic and membrane-bound substrates of FtsH were trapped in vivo.
Conclusion: FtsH is involved in the sulfatation of molecules, d-amino acid metabolism, and adaptation to anaerobiosis and stress conditions.
Significance: The novel FtsH substrates significantly expand our knowledge on the biological functions of this fundamentally important protease. |
---|---|
AbstractList | Proteolysis is a universal strategy to rapidly adjust the amount of regulatory and metabolic proteins to cellular demand. FtsH is the only membrane-anchored and essential ATP-dependent protease in Escherichia coli. Among the known functions of FtsH are the control of the heat shock response by proteolysis of the transcription factor RpoH (σ32) and its essential role in lipopolysaccharide biosynthesis by degradation of the two key enzymes LpxC and KdtA. Here, we identified new FtsH substrates by using a proteomic-based substrate trapping approach. An FtsH variant (FtsHtrap) carrying a single amino acid exchange in the proteolytic center was expressed and purified in E. coli. FtsHtrap is devoid of its proteolytic activity but fully retains ATPase activity allowing for unfolding and translocation of substrates into the inactivated proteolytic chamber. Proteins associated with FtsHtrap and wild-type FtsH (FtsHWT) were purified, separated by two-dimensional PAGE, and subjected to mass spectrometry. Over-representation of LpxC in the FtsHtrap preparation validated the trapping strategy. Four novel FtsH substrates were identified. The sulfur delivery protein IscS and the d-amino acid dehydrogenase DadA were degraded under all tested conditions. The formate dehydrogenase subunit FdoH and the yet uncharacterized YfgM protein were subject to growth condition-dependent regulated proteolysis. Several lines of evidence suggest that YfgM serves as negative regulator of the RcsB-dependent stress response pathway, which must be degraded under stress conditions. The proteins captured by FtsHtrap revealed previously unknown biological functions of the physiologically most important AAA+ protease in E. coli.
Background: Only few substrates of the essential membrane-anchored protease FtsH are known.
Results: New cytoplasmic and membrane-bound substrates of FtsH were trapped in vivo.
Conclusion: FtsH is involved in the sulfatation of molecules, d-amino acid metabolism, and adaptation to anaerobiosis and stress conditions.
Significance: The novel FtsH substrates significantly expand our knowledge on the biological functions of this fundamentally important protease. Background: Only few substrates of the essential membrane-anchored protease FtsH are known. Results: New cytoplasmic and membrane-bound substrates of FtsH were trapped in vivo . Conclusion: FtsH is involved in the sulfatation of molecules, d -amino acid metabolism, and adaptation to anaerobiosis and stress conditions. Significance: The novel FtsH substrates significantly expand our knowledge on the biological functions of this fundamentally important protease. Proteolysis is a universal strategy to rapidly adjust the amount of regulatory and metabolic proteins to cellular demand. FtsH is the only membrane-anchored and essential ATP-dependent protease in Escherichia coli . Among the known functions of FtsH are the control of the heat shock response by proteolysis of the transcription factor RpoH (σ 32 ) and its essential role in lipopolysaccharide biosynthesis by degradation of the two key enzymes LpxC and KdtA. Here, we identified new FtsH substrates by using a proteomic-based substrate trapping approach. An FtsH variant (FtsH trap ) carrying a single amino acid exchange in the proteolytic center was expressed and purified in E. coli . FtsH trap is devoid of its proteolytic activity but fully retains ATPase activity allowing for unfolding and translocation of substrates into the inactivated proteolytic chamber. Proteins associated with FtsH trap and wild-type FtsH (FtsH WT ) were purified, separated by two-dimensional PAGE, and subjected to mass spectrometry. Over-representation of LpxC in the FtsH trap preparation validated the trapping strategy. Four novel FtsH substrates were identified. The sulfur delivery protein IscS and the d -amino acid dehydrogenase DadA were degraded under all tested conditions. The formate dehydrogenase subunit FdoH and the yet uncharacterized YfgM protein were subject to growth condition-dependent regulated proteolysis. Several lines of evidence suggest that YfgM serves as negative regulator of the RcsB-dependent stress response pathway, which must be degraded under stress conditions. The proteins captured by FtsH trap revealed previously unknown biological functions of the physiologically most important AAA + protease in E. coli . Proteolysis is a universal strategy to rapidly adjust the amount of regulatory and metabolic proteins to cellular demand. FtsH is the only membrane-anchored and essential ATP-dependent protease in Escherichia coli. Among the known functions of FtsH are the control of the heat shock response by proteolysis of the transcription factor RpoH (σ(32)) and its essential role in lipopolysaccharide biosynthesis by degradation of the two key enzymes LpxC and KdtA. Here, we identified new FtsH substrates by using a proteomic-based substrate trapping approach. An FtsH variant (FtsH(trap)) carrying a single amino acid exchange in the proteolytic center was expressed and purified in E. coli. FtsH(trap) is devoid of its proteolytic activity but fully retains ATPase activity allowing for unfolding and translocation of substrates into the inactivated proteolytic chamber. Proteins associated with FtsH(trap) and wild-type FtsH (FtsH(WT)) were purified, separated by two-dimensional PAGE, and subjected to mass spectrometry. Over-representation of LpxC in the FtsH(trap) preparation validated the trapping strategy. Four novel FtsH substrates were identified. The sulfur delivery protein IscS and the d-amino acid dehydrogenase DadA were degraded under all tested conditions. The formate dehydrogenase subunit FdoH and the yet uncharacterized YfgM protein were subject to growth condition-dependent regulated proteolysis. Several lines of evidence suggest that YfgM serves as negative regulator of the RcsB-dependent stress response pathway, which must be degraded under stress conditions. The proteins captured by FtsH(trap) revealed previously unknown biological functions of the physiologically most important AAA(+) protease in E. coli. Proteolysis is a universal strategy to rapidly adjust the amount of regulatory and metabolic proteins to cellular demand. FtsH is the only membrane-anchored and essential ATP-dependent protease in Escherichia coli. Among the known functions of FtsH are the control of the heat shock response by proteolysis of the transcription factor RpoH (σ(32)) and its essential role in lipopolysaccharide biosynthesis by degradation of the two key enzymes LpxC and KdtA. Here, we identified new FtsH substrates by using a proteomic-based substrate trapping approach. An FtsH variant (FtsH(trap)) carrying a single amino acid exchange in the proteolytic center was expressed and purified in E. coli. FtsH(trap) is devoid of its proteolytic activity but fully retains ATPase activity allowing for unfolding and translocation of substrates into the inactivated proteolytic chamber. Proteins associated with FtsH(trap) and wild-type FtsH (FtsH(WT)) were purified, separated by two-dimensional PAGE, and subjected to mass spectrometry. Over-representation of LpxC in the FtsH(trap) preparation validated the trapping strategy. Four novel FtsH substrates were identified. The sulfur delivery protein IscS and the d-amino acid dehydrogenase DadA were degraded under all tested conditions. The formate dehydrogenase subunit FdoH and the yet uncharacterized YfgM protein were subject to growth condition-dependent regulated proteolysis. Several lines of evidence suggest that YfgM serves as negative regulator of the RcsB-dependent stress response pathway, which must be degraded under stress conditions. The proteins captured by FtsH(trap) revealed previously unknown biological functions of the physiologically most important AAA(+) protease in E. coli.Proteolysis is a universal strategy to rapidly adjust the amount of regulatory and metabolic proteins to cellular demand. FtsH is the only membrane-anchored and essential ATP-dependent protease in Escherichia coli. Among the known functions of FtsH are the control of the heat shock response by proteolysis of the transcription factor RpoH (σ(32)) and its essential role in lipopolysaccharide biosynthesis by degradation of the two key enzymes LpxC and KdtA. Here, we identified new FtsH substrates by using a proteomic-based substrate trapping approach. An FtsH variant (FtsH(trap)) carrying a single amino acid exchange in the proteolytic center was expressed and purified in E. coli. FtsH(trap) is devoid of its proteolytic activity but fully retains ATPase activity allowing for unfolding and translocation of substrates into the inactivated proteolytic chamber. Proteins associated with FtsH(trap) and wild-type FtsH (FtsH(WT)) were purified, separated by two-dimensional PAGE, and subjected to mass spectrometry. Over-representation of LpxC in the FtsH(trap) preparation validated the trapping strategy. Four novel FtsH substrates were identified. The sulfur delivery protein IscS and the d-amino acid dehydrogenase DadA were degraded under all tested conditions. The formate dehydrogenase subunit FdoH and the yet uncharacterized YfgM protein were subject to growth condition-dependent regulated proteolysis. Several lines of evidence suggest that YfgM serves as negative regulator of the RcsB-dependent stress response pathway, which must be degraded under stress conditions. The proteins captured by FtsH(trap) revealed previously unknown biological functions of the physiologically most important AAA(+) protease in E. coli. |
Author | Narberhaus, Franz Westphal, Kai Langklotz, Sina Thomanek, Nikolas |
Author_xml | – sequence: 1 givenname: Kai surname: Westphal fullname: Westphal, Kai – sequence: 2 givenname: Sina surname: Langklotz fullname: Langklotz, Sina – sequence: 3 givenname: Nikolas surname: Thomanek fullname: Thomanek, Nikolas – sequence: 4 givenname: Franz surname: Narberhaus fullname: Narberhaus, Franz email: franz.narberhaus@rub.de |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23091052$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1r2zAYFqOjTT_Ouw0dd3GqDyu2LoNQmrbQbmVrYTchy69jFUfyJDlQ9uenkHZsg-qiw_P18jzH6MB5Bwh9oGROSVWePzVmfkcpm_O6LivyDs0oqXnBBf1xgGaEMFpIJuojdBzjE8mvlPQQHTFOJCWCzdCvJX4IehytW-PlOAavTY-_wRb0EPEXv4UBf5-amIJOELF2Lb7vn6P1g19bowe8mpxJ1ruIfYdTD_gyRnDJZug--AQ6Al6leI2ty5DpIVjTW42NH-wpet_lGDh7-U_Q4-ry4eK6uP16dXOxvC2MIDIVopNE6kVHOtGKqq0EMKO14VJCLeRCtkRDWUtTEcGJAA6kbbuy0nUDmi26hp-gz3vfcWo20Jp8X9CDGoPd6PCsvLbqX8TZXq39VnHBGJM0G3x6MQj-5wQxqY2NBoZBO_BTVJSVuekFF2Wmfvw760_Ia-OZIPYEE3yMATplbNK7CnO0HRQlaresysuq3bJqv2zWnf-ne7V-WyH3Csjdbi0EFY0FZ6C1AUxSrbdvan8Dvo279Q |
CitedBy_id | crossref_primary_10_1016_j_micpath_2021_105123 crossref_primary_10_1002_bip_22831 crossref_primary_10_1016_j_bbabio_2012_12_010 crossref_primary_10_1128_mSystems_01296_20 crossref_primary_10_1016_j_celrep_2021_110080 crossref_primary_10_1038_s44318_025_00408_1 crossref_primary_10_1038_s41467_022_32277_1 crossref_primary_10_1002_pmic_201600316 crossref_primary_10_1002_pmic_201800080 crossref_primary_10_1128_JB_02134_12 crossref_primary_10_3389_fmicb_2021_656380 crossref_primary_10_1002_pmic_201300338 crossref_primary_10_1016_j_jprot_2015_03_016 crossref_primary_10_1016_j_lwt_2022_114394 crossref_primary_10_1002_cbic_202500048 crossref_primary_10_1016_j_bbrc_2017_11_158 crossref_primary_10_1016_j_bbabio_2023_149017 crossref_primary_10_1038_s41598_017_08774_5 crossref_primary_10_7554_eLife_28507 crossref_primary_10_1016_j_micres_2024_127783 crossref_primary_10_1371_journal_pgen_1011408 crossref_primary_10_1111_gtc_12383 crossref_primary_10_1128_JB_00161_20 crossref_primary_10_1515_hsz_2016_0302 crossref_primary_10_1242_jcs_200733 crossref_primary_10_1093_plphys_kiab074 crossref_primary_10_3390_molecules27123772 crossref_primary_10_1038_s42003_022_03213_2 crossref_primary_10_1146_annurev_micro_091014_104457 crossref_primary_10_1074_jbc_M115_648550 crossref_primary_10_1111_hel_12140 crossref_primary_10_1111_febs_15467 crossref_primary_10_1038_s41467_024_49920_8 crossref_primary_10_1016_j_bbabio_2013_05_001 crossref_primary_10_1093_femsle_fnz198 crossref_primary_10_1074_jbc_M113_541672 crossref_primary_10_1016_j_bbapap_2023_140969 crossref_primary_10_1107_S1399004715005945 crossref_primary_10_1021_acs_jproteome_7b00809 crossref_primary_10_1111_mmi_15009 crossref_primary_10_1016_j_tibs_2018_12_006 crossref_primary_10_1074_mcp_M116_065482 crossref_primary_10_1371_journal_pgen_1008059 crossref_primary_10_3389_fmicb_2018_03285 crossref_primary_10_3389_fmicb_2019_01372 crossref_primary_10_1111_mmi_15005 crossref_primary_10_1186_1754_6834_6_131 crossref_primary_10_3390_ijms18112455 crossref_primary_10_3389_fmicb_2017_02605 crossref_primary_10_1073_pnas_1912628116 crossref_primary_10_1146_annurev_arplant_043014_115547 |
Cites_doi | 10.1146/annurev-biochem-060408-172623 10.1016/j.jsb.2006.02.003 10.1016/0005-2736(92)90417-K 10.1016/S1097-2765(03)00060-1 10.1038/nrmicro2669 10.1074/jbc.271.49.31196 10.1016/j.jmb.2007.06.083 10.1016/j.bbrc.2008.07.050 10.1046/j.1365-2958.2003.03952.x 10.1002/pmic.200701184 10.1186/1471-2180-10-251 10.1016/j.resmic.2009.08.011 10.1073/pnas.94.11.5544 10.1101/gad.1219204 10.1111/j.1574-6976.2010.00240.x 10.1111/j.1574-6968.2008.01423.x 10.1093/jb/mvp071 10.1101/gad.12.24.3889 10.1111/j.1365-2958.2005.04994.x 10.1128/jb.178.4.1204-1206.1996 10.1128/jb.176.5.1500-1510.1994 10.1074/jbc.M308327200 10.1093/nar/21.15.3391 10.1128/JB.185.19.5735-5746.2003 10.1073/pnas.0600031103 10.1146/annurev.biochem.74.082803.133518 10.1111/j.1365-2958.2011.07646.x 10.1128/JB.186.22.7474-7480.2004 10.1128/JB.05942-11 10.1021/pr101105c 10.1111/j.1432-1033.1990.tb15450.x 10.1016/S0969-2126(02)00806-7 10.1146/annurev.micro.59.030804.121316 10.1016/j.resmic.2009.08.021 10.1016/0003-2697(84)90782-6 10.1128/JB.180.6.1573-1577.1998 10.1128/JB.180.24.6625-6634.1998 10.1073/pnas.95.9.4953 10.1073/pnas.96.25.14264 10.1002/j.1460-2075.1996.tb00393.x 10.1016/j.jmb.2005.12.088 10.1002/j.1460-2075.1995.tb07253.x 10.1128/JB.187.11.3807-3813.2005 10.1016/S0021-9258(19)85517-5 10.1128/JB.184.17.4775-4782.2002 10.1128/JB.188.9.3175-3181.2006 10.1016/0003-2697(76)90527-3 10.1046/j.1365-2443.2001.00447.x 10.1128/JB.05040-11 10.1128/JB.00871-08 10.1046/j.1365-2958.2002.03203.x 10.1016/j.molcel.2006.03.007 10.1038/nature04412 10.1007/s00438-010-0542-7 10.1016/S1097-2765(03)00068-6 10.1016/S0021-9258(19)40989-7 10.1101/gad.5.10.1912 10.1128/jb.177.24.7141-7149.1995 10.1002/jobm.200610236 10.1016/j.bbamcr.2011.08.015 10.1128/jb.175.5.1352-1357.1993 10.1021/bi015748o 10.1126/science.1178123 10.1073/pnas.92.8.3516 10.1016/S0014-5793(96)01283-5 10.1128/jb.179.2.358-363.1997 10.1002/elps.200500912 10.1016/j.molcel.2008.09.016 10.1046/j.1365-2958.1999.01221.x |
ContentType | Journal Article |
Copyright | 2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. 2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012 |
Copyright_xml | – notice: 2012 © 2012 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. – notice: 2012 by The American Society for Biochemistry and Molecular Biology, Inc. 2012 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1074/jbc.M112.388470 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | Identification of Novel FtsH Substrates |
EISSN | 1083-351X |
EndPage | 42971 |
ExternalDocumentID | PMC3522291 23091052 10_1074_jbc_M112_388470 S0021925820437858 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -ET -~X 0SF 18M 29J 2WC 34G 39C 4.4 53G 5BI 5GY 5RE 5VS 6I. 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO ABDNZ ABOCM ABPPZ ABRJW ACGFO ACNCT ADBBV ADIYS ADNWM AENEX AEXQZ AFOSN AFPKN ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 KQ8 L7B N9A OK1 P0W P2P R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT VQA W8F WH7 WOQ XSW YQT YSK YWH YZZ ZA5 ~02 ~KM .55 .7T .GJ 0R~ 186 3O- 41~ 6TJ AALRI AAYJJ AAYOK AAYWO AAYXX ABFSI ACSFO ACVFH ACYGS ADCNI ADVLN ADXHL AEUPX AFFNX AFPUW AI. AIGII AITUG AKBMS AKRWK AKYEP C1A CITATION E.L FA8 H13 J5H MVM NHB OHT P-O QZG UQL VH1 WHG X7M XJT Y6R YYP ZE2 ZGI ZY4 CGR CUY CVF ECM EIF NPM Z5M 7X8 5PM |
ID | FETCH-LOGICAL-c509t-5f909a6f0f5d57d75e2caac399e85969d0ae489c705305e3e0ddf47a8bea26fb3 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 17:49:13 EDT 2025 Thu Jul 10 19:12:39 EDT 2025 Wed Feb 19 02:30:09 EST 2025 Tue Jul 01 00:40:57 EDT 2025 Thu Apr 24 22:54:32 EDT 2025 Fri Feb 23 02:45:51 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Keywords | Bacteria Iron-Sulfur Protein Escherichia coli Enzyme Turnover ATP-dependent Protease Lipopolysaccharide (LPS) |
Language | English |
License | This is an open access article under the CC BY license. http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-5f909a6f0f5d57d75e2caac399e85969d0ae489c705305e3e0ddf47a8bea26fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1074/jbc.M112.388470 |
PMID | 23091052 |
PQID | 1240216354 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3522291 proquest_miscellaneous_1240216354 pubmed_primary_23091052 crossref_citationtrail_10_1074_jbc_M112_388470 crossref_primary_10_1074_jbc_M112_388470 elsevier_sciencedirect_doi_10_1074_jbc_M112_388470 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-12-14 |
PublicationDateYYYYMMDD | 2012-12-14 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2012 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Van Melderen, Aertsen (bib44) 2009; 160 Wu, Li, Wu (bib47) 2008; 374 Herman, Thévenet, D'Ari, Bouloc (bib18) 1995; 92 Herman, Thévenet, D'Ari, Bouloc (bib21) 1997; 179 Langklotz, Narberhaus (bib26) 2011; 80 Enoch, Lester (bib54) 1975; 250 Joly, Engl, Jovanovic, Huvet, Toni, Sheng, Stumpf, Buck (bib40) 2010; 34 Johnson, Dean, Smith, Johnson (bib46) 2005; 74 Akiyama (bib15) 2009; 146 Kihara, Akiyama, Ito (bib22) 1997; 94 Ogura, Wilkinson (bib6) 2001; 6 Ito, Akiyama (bib12) 2005; 59 Leffers, Gottesman (bib23) 1998; 180 Bieniossek, Schalch, Bumann, Meister, Meier, Baumann (bib9) 2006; 103 Chiba, Akiyama, Ito (bib67) 2002; 184 Srinivasan, Ajitkumar (bib70) 2007; 47 Saikawa, Ito, Akiyama (bib11) 2002; 41 Majdalani, Hernandez, Gottesman (bib63) 2002; 46 Sledjeski, Gottesman (bib64) 1996; 178 Führer, Müller, Baumann, Langklotz, Kutscher, Narberhaus (bib25) 2007; 372 Pommier, Mandrand, Holt, Boxer, Giordano (bib58) 1992; 1107 Tomoyasu, Yamanaka, Murata, Suzaki, Bouloc, Kato, Niki, Hiraga, Ogura (bib4) 1993; 175 Bandow, Baker, Berth, Painter, Sepulveda, Clark, Kilty, VanBogelen (bib34) 2008; 8 Herman, Prakash, Lu, Matouschek, Gross (bib45) 2003; 11 Abaibou, Pommier, Benoit, Giordano, Mandrand-Berthelot (bib55) 1995; 177 Rodriguez, Arsène-Ploetze, Rist, Rüdiger, Schneider-Mergener, Mayer, Bukau (bib66) 2008; 32 Lasserre, Beyne, Pyndiah, Lapaillerie, Claverol, Bonneu (bib59) 2006; 27 Yamada-Inagawa, Okuno, Karata, Yamanaka, Ogura (bib8) 2003; 278 Neher, Villén, Oakes, Bakalarski, Sauer, Gygi, Baker (bib43) 2006; 22 Langklotz, Baumann, Narberhaus (bib13) 2012; 1823 Führer, Langklotz, Narberhaus (bib24) 2006; 59 Tomoyasu, Gamer, Bukau, Kanemori, Mori, Rutman, Oppenheim, Yura, Yamanaka, Niki (bib10) 1995; 14 Olsiewski, Kaczorowski, Walsh (bib48) 1980; 255 Akiyama, Kihara, Tokuda, Ito (bib52) 1996; 271 Krzywda, Brzozowski, Verma, Karata, Ogura, Wilkinson (bib5) 2002; 10 Sambrook, Russell (bib36) 2001 Matern, Barion, Behrens-Kneip (bib61) 2010; 10 Jishage, Ishihama (bib41) 1998; 95 Gur, Biran, Ron (bib1) 2011; 9 Okuno, Yamanaka, Ogura (bib7) 2006; 156 Gonzalez, Frank, Levine, Woodgate (bib68) 1998; 12 Flynn, Neher, Kim, Sauer, Baker (bib31) 2003; 11 Erbse, Schmidt, Bornemann, Schneider-Mergener, Mogk, Zahn, Dougan, Bukau (bib69) 2006; 439 Peterson, Carabetta, Chowdhury, Silhavy (bib65) 2006; 188 Benoit, Abaibou, Mandrand-Berthelot (bib53) 1998; 180 Katz, Ron (bib16) 2008; 190 Johnson, Burton, Gutiérrez, Painter, Lund (bib37) 2011; 193 Kuroda, Tanaka, Ikeda, Kato, Takiguchi, Ohtake (bib38) 1999; 96 Weiner, Brissette, Model (bib39) 1991; 5 Hagiwara, Sugiura, Oshima, Mori, Aiba, Yamashino, Mizuno (bib62) 2003; 185 Singh, Darwin (bib42) 2011; 193 Ogura, Inoue, Tatsuta, Suzaki, Karata, Young, Su, Fierke, Jackman, Raetz, Coleman, Tomoyasu, Matsuzawa (bib3) 1999; 31 Shah, Wolf (bib20) 2006; 357 Wessel, Flügge (bib33) 1984; 138 Horikoshi, Yura, Tsuchimoto, Fukumori, Kanemori (bib30) 2004; 186 Lam, Oh, Cava, Takacs, Clardy, de Pedro, Waldor (bib49) 2009; 325 Obrist, Narberhaus (bib29) 2005; 187 Griffith, Shah, Wolf (bib19) 2004; 51 Lobocka, Hennig, Wild, Kłopotowski (bib50) 1994; 176 Sauer, Baker (bib2) 2011; 80 Obrist, Langklotz, Milek, Führer, Narberhaus (bib28) 2009; 290 Bradford (bib32) 1976; 72 Klüsener, Hacker, Tsai, Bandow, Gust, Lai, Narberhaus (bib35) 2010; 283 Gamer, Multhaup, Tomoyasu, McCarty, Rüdiger, Schönfeld, Schirra, Bujard, Bukau (bib17) 1996; 15 Maddalo, Stenberg-Bruzell, Götzke, Toddo, Björkholm, Eriksson, Chovanec, Genevaux, Lehtiö, Ilag, Daley (bib60) 2011; 10 Iobbi-Nivol, Santini, Blasco, Giordano (bib56) 1990; 188 Guisbert, Herman, Lu, Gross (bib27) 2004; 18 Plunkett, Burland, Daniels, Blattner (bib57) 1993; 21 Narberhaus, Obrist, Führer, Langklotz (bib14) 2009; 160 Akiyama, Kihara, Ito (bib51) 1996; 399 Olsiewski (10.1074/jbc.M112.388470_bib48) 1980; 255 Gur (10.1074/jbc.M112.388470_bib1) 2011; 9 Wu (10.1074/jbc.M112.388470_bib47) 2008; 374 Abaibou (10.1074/jbc.M112.388470_bib55) 1995; 177 Gonzalez (10.1074/jbc.M112.388470_bib68) 1998; 12 Enoch (10.1074/jbc.M112.388470_bib54) 1975; 250 Katz (10.1074/jbc.M112.388470_bib16) 2008; 190 Kuroda (10.1074/jbc.M112.388470_bib38) 1999; 96 Lasserre (10.1074/jbc.M112.388470_bib59) 2006; 27 Peterson (10.1074/jbc.M112.388470_bib65) 2006; 188 Obrist (10.1074/jbc.M112.388470_bib28) 2009; 290 Hagiwara (10.1074/jbc.M112.388470_bib62) 2003; 185 Okuno (10.1074/jbc.M112.388470_bib7) 2006; 156 Akiyama (10.1074/jbc.M112.388470_bib15) 2009; 146 Langklotz (10.1074/jbc.M112.388470_bib13) 2012; 1823 Narberhaus (10.1074/jbc.M112.388470_bib14) 2009; 160 Guisbert (10.1074/jbc.M112.388470_bib27) 2004; 18 Kihara (10.1074/jbc.M112.388470_bib22) 1997; 94 Flynn (10.1074/jbc.M112.388470_bib31) 2003; 11 Herman (10.1074/jbc.M112.388470_bib21) 1997; 179 Weiner (10.1074/jbc.M112.388470_bib39) 1991; 5 Klüsener (10.1074/jbc.M112.388470_bib35) 2010; 283 Tomoyasu (10.1074/jbc.M112.388470_bib4) 1993; 175 Herman (10.1074/jbc.M112.388470_bib18) 1995; 92 Tomoyasu (10.1074/jbc.M112.388470_bib10) 1995; 14 Ito (10.1074/jbc.M112.388470_bib12) 2005; 59 Lobocka (10.1074/jbc.M112.388470_bib50) 1994; 176 Horikoshi (10.1074/jbc.M112.388470_bib30) 2004; 186 Maddalo (10.1074/jbc.M112.388470_bib60) 2011; 10 Yamada-Inagawa (10.1074/jbc.M112.388470_bib8) 2003; 278 Shah (10.1074/jbc.M112.388470_bib20) 2006; 357 Langklotz (10.1074/jbc.M112.388470_bib26) 2011; 80 Sambrook (10.1074/jbc.M112.388470_bib36) 2001 Herman (10.1074/jbc.M112.388470_bib45) 2003; 11 Bandow (10.1074/jbc.M112.388470_bib34) 2008; 8 Griffith (10.1074/jbc.M112.388470_bib19) 2004; 51 Führer (10.1074/jbc.M112.388470_bib24) 2006; 59 Ogura (10.1074/jbc.M112.388470_bib6) 2001; 6 Srinivasan (10.1074/jbc.M112.388470_bib70) 2007; 47 Sauer (10.1074/jbc.M112.388470_bib2) 2011; 80 Ogura (10.1074/jbc.M112.388470_bib3) 1999; 31 Akiyama (10.1074/jbc.M112.388470_bib52) 1996; 271 Leffers (10.1074/jbc.M112.388470_bib23) 1998; 180 Johnson (10.1074/jbc.M112.388470_bib37) 2011; 193 Gamer (10.1074/jbc.M112.388470_bib17) 1996; 15 Obrist (10.1074/jbc.M112.388470_bib29) 2005; 187 Wessel (10.1074/jbc.M112.388470_bib33) 1984; 138 Rodriguez (10.1074/jbc.M112.388470_bib66) 2008; 32 Matern (10.1074/jbc.M112.388470_bib61) 2010; 10 Führer (10.1074/jbc.M112.388470_bib25) 2007; 372 Iobbi-Nivol (10.1074/jbc.M112.388470_bib56) 1990; 188 Pommier (10.1074/jbc.M112.388470_bib58) 1992; 1107 Majdalani (10.1074/jbc.M112.388470_bib63) 2002; 46 Benoit (10.1074/jbc.M112.388470_bib53) 1998; 180 Sledjeski (10.1074/jbc.M112.388470_bib64) 1996; 178 Bieniossek (10.1074/jbc.M112.388470_bib9) 2006; 103 Plunkett (10.1074/jbc.M112.388470_bib57) 1993; 21 Neher (10.1074/jbc.M112.388470_bib43) 2006; 22 Akiyama (10.1074/jbc.M112.388470_bib51) 1996; 399 Saikawa (10.1074/jbc.M112.388470_bib11) 2002; 41 Chiba (10.1074/jbc.M112.388470_bib67) 2002; 184 Johnson (10.1074/jbc.M112.388470_bib46) 2005; 74 Krzywda (10.1074/jbc.M112.388470_bib5) 2002; 10 Van Melderen (10.1074/jbc.M112.388470_bib44) 2009; 160 Bradford (10.1074/jbc.M112.388470_bib32) 1976; 72 Lam (10.1074/jbc.M112.388470_bib49) 2009; 325 Joly (10.1074/jbc.M112.388470_bib40) 2010; 34 Singh (10.1074/jbc.M112.388470_bib42) 2011; 193 Jishage (10.1074/jbc.M112.388470_bib41) 1998; 95 Erbse (10.1074/jbc.M112.388470_bib69) 2006; 439 |
References_xml | – volume: 27 start-page: 3306 year: 2006 end-page: 3321 ident: bib59 article-title: A complexomic study of publication-title: Electrophoresis – volume: 180 start-page: 6625 year: 1998 end-page: 6634 ident: bib53 article-title: Topological analysis of the aerobic membrane-bound formate dehydrogenase of publication-title: J. Bacteriol. – volume: 21 start-page: 3391 year: 1993 end-page: 3398 ident: bib57 article-title: Analysis of the publication-title: Nucleic Acids Res. – volume: 15 start-page: 607 year: 1996 end-page: 617 ident: bib17 article-title: A cycle of binding and release of the DnaK, DnaJ, and GrpE chaperones regulates activity of the publication-title: EMBO J. – volume: 10 start-page: 251 year: 2010 ident: bib61 article-title: PpiD is a player in the network of periplasmic chaperones in publication-title: BMC Microbiol. – volume: 278 start-page: 50182 year: 2003 end-page: 50187 ident: bib8 article-title: Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis publication-title: J. Biol. Chem. – volume: 11 start-page: 671 year: 2003 end-page: 683 ident: bib31 article-title: Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals publication-title: Mol. Cell – volume: 12 start-page: 3889 year: 1998 end-page: 3899 ident: bib68 article-title: Lon-mediated proteolysis of the publication-title: Genes Dev. – volume: 185 start-page: 5735 year: 2003 end-page: 5746 ident: bib62 article-title: Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in publication-title: J. Bacteriol. – volume: 180 start-page: 1573 year: 1998 end-page: 1577 ident: bib23 article-title: λ Xis degradation publication-title: J. Bacteriol. – volume: 156 start-page: 109 year: 2006 end-page: 114 ident: bib7 article-title: Characterization of mutants of the publication-title: J. Struct. Biol. – volume: 178 start-page: 1204 year: 1996 end-page: 1206 ident: bib64 article-title: Osmotic shock induction of capsule synthesis in publication-title: J. Bacteriol. – volume: 92 start-page: 3516 year: 1995 end-page: 3520 ident: bib18 article-title: Degradation of σ publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 283 start-page: 575 year: 2010 end-page: 589 ident: bib35 article-title: Proteomic and transcriptomic characterization of a virulence-deficient phosphatidylcholine-negative publication-title: Mol. Genet. Genomics – volume: 96 start-page: 14264 year: 1999 end-page: 14269 ident: bib38 article-title: Inorganic polyphosphate kinase is required to stimulate protein degradation and for adaptation to amino acid starvation in publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 374 start-page: 399 year: 2008 end-page: 404 ident: bib47 article-title: Regulation of publication-title: Biochem. Biophys. Res. Commun. – volume: 187 start-page: 3807 year: 2005 end-page: 3813 ident: bib29 article-title: Identification of a turnover element in region 2.1 of publication-title: J. Bacteriol. – volume: 160 start-page: 645 year: 2009 end-page: 651 ident: bib44 article-title: Regulation and quality control by Lon-dependent proteolysis publication-title: Res. Microbiol. – volume: 80 start-page: 587 year: 2011 end-page: 612 ident: bib2 article-title: AAA publication-title: Annu. Rev. Biochem. – volume: 357 start-page: 718 year: 2006 end-page: 731 ident: bib20 article-title: Sequence requirements for Lon-dependent degradation of the publication-title: J. Mol. Biol. – volume: 250 start-page: 6693 year: 1975 end-page: 6705 ident: bib54 article-title: The purification and properties of formate dehydrogenase and nitrate reductase from publication-title: J. Biol. Chem. – volume: 175 start-page: 1352 year: 1993 end-page: 1357 ident: bib4 article-title: Topology and subcellular localization of FtsH protein in publication-title: J. Bacteriol. – year: 2001 ident: bib36 publication-title: Molecular Cloning: A Laboratory Manual – volume: 271 start-page: 31196 year: 1996 end-page: 31201 ident: bib52 article-title: FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins publication-title: J. Biol. Chem. – volume: 47 start-page: 251 year: 2007 end-page: 259 ident: bib70 article-title: Bacterial cell division protein FtsZ is stable against degradation by AAA family protease FtsH in publication-title: J. Basic Microbiol. – volume: 188 start-page: 3175 year: 2006 end-page: 3181 ident: bib65 article-title: LrhA regulates publication-title: J. Bacteriol. – volume: 1107 start-page: 305 year: 1992 end-page: 313 ident: bib58 article-title: A second phenazine methosulphate-linked formate dehydrogenase isoenzyme in publication-title: Biochim. Biophys. Acta – volume: 22 start-page: 193 year: 2006 end-page: 204 ident: bib43 article-title: Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon publication-title: Mol. Cell – volume: 184 start-page: 4775 year: 2002 end-page: 4782 ident: bib67 article-title: Membrane protein degradation by FtsH can be initiated from either end publication-title: J. Bacteriol. – volume: 5 start-page: 1912 year: 1991 end-page: 1923 ident: bib39 article-title: Stress-induced expression of the publication-title: Genes Dev. – volume: 193 start-page: 3653 year: 2011 end-page: 3656 ident: bib37 article-title: RcsB is required for inducible acid resistance in publication-title: J. Bacteriol. – volume: 72 start-page: 248 year: 1976 end-page: 254 ident: bib32 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding publication-title: Anal. Biochem. – volume: 6 start-page: 575 year: 2001 end-page: 597 ident: bib6 article-title: AAA publication-title: Genes Cells – volume: 138 start-page: 141 year: 1984 end-page: 143 ident: bib33 article-title: A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids publication-title: Anal. Biochem. – volume: 186 start-page: 7474 year: 2004 end-page: 7480 ident: bib30 article-title: Conserved region 2.1 of publication-title: J. Bacteriol. – volume: 177 start-page: 7141 year: 1995 end-page: 7149 ident: bib55 article-title: Expression and characterization of the publication-title: J. Bacteriol. – volume: 188 start-page: 679 year: 1990 end-page: 687 ident: bib56 article-title: Purification and further characterization of the second nitrate reductase of publication-title: Eur. J. Biochem. – volume: 59 start-page: 211 year: 2005 end-page: 231 ident: bib12 article-title: Cellular functions, mechanism of action, and regulation of FtsH protease publication-title: Annu. Rev. Microbiol. – volume: 1823 start-page: 40 year: 2012 end-page: 48 ident: bib13 article-title: Structure and function of the bacterial AAA protease FtsH publication-title: Biochim. Biophys. Acta – volume: 59 start-page: 1025 year: 2006 end-page: 1036 ident: bib24 article-title: The C-terminal end of LpxC is required for degradation by the FtsH protease publication-title: Mol. Microbiol. – volume: 9 start-page: 839 year: 2011 end-page: 848 ident: bib1 article-title: Regulated proteolysis in Gram-negative bacteria-how and when? publication-title: Nat. Rev. Microbiol. – volume: 80 start-page: 1313 year: 2011 end-page: 1325 ident: bib26 article-title: The publication-title: Mol. Microbiol. – volume: 51 start-page: 1801 year: 2004 end-page: 1816 ident: bib19 article-title: Proteolytic degradation of publication-title: Mol. Microbiol. – volume: 290 start-page: 199 year: 2009 end-page: 208 ident: bib28 article-title: Region C of the publication-title: FEMS Microbiol. Lett. – volume: 399 start-page: 26 year: 1996 end-page: 28 ident: bib51 article-title: Subunit publication-title: FEBS Lett. – volume: 41 start-page: 1861 year: 2002 end-page: 1868 ident: bib11 article-title: Identification of glutamic acid 479 as the gluzincin coordinator of zinc in FtsH (HflB) publication-title: Biochemistry – volume: 74 start-page: 247 year: 2005 end-page: 281 ident: bib46 article-title: Structure, function, and formation of biological iron-sulfur clusters publication-title: Annu. Rev. Biochem. – volume: 103 start-page: 3066 year: 2006 end-page: 3071 ident: bib9 article-title: The molecular architecture of the metalloprotease FtsH publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 95 start-page: 4953 year: 1998 end-page: 4958 ident: bib41 article-title: A stationary phase protein in publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 325 start-page: 1552 year: 2009 end-page: 1555 ident: bib49 article-title: -Amino acids govern stationary phase cell wall remodeling in bacteria publication-title: Science – volume: 190 start-page: 7117 year: 2008 end-page: 7122 ident: bib16 article-title: Dual role of FtsH in regulating lipopolysaccharide biosynthesis in publication-title: J. Bacteriol. – volume: 179 start-page: 358 year: 1997 end-page: 363 ident: bib21 article-title: The HflB protease of publication-title: J. Bacteriol. – volume: 176 start-page: 1500 year: 1994 end-page: 1510 ident: bib50 article-title: Organization and expression of the publication-title: J. Bacteriol. – volume: 372 start-page: 485 year: 2007 end-page: 496 ident: bib25 article-title: Sequence and length recognition of the C-terminal turnover element of LpxC, a soluble substrate of the membrane-bound FtsH protease publication-title: J. Mol. Biol. – volume: 14 start-page: 2551 year: 1995 end-page: 2560 ident: bib10 article-title: FtsH is a membrane-bound, ATP-dependent protease that degrades the heat-shock transcription factor σ publication-title: EMBO J. – volume: 8 start-page: 3030 year: 2008 end-page: 3041 ident: bib34 article-title: Improved image analysis workflow for 2-D gels enables large-scale 2-D gel-based proteomics studies–COPD biomarker discovery study publication-title: Proteomics – volume: 193 start-page: 6436 year: 2011 end-page: 6442 ident: bib42 article-title: FtsH-dependent degradation of phage shock protein C in publication-title: J. Bacteriol. – volume: 439 start-page: 753 year: 2006 end-page: 756 ident: bib69 article-title: ClpS is an essential component of the N-end rule pathway in publication-title: Nature – volume: 32 start-page: 347 year: 2008 end-page: 358 ident: bib66 article-title: Molecular basis for regulation of the heat shock transcription factor σ publication-title: Mol. Cell – volume: 18 start-page: 2812 year: 2004 end-page: 2821 ident: bib27 article-title: A chaperone network controls the heat shock response in publication-title: Genes Dev. – volume: 10 start-page: 1073 year: 2002 end-page: 1083 ident: bib5 article-title: The crystal structure of the AAA domain of the ATP-dependent protease FtsH of publication-title: Structure – volume: 11 start-page: 659 year: 2003 end-page: 669 ident: bib45 article-title: Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH publication-title: Mol. Cell – volume: 34 start-page: 797 year: 2010 end-page: 827 ident: bib40 article-title: Managing membrane stress. The phage shock protein (Psp) response, from molecular mechanisms to physiology publication-title: FEMS Microbiol. Rev. – volume: 31 start-page: 833 year: 1999 end-page: 844 ident: bib3 article-title: Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in publication-title: Mol. Microbiol. – volume: 46 start-page: 813 year: 2002 end-page: 826 ident: bib63 article-title: Regulation and mode of action of the second small RNA activator of RpoS translation, RprA publication-title: Mol. Microbiol. – volume: 146 start-page: 449 year: 2009 end-page: 454 ident: bib15 article-title: Quality control of cytoplasmic membrane proteins in publication-title: J. Biochem. – volume: 160 start-page: 652 year: 2009 end-page: 659 ident: bib14 article-title: Degradation of cytoplasmic substrates by FtsH, a membrane-anchored protease with many talents publication-title: Res. Microbiol. – volume: 10 start-page: 1848 year: 2011 end-page: 1859 ident: bib60 article-title: Systematic analysis of native membrane protein complexes in publication-title: J. Proteome Res. – volume: 94 start-page: 5544 year: 1997 end-page: 5549 ident: bib22 article-title: Host regulation of lysogenic decision in bacteriophage λ. Transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA) publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 255 start-page: 4487 year: 1980 end-page: 4494 ident: bib48 article-title: Purification and properties of publication-title: J. Biol. Chem. – volume: 80 start-page: 587 year: 2011 ident: 10.1074/jbc.M112.388470_bib2 article-title: AAA+ proteases: ATP-fueled machines of protein destruction publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060408-172623 – volume: 156 start-page: 109 year: 2006 ident: 10.1074/jbc.M112.388470_bib7 article-title: Characterization of mutants of the Escherichia coli AAA protease, FtsH, carrying a mutation in the central pore region publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2006.02.003 – volume: 1107 start-page: 305 year: 1992 ident: 10.1074/jbc.M112.388470_bib58 article-title: A second phenazine methosulphate-linked formate dehydrogenase isoenzyme in Escherichia coli publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(92)90417-K – volume: 11 start-page: 671 year: 2003 ident: 10.1074/jbc.M112.388470_bib31 article-title: Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00060-1 – volume: 9 start-page: 839 year: 2011 ident: 10.1074/jbc.M112.388470_bib1 article-title: Regulated proteolysis in Gram-negative bacteria-how and when? publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2669 – year: 2001 ident: 10.1074/jbc.M112.388470_bib36 – volume: 271 start-page: 31196 year: 1996 ident: 10.1074/jbc.M112.388470_bib52 article-title: FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.49.31196 – volume: 372 start-page: 485 year: 2007 ident: 10.1074/jbc.M112.388470_bib25 article-title: Sequence and length recognition of the C-terminal turnover element of LpxC, a soluble substrate of the membrane-bound FtsH protease publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.06.083 – volume: 374 start-page: 399 year: 2008 ident: 10.1074/jbc.M112.388470_bib47 article-title: Regulation of Escherichia coli IscS desulfurase activity by ferrous iron and cysteine publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2008.07.050 – volume: 51 start-page: 1801 year: 2004 ident: 10.1074/jbc.M112.388470_bib19 article-title: Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2003.03952.x – volume: 8 start-page: 3030 year: 2008 ident: 10.1074/jbc.M112.388470_bib34 article-title: Improved image analysis workflow for 2-D gels enables large-scale 2-D gel-based proteomics studies–COPD biomarker discovery study publication-title: Proteomics doi: 10.1002/pmic.200701184 – volume: 10 start-page: 251 year: 2010 ident: 10.1074/jbc.M112.388470_bib61 article-title: PpiD is a player in the network of periplasmic chaperones in Escherichia coli publication-title: BMC Microbiol. doi: 10.1186/1471-2180-10-251 – volume: 160 start-page: 652 year: 2009 ident: 10.1074/jbc.M112.388470_bib14 article-title: Degradation of cytoplasmic substrates by FtsH, a membrane-anchored protease with many talents publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2009.08.011 – volume: 94 start-page: 5544 year: 1997 ident: 10.1074/jbc.M112.388470_bib22 article-title: Host regulation of lysogenic decision in bacteriophage λ. Transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA) publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.94.11.5544 – volume: 18 start-page: 2812 year: 2004 ident: 10.1074/jbc.M112.388470_bib27 article-title: A chaperone network controls the heat shock response in E. coli publication-title: Genes Dev. doi: 10.1101/gad.1219204 – volume: 34 start-page: 797 year: 2010 ident: 10.1074/jbc.M112.388470_bib40 article-title: Managing membrane stress. The phage shock protein (Psp) response, from molecular mechanisms to physiology publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2010.00240.x – volume: 290 start-page: 199 year: 2009 ident: 10.1074/jbc.M112.388470_bib28 article-title: Region C of the Escherichia coli heat shock σ factor RpoH (σ32) contains a turnover element for proteolysis by the FtsH protease publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2008.01423.x – volume: 146 start-page: 449 year: 2009 ident: 10.1074/jbc.M112.388470_bib15 article-title: Quality control of cytoplasmic membrane proteins in Escherichia coli publication-title: J. Biochem. doi: 10.1093/jb/mvp071 – volume: 12 start-page: 3889 year: 1998 ident: 10.1074/jbc.M112.388470_bib68 article-title: Lon-mediated proteolysis of the Escherichia coli UmuD mutagenesis protein. In vitro degradation and identification of residues required for proteolysis publication-title: Genes Dev. doi: 10.1101/gad.12.24.3889 – volume: 59 start-page: 1025 year: 2006 ident: 10.1074/jbc.M112.388470_bib24 article-title: The C-terminal end of LpxC is required for degradation by the FtsH protease publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2005.04994.x – volume: 178 start-page: 1204 year: 1996 ident: 10.1074/jbc.M112.388470_bib64 article-title: Osmotic shock induction of capsule synthesis in Escherichia coli K-12 publication-title: J. Bacteriol. doi: 10.1128/jb.178.4.1204-1206.1996 – volume: 176 start-page: 1500 year: 1994 ident: 10.1074/jbc.M112.388470_bib50 article-title: Organization and expression of the Escherichia coli K-12 dad operon encoding the smaller subunit of d-amino acid dehydrogenase and the catabolic alanine racemase publication-title: J. Bacteriol. doi: 10.1128/jb.176.5.1500-1510.1994 – volume: 278 start-page: 50182 year: 2003 ident: 10.1074/jbc.M112.388470_bib8 article-title: Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M308327200 – volume: 21 start-page: 3391 year: 1993 ident: 10.1074/jbc.M112.388470_bib57 article-title: Analysis of the Escherichia coli genome. III. DNA sequence of the region from 87.2 to 89.2 minutes publication-title: Nucleic Acids Res. doi: 10.1093/nar/21.15.3391 – volume: 185 start-page: 5735 year: 2003 ident: 10.1074/jbc.M112.388470_bib62 article-title: Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/JB.185.19.5735-5746.2003 – volume: 103 start-page: 3066 year: 2006 ident: 10.1074/jbc.M112.388470_bib9 article-title: The molecular architecture of the metalloprotease FtsH publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0600031103 – volume: 74 start-page: 247 year: 2005 ident: 10.1074/jbc.M112.388470_bib46 article-title: Structure, function, and formation of biological iron-sulfur clusters publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.74.082803.133518 – volume: 80 start-page: 1313 year: 2011 ident: 10.1074/jbc.M112.388470_bib26 article-title: The Escherichia coli replication inhibitor CspD is subject to growth-regulated degradation by the Lon protease publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2011.07646.x – volume: 186 start-page: 7474 year: 2004 ident: 10.1074/jbc.M112.388470_bib30 article-title: Conserved region 2.1 of Escherichia coli heat shock transcription factor σ32 is required for modulating both metabolic stability and transcriptional activity publication-title: J. Bacteriol. doi: 10.1128/JB.186.22.7474-7480.2004 – volume: 193 start-page: 6436 year: 2011 ident: 10.1074/jbc.M112.388470_bib42 article-title: FtsH-dependent degradation of phage shock protein C in Yersinia enterocoliticaEscherichia coli publication-title: J. Bacteriol. doi: 10.1128/JB.05942-11 – volume: 10 start-page: 1848 year: 2011 ident: 10.1074/jbc.M112.388470_bib60 article-title: Systematic analysis of native membrane protein complexes in Escherichia coli publication-title: J. Proteome Res. doi: 10.1021/pr101105c – volume: 188 start-page: 679 year: 1990 ident: 10.1074/jbc.M112.388470_bib56 article-title: Purification and further characterization of the second nitrate reductase of Escherichia coli K12 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1990.tb15450.x – volume: 10 start-page: 1073 year: 2002 ident: 10.1074/jbc.M112.388470_bib5 article-title: The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 Å resolution publication-title: Structure doi: 10.1016/S0969-2126(02)00806-7 – volume: 59 start-page: 211 year: 2005 ident: 10.1074/jbc.M112.388470_bib12 article-title: Cellular functions, mechanism of action, and regulation of FtsH protease publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.59.030804.121316 – volume: 160 start-page: 645 year: 2009 ident: 10.1074/jbc.M112.388470_bib44 article-title: Regulation and quality control by Lon-dependent proteolysis publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2009.08.021 – volume: 138 start-page: 141 year: 1984 ident: 10.1074/jbc.M112.388470_bib33 article-title: A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids publication-title: Anal. Biochem. doi: 10.1016/0003-2697(84)90782-6 – volume: 180 start-page: 1573 year: 1998 ident: 10.1074/jbc.M112.388470_bib23 article-title: λ Xis degradation in vivo by Lon and FtsH publication-title: J. Bacteriol. doi: 10.1128/JB.180.6.1573-1577.1998 – volume: 180 start-page: 6625 year: 1998 ident: 10.1074/jbc.M112.388470_bib53 article-title: Topological analysis of the aerobic membrane-bound formate dehydrogenase of Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/JB.180.24.6625-6634.1998 – volume: 95 start-page: 4953 year: 1998 ident: 10.1074/jbc.M112.388470_bib41 article-title: A stationary phase protein in Escherichia coli with binding activity to the major σ subunit of RNA polymerase publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.95.9.4953 – volume: 96 start-page: 14264 year: 1999 ident: 10.1074/jbc.M112.388470_bib38 article-title: Inorganic polyphosphate kinase is required to stimulate protein degradation and for adaptation to amino acid starvation in Escherichia coli publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.96.25.14264 – volume: 15 start-page: 607 year: 1996 ident: 10.1074/jbc.M112.388470_bib17 article-title: A cycle of binding and release of the DnaK, DnaJ, and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor σ32 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb00393.x – volume: 357 start-page: 718 year: 2006 ident: 10.1074/jbc.M112.388470_bib20 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.12.088 – volume: 14 start-page: 2551 year: 1995 ident: 10.1074/jbc.M112.388470_bib10 article-title: Escherichia coli FtsH is a membrane-bound, ATP-dependent protease that degrades the heat-shock transcription factor σ32 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1995.tb07253.x – volume: 187 start-page: 3807 year: 2005 ident: 10.1074/jbc.M112.388470_bib29 article-title: Identification of a turnover element in region 2.1 of Escherichia coli σ32 by a bacterial one-hybrid approach publication-title: J. Bacteriol. doi: 10.1128/JB.187.11.3807-3813.2005 – volume: 255 start-page: 4487 year: 1980 ident: 10.1074/jbc.M112.388470_bib48 article-title: Purification and properties of d-amino acid dehydrogenase, an inducible membrane-bound iron-sulfur flavoenzyme from Escherichia coli B publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)85517-5 – volume: 184 start-page: 4775 year: 2002 ident: 10.1074/jbc.M112.388470_bib67 article-title: Membrane protein degradation by FtsH can be initiated from either end publication-title: J. Bacteriol. doi: 10.1128/JB.184.17.4775-4782.2002 – volume: 188 start-page: 3175 year: 2006 ident: 10.1074/jbc.M112.388470_bib65 article-title: LrhA regulates rpoS translation in response to the Rcs phosphorelay system in Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/JB.188.9.3175-3181.2006 – volume: 72 start-page: 248 year: 1976 ident: 10.1074/jbc.M112.388470_bib32 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding publication-title: Anal. Biochem. doi: 10.1016/0003-2697(76)90527-3 – volume: 6 start-page: 575 year: 2001 ident: 10.1074/jbc.M112.388470_bib6 article-title: AAA+ superfamily ATPases. Common structure-diverse function publication-title: Genes Cells doi: 10.1046/j.1365-2443.2001.00447.x – volume: 193 start-page: 3653 year: 2011 ident: 10.1074/jbc.M112.388470_bib37 article-title: RcsB is required for inducible acid resistance in Escherichia coli and acts at gadE-dependent and -independent promoters publication-title: J. Bacteriol. doi: 10.1128/JB.05040-11 – volume: 190 start-page: 7117 year: 2008 ident: 10.1074/jbc.M112.388470_bib16 article-title: Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/JB.00871-08 – volume: 46 start-page: 813 year: 2002 ident: 10.1074/jbc.M112.388470_bib63 article-title: Regulation and mode of action of the second small RNA activator of RpoS translation, RprA publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2002.03203.x – volume: 22 start-page: 193 year: 2006 ident: 10.1074/jbc.M112.388470_bib43 article-title: Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.03.007 – volume: 439 start-page: 753 year: 2006 ident: 10.1074/jbc.M112.388470_bib69 article-title: ClpS is an essential component of the N-end rule pathway in Escherichia coli publication-title: Nature doi: 10.1038/nature04412 – volume: 283 start-page: 575 year: 2010 ident: 10.1074/jbc.M112.388470_bib35 article-title: Proteomic and transcriptomic characterization of a virulence-deficient phosphatidylcholine-negative Agrobacterium tumefaciens mutant publication-title: Mol. Genet. Genomics doi: 10.1007/s00438-010-0542-7 – volume: 11 start-page: 659 year: 2003 ident: 10.1074/jbc.M112.388470_bib45 article-title: Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00068-6 – volume: 250 start-page: 6693 year: 1975 ident: 10.1074/jbc.M112.388470_bib54 article-title: The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)40989-7 – volume: 5 start-page: 1912 year: 1991 ident: 10.1074/jbc.M112.388470_bib39 article-title: Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on σ54 and modulated by positive and negative feedback mechanisms publication-title: Genes Dev. doi: 10.1101/gad.5.10.1912 – volume: 177 start-page: 7141 year: 1995 ident: 10.1074/jbc.M112.388470_bib55 article-title: Expression and characterization of the Escherichia coli fdo locus and a possible physiological role for aerobic formate dehydrogenase publication-title: J. Bacteriol. doi: 10.1128/jb.177.24.7141-7149.1995 – volume: 47 start-page: 251 year: 2007 ident: 10.1074/jbc.M112.388470_bib70 article-title: Bacterial cell division protein FtsZ is stable against degradation by AAA family protease FtsH in Escherichia coli cells publication-title: J. Basic Microbiol. doi: 10.1002/jobm.200610236 – volume: 1823 start-page: 40 year: 2012 ident: 10.1074/jbc.M112.388470_bib13 article-title: Structure and function of the bacterial AAA protease FtsH publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2011.08.015 – volume: 175 start-page: 1352 year: 1993 ident: 10.1074/jbc.M112.388470_bib4 article-title: Topology and subcellular localization of FtsH protein in Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/jb.175.5.1352-1357.1993 – volume: 41 start-page: 1861 year: 2002 ident: 10.1074/jbc.M112.388470_bib11 article-title: Identification of glutamic acid 479 as the gluzincin coordinator of zinc in FtsH (HflB) publication-title: Biochemistry doi: 10.1021/bi015748o – volume: 325 start-page: 1552 year: 2009 ident: 10.1074/jbc.M112.388470_bib49 article-title: d-Amino acids govern stationary phase cell wall remodeling in bacteria publication-title: Science doi: 10.1126/science.1178123 – volume: 92 start-page: 3516 year: 1995 ident: 10.1074/jbc.M112.388470_bib18 article-title: Degradation of σ32, the heat shock regulator in Escherichia coli, is governed by HflB publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.92.8.3516 – volume: 399 start-page: 26 year: 1996 ident: 10.1074/jbc.M112.388470_bib51 article-title: Subunit a of proton ATPase F0 sector is a substrate of the FtsH protease in Escherichia coli publication-title: FEBS Lett. doi: 10.1016/S0014-5793(96)01283-5 – volume: 179 start-page: 358 year: 1997 ident: 10.1074/jbc.M112.388470_bib21 article-title: The HflB protease of Escherichia coli degrades its inhibitor λ cIII publication-title: J. Bacteriol. doi: 10.1128/jb.179.2.358-363.1997 – volume: 27 start-page: 3306 year: 2006 ident: 10.1074/jbc.M112.388470_bib59 article-title: A complexomic study of Escherichia coli using two-dimensional blue native/SDS-polyacrylamide gel electrophoresis publication-title: Electrophoresis doi: 10.1002/elps.200500912 – volume: 32 start-page: 347 year: 2008 ident: 10.1074/jbc.M112.388470_bib66 article-title: Molecular basis for regulation of the heat shock transcription factor σ32 by the DnaK and DnaJ chaperones publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.09.016 – volume: 31 start-page: 833 year: 1999 ident: 10.1074/jbc.M112.388470_bib3 article-title: Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.1999.01221.x |
SSID | ssj0000491 |
Score | 2.3200717 |
Snippet | Proteolysis is a universal strategy to rapidly adjust the amount of regulatory and metabolic proteins to cellular demand. FtsH is the only membrane-anchored... Background: Only few substrates of the essential membrane-anchored protease FtsH are known. Results: New cytoplasmic and membrane-bound substrates of FtsH were... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 42962 |
SubjectTerms | ATP-dependent Protease ATP-Dependent Proteases - isolation & purification ATP-Dependent Proteases - metabolism Bacteria Enzyme Turnover Escherichia coli Escherichia coli - cytology Escherichia coli - enzymology Escherichia coli - growth & development Escherichia coli Proteins - isolation & purification Escherichia coli Proteins - metabolism Iron-Sulfur Protein Lipopolysaccharide (LPS) Microbial Viability Microbiology Models, Biological Osmotic Pressure Oxygen - metabolism Phenotype Protein Stability Proteolysis Proteome - metabolism Proteomics - methods Reproducibility of Results Substrate Specificity |
Title | A Trapping Approach Reveals Novel Substrates and Physiological Functions of the Essential Protease FtsH in Escherichia coli |
URI | https://dx.doi.org/10.1074/jbc.M112.388470 https://www.ncbi.nlm.nih.gov/pubmed/23091052 https://www.proquest.com/docview/1240216354 https://pubmed.ncbi.nlm.nih.gov/PMC3522291 |
Volume | 287 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIAXBBuXMkBGQgipSknTOJfHampVwVZAtFLfIidx1mglqZp00sZ_4Ddzjh0n7bZKg5eoyl39vpzz2T4XQj4wTzjcC7mRCC80bOEmBneFbYDz4j64s9jlmCh8NnHGM_vLnM1brT9bUUubMuxG13fmlfwPqrAPcMUs2X9Atr4p7IDfgC9sAWHY3gvjAXZ4WMmMJ10bHHNRBJZEzvJLsewUYBdk_VlVilnOY9TmDn1aHQgngzsKTEXCOXRZvgEcXGdUFmOcExkWiG6KkdEd4E66LWqb9DIpbMPmCZFuJ9csABXlasFVShBP63Agnp1fLHPZW7bzs-roreNVeCZUo6D0Asbh9RhgwtehWC_4ptAC_Hp7CqMnu6mo1NHK6oIOxJSCuXJKd-yrTLVVOWfFyapSrbK84FeVWb_lE0AkoU8Io-4ZiMtu3wOHbDbuTy_5T74Fo9npaTAdzqcPyEMLhh1oN7_-aKrPw2iqpxI21KvpUlGu_fnG7fepnNujmJvBuFvqZvqUPKnQowPFsWekJbJDcjTIeJn_uqIf6XdNnKtD8uhEo3pEfg-opiDVFKQVBamkIG0oSIGCdIeCtKYgzRMKFKQ1BammIEUK0jSjWxSkSMHnZDYaTk_GRtXPw4hAlpYGS3zT505iJixmbuwyYUWcRyCRhcd8x49NLmzPj1xwDCYTfWHGcWK7YEoEt5wk7L8gB1meiVeEgogWgoVhhH22TEuEsddPTIfHvh0Jnvht0tX_fxBVxe6x58oykEEXrh0AYAECFijA2uRTfcFK1XnZf6qlAQ0qmarkZwCM23_Rew19ABDhqhx8PfmmCHq4vgmjIma3yUtFhfoNrD7KeWa1ibtDkvoELA6_eyRLF7JIPA6sLL_3-h7PPSaPm6_yDTko1xvxFqR2Gb6T_P8LDW_ePA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+trapping+approach+reveals+novel+substrates+and+physiological+functions+of+the+essential+protease+FtsH+in+Escherichia+coli&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Westphal%2C+Kai&rft.au=Langklotz%2C+Sina&rft.au=Thomanek%2C+Nikolas&rft.au=Narberhaus%2C+Franz&rft.date=2012-12-14&rft.issn=1083-351X&rft.eissn=1083-351X&rft.volume=287&rft.issue=51&rft.spage=42962&rft_id=info:doi/10.1074%2Fjbc.M112.388470&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |