An Improved Multimodal Biometric Identification System Employing Score-Level Fuzzification of Finger Texture and Finger Vein Biometrics
This research work focuses on a Near-Infra-Red (NIR) finger-images-based multimodal biometric system based on Finger Texture and Finger Vein biometrics. The individual results of the biometric characteristics are fused using a fuzzy system, and the final identification result is achieved. Experiment...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 24; p. 9706 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
08.12.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This research work focuses on a Near-Infra-Red (NIR) finger-images-based multimodal biometric system based on Finger Texture and Finger Vein biometrics. The individual results of the biometric characteristics are fused using a fuzzy system, and the final identification result is achieved. Experiments are performed for three different databases, i.e., the Near-Infra-Red Hand Images (NIRHI), Hong Kong Polytechnic University (HKPU) and University of Twente Finger Vein Pattern (UTFVP) databases. First, the Finger Texture biometric employs an efficient texture feature extracting algorithm, i.e., Linear Binary Pattern. Then, the classification is performed using Support Vector Machine, a proven machine learning classification algorithm. Second, the transfer learning of pre-trained convolutional neural networks (CNNs) is performed for the Finger Vein biometric, employing two approaches. The three selected CNNs are AlexNet, VGG16 and VGG19. In Approach 1, before feeding the images for the training of the CNN, the necessary preprocessing of NIR images is performed. In Approach 2, before the pre-processing step, image intensity optimization is also employed to regularize the image intensity. NIRHI outperforms HKPU and UTFVP for both of the modalities of focus, in a unimodal setup as well as in a multimodal one. The proposed multimodal biometric system demonstrates a better overall identification accuracy of 99.62% in comparison with 99.51% and 99.50% reported in the recent state-of-the-art systems. |
---|---|
AbstractList | This research work focuses on a Near-Infra-Red (NIR) finger-images-based multimodal biometric system based on Finger Texture and Finger Vein biometrics. The individual results of the biometric characteristics are fused using a fuzzy system, and the final identification result is achieved. Experiments are performed for three different databases, i.e., the Near-Infra-Red Hand Images (NIRHI), Hong Kong Polytechnic University (HKPU) and University of Twente Finger Vein Pattern (UTFVP) databases. First, the Finger Texture biometric employs an efficient texture feature extracting algorithm, i.e., Linear Binary Pattern. Then, the classification is performed using Support Vector Machine, a proven machine learning classification algorithm. Second, the transfer learning of pre-trained convolutional neural networks (CNNs) is performed for the Finger Vein biometric, employing two approaches. The three selected CNNs are AlexNet, VGG16 and VGG19. In Approach 1, before feeding the images for the training of the CNN, the necessary preprocessing of NIR images is performed. In Approach 2, before the pre-processing step, image intensity optimization is also employed to regularize the image intensity. NIRHI outperforms HKPU and UTFVP for both of the modalities of focus, in a unimodal setup as well as in a multimodal one. The proposed multimodal biometric system demonstrates a better overall identification accuracy of 99.62% in comparison with 99.51% and 99.50% reported in the recent state-of-the-art systems. This research work focuses on a Near-Infra-Red (NIR) finger-images-based multimodal biometric system based on Finger Texture and Finger Vein biometrics. The individual results of the biometric characteristics are fused using a fuzzy system, and the final identification result is achieved. Experiments are performed for three different databases, i.e., the Near-Infra-Red Hand Images (NIRHI), Hong Kong Polytechnic University (HKPU) and University of Twente Finger Vein Pattern (UTFVP) databases. First, the Finger Texture biometric employs an efficient texture feature extracting algorithm, i.e., Linear Binary Pattern. Then, the classification is performed using Support Vector Machine, a proven machine learning classification algorithm. Second, the transfer learning of pre-trained convolutional neural networks (CNNs) is performed for the Finger Vein biometric, employing two approaches. The three selected CNNs are AlexNet, VGG16 and VGG19. In Approach 1, before feeding the images for the training of the CNN, the necessary preprocessing of NIR images is performed. In Approach 2, before the pre-processing step, image intensity optimization is also employed to regularize the image intensity. NIRHI outperforms HKPU and UTFVP for both of the modalities of focus, in a unimodal setup as well as in a multimodal one. The proposed multimodal biometric system demonstrates a better overall identification accuracy of 99.62% in comparison with 99.51% and 99.50% reported in the recent state-of-the-art systems.This research work focuses on a Near-Infra-Red (NIR) finger-images-based multimodal biometric system based on Finger Texture and Finger Vein biometrics. The individual results of the biometric characteristics are fused using a fuzzy system, and the final identification result is achieved. Experiments are performed for three different databases, i.e., the Near-Infra-Red Hand Images (NIRHI), Hong Kong Polytechnic University (HKPU) and University of Twente Finger Vein Pattern (UTFVP) databases. First, the Finger Texture biometric employs an efficient texture feature extracting algorithm, i.e., Linear Binary Pattern. Then, the classification is performed using Support Vector Machine, a proven machine learning classification algorithm. Second, the transfer learning of pre-trained convolutional neural networks (CNNs) is performed for the Finger Vein biometric, employing two approaches. The three selected CNNs are AlexNet, VGG16 and VGG19. In Approach 1, before feeding the images for the training of the CNN, the necessary preprocessing of NIR images is performed. In Approach 2, before the pre-processing step, image intensity optimization is also employed to regularize the image intensity. NIRHI outperforms HKPU and UTFVP for both of the modalities of focus, in a unimodal setup as well as in a multimodal one. The proposed multimodal biometric system demonstrates a better overall identification accuracy of 99.62% in comparison with 99.51% and 99.50% reported in the recent state-of-the-art systems. |
Audience | Academic |
Author | Muqeet, Hafiz Abdul Husain, Nusrat Yahya, Ashraf Ashraf, Shahzad Humayun, Usman Arfeen, Zeeshan Ahmad Khan, Muhammad Farhan Haider, Syed Aqeel Larik, Raja Masood |
AuthorAffiliation | 5 Electrical Engineering Technology Department, Punjab Tianjin University of Technology, Lahore 54770, Pakistan; abdul.muqeet@ptut.edu.pk 6 Department of Computer Engineering, Faculty of Engineering, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan; usmanhumayun@bzu.edu.pk 3 Department of Electrical Engineering, N.E.D University of Engineering and Technology, Karachi 75270, Pakistan; rmlarik@neduet.edu.pk 2 Department of Electrical Engineering, NFC Institute of Engineering and Technology, Multan 60000, Pakistan; nfc.iet@hotmail.com 4 Department of Electronics & Power Engineering, Pakistan Navy Engineering College, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; nusrat@pnec.nust.edu.pk (N.H.); ayahya@pnec.nust.edu.pk (A.Y.); farhankhan@pnec.nust.edu.pk (M.F.K.) 1 Department of Computer & Information Systems Engineering, Faculty of Computer & Electrical Engineering, N.E.D. University of Engineering and Technology, Karachi 75270, Pakistan 7 Departmen |
AuthorAffiliation_xml | – name: 4 Department of Electronics & Power Engineering, Pakistan Navy Engineering College, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; nusrat@pnec.nust.edu.pk (N.H.); ayahya@pnec.nust.edu.pk (A.Y.); farhankhan@pnec.nust.edu.pk (M.F.K.) – name: 1 Department of Computer & Information Systems Engineering, Faculty of Computer & Electrical Engineering, N.E.D. University of Engineering and Technology, Karachi 75270, Pakistan – name: 7 Department of Electrical Engineering, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; zeeshan.arfeen@iub.edu.pk – name: 5 Electrical Engineering Technology Department, Punjab Tianjin University of Technology, Lahore 54770, Pakistan; abdul.muqeet@ptut.edu.pk – name: 6 Department of Computer Engineering, Faculty of Engineering, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan; usmanhumayun@bzu.edu.pk – name: 2 Department of Electrical Engineering, NFC Institute of Engineering and Technology, Multan 60000, Pakistan; nfc.iet@hotmail.com – name: 3 Department of Electrical Engineering, N.E.D University of Engineering and Technology, Karachi 75270, Pakistan; rmlarik@neduet.edu.pk |
Author_xml | – sequence: 1 givenname: Syed Aqeel orcidid: 0000-0002-3327-1988 surname: Haider fullname: Haider, Syed Aqeel – sequence: 2 givenname: Shahzad orcidid: 0000-0002-7637-7870 surname: Ashraf fullname: Ashraf, Shahzad – sequence: 3 givenname: Raja Masood orcidid: 0000-0001-7835-6830 surname: Larik fullname: Larik, Raja Masood – sequence: 4 givenname: Nusrat orcidid: 0000-0001-5095-8362 surname: Husain fullname: Husain, Nusrat – sequence: 5 givenname: Hafiz Abdul orcidid: 0000-0002-0866-4165 surname: Muqeet fullname: Muqeet, Hafiz Abdul – sequence: 6 givenname: Usman surname: Humayun fullname: Humayun, Usman – sequence: 7 givenname: Ashraf orcidid: 0000-0002-5449-8460 surname: Yahya fullname: Yahya, Ashraf – sequence: 8 givenname: Zeeshan Ahmad orcidid: 0000-0002-7359-2743 surname: Arfeen fullname: Arfeen, Zeeshan Ahmad – sequence: 9 givenname: Muhammad Farhan surname: Khan fullname: Khan, Muhammad Farhan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38139551$$D View this record in MEDLINE/PubMed |
BookMark | eNplkstuEzEUhi1URNvAghdAltjAYlqPL3NZoVA1ECmIRQtby2MfB0czdvDMRKQvwGvjNE1vyAsfHX_-j__jc4qOfPCA0NucnDFWk_OeMsrrkhQv0EnOKc8qSsnRo_gYnfb9ihDKGKteoWNW5awWIj9Bf6cez7t1DBsw-NvYDq4LRrX4swsdDNFpPDfgB2edVoMLHl9t-wE6fNmt27B1fomvdIiQLWADLZ6NNzcPaLB4lgiI-Br-DGMErLw5pH6C8w9V-tfopVVtD2_u9gn6Mbu8vviaLb5_mV9MF5kWpB4yAaU2AgpmKtCCWmNANIJraqDhUNA6B2EZsYQYRqi2TJNGl8qmiGjICzZB872uCWol19F1Km5lUE7eJkJcShUHp1uQxHJVFw0tWdPwElhVWaBU8Ybn3BhFktanvdZ6bDowOvUpqvaJ6NMT737JZdjInJS8Ykl4gj7cKcTwe4R-kJ3rNbSt8hDGXtKaCEGLmu-KvX-GrsIYferVjuJ1sstEos721FIlB87bkArrtAx0TqepsS7lp2VZ04ozuuvHu8ce7h9_mJAEnO8BHUPfR7BSu-H2f5Oya5MXuZtBeT-D6cbHZzcOov-z_wBwgt3G |
CitedBy_id | crossref_primary_10_1007_s42044_025_00234_y crossref_primary_10_1007_s42979_024_03148_x crossref_primary_10_1007_s11042_025_20709_1 |
Cites_doi | 10.1109/TIFS.2017.2756598 10.1016/j.asej.2023.102421 10.3390/s20195523 10.1109/ICIECS.2009.5363431 10.3390/electronics8091016 10.1109/TIP.2011.2171697 10.1007/s11063-021-10589-5 10.1016/j.eswa.2021.116288 10.3390/s20061644 10.3390/sym12050709 10.7717/peerj-cs.248 10.1007/s13369-016-2241-0 10.1007/s00500-018-3295-6 10.1109/ICB.2013.6612966 10.1109/WIFS.2015.7368599 10.3390/s140203095 10.1145/3065386 10.1109/ICB.2015.7139067 10.1109/SITIS.2015.74 10.3390/s17061297 10.1016/j.patrec.2017.12.001 10.1109/BTAS.2015.7358762 10.1109/CISP.2009.5303807 10.3390/electronics9111916 10.3390/s20143997 10.3390/s18072296 10.5772/53474 10.1007/s11263-015-0816-y 10.1109/ICOSP.2010.5656858 10.1109/ICIG.2009.170 10.1109/TIFS.2018.2850320 10.1007/s11042-020-08914-6 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s23249706 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Open Access Content Collection ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_0f4a96b273bb47e388fe22a4b414dda0 PMC10748327 A779284326 38139551 10_3390_s23249706 |
Genre | Journal Article |
GeographicLocations | New Jersey Pakistan Taiwan |
GeographicLocations_xml | – name: New Jersey – name: Taiwan – name: Pakistan |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Pakistan grantid: Office Order No. Acad/50(54)/7257 – fundername: Ministry of Science and Technology, Pakistan grantid: Acad/50(54)/7257 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PJZUB PPXIY PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c509t-5e7cd5e63d8ec52fdde5b54c2deb4e6291e5f30f00d302cf3c0bc7afcf30ce163 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:34:44 EDT 2025 Thu Aug 21 18:37:35 EDT 2025 Tue Aug 05 10:46:39 EDT 2025 Sat Jul 26 00:18:59 EDT 2025 Tue Jun 10 21:16:57 EDT 2025 Mon Jul 21 05:31:04 EDT 2025 Tue Jul 01 03:50:39 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | Linear Binary Pattern convolutional neural network Finger Texture biometric multimodal biometric system Fuzzy Inference System Support Vector Machine biometric modalities Finger Vein biometric |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-5e7cd5e63d8ec52fdde5b54c2deb4e6291e5f30f00d302cf3c0bc7afcf30ce163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0866-4165 0000-0002-3327-1988 0000-0002-7637-7870 0000-0001-7835-6830 0000-0002-7359-2743 0000-0002-5449-8460 0000-0001-5095-8362 |
OpenAccessLink | https://doaj.org/article/0f4a96b273bb47e388fe22a4b414dda0 |
PMID | 38139551 |
PQID | 2904930235 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0f4a96b273bb47e388fe22a4b414dda0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10748327 proquest_miscellaneous_2905526940 proquest_journals_2904930235 gale_infotracacademiconefile_A779284326 pubmed_primary_38139551 crossref_citationtrail_10_3390_s23249706 crossref_primary_10_3390_s23249706 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231208 |
PublicationDateYYYYMMDD | 2023-12-08 |
PublicationDate_xml | – month: 12 year: 2023 text: 20231208 day: 8 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Ali (ref_24) 2024; 15 ref_14 ref_13 Alaoui (ref_26) 2020; 6 ref_35 Zhou (ref_29) 2020; 79 ref_11 ref_33 ref_10 ref_32 Bharathi (ref_28) 2019; 23 Kumar (ref_31) 2011; 21 Qiu (ref_6) 2017; 13 ref_19 Shin (ref_15) 2014; 14 ref_18 ref_17 Shaheed (ref_30) 2022; 191 Park (ref_9) 2012; 9 Pi (ref_12) 2010; Volume 1 ref_25 ref_23 ref_22 ref_21 Das (ref_16) 2019; 14 ref_20 ref_3 Russakovsky (ref_36) 2015; 115 ref_8 ref_5 ref_4 Krizhevsky (ref_34) 2017; 60 Xie (ref_2) 2019; 119 ref_7 Sarhan (ref_1) 2017; 42 He (ref_27) 2021; 53 |
References_xml | – volume: 13 start-page: 465 year: 2017 ident: ref_6 article-title: Finger Vein Presentation Attack Detection Using Total Variation Decomposition publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2017.2756598 – volume: 15 start-page: 102421 year: 2024 ident: ref_24 article-title: Risk Prioritization in a Core Preparation Experiment Using Fuzzy VIKOR Integrated with Shannon Entropy Method publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2023.102421 – ident: ref_21 doi: 10.3390/s20195523 – ident: ref_10 doi: 10.1109/ICIECS.2009.5363431 – ident: ref_18 doi: 10.3390/electronics8091016 – volume: 21 start-page: 2228 year: 2011 ident: ref_31 article-title: Human Identification Using Finger Images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2171697 – volume: 53 start-page: 4279 year: 2021 ident: ref_27 article-title: Finger Vein De-Noising Algorithm Based on Custom Sample-Texture Conditional Generative Adversarial Nets publication-title: Neural Process. Lett. doi: 10.1007/s11063-021-10589-5 – volume: 191 start-page: 116288 year: 2022 ident: ref_30 article-title: DS-CNN: A Pre-Trained Xception Model Based on Depth-Wise Separable Convolutional Neural Network for Finger Vein Recognition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116288 – ident: ref_22 doi: 10.3390/s20061644 – ident: ref_17 doi: 10.3390/sym12050709 – ident: ref_35 – ident: ref_23 – volume: 6 start-page: e248 year: 2020 ident: ref_26 article-title: Convolutional Neural Networks Approach for Multimodal Biometric Identification System Using the Fusion of Fingerprint, Finger-Vein and Face Images publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.248 – volume: 42 start-page: 443 year: 2017 ident: ref_1 article-title: Multimodal Biometric Systems: A Comparative Study publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-016-2241-0 – volume: Volume 1 start-page: V1-424 year: 2010 ident: ref_12 article-title: An Effective Quality Improvement Approach for Low Quality Finger Vein Image publication-title: Proceedings of the 2010 International Conference on Electronics and Information Engineering – volume: 23 start-page: 1843 year: 2019 ident: ref_28 article-title: Biometric Recognition Using Finger and Palm Vein Images publication-title: Soft Comput. doi: 10.1007/s00500-018-3295-6 – ident: ref_32 doi: 10.1109/ICB.2013.6612966 – ident: ref_4 doi: 10.1109/WIFS.2015.7368599 – volume: 14 start-page: 3095 year: 2014 ident: ref_15 article-title: Finger-Vein Image Enhancement Using a Fuzzy-Based Fusion Method with Gabor and Retinex Filtering publication-title: Sensors doi: 10.3390/s140203095 – volume: 60 start-page: 84 year: 2017 ident: ref_34 article-title: ImageNet Classification with Deep Convolutional Neural Networks publication-title: Commun. ACM doi: 10.1145/3065386 – ident: ref_33 – ident: ref_8 doi: 10.1109/ICB.2015.7139067 – ident: ref_5 doi: 10.1109/SITIS.2015.74 – ident: ref_25 doi: 10.3390/s17061297 – volume: 119 start-page: 148 year: 2019 ident: ref_2 article-title: Finger Vein Identification Using Convolutional Neural Network and Supervised Discrete Hashing publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2017.12.001 – ident: ref_7 doi: 10.1109/BTAS.2015.7358762 – ident: ref_14 doi: 10.1109/CISP.2009.5303807 – ident: ref_3 doi: 10.3390/electronics9111916 – ident: ref_19 doi: 10.3390/s20143997 – ident: ref_20 doi: 10.3390/s18072296 – volume: 9 start-page: 154 year: 2012 ident: ref_9 article-title: Image Quality Enhancement Using the Direction and Thickness of Vein Lines for Finger-Vein Recognition publication-title: Int. J. Adv. Robot. Syst. doi: 10.5772/53474 – volume: 115 start-page: 211 year: 2015 ident: ref_36 article-title: ImageNet Large Scale Visual Recognition Challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – ident: ref_13 doi: 10.1109/ICOSP.2010.5656858 – ident: ref_11 doi: 10.1109/ICIG.2009.170 – volume: 14 start-page: 360 year: 2019 ident: ref_16 article-title: Convolutional Neural Network for Finger-Vein-Based Biometric Identification publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2018.2850320 – volume: 79 start-page: 29021 year: 2020 ident: ref_29 article-title: A Hybrid Fusion Model of Iris, Palm Vein and Finger Vein for Multi-Biometric Recognition System publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-08914-6 |
SSID | ssj0023338 |
Score | 2.4279246 |
Snippet | This research work focuses on a Near-Infra-Red (NIR) finger-images-based multimodal biometric system based on Finger Texture and Finger Vein biometrics. The... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 9706 |
SubjectTerms | Accuracy Algorithms Biometric identification biometric modalities Biometrics Biometry Business metrics Comparative analysis convolutional neural network Finger Texture biometric Finger Vein biometric Fuzzy Inference System Human subjects Identification systems Linear Binary Pattern Machine learning Neural networks Physiology Researchers |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAgPIIlMogJLhEzfqRx3GLuqoQcKFFvVl-iko0i7q7l_4B_jYzdjbNCiQuvSbeje0Ze76xZ74BeFcLb1u61Y0u2lLOuCk77tIdPHee6Fo4JSd_-VqfnstPF-piUuqLYsIyPXCeuKMqStPVFq2stbIJom1j4NxIK2fSe5O8dbR5W2dqcLUEel6ZR0igU3-0ItzQNVTWaGJ9Ekn_31vxxBbtxklODM_iETwcECOb554-hnuhfwIPJjyC-_B73rN8OhA8Sym1V0uPvzmm3Hqi4Gc5HzcOB3Qs85SzXO4X_4J9IzbL8jNFELHF5ubmtukyskU6-mNnuI9vrgMzvd8--h4u-9uvrJ7C-eLk7ONpOVRYKB0ChXWpQuO8CiiwNjjFI-51yirpuA9Whpp3s6CiqGJVeYFCi8JV1jUG5SoqFxDKPYO9ftmHF8Bii-DP1p4r7mRdcxtbYRBbKSWa6GeigA_bmdduoB-nKhg_NbohJCQ9CqmAt2PTX5lz41-Njkl8YwOiyU4PUHn0oDz6f8pTwHsSvqbFjJ1xZshJwCERLZaeN02H9hshbgEHW_3Qwypfad6hf0VVl1QBb8bXuD7p0sX0YblJbRRVcZf4sedZncY-I1oSHULWAtodRdsZ1O6b_vJH4gCnOFrcjJuXdzENr-A-x1GkKJ32APbW15vwGrHW2h6mZfUHbI8q6Q priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgucAB8SbLggxCgku0qR9xckJdRLVCwIVd1JvlJ6wEyW4fl_0D_G1mHDdtBeJUKZk2Tscz_jye-YaQ1zX3tsFT3eiiLcWEmbJlLp3BM-eRroVhcfLnL_Xpufg4l_MccFvmtMqNT0yO2vcOY-THrAUsix1u5LvLqxK7RuHpam6hcZPcQuoyTOlS8-2Gi8P-a2AT4rC1P14iemgVNjfaWYMSVf_fDnlnRdrPltxZfmb3yN2MG-l0UPR9ciN0D8idHTbBh-T3tKNDjCB4mgprf_UevnOCFfZIxE-HqtyYw3R0YCunQ9Nf-An6FTkty0-YR0Rn6-vrrWgf6SwFAOkZePP1IlDT-c2lb-Gi2z5l-Yiczz6cvT8tc5-F0gFcWJUyKOdlALU1wUkWweNJK4VjPlgRatZOgoy8ilXlQQEucldZpwxol1cuAKB7TA66vgtPCY0NQEBbeyaZE3XNbGy4AYQlJVfRT3hB3m7-ee0yCTn2wvipYTOCStKjkgryahS9HJg3_iV0guobBZAsO13oF991tj1dRWHa2gJQs1aowJsmBsaMsGIivDdVQd6g8jWaNAzGmVyZAK-E5Fh6qlQLqzgA3YIcbeaHzra-1NuZWZCX422wUjx6MV3o10lGYi93AQ97MkynccyAmXgLwLUgzd5E23up_TvdxY_EBI7ZtOCS1eH_x_WM3GbwmbJwmiNysFqsw3PAUiv7IhnMHzBfIgA priority: 102 providerName: ProQuest |
Title | An Improved Multimodal Biometric Identification System Employing Score-Level Fuzzification of Finger Texture and Finger Vein Biometrics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38139551 https://www.proquest.com/docview/2904930235 https://www.proquest.com/docview/2905526940 https://pubmed.ncbi.nlm.nih.gov/PMC10748327 https://doaj.org/article/0f4a96b273bb47e388fe22a4b414dda0 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKe4ED4t1AWRmEBJdA1o84OSC0i7pUiFYIumhvUfyCSiWBfUjQP8DfZsZ5dCN64LKHZLKxM2PPN7bnG0KepdzqDHd1vfE6FmNWxjkzYQ-eGYt0LQyTk49P0qO5eL-Qix3S1dhsP-DqytAO60nNl-cvf_38_QYG_GuMOCFkf7VCVJArJN7eA4ekcHwei34zgXEeClpjTlcM_jBpCIaGjw7cUmDv_3eO3nJSwwOUWx5pdovcbKEknTS6v012XHWH3NgiGLxL_kwq2iwbOEtDru332sIzU0y6R25-2iTq-nbljjYE5rSpAwx_QT8jzWX8AY8W0dnm4uJStPZ0FtYE6SlM8Julo2Vlu0tf3Fl1-ZbVPTKfHZ6-PYrb0guxAQSxjqVTxkoHmsyckczDJCi1FIZZp4VLWT520vPEJ4nloE3PTaKNKkHhPDEOMN59slvVldsn1GeACnVqmWRGpCnTPuMlgC4pufJ2zCPyovvyhWl5ybE8xnkB8QkqqeiVFJGnveiPhozjKqEpqq8XQP7scKFefi3a4VgkXpR5qgG7aS2U41nmHWOl0GIsrC2TiDxH5Rdod9AYU7bJCtAl5MsqJkrl4NgB-0bkoLOPorPeguUQeGE5JhmRJ_1tGLi4G1NWrt4EGYnl3QW87EFjTn2bAUbxHLBsRLKBoQ06NbxTnX0L5OB4wBZmafXwv3vwiFxn0NRwRic7ILvr5cY9BqS11iNyTS0U_GazdyOyNz08-fhpFFYtRmGE_QVFwC3M |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB4BI160ceB4S2wGpLt72wRXtL4xdUgqTsQ4j-Af4Nv5GZPPYhELdeHSe2Mx7PZ3vmG4DnsbA6pVtdb7wOZY8XYcZNfQfPjSW6Fk7ByYdH8fBYfpioyRb87mJhyK2yWxPrhdpWhs7Id3mGWJYy3Kg3Z99DyhpFt6tdCo1mWhy4nz9wyzZ7vf8O5fuC88H78dth2GYVCA0ax3moXGKsctjJ1BnFPeq30koabp2WLuZZzykvIh9FFpszXphIm6TAsYjIOIQv-N1LcBkNb0QalUxWGzyB-72GvUiILNqdEVrJEkqmtGbz6tQAfxuANQu46Z25Zu4GN-B6i1NZv5lYN2HLlbfg2hp74W341S9ZcybhLKsDeb9VFt_Zo4h-Iv5nTRSwb48FWcOOzpokw_gJ9pE4NMMR-S2xweL8fFW18mxQHziyMVqPxdSxorRd0Sd3Wq5amd2B4wuRwF3YLqvS3QfmU4ScOrZccSPjmGufigIRnVIi8bYnAnjV_fnctKTnlHvja46bHxJSvhRSAM-WVc8apo9_Vdoj8S0rEDl3XVBNP-etrueRl0UWawSGWsvEiTT1jvNCatmT1hZRAC9J-DktIdgZU7SREDgkIuPK-0mSIWpAYB3ATjc_8nZtmeUrTQjg6fIxrgp01VOUrlrUdRTljpfY2L1mOi37jBhNZAiUA0g3JtrGoDaflKdfauZx8t5FE5A8-H-_nsCV4fhwlI_2jw4ewlWOZbUHULoD2_Ppwj1CHDfXj2vlYXBy0dr6BwgsYX8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRUJwQOwEChgEgks0iZcsB4SmlFFLS4VEi-YW4g0qQVJmEaJ_gP_Er-O9LLMIxK1Xx4ntvO2z_RaAp4mwOqNbXW-8DmXMyzDnprmD58ZSuhZOwcnvDpPdY_l2rMYb8LuPhSG3yl4nNora1obOyAc8RyxLFW7UwHduEe93Rq9Ov4dUQYpuWvtyGi2L7LufP3D7Nn25t4O0fsb56M3R692wqzAQGjSUs1C51FjlcMKZM4p7lHWllTTcOi1dwvPYKS8iH0UWhzZemEibtMR1icg4hDL43QtwMRUqJhlLx8vNnsC9X5vJSIg8GkwJueQpFVZasX9NmYC_jcGKNVz31FwxfaNrcLXDrGzYMtl12HDVDbiyksnwJvwaVqw9n3CWNUG932qL72xTdD8VAWBtRLDvjghZmymdtQWH8RPsA-XTDA_Ih4mN5mdny661Z6Pm8JEdITnmE8fKyvZNH91JtRxleguOz4UCt2Gzqit3F5jPEH7qxHLFjUwSrn0mSkR3SonU21gE8KL_84XpEqBTHY6vBW6EiEjFgkgBPFl0PW2zfvyr0zaRb9GBEnU3DfXkc9HJfRF5WeaJRpCotUydyDLvOC-llrG0towCeE7EL0id4GRM2UVF4JIoMVcxTNMcEQSC7AC2ev4oOj0zLZZSEcDjxWPUEHTtU1aunjd9FNWRlzjYnZadFnNGvCZyBM0BZGuMtrao9SfVyZcmCzl58qI5SO_9f16P4BLKaXGwd7h_Hy5zbGqcgbIt2JxN5u4BQrqZftjIDoNP5y2sfwAlQGW1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Multimodal+Biometric+Identification+System+Employing+Score-Level+Fuzzification+of+Finger+Texture+and+Finger+Vein+Biometrics&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Haider%2C+Syed+Aqeel&rft.au=Ashraf%2C+Shahzad&rft.au=Larik%2C+Raja+Masood&rft.au=Husain%2C+Nusrat&rft.date=2023-12-08&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=24&rft_id=info:doi/10.3390%2Fs23249706&rft.externalDocID=A779284326 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |