An Improved Multimodal Biometric Identification System Employing Score-Level Fuzzification of Finger Texture and Finger Vein Biometrics

This research work focuses on a Near-Infra-Red (NIR) finger-images-based multimodal biometric system based on Finger Texture and Finger Vein biometrics. The individual results of the biometric characteristics are fused using a fuzzy system, and the final identification result is achieved. Experiment...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 24; p. 9706
Main Authors Haider, Syed Aqeel, Ashraf, Shahzad, Larik, Raja Masood, Husain, Nusrat, Muqeet, Hafiz Abdul, Humayun, Usman, Yahya, Ashraf, Arfeen, Zeeshan Ahmad, Khan, Muhammad Farhan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.12.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This research work focuses on a Near-Infra-Red (NIR) finger-images-based multimodal biometric system based on Finger Texture and Finger Vein biometrics. The individual results of the biometric characteristics are fused using a fuzzy system, and the final identification result is achieved. Experiments are performed for three different databases, i.e., the Near-Infra-Red Hand Images (NIRHI), Hong Kong Polytechnic University (HKPU) and University of Twente Finger Vein Pattern (UTFVP) databases. First, the Finger Texture biometric employs an efficient texture feature extracting algorithm, i.e., Linear Binary Pattern. Then, the classification is performed using Support Vector Machine, a proven machine learning classification algorithm. Second, the transfer learning of pre-trained convolutional neural networks (CNNs) is performed for the Finger Vein biometric, employing two approaches. The three selected CNNs are AlexNet, VGG16 and VGG19. In Approach 1, before feeding the images for the training of the CNN, the necessary preprocessing of NIR images is performed. In Approach 2, before the pre-processing step, image intensity optimization is also employed to regularize the image intensity. NIRHI outperforms HKPU and UTFVP for both of the modalities of focus, in a unimodal setup as well as in a multimodal one. The proposed multimodal biometric system demonstrates a better overall identification accuracy of 99.62% in comparison with 99.51% and 99.50% reported in the recent state-of-the-art systems.
AbstractList This research work focuses on a Near-Infra-Red (NIR) finger-images-based multimodal biometric system based on Finger Texture and Finger Vein biometrics. The individual results of the biometric characteristics are fused using a fuzzy system, and the final identification result is achieved. Experiments are performed for three different databases, i.e., the Near-Infra-Red Hand Images (NIRHI), Hong Kong Polytechnic University (HKPU) and University of Twente Finger Vein Pattern (UTFVP) databases. First, the Finger Texture biometric employs an efficient texture feature extracting algorithm, i.e., Linear Binary Pattern. Then, the classification is performed using Support Vector Machine, a proven machine learning classification algorithm. Second, the transfer learning of pre-trained convolutional neural networks (CNNs) is performed for the Finger Vein biometric, employing two approaches. The three selected CNNs are AlexNet, VGG16 and VGG19. In Approach 1, before feeding the images for the training of the CNN, the necessary preprocessing of NIR images is performed. In Approach 2, before the pre-processing step, image intensity optimization is also employed to regularize the image intensity. NIRHI outperforms HKPU and UTFVP for both of the modalities of focus, in a unimodal setup as well as in a multimodal one. The proposed multimodal biometric system demonstrates a better overall identification accuracy of 99.62% in comparison with 99.51% and 99.50% reported in the recent state-of-the-art systems.
This research work focuses on a Near-Infra-Red (NIR) finger-images-based multimodal biometric system based on Finger Texture and Finger Vein biometrics. The individual results of the biometric characteristics are fused using a fuzzy system, and the final identification result is achieved. Experiments are performed for three different databases, i.e., the Near-Infra-Red Hand Images (NIRHI), Hong Kong Polytechnic University (HKPU) and University of Twente Finger Vein Pattern (UTFVP) databases. First, the Finger Texture biometric employs an efficient texture feature extracting algorithm, i.e., Linear Binary Pattern. Then, the classification is performed using Support Vector Machine, a proven machine learning classification algorithm. Second, the transfer learning of pre-trained convolutional neural networks (CNNs) is performed for the Finger Vein biometric, employing two approaches. The three selected CNNs are AlexNet, VGG16 and VGG19. In Approach 1, before feeding the images for the training of the CNN, the necessary preprocessing of NIR images is performed. In Approach 2, before the pre-processing step, image intensity optimization is also employed to regularize the image intensity. NIRHI outperforms HKPU and UTFVP for both of the modalities of focus, in a unimodal setup as well as in a multimodal one. The proposed multimodal biometric system demonstrates a better overall identification accuracy of 99.62% in comparison with 99.51% and 99.50% reported in the recent state-of-the-art systems.This research work focuses on a Near-Infra-Red (NIR) finger-images-based multimodal biometric system based on Finger Texture and Finger Vein biometrics. The individual results of the biometric characteristics are fused using a fuzzy system, and the final identification result is achieved. Experiments are performed for three different databases, i.e., the Near-Infra-Red Hand Images (NIRHI), Hong Kong Polytechnic University (HKPU) and University of Twente Finger Vein Pattern (UTFVP) databases. First, the Finger Texture biometric employs an efficient texture feature extracting algorithm, i.e., Linear Binary Pattern. Then, the classification is performed using Support Vector Machine, a proven machine learning classification algorithm. Second, the transfer learning of pre-trained convolutional neural networks (CNNs) is performed for the Finger Vein biometric, employing two approaches. The three selected CNNs are AlexNet, VGG16 and VGG19. In Approach 1, before feeding the images for the training of the CNN, the necessary preprocessing of NIR images is performed. In Approach 2, before the pre-processing step, image intensity optimization is also employed to regularize the image intensity. NIRHI outperforms HKPU and UTFVP for both of the modalities of focus, in a unimodal setup as well as in a multimodal one. The proposed multimodal biometric system demonstrates a better overall identification accuracy of 99.62% in comparison with 99.51% and 99.50% reported in the recent state-of-the-art systems.
Audience Academic
Author Muqeet, Hafiz Abdul
Husain, Nusrat
Yahya, Ashraf
Ashraf, Shahzad
Humayun, Usman
Arfeen, Zeeshan Ahmad
Khan, Muhammad Farhan
Haider, Syed Aqeel
Larik, Raja Masood
AuthorAffiliation 5 Electrical Engineering Technology Department, Punjab Tianjin University of Technology, Lahore 54770, Pakistan; abdul.muqeet@ptut.edu.pk
6 Department of Computer Engineering, Faculty of Engineering, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan; usmanhumayun@bzu.edu.pk
3 Department of Electrical Engineering, N.E.D University of Engineering and Technology, Karachi 75270, Pakistan; rmlarik@neduet.edu.pk
2 Department of Electrical Engineering, NFC Institute of Engineering and Technology, Multan 60000, Pakistan; nfc.iet@hotmail.com
4 Department of Electronics & Power Engineering, Pakistan Navy Engineering College, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; nusrat@pnec.nust.edu.pk (N.H.); ayahya@pnec.nust.edu.pk (A.Y.); farhankhan@pnec.nust.edu.pk (M.F.K.)
1 Department of Computer & Information Systems Engineering, Faculty of Computer & Electrical Engineering, N.E.D. University of Engineering and Technology, Karachi 75270, Pakistan
7 Departmen
AuthorAffiliation_xml – name: 4 Department of Electronics & Power Engineering, Pakistan Navy Engineering College, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; nusrat@pnec.nust.edu.pk (N.H.); ayahya@pnec.nust.edu.pk (A.Y.); farhankhan@pnec.nust.edu.pk (M.F.K.)
– name: 1 Department of Computer & Information Systems Engineering, Faculty of Computer & Electrical Engineering, N.E.D. University of Engineering and Technology, Karachi 75270, Pakistan
– name: 7 Department of Electrical Engineering, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; zeeshan.arfeen@iub.edu.pk
– name: 5 Electrical Engineering Technology Department, Punjab Tianjin University of Technology, Lahore 54770, Pakistan; abdul.muqeet@ptut.edu.pk
– name: 6 Department of Computer Engineering, Faculty of Engineering, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan; usmanhumayun@bzu.edu.pk
– name: 2 Department of Electrical Engineering, NFC Institute of Engineering and Technology, Multan 60000, Pakistan; nfc.iet@hotmail.com
– name: 3 Department of Electrical Engineering, N.E.D University of Engineering and Technology, Karachi 75270, Pakistan; rmlarik@neduet.edu.pk
Author_xml – sequence: 1
  givenname: Syed Aqeel
  orcidid: 0000-0002-3327-1988
  surname: Haider
  fullname: Haider, Syed Aqeel
– sequence: 2
  givenname: Shahzad
  orcidid: 0000-0002-7637-7870
  surname: Ashraf
  fullname: Ashraf, Shahzad
– sequence: 3
  givenname: Raja Masood
  orcidid: 0000-0001-7835-6830
  surname: Larik
  fullname: Larik, Raja Masood
– sequence: 4
  givenname: Nusrat
  orcidid: 0000-0001-5095-8362
  surname: Husain
  fullname: Husain, Nusrat
– sequence: 5
  givenname: Hafiz Abdul
  orcidid: 0000-0002-0866-4165
  surname: Muqeet
  fullname: Muqeet, Hafiz Abdul
– sequence: 6
  givenname: Usman
  surname: Humayun
  fullname: Humayun, Usman
– sequence: 7
  givenname: Ashraf
  orcidid: 0000-0002-5449-8460
  surname: Yahya
  fullname: Yahya, Ashraf
– sequence: 8
  givenname: Zeeshan Ahmad
  orcidid: 0000-0002-7359-2743
  surname: Arfeen
  fullname: Arfeen, Zeeshan Ahmad
– sequence: 9
  givenname: Muhammad Farhan
  surname: Khan
  fullname: Khan, Muhammad Farhan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38139551$$D View this record in MEDLINE/PubMed
BookMark eNplkstuEzEUhi1URNvAghdAltjAYlqPL3NZoVA1ECmIRQtby2MfB0czdvDMRKQvwGvjNE1vyAsfHX_-j__jc4qOfPCA0NucnDFWk_OeMsrrkhQv0EnOKc8qSsnRo_gYnfb9ihDKGKteoWNW5awWIj9Bf6cez7t1DBsw-NvYDq4LRrX4swsdDNFpPDfgB2edVoMLHl9t-wE6fNmt27B1fomvdIiQLWADLZ6NNzcPaLB4lgiI-Br-DGMErLw5pH6C8w9V-tfopVVtD2_u9gn6Mbu8vviaLb5_mV9MF5kWpB4yAaU2AgpmKtCCWmNANIJraqDhUNA6B2EZsYQYRqi2TJNGl8qmiGjICzZB872uCWol19F1Km5lUE7eJkJcShUHp1uQxHJVFw0tWdPwElhVWaBU8Ybn3BhFktanvdZ6bDowOvUpqvaJ6NMT737JZdjInJS8Ykl4gj7cKcTwe4R-kJ3rNbSt8hDGXtKaCEGLmu-KvX-GrsIYferVjuJ1sstEos721FIlB87bkArrtAx0TqepsS7lp2VZ04ozuuvHu8ce7h9_mJAEnO8BHUPfR7BSu-H2f5Oya5MXuZtBeT-D6cbHZzcOov-z_wBwgt3G
CitedBy_id crossref_primary_10_1007_s42044_025_00234_y
crossref_primary_10_1007_s42979_024_03148_x
crossref_primary_10_1007_s11042_025_20709_1
Cites_doi 10.1109/TIFS.2017.2756598
10.1016/j.asej.2023.102421
10.3390/s20195523
10.1109/ICIECS.2009.5363431
10.3390/electronics8091016
10.1109/TIP.2011.2171697
10.1007/s11063-021-10589-5
10.1016/j.eswa.2021.116288
10.3390/s20061644
10.3390/sym12050709
10.7717/peerj-cs.248
10.1007/s13369-016-2241-0
10.1007/s00500-018-3295-6
10.1109/ICB.2013.6612966
10.1109/WIFS.2015.7368599
10.3390/s140203095
10.1145/3065386
10.1109/ICB.2015.7139067
10.1109/SITIS.2015.74
10.3390/s17061297
10.1016/j.patrec.2017.12.001
10.1109/BTAS.2015.7358762
10.1109/CISP.2009.5303807
10.3390/electronics9111916
10.3390/s20143997
10.3390/s18072296
10.5772/53474
10.1007/s11263-015-0816-y
10.1109/ICOSP.2010.5656858
10.1109/ICIG.2009.170
10.1109/TIFS.2018.2850320
10.1007/s11042-020-08914-6
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s23249706
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Open Access Content Collection
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
PubMed

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_0f4a96b273bb47e388fe22a4b414dda0
PMC10748327
A779284326
38139551
10_3390_s23249706
Genre Journal Article
GeographicLocations New Jersey
Pakistan
Taiwan
GeographicLocations_xml – name: New Jersey
– name: Taiwan
– name: Pakistan
GrantInformation_xml – fundername: Ministry of Science and Technology, Pakistan
  grantid: Office Order No. Acad/50(54)/7257
– fundername: Ministry of Science and Technology, Pakistan
  grantid: Acad/50(54)/7257
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c509t-5e7cd5e63d8ec52fdde5b54c2deb4e6291e5f30f00d302cf3c0bc7afcf30ce163
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:34:44 EDT 2025
Thu Aug 21 18:37:35 EDT 2025
Tue Aug 05 10:46:39 EDT 2025
Sat Jul 26 00:18:59 EDT 2025
Tue Jun 10 21:16:57 EDT 2025
Mon Jul 21 05:31:04 EDT 2025
Tue Jul 01 03:50:39 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Linear Binary Pattern
convolutional neural network
Finger Texture biometric
multimodal biometric system
Fuzzy Inference System
Support Vector Machine
biometric modalities
Finger Vein biometric
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-5e7cd5e63d8ec52fdde5b54c2deb4e6291e5f30f00d302cf3c0bc7afcf30ce163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0866-4165
0000-0002-3327-1988
0000-0002-7637-7870
0000-0001-7835-6830
0000-0002-7359-2743
0000-0002-5449-8460
0000-0001-5095-8362
OpenAccessLink https://doaj.org/article/0f4a96b273bb47e388fe22a4b414dda0
PMID 38139551
PQID 2904930235
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_0f4a96b273bb47e388fe22a4b414dda0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10748327
proquest_miscellaneous_2905526940
proquest_journals_2904930235
gale_infotracacademiconefile_A779284326
pubmed_primary_38139551
crossref_citationtrail_10_3390_s23249706
crossref_primary_10_3390_s23249706
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231208
PublicationDateYYYYMMDD 2023-12-08
PublicationDate_xml – month: 12
  year: 2023
  text: 20231208
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ali (ref_24) 2024; 15
ref_14
ref_13
Alaoui (ref_26) 2020; 6
ref_35
Zhou (ref_29) 2020; 79
ref_11
ref_33
ref_10
ref_32
Bharathi (ref_28) 2019; 23
Kumar (ref_31) 2011; 21
Qiu (ref_6) 2017; 13
ref_19
Shin (ref_15) 2014; 14
ref_18
ref_17
Shaheed (ref_30) 2022; 191
Park (ref_9) 2012; 9
Pi (ref_12) 2010; Volume 1
ref_25
ref_23
ref_22
ref_21
Das (ref_16) 2019; 14
ref_20
ref_3
Russakovsky (ref_36) 2015; 115
ref_8
ref_5
ref_4
Krizhevsky (ref_34) 2017; 60
Xie (ref_2) 2019; 119
ref_7
Sarhan (ref_1) 2017; 42
He (ref_27) 2021; 53
References_xml – volume: 13
  start-page: 465
  year: 2017
  ident: ref_6
  article-title: Finger Vein Presentation Attack Detection Using Total Variation Decomposition
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2017.2756598
– volume: 15
  start-page: 102421
  year: 2024
  ident: ref_24
  article-title: Risk Prioritization in a Core Preparation Experiment Using Fuzzy VIKOR Integrated with Shannon Entropy Method
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2023.102421
– ident: ref_21
  doi: 10.3390/s20195523
– ident: ref_10
  doi: 10.1109/ICIECS.2009.5363431
– ident: ref_18
  doi: 10.3390/electronics8091016
– volume: 21
  start-page: 2228
  year: 2011
  ident: ref_31
  article-title: Human Identification Using Finger Images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2171697
– volume: 53
  start-page: 4279
  year: 2021
  ident: ref_27
  article-title: Finger Vein De-Noising Algorithm Based on Custom Sample-Texture Conditional Generative Adversarial Nets
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-021-10589-5
– volume: 191
  start-page: 116288
  year: 2022
  ident: ref_30
  article-title: DS-CNN: A Pre-Trained Xception Model Based on Depth-Wise Separable Convolutional Neural Network for Finger Vein Recognition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116288
– ident: ref_22
  doi: 10.3390/s20061644
– ident: ref_17
  doi: 10.3390/sym12050709
– ident: ref_35
– ident: ref_23
– volume: 6
  start-page: e248
  year: 2020
  ident: ref_26
  article-title: Convolutional Neural Networks Approach for Multimodal Biometric Identification System Using the Fusion of Fingerprint, Finger-Vein and Face Images
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.248
– volume: 42
  start-page: 443
  year: 2017
  ident: ref_1
  article-title: Multimodal Biometric Systems: A Comparative Study
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-016-2241-0
– volume: Volume 1
  start-page: V1-424
  year: 2010
  ident: ref_12
  article-title: An Effective Quality Improvement Approach for Low Quality Finger Vein Image
  publication-title: Proceedings of the 2010 International Conference on Electronics and Information Engineering
– volume: 23
  start-page: 1843
  year: 2019
  ident: ref_28
  article-title: Biometric Recognition Using Finger and Palm Vein Images
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3295-6
– ident: ref_32
  doi: 10.1109/ICB.2013.6612966
– ident: ref_4
  doi: 10.1109/WIFS.2015.7368599
– volume: 14
  start-page: 3095
  year: 2014
  ident: ref_15
  article-title: Finger-Vein Image Enhancement Using a Fuzzy-Based Fusion Method with Gabor and Retinex Filtering
  publication-title: Sensors
  doi: 10.3390/s140203095
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_34
  article-title: ImageNet Classification with Deep Convolutional Neural Networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: ref_33
– ident: ref_8
  doi: 10.1109/ICB.2015.7139067
– ident: ref_5
  doi: 10.1109/SITIS.2015.74
– ident: ref_25
  doi: 10.3390/s17061297
– volume: 119
  start-page: 148
  year: 2019
  ident: ref_2
  article-title: Finger Vein Identification Using Convolutional Neural Network and Supervised Discrete Hashing
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.12.001
– ident: ref_7
  doi: 10.1109/BTAS.2015.7358762
– ident: ref_14
  doi: 10.1109/CISP.2009.5303807
– ident: ref_3
  doi: 10.3390/electronics9111916
– ident: ref_19
  doi: 10.3390/s20143997
– ident: ref_20
  doi: 10.3390/s18072296
– volume: 9
  start-page: 154
  year: 2012
  ident: ref_9
  article-title: Image Quality Enhancement Using the Direction and Thickness of Vein Lines for Finger-Vein Recognition
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.5772/53474
– volume: 115
  start-page: 211
  year: 2015
  ident: ref_36
  article-title: ImageNet Large Scale Visual Recognition Challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– ident: ref_13
  doi: 10.1109/ICOSP.2010.5656858
– ident: ref_11
  doi: 10.1109/ICIG.2009.170
– volume: 14
  start-page: 360
  year: 2019
  ident: ref_16
  article-title: Convolutional Neural Network for Finger-Vein-Based Biometric Identification
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2018.2850320
– volume: 79
  start-page: 29021
  year: 2020
  ident: ref_29
  article-title: A Hybrid Fusion Model of Iris, Palm Vein and Finger Vein for Multi-Biometric Recognition System
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-08914-6
SSID ssj0023338
Score 2.4279246
Snippet This research work focuses on a Near-Infra-Red (NIR) finger-images-based multimodal biometric system based on Finger Texture and Finger Vein biometrics. The...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9706
SubjectTerms Accuracy
Algorithms
Biometric identification
biometric modalities
Biometrics
Biometry
Business metrics
Comparative analysis
convolutional neural network
Finger Texture biometric
Finger Vein biometric
Fuzzy Inference System
Human subjects
Identification systems
Linear Binary Pattern
Machine learning
Neural networks
Physiology
Researchers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAgPIIlMogJLhEzfqRx3GLuqoQcKFFvVl-iko0i7q7l_4B_jYzdjbNCiQuvSbeje0Ze76xZ74BeFcLb1u61Y0u2lLOuCk77tIdPHee6Fo4JSd_-VqfnstPF-piUuqLYsIyPXCeuKMqStPVFq2stbIJom1j4NxIK2fSe5O8dbR5W2dqcLUEel6ZR0igU3-0ItzQNVTWaGJ9Ekn_31vxxBbtxklODM_iETwcECOb554-hnuhfwIPJjyC-_B73rN8OhA8Sym1V0uPvzmm3Hqi4Gc5HzcOB3Qs85SzXO4X_4J9IzbL8jNFELHF5ubmtukyskU6-mNnuI9vrgMzvd8--h4u-9uvrJ7C-eLk7ONpOVRYKB0ChXWpQuO8CiiwNjjFI-51yirpuA9Whpp3s6CiqGJVeYFCi8JV1jUG5SoqFxDKPYO9ftmHF8Bii-DP1p4r7mRdcxtbYRBbKSWa6GeigA_bmdduoB-nKhg_NbohJCQ9CqmAt2PTX5lz41-Njkl8YwOiyU4PUHn0oDz6f8pTwHsSvqbFjJ1xZshJwCERLZaeN02H9hshbgEHW_3Qwypfad6hf0VVl1QBb8bXuD7p0sX0YblJbRRVcZf4sedZncY-I1oSHULWAtodRdsZ1O6b_vJH4gCnOFrcjJuXdzENr-A-x1GkKJ32APbW15vwGrHW2h6mZfUHbI8q6Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgucAB8SbLggxCgku0qR9xckJdRLVCwIVd1JvlJ6wEyW4fl_0D_G1mHDdtBeJUKZk2Tscz_jye-YaQ1zX3tsFT3eiiLcWEmbJlLp3BM-eRroVhcfLnL_Xpufg4l_MccFvmtMqNT0yO2vcOY-THrAUsix1u5LvLqxK7RuHpam6hcZPcQuoyTOlS8-2Gi8P-a2AT4rC1P14iemgVNjfaWYMSVf_fDnlnRdrPltxZfmb3yN2MG-l0UPR9ciN0D8idHTbBh-T3tKNDjCB4mgprf_UevnOCFfZIxE-HqtyYw3R0YCunQ9Nf-An6FTkty0-YR0Rn6-vrrWgf6SwFAOkZePP1IlDT-c2lb-Gi2z5l-Yiczz6cvT8tc5-F0gFcWJUyKOdlALU1wUkWweNJK4VjPlgRatZOgoy8ilXlQQEucldZpwxol1cuAKB7TA66vgtPCY0NQEBbeyaZE3XNbGy4AYQlJVfRT3hB3m7-ee0yCTn2wvipYTOCStKjkgryahS9HJg3_iV0guobBZAsO13oF991tj1dRWHa2gJQs1aowJsmBsaMsGIivDdVQd6g8jWaNAzGmVyZAK-E5Fh6qlQLqzgA3YIcbeaHzra-1NuZWZCX422wUjx6MV3o10lGYi93AQ97MkynccyAmXgLwLUgzd5E23up_TvdxY_EBI7ZtOCS1eH_x_WM3GbwmbJwmiNysFqsw3PAUiv7IhnMHzBfIgA
  priority: 102
  providerName: ProQuest
Title An Improved Multimodal Biometric Identification System Employing Score-Level Fuzzification of Finger Texture and Finger Vein Biometrics
URI https://www.ncbi.nlm.nih.gov/pubmed/38139551
https://www.proquest.com/docview/2904930235
https://www.proquest.com/docview/2905526940
https://pubmed.ncbi.nlm.nih.gov/PMC10748327
https://doaj.org/article/0f4a96b273bb47e388fe22a4b414dda0
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKe4ED4t1AWRmEBJdA1o84OSC0i7pUiFYIumhvUfyCSiWBfUjQP8DfZsZ5dCN64LKHZLKxM2PPN7bnG0KepdzqDHd1vfE6FmNWxjkzYQ-eGYt0LQyTk49P0qO5eL-Qix3S1dhsP-DqytAO60nNl-cvf_38_QYG_GuMOCFkf7VCVJArJN7eA4ekcHwei34zgXEeClpjTlcM_jBpCIaGjw7cUmDv_3eO3nJSwwOUWx5pdovcbKEknTS6v012XHWH3NgiGLxL_kwq2iwbOEtDru332sIzU0y6R25-2iTq-nbljjYE5rSpAwx_QT8jzWX8AY8W0dnm4uJStPZ0FtYE6SlM8Julo2Vlu0tf3Fl1-ZbVPTKfHZ6-PYrb0guxAQSxjqVTxkoHmsyckczDJCi1FIZZp4VLWT520vPEJ4nloE3PTaKNKkHhPDEOMN59slvVldsn1GeACnVqmWRGpCnTPuMlgC4pufJ2zCPyovvyhWl5ybE8xnkB8QkqqeiVFJGnveiPhozjKqEpqq8XQP7scKFefi3a4VgkXpR5qgG7aS2U41nmHWOl0GIsrC2TiDxH5Rdod9AYU7bJCtAl5MsqJkrl4NgB-0bkoLOPorPeguUQeGE5JhmRJ_1tGLi4G1NWrt4EGYnl3QW87EFjTn2bAUbxHLBsRLKBoQ06NbxTnX0L5OB4wBZmafXwv3vwiFxn0NRwRic7ILvr5cY9BqS11iNyTS0U_GazdyOyNz08-fhpFFYtRmGE_QVFwC3M
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB4BI160ceB4S2wGpLt72wRXtL4xdUgqTsQ4j-Af4Nv5GZPPYhELdeHSe2Mx7PZ3vmG4DnsbA6pVtdb7wOZY8XYcZNfQfPjSW6Fk7ByYdH8fBYfpioyRb87mJhyK2yWxPrhdpWhs7Id3mGWJYy3Kg3Z99DyhpFt6tdCo1mWhy4nz9wyzZ7vf8O5fuC88H78dth2GYVCA0ax3moXGKsctjJ1BnFPeq30koabp2WLuZZzykvIh9FFpszXphIm6TAsYjIOIQv-N1LcBkNb0QalUxWGzyB-72GvUiILNqdEVrJEkqmtGbz6tQAfxuANQu46Z25Zu4GN-B6i1NZv5lYN2HLlbfg2hp74W341S9ZcybhLKsDeb9VFt_Zo4h-Iv5nTRSwb48FWcOOzpokw_gJ9pE4NMMR-S2xweL8fFW18mxQHziyMVqPxdSxorRd0Sd3Wq5amd2B4wuRwF3YLqvS3QfmU4ScOrZccSPjmGufigIRnVIi8bYnAnjV_fnctKTnlHvja46bHxJSvhRSAM-WVc8apo9_Vdoj8S0rEDl3XVBNP-etrueRl0UWawSGWsvEiTT1jvNCatmT1hZRAC9J-DktIdgZU7SREDgkIuPK-0mSIWpAYB3ATjc_8nZtmeUrTQjg6fIxrgp01VOUrlrUdRTljpfY2L1mOi37jBhNZAiUA0g3JtrGoDaflKdfauZx8t5FE5A8-H-_nsCV4fhwlI_2jw4ewlWOZbUHULoD2_Ppwj1CHDfXj2vlYXBy0dr6BwgsYX8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRUJwQOwEChgEgks0iZcsB4SmlFFLS4VEi-YW4g0qQVJmEaJ_gP_Er-O9LLMIxK1Xx4ntvO2z_RaAp4mwOqNbXW-8DmXMyzDnprmD58ZSuhZOwcnvDpPdY_l2rMYb8LuPhSG3yl4nNora1obOyAc8RyxLFW7UwHduEe93Rq9Ov4dUQYpuWvtyGi2L7LufP3D7Nn25t4O0fsb56M3R692wqzAQGjSUs1C51FjlcMKZM4p7lHWllTTcOi1dwvPYKS8iH0UWhzZemEibtMR1icg4hDL43QtwMRUqJhlLx8vNnsC9X5vJSIg8GkwJueQpFVZasX9NmYC_jcGKNVz31FwxfaNrcLXDrGzYMtl12HDVDbiyksnwJvwaVqw9n3CWNUG932qL72xTdD8VAWBtRLDvjghZmymdtQWH8RPsA-XTDA_Ih4mN5mdny661Z6Pm8JEdITnmE8fKyvZNH91JtRxleguOz4UCt2Gzqit3F5jPEH7qxHLFjUwSrn0mSkR3SonU21gE8KL_84XpEqBTHY6vBW6EiEjFgkgBPFl0PW2zfvyr0zaRb9GBEnU3DfXkc9HJfRF5WeaJRpCotUydyDLvOC-llrG0towCeE7EL0id4GRM2UVF4JIoMVcxTNMcEQSC7AC2ev4oOj0zLZZSEcDjxWPUEHTtU1aunjd9FNWRlzjYnZadFnNGvCZyBM0BZGuMtrao9SfVyZcmCzl58qI5SO_9f16P4BLKaXGwd7h_Hy5zbGqcgbIt2JxN5u4BQrqZftjIDoNP5y2sfwAlQGW1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Multimodal+Biometric+Identification+System+Employing+Score-Level+Fuzzification+of+Finger+Texture+and+Finger+Vein+Biometrics&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Haider%2C+Syed+Aqeel&rft.au=Ashraf%2C+Shahzad&rft.au=Larik%2C+Raja+Masood&rft.au=Husain%2C+Nusrat&rft.date=2023-12-08&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=24&rft_id=info:doi/10.3390%2Fs23249706&rft.externalDocID=A779284326
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon