Targeting a ceramide double bond improves insulin resistance and hepatic steatosis

Ceramides contribute to the lipotoxicity that underlies diabetes, hepatic steatosis, and heart disease. By genetically engineering mice, we deleted the enzyme dihydroceramide desaturase 1 (DES1), which normally inserts a conserved double bond into the backbone of ceramides and other predominant sphi...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 365; no. 6451; pp. 386 - 392
Main Authors Chaurasia, Bhagirath, Tippetts, Trevor S., Monibas, Rafael Mayoral, Liu, Jinqi, Li, Ying, Wang, Liping, Wilkerson, Joseph L., Sweeney, C. Rufus, Pereira, Renato Felipe, Sumida, Doris Hissako, Maschek, J. Alan, Cox, James E., Kaddai, Vincent, Lancaster, Graeme Iain, Siddique, Monowarul Mobin, Poss, Annelise, Pearson, Mackenzie, Satapati, Santhosh, Zhou, Heather, McLaren, David G., Previs, Stephen F., Chen, Ying, Qian, Ying, Petrov, Aleksandr, Wu, Margaret, Shen, Xiaolan, Yao, Jun, Nunes, Christian N., Howard, Andrew D., Wang, Liangsu, Erion, Mark D., Rutter, Jared, Holland, William L., Kelley, David E., Summers, Scott A.
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 26.07.2019
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ceramides contribute to the lipotoxicity that underlies diabetes, hepatic steatosis, and heart disease. By genetically engineering mice, we deleted the enzyme dihydroceramide desaturase 1 (DES1), which normally inserts a conserved double bond into the backbone of ceramides and other predominant sphingolipids. Ablation of DES1 from whole animals or tissue-specific deletion in the liver and/or adipose tissue resolved hepatic steatosis and insulin resistance in mice caused by leptin deficiency or obesogenic diets. Mechanistic studies revealed ceramide actions that promoted lipid uptake and storage and impaired glucose utilization, none of which could be recapitulated by (dihydro)ceramides that lacked the critical double bond. These studies suggest that inhibition of DES1 may provide a means of treating hepatic steatosis and metabolic disorders.
AbstractList Ceramides contribute to the lipotoxicity that underlies diabetes, hepatic steatosis, and heart disease. By genetically engineering mice, we deleted the enzyme dihydroceramide desaturase 1 (DES1), which normally inserts a conserved double bond into the backbone of ceramides and other predominant sphingolipids. Ablation of DES1 from whole animals or tissue-specific deletion in the liver and/or adipose tissue resolved hepatic steatosis and insulin resistance in mice caused by leptin deficiency or obesogenic diets. Mechanistic studies revealed ceramide actions that promoted lipid uptake and storage and impaired glucose utilization, none of which could be recapitulated by (dihydro)ceramides that lacked the critical double bond. These studies suggest that inhibition of DES1 may provide a means of treating hepatic steatosis and metabolic disorders.
Excess calorie intake can ultimately lead to a metabolic syndrome that interferes with fat or lipid metabolism. There are many different types of lipids, and it has been widely debated which are the true culprits underlying metabolic disorders. Chaurasia et al. report that ceramides are the major contributor to insulin resistance and fatty liver disease (see the Perspective by Kusminski and Scherer). This appears to be caused by the enzyme dihydroceramide desaturase 1 (DES1), which is normally involved in ceramide production by inserting a double bond into the backbone of the molecule. In mice fed a high-fat diet, deletion of DES1 improved glucose and lipid metabolism. Science , this issue p. 386 ; see also p. 319 Deletion of dihydroceramide desaturase 1 (DES1) resolves insulin resistance and fatty liver in mice. Ceramides contribute to the lipotoxicity that underlies diabetes, hepatic steatosis, and heart disease. By genetically engineering mice, we deleted the enzyme dihydroceramide desaturase 1 (DES1), which normally inserts a conserved double bond into the backbone of ceramides and other predominant sphingolipids. Ablation of DES1 from whole animals or tissue-specific deletion in the liver and/or adipose tissue resolved hepatic steatosis and insulin resistance in mice caused by leptin deficiency or obesogenic diets. Mechanistic studies revealed ceramide actions that promoted lipid uptake and storage and impaired glucose utilization, none of which could be recapitulated by (dihydro)ceramides that lacked the critical double bond. These studies suggest that inhibition of DES1 may provide a means of treating hepatic steatosis and metabolic disorders.
Ceramides contribute to the lipotoxicity that underlies diabetes, hepatic steatosis, and heart disease. By genetically engineering mice, we deleted the enzyme dihydroceramide desaturase 1 (DES1), which normally inserts a conserved double bond into the backbone of ceramides and other predominant sphingolipids. Ablation of DES1 from whole animals or tissue-specific deletion in the liver and/or adipose tissue resolved hepatic steatosis and insulin resistance in mice caused by leptin deficiency or obesogenic diets. Mechanistic studies revealed ceramide actions that promoted lipid uptake and storage and impaired glucose utilization, none of which could be recapitulated by (dihydro)ceramides that lacked the critical double bond. These studies suggest that inhibition of DES1 may provide a means of treating hepatic steatosis and metabolic disorders.Ceramides contribute to the lipotoxicity that underlies diabetes, hepatic steatosis, and heart disease. By genetically engineering mice, we deleted the enzyme dihydroceramide desaturase 1 (DES1), which normally inserts a conserved double bond into the backbone of ceramides and other predominant sphingolipids. Ablation of DES1 from whole animals or tissue-specific deletion in the liver and/or adipose tissue resolved hepatic steatosis and insulin resistance in mice caused by leptin deficiency or obesogenic diets. Mechanistic studies revealed ceramide actions that promoted lipid uptake and storage and impaired glucose utilization, none of which could be recapitulated by (dihydro)ceramides that lacked the critical double bond. These studies suggest that inhibition of DES1 may provide a means of treating hepatic steatosis and metabolic disorders.
Ceramides in focusExcess calorie intake can ultimately lead to a metabolic syndrome that interferes with fat or lipid metabolism. There are many different types of lipids, and it has been widely debated which are the true culprits underlying metabolic disorders. Chaurasia et al. report that ceramides are the major contributor to insulin resistance and fatty liver disease (see the Perspective by Kusminski and Scherer). This appears to be caused by the enzyme dihydroceramide desaturase 1 (DES1), which is normally involved in ceramide production by inserting a double bond into the backbone of the molecule. In mice fed a high-fat diet, deletion of DES1 improved glucose and lipid metabolism.Science, this issue p. 386; see also p. 319Ceramides contribute to the lipotoxicity that underlies diabetes, hepatic steatosis, and heart disease. By genetically engineering mice, we deleted the enzyme dihydroceramide desaturase 1 (DES1), which normally inserts a conserved double bond into the backbone of ceramides and other predominant sphingolipids. Ablation of DES1 from whole animals or tissue-specific deletion in the liver and/or adipose tissue resolved hepatic steatosis and insulin resistance in mice caused by leptin deficiency or obesogenic diets. Mechanistic studies revealed ceramide actions that promoted lipid uptake and storage and impaired glucose utilization, none of which could be recapitulated by (dihydro)ceramides that lacked the critical double bond. These studies suggest that inhibition of DES1 may provide a means of treating hepatic steatosis and metabolic disorders.
Author Howard, Andrew D.
Sumida, Doris Hissako
Kaddai, Vincent
Tippetts, Trevor S.
Chen, Ying
Maschek, J. Alan
Previs, Stephen F.
Wu, Margaret
Chaurasia, Bhagirath
Qian, Ying
Rutter, Jared
Pearson, Mackenzie
Erion, Mark D.
Satapati, Santhosh
Zhou, Heather
McLaren, David G.
Shen, Xiaolan
Nunes, Christian N.
Summers, Scott A.
Monibas, Rafael Mayoral
Sweeney, C. Rufus
Poss, Annelise
Liu, Jinqi
Petrov, Aleksandr
Lancaster, Graeme Iain
Yao, Jun
Wang, Liping
Pereira, Renato Felipe
Wang, Liangsu
Kelley, David E.
Cox, James E.
Li, Ying
Wilkerson, Joseph L.
Holland, William L.
Siddique, Monowarul Mobin
AuthorAffiliation 3 School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015, Brazil
6 Faculty of Science, University of Brunei Darussalam, Gadong 1410, Brunei Darussalam
2 Merck Research Laboratories, Merck, Kenilworth, NJ 07033, USA
5 Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
4 Department of Biochemistry and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
8 Howard Hughes Medical Institute, Salt Lake City, UT 84112, USA
1 Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
7 Sciex, Framingham, MA 01701, USA
AuthorAffiliation_xml – name: 8 Howard Hughes Medical Institute, Salt Lake City, UT 84112, USA
– name: 4 Department of Biochemistry and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
– name: 5 Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
– name: 1 Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
– name: 6 Faculty of Science, University of Brunei Darussalam, Gadong 1410, Brunei Darussalam
– name: 2 Merck Research Laboratories, Merck, Kenilworth, NJ 07033, USA
– name: 3 School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015, Brazil
– name: 7 Sciex, Framingham, MA 01701, USA
Author_xml – sequence: 1
  givenname: Bhagirath
  surname: Chaurasia
  fullname: Chaurasia, Bhagirath
– sequence: 2
  givenname: Trevor S.
  surname: Tippetts
  fullname: Tippetts, Trevor S.
– sequence: 3
  givenname: Rafael Mayoral
  surname: Monibas
  fullname: Monibas, Rafael Mayoral
– sequence: 4
  givenname: Jinqi
  surname: Liu
  fullname: Liu, Jinqi
– sequence: 5
  givenname: Ying
  surname: Li
  fullname: Li, Ying
– sequence: 6
  givenname: Liping
  surname: Wang
  fullname: Wang, Liping
– sequence: 7
  givenname: Joseph L.
  surname: Wilkerson
  fullname: Wilkerson, Joseph L.
– sequence: 8
  givenname: C. Rufus
  surname: Sweeney
  fullname: Sweeney, C. Rufus
– sequence: 9
  givenname: Renato Felipe
  surname: Pereira
  fullname: Pereira, Renato Felipe
– sequence: 10
  givenname: Doris Hissako
  surname: Sumida
  fullname: Sumida, Doris Hissako
– sequence: 11
  givenname: J. Alan
  surname: Maschek
  fullname: Maschek, J. Alan
– sequence: 12
  givenname: James E.
  surname: Cox
  fullname: Cox, James E.
– sequence: 13
  givenname: Vincent
  surname: Kaddai
  fullname: Kaddai, Vincent
– sequence: 14
  givenname: Graeme Iain
  surname: Lancaster
  fullname: Lancaster, Graeme Iain
– sequence: 15
  givenname: Monowarul Mobin
  surname: Siddique
  fullname: Siddique, Monowarul Mobin
– sequence: 16
  givenname: Annelise
  surname: Poss
  fullname: Poss, Annelise
– sequence: 17
  givenname: Mackenzie
  surname: Pearson
  fullname: Pearson, Mackenzie
– sequence: 18
  givenname: Santhosh
  surname: Satapati
  fullname: Satapati, Santhosh
– sequence: 19
  givenname: Heather
  surname: Zhou
  fullname: Zhou, Heather
– sequence: 20
  givenname: David G.
  surname: McLaren
  fullname: McLaren, David G.
– sequence: 21
  givenname: Stephen F.
  surname: Previs
  fullname: Previs, Stephen F.
– sequence: 22
  givenname: Ying
  surname: Chen
  fullname: Chen, Ying
– sequence: 23
  givenname: Ying
  surname: Qian
  fullname: Qian, Ying
– sequence: 24
  givenname: Aleksandr
  surname: Petrov
  fullname: Petrov, Aleksandr
– sequence: 25
  givenname: Margaret
  surname: Wu
  fullname: Wu, Margaret
– sequence: 26
  givenname: Xiaolan
  surname: Shen
  fullname: Shen, Xiaolan
– sequence: 27
  givenname: Jun
  surname: Yao
  fullname: Yao, Jun
– sequence: 28
  givenname: Christian N.
  surname: Nunes
  fullname: Nunes, Christian N.
– sequence: 29
  givenname: Andrew D.
  surname: Howard
  fullname: Howard, Andrew D.
– sequence: 30
  givenname: Liangsu
  surname: Wang
  fullname: Wang, Liangsu
– sequence: 31
  givenname: Mark D.
  surname: Erion
  fullname: Erion, Mark D.
– sequence: 32
  givenname: Jared
  surname: Rutter
  fullname: Rutter, Jared
– sequence: 33
  givenname: William L.
  surname: Holland
  fullname: Holland, William L.
– sequence: 34
  givenname: David E.
  surname: Kelley
  fullname: Kelley, David E.
– sequence: 35
  givenname: Scott A.
  surname: Summers
  fullname: Summers, Scott A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31273070$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1r3DAQFSUh2aQ999Ri6CUXJ7JkWdKlEELTBgKFkp7FWB5vtNjSVpIX-u9rs9slzaGnObyvmXkX5MQHj4S8r-h1VbHmJlmH3uI1wI5Lxt6QVUW1KDWj_ISsKOVNqagU5-QipQ2lM6b5GTnnFZOcSroiP54grjE7vy6gsBhhdB0WXZjaAYs2-K5w4zaGHabC-TQNzhcRk0sZ5tgCZvwZt5CdLVJGyGGG3pLTHoaE7w7zkvy8__J09618_P714e72sbSC6lwK21dC8l52ta6hRk1RqYqxpu5bgbJTTLegqdANZ2gBLVUt1EJ3oHvVMM0vyee973ZqR-ws-hxhMNvoRoi_TQBn_kW8ezbrsDONVFJXaja4OhjE8GvClM3oksVhAI9hSoYxwZniQi5Zn15RN2GKfj7PLBtzrWq2GH58udFxlb_vngk3e4KNIaWI_ZFSUbMUag6FmkOhs0K8UliX53-H5SQ3_Ef3Ya_bpBziMYY1smFMCf4HoyqzDQ
CitedBy_id crossref_primary_10_1007_s00018_021_04049_5
crossref_primary_10_1016_j_jbc_2023_105162
crossref_primary_10_3390_metabo11120869
crossref_primary_10_3389_fcvm_2023_1235953
crossref_primary_10_1016_j_lfs_2024_123337
crossref_primary_10_1073_pnas_2206083119
crossref_primary_10_1111_jvim_16200
crossref_primary_10_3389_fendo_2020_601290
crossref_primary_10_1016_j_med_2024_03_012
crossref_primary_10_3390_nu15143173
crossref_primary_10_1016_j_arres_2024_100100
crossref_primary_10_1038_s41467_024_50014_8
crossref_primary_10_1038_s43587_022_00309_6
crossref_primary_10_1210_clinem_dgab155
crossref_primary_10_1016_j_xcrm_2021_100407
crossref_primary_10_1038_s41467_022_29363_9
crossref_primary_10_3389_fendo_2020_00505
crossref_primary_10_12997_jla_2020_9_1_50
crossref_primary_10_1016_j_molmet_2021_101409
crossref_primary_10_1016_j_scitotenv_2022_154657
crossref_primary_10_1016_j_tifs_2021_03_010
crossref_primary_10_1016_j_tips_2021_10_001
crossref_primary_10_3389_fphar_2023_1256029
crossref_primary_10_1093_jas_skae251
crossref_primary_10_1016_j_ymgmr_2024_101077
crossref_primary_10_1038_s41580_024_00742_y
crossref_primary_10_1093_cvr_cvac166
crossref_primary_10_1016_j_nano_2021_102430
crossref_primary_10_1097_HEP_0000000000000381
crossref_primary_10_1093_cvr_cvae100
crossref_primary_10_1016_j_intimp_2024_113286
crossref_primary_10_1038_s42255_024_01078_9
crossref_primary_10_1042_CS20191028
crossref_primary_10_1161_CIRCRESAHA_123_323445
crossref_primary_10_1016_j_molmet_2020_101145
crossref_primary_10_1038_s41419_021_03862_x
crossref_primary_10_1016_j_jnutbio_2022_109207
crossref_primary_10_1080_22221751_2023_2231556
crossref_primary_10_1111_acel_13048
crossref_primary_10_1038_s41569_021_00536_1
crossref_primary_10_3389_fnut_2022_1007679
crossref_primary_10_1007_s11886_024_02023_8
crossref_primary_10_4254_wjh_v17_i2_102328
crossref_primary_10_1016_j_molmet_2020_101115
crossref_primary_10_1089_dna_2020_5402
crossref_primary_10_3389_fcvm_2022_889985
crossref_primary_10_1038_s41580_021_00390_6
crossref_primary_10_3389_fendo_2020_00407
crossref_primary_10_1042_BST20231395
crossref_primary_10_1371_journal_pbio_3001561
crossref_primary_10_1111_dom_16156
crossref_primary_10_1016_j_jbc_2021_101341
crossref_primary_10_3390_metabo11100675
crossref_primary_10_1016_j_ejmech_2020_112311
crossref_primary_10_1038_s42255_022_00670_1
crossref_primary_10_1111_acel_14226
crossref_primary_10_15829_1560_4071_2023_5390
crossref_primary_10_1002_efd2_159
crossref_primary_10_1038_s42255_023_00880_1
crossref_primary_10_1080_10408398_2020_1736510
crossref_primary_10_3390_ijms23105382
crossref_primary_10_1016_j_coph_2020_10_016
crossref_primary_10_1126_scitranslmed_ade6509
crossref_primary_10_1152_ajpcell_00144_2023
crossref_primary_10_1002_jcsm_12626
crossref_primary_10_1056_NEJMcibr1910023
crossref_primary_10_3390_biom11070945
crossref_primary_10_1016_j_bbrc_2023_05_027
crossref_primary_10_1038_s41392_021_00805_y
crossref_primary_10_1042_BCJ20190468
crossref_primary_10_1007_s00216_021_03853_z
crossref_primary_10_1016_j_clnu_2020_10_014
crossref_primary_10_1096_fj_202000525R
crossref_primary_10_1016_j_molmet_2023_101741
crossref_primary_10_1038_s41467_020_16274_w
crossref_primary_10_1155_2020_3836172
crossref_primary_10_1210_jendso_bvac131
crossref_primary_10_14336_AD_2021_0710
crossref_primary_10_3390_biom13101544
crossref_primary_10_1172_JCI154333
crossref_primary_10_1161_ATVBAHA_122_318048
crossref_primary_10_1186_s12944_019_1118_0
crossref_primary_10_7554_eLife_88080
crossref_primary_10_1097_MOL_0000000000000829
crossref_primary_10_1152_ajpendo_00330_2020
crossref_primary_10_1038_s41581_021_00454_y
crossref_primary_10_1080_10408398_2022_2139220
crossref_primary_10_1016_j_scitotenv_2023_164436
crossref_primary_10_1146_annurev_physiol_031620_093815
crossref_primary_10_1080_13880209_2022_2099908
crossref_primary_10_3390_ijms25053024
crossref_primary_10_3390_metabo12121164
crossref_primary_10_1016_j_molmet_2024_101971
crossref_primary_10_3390_medicina57070729
crossref_primary_10_1038_s41598_022_07868_z
crossref_primary_10_1038_s41366_021_01002_1
crossref_primary_10_1152_ajpheart_00289_2024
crossref_primary_10_4062_biomolther_2020_218
crossref_primary_10_1056_NEJMe1910322
crossref_primary_10_3390_molecules28020716
crossref_primary_10_3389_fendo_2021_684448
crossref_primary_10_3389_fimmu_2021_827281
crossref_primary_10_1111_nyas_14752
crossref_primary_10_1016_j_ab_2022_114982
crossref_primary_10_1111_liv_70047
crossref_primary_10_1038_s12276_022_00766_4
crossref_primary_10_3389_fnut_2021_758403
crossref_primary_10_1111_eci_13622
crossref_primary_10_1016_j_jgg_2023_06_006
crossref_primary_10_1210_clinem_dgae179
crossref_primary_10_1038_s41392_024_01811_6
crossref_primary_10_1016_j_clnu_2023_12_008
crossref_primary_10_1007_s12013_021_00990_1
crossref_primary_10_1016_j_xcrm_2020_100154
crossref_primary_10_1210_endrev_bnab004
crossref_primary_10_3389_fendo_2023_1149239
crossref_primary_10_3390_biom9110726
crossref_primary_10_1126_sciadv_adp2254
crossref_primary_10_1097_HC9_0000000000000388
crossref_primary_10_1016_j_celrep_2024_114746
crossref_primary_10_1016_j_pharmthera_2019_107401
crossref_primary_10_15252_embr_202357176
crossref_primary_10_3389_fendo_2020_569250
crossref_primary_10_1016_j_mce_2023_111946
crossref_primary_10_3389_fmed_2022_881848
crossref_primary_10_1093_jb_mvaa030
crossref_primary_10_1111_bph_15369
crossref_primary_10_1016_j_heliyon_2024_e29340
crossref_primary_10_1016_j_plipres_2023_101236
crossref_primary_10_2147_CCID_S347245
crossref_primary_10_1016_j_lfs_2024_122534
crossref_primary_10_1016_j_metabol_2025_156237
crossref_primary_10_1038_s41556_022_01027_2
crossref_primary_10_1152_physrev_00008_2023
crossref_primary_10_1172_JCI131838
crossref_primary_10_1016_j_bbcan_2024_189176
crossref_primary_10_1111_apha_13610
crossref_primary_10_1523_ENEURO_0429_21_2022
crossref_primary_10_3390_ijms23052428
crossref_primary_10_1038_s42255_019_0134_8
crossref_primary_10_1038_s41467_022_28496_1
crossref_primary_10_1016_j_atherosclerosis_2022_11_018
crossref_primary_10_1016_j_jnutbio_2021_108912
crossref_primary_10_1113_JP278219
crossref_primary_10_3390_cells9020451
crossref_primary_10_1016_j_celrep_2021_109250
crossref_primary_10_21769_BioProtoc_5028
crossref_primary_10_1007_s00018_022_04401_3
crossref_primary_10_1007_s11892_020_01329_5
crossref_primary_10_1038_s42255_024_01134_4
crossref_primary_10_1016_j_jlr_2022_100197
crossref_primary_10_1016_j_cmet_2024_04_013
crossref_primary_10_1038_s41380_025_02953_x
crossref_primary_10_1016_j_bbalip_2020_158841
crossref_primary_10_1038_s41575_024_00980_7
crossref_primary_10_1016_j_jlr_2023_100366
crossref_primary_10_1038_s41598_022_14687_9
crossref_primary_10_7554_eLife_84077
crossref_primary_10_1093_gerona_glaa072
crossref_primary_10_1289_EHP12381
crossref_primary_10_3390_nu12051505
crossref_primary_10_1038_s41575_021_00472_y
crossref_primary_10_1039_D2FO00781A
crossref_primary_10_1186_s12967_024_04922_4
crossref_primary_10_1194_jlr_RA119000198
crossref_primary_10_3389_fnut_2022_933211
crossref_primary_10_1038_s41574_021_00471_8
crossref_primary_10_1016_j_jlr_2021_100122
crossref_primary_10_1016_j_lfs_2024_122993
crossref_primary_10_3389_fendo_2022_960274
crossref_primary_10_1111_liv_15404
crossref_primary_10_1161_ATVBAHA_124_321158
crossref_primary_10_1016_j_molmet_2023_101804
crossref_primary_10_3389_fimmu_2020_576347
crossref_primary_10_1016_j_cmet_2021_06_006
crossref_primary_10_1007_s11306_021_01835_x
crossref_primary_10_1016_j_cmet_2021_06_001
crossref_primary_10_1097_HEP_0000000000001070
crossref_primary_10_1038_s42255_023_00809_8
crossref_primary_10_1016_j_jacl_2024_07_009
crossref_primary_10_1016_j_vph_2021_106923
crossref_primary_10_3389_fcvm_2023_1116861
crossref_primary_10_3390_genes14091687
crossref_primary_10_1016_j_jlr_2021_100132
crossref_primary_10_1016_j_jare_2022_12_009
crossref_primary_10_1016_j_cell_2024_06_029
crossref_primary_10_1172_JCI142865
crossref_primary_10_1007_s13167_023_00318_4
crossref_primary_10_1038_s41575_023_00888_8
crossref_primary_10_1038_s41598_022_11219_3
crossref_primary_10_1002_lipd_12244
crossref_primary_10_1038_s41467_023_42978_w
crossref_primary_10_1038_s41598_023_43862_9
crossref_primary_10_1042_EBC20190091
crossref_primary_10_12997_jla_2020_9_2_291
crossref_primary_10_1089_rej_2019_2211
crossref_primary_10_1038_s41586_019_1797_8
crossref_primary_10_1016_j_bcp_2022_115157
crossref_primary_10_1016_j_lfs_2024_123165
crossref_primary_10_1016_j_jlr_2023_100464
crossref_primary_10_1053_j_gastro_2023_07_017
crossref_primary_10_1186_s12944_022_01634_w
crossref_primary_10_1016_j_bbalip_2023_159318
crossref_primary_10_1136_bmjdrc_2020_001860
crossref_primary_10_1007_s11064_022_03631_y
crossref_primary_10_1016_j_jlr_2023_100329
crossref_primary_10_1016_j_jnutbio_2021_108832
crossref_primary_10_1038_s41467_023_42595_7
crossref_primary_10_3389_fendo_2021_635175
crossref_primary_10_31083_j_fbl2812351
crossref_primary_10_1016_j_bbalip_2022_159125
crossref_primary_10_1016_j_bbalip_2020_158630
crossref_primary_10_3389_fimmu_2023_1321597
crossref_primary_10_3390_ijms22168590
crossref_primary_10_1097_HEP_0000000000001171
crossref_primary_10_1016_j_jhazmat_2024_133864
crossref_primary_10_2337_db20_0572
crossref_primary_10_15252_msb_20209684
crossref_primary_10_3389_fnut_2023_1257158
crossref_primary_10_1016_j_jsps_2024_102016
crossref_primary_10_1186_s12964_024_01682_y
crossref_primary_10_1016_j_jhepr_2022_100479
crossref_primary_10_3390_cells10112978
crossref_primary_10_1038_s41575_021_00502_9
crossref_primary_10_1371_journal_pmed_1003451
crossref_primary_10_3389_fendo_2022_1015557
crossref_primary_10_3390_jcdd9120434
crossref_primary_10_1016_j_cellsig_2021_109959
crossref_primary_10_1186_s12872_023_03454_x
crossref_primary_10_1002_smtd_201900601
crossref_primary_10_1042_BST20210508
crossref_primary_10_1039_D1FO02577E
crossref_primary_10_1016_j_mehy_2020_109836
crossref_primary_10_1016_j_crfs_2024_100926
crossref_primary_10_1002_fft2_450
crossref_primary_10_1016_j_molmet_2023_101851
crossref_primary_10_1016_j_theriogenology_2023_11_007
crossref_primary_10_1126_science_aax6594
crossref_primary_10_1371_journal_pone_0240437
crossref_primary_10_1016_j_jep_2022_115427
crossref_primary_10_1126_sciadv_add8579
crossref_primary_10_1016_j_jdiacomp_2020_107734
crossref_primary_10_1016_j_foodchem_2022_134334
crossref_primary_10_1016_j_molcel_2020_03_005
crossref_primary_10_15252_embr_202254689
crossref_primary_10_3390_metabo12050431
crossref_primary_10_1007_s11357_021_00479_y
crossref_primary_10_1016_j_cmet_2021_03_019
crossref_primary_10_1371_journal_pbio_3001725
crossref_primary_10_1016_j_jaac_2021_02_014
crossref_primary_10_1007_s13167_024_00356_6
crossref_primary_10_3390_diagnostics11112053
crossref_primary_10_1186_s12933_023_02049_2
crossref_primary_10_1002_dmrr_3492
crossref_primary_10_1002_mco2_416
crossref_primary_10_3390_jcm10040792
crossref_primary_10_1038_s41575_021_00448_y
crossref_primary_10_1038_s44324_024_00023_4
crossref_primary_10_1016_j_devcel_2021_04_018
crossref_primary_10_1038_s41467_020_15960_z
crossref_primary_10_3390_cells9081877
crossref_primary_10_3390_ijms21176358
crossref_primary_10_1016_j_heliyon_2023_e13316
crossref_primary_10_3389_fimmu_2022_956688
crossref_primary_10_1016_j_pharmthera_2023_108401
crossref_primary_10_1007_s00467_024_06595_z
crossref_primary_10_1016_j_nbd_2020_105014
crossref_primary_10_1111_eci_13695
crossref_primary_10_15252_emmm_202013086
crossref_primary_10_1016_j_bbalip_2024_159514
crossref_primary_10_1002_hep_31095
crossref_primary_10_1146_annurev_nutr_062220_112920
crossref_primary_10_1021_acs_jmedchem_0c01664
crossref_primary_10_3390_antiox13010087
crossref_primary_10_1007_s12072_021_10231_5
crossref_primary_10_1126_scitranslmed_aay8798
crossref_primary_10_3389_fendo_2024_1368853
crossref_primary_10_1016_j_jcmgh_2021_11_007
crossref_primary_10_1016_j_jhep_2021_02_012
crossref_primary_10_1111_obr_13248
crossref_primary_10_1080_21623945_2021_2021700
crossref_primary_10_1016_j_biocel_2021_105972
crossref_primary_10_1172_JCI162957
crossref_primary_10_3390_nu15030703
crossref_primary_10_3390_biomedicines9020226
crossref_primary_10_3390_cells11040720
crossref_primary_10_1093_sleep_zsz321
crossref_primary_10_1016_j_medj_2022_05_011
crossref_primary_10_1055_a_1693_8356
crossref_primary_10_1136_bmjdrc_2020_001386
crossref_primary_10_1002_advs_202100275
crossref_primary_10_3390_metabo13020215
crossref_primary_10_1016_j_ceb_2020_01_006
crossref_primary_10_1053_j_gastro_2023_02_023
crossref_primary_10_3389_fendo_2020_570628
crossref_primary_10_3390_ijms24087451
crossref_primary_10_1016_j_isci_2021_103449
crossref_primary_10_1053_j_gastro_2020_06_031
crossref_primary_10_3390_nu16183196
crossref_primary_10_3389_fendo_2020_622692
crossref_primary_10_1111_bcpt_13909
crossref_primary_10_1016_j_jbc_2021_101278
crossref_primary_10_3389_fendo_2024_1400961
crossref_primary_10_1051_medsci_2020091
crossref_primary_10_1016_j_jnutbio_2023_109402
crossref_primary_10_3390_nu16162704
Cites_doi 10.1529/biophysj.104.044529
10.2337/db09-0897
10.1021/bi035743m
10.1093/eurheartj/ehw148
10.1172/JCI57144
10.1385/JMN:16:2-3:99
10.1016/j.plefa.2016.05.005
10.1016/j.jhep.2016.01.002
10.1371/journal.pone.0074341
10.1016/j.cmet.2006.04.005
10.1021/bi400914c
10.1016/j.cmet.2017.12.003
10.1152/ajpendo.00134.2015
10.1016/j.celrep.2017.12.090
10.1038/ijo.2012.191
10.1172/JCI76738
10.1042/BJ20070936
10.1016/j.cmet.2011.02.005
10.1016/j.cmet.2015.06.007
10.1074/jbc.M109.043737
10.1016/j.tem.2018.04.003
10.1016/j.cmet.2007.12.009
10.1016/j.cmet.2016.10.002
10.1042/bj20031425
10.1007/s12265-011-9309-8
10.2337/dc18-0071
10.1016/j.tem.2015.07.006
10.1016/j.celrep.2017.02.019
10.1002/oby.20598
10.1074/jbc.R115.653204
10.1007/978-1-4757-5806-1_5
10.1016/j.molmet.2015.02.007
10.1128/MCB.18.9.5457
10.1186/1471-2121-9-45
10.1021/bi9013566
10.1074/jbc.M110541200
10.1194/jlr.P081281
10.1016/j.bbrc.2007.01.135
10.1074/jbc.M406499200
10.2337/db17-1449
10.1016/j.cmet.2007.01.002
10.1152/ajpgi.00386.2005
10.1128/MCB.23.21.7794-7808.2003
10.1152/ajpendo.00182.2016
10.1161/ATVBAHA.116.307497
ContentType Journal Article
Copyright Copyright © 2019, American Association for the Advancement of Science.
Copyright © 2019, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2019, American Association for the Advancement of Science.
– notice: Copyright © 2019, American Association for the Advancement of Science
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.aav3722
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 392
ExternalDocumentID PMC6787918
31273070
10_1126_science_aav3722
26762285
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: T32 DK091317
– fundername: NIDDK NIH HHS
  grantid: R01 DK108833
– fundername: NIDDK NIH HHS
  grantid: R43 DK116450
– fundername: NIDDK NIH HHS
  grantid: R01 DK115824
– fundername: NIDDK NIH HHS
  grantid: R25 DK109894
– fundername: NIDDK NIH HHS
  grantid: P30 DK020579
– fundername: NIDDK NIH HHS
  grantid: R01 DK112826
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: NIDDK NIH HHS
  grantid: R44 DK116450
– fundername: NHLBI NIH HHS
  grantid: R25 HL108828
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CS3
DB2
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JENOY
JLS
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
CGR
CUY
CVF
ECM
EIF
GX1
NPM
OK1
UIG
YCJ
ZKG
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
ABBHK
AEXZC
C1K
DCCCD
F28
FR3
H8D
H8G
H94
IPSME
JAAYA
JBMMH
JG9
JHFFW
JKQEH
JLXEF
JPM
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
SA0
7X8
5PM
ID FETCH-LOGICAL-c509t-5cf1573f7d494a4e90e8812264fb5e7d829ba9059632ecaec08ba459da9f86293
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 13:38:07 EDT 2025
Fri Jul 11 03:31:35 EDT 2025
Wed Aug 13 05:27:03 EDT 2025
Thu Apr 03 07:10:12 EDT 2025
Tue Jul 01 01:51:32 EDT 2025
Thu Apr 24 23:10:06 EDT 2025
Thu Jul 03 21:42:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6451
Language English
License Copyright © 2019, American Association for the Advancement of Science.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-5cf1573f7d494a4e90e8812264fb5e7d829ba9059632ecaec08ba459da9f86293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Present address: Morphic Therapeutic, Waltham, MA 02451, USA.
These authors contributed equally to this work.
Present address: Bristol Myers Squibb, Princeton, NJ 08648, USA.
Author contributions: S.A.S., J.L., D.E.K., and B.C. conceived of the project, designed the experiments, and wrote the manuscript. B.C., T.S.T., R.M.M., J.L., Y.L., L.W., J.L.W., A.Po., C.R.S., R.F.P., V.K., G.I.L., M.M.S., S.S., H.Z., D.G.M., S.F.P., Y.C., Y.Q., A.Pe., M.W., X.S., J.Y., C.N.N., A.D.H.,L.W., M.D.E., D.H.S., J.R., and W.L.H. performed experiments and analyzed data. J.A.M., J.E.C., M.P. aided in lipid quantification.
Present address: Johnson and Johnson, Spring House, PA 19477, USA.
ORCID 0000-0002-0094-9801
0000-0002-4919-0592
0000-0002-5977-2350
0000-0002-0143-0956
0000-0002-9087-809X
0000-0003-4683-7589
0000-0002-0191-5224
0000-0002-2710-9765
0000-0002-1588-9004
0000-0003-3537-0952
0000-0002-8295-4910
0000-0002-4008-9711
0000-0003-2370-3377
0000-0002-1419-7057
0000-0003-2492-8981
0000-0003-3753-229X
0000-0002-8659-0659
0000-0002-6645-7172
0000-0002-6859-7208
0000-0003-3217-2299
0000-0002-7998-9290
OpenAccessLink http://americanae.aecid.es/americanae/es/registros/registro.do?tipoRegistro=MTD&idBib=2041435
PMID 31273070
PQID 2264398428
PQPubID 1256
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6787918
proquest_miscellaneous_2253283579
proquest_journals_2264398428
pubmed_primary_31273070
crossref_primary_10_1126_science_aav3722
crossref_citationtrail_10_1126_science_aav3722
jstor_primary_26762285
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-26
PublicationDateYYYYMMDD 2019-07-26
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2019
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_25_2
e_1_3_2_46_2
Brunaldi K. (e_1_3_2_37_2) 2010; 51
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
31899812 - Hepatology. 2020 Apr;71(4):1499-1501
31693811 - N Engl J Med. 2019 Nov 7;381(19):1866-1869
31346052 - Science. 2019 Jul 26;365(6451):319-320
References_xml – ident: e_1_3_2_17_2
  doi: 10.1529/biophysj.104.044529
– ident: e_1_3_2_28_2
  doi: 10.2337/db09-0897
– ident: e_1_3_2_32_2
  doi: 10.1021/bi035743m
– ident: e_1_3_2_13_2
  doi: 10.1093/eurheartj/ehw148
– ident: e_1_3_2_7_2
  doi: 10.1172/JCI57144
– ident: e_1_3_2_39_2
  doi: 10.1385/JMN:16:2-3:99
– ident: e_1_3_2_40_2
  doi: 10.1016/j.plefa.2016.05.005
– ident: e_1_3_2_10_2
  doi: 10.1016/j.jhep.2016.01.002
– ident: e_1_3_2_15_2
  doi: 10.1371/journal.pone.0074341
– ident: e_1_3_2_29_2
  doi: 10.1016/j.cmet.2006.04.005
– ident: e_1_3_2_41_2
  doi: 10.1021/bi400914c
– ident: e_1_3_2_8_2
  doi: 10.1016/j.cmet.2017.12.003
– ident: e_1_3_2_14_2
  doi: 10.1152/ajpendo.00134.2015
– ident: e_1_3_2_43_2
  doi: 10.1016/j.celrep.2017.12.090
– ident: e_1_3_2_4_2
  doi: 10.1038/ijo.2012.191
– ident: e_1_3_2_24_2
  doi: 10.1172/JCI76738
– ident: e_1_3_2_27_2
  doi: 10.1042/BJ20070936
– ident: e_1_3_2_44_2
  doi: 10.1016/j.cmet.2011.02.005
– ident: e_1_3_2_30_2
  doi: 10.1016/j.cmet.2015.06.007
– volume: 51
  start-page: 120
  year: 2010
  ident: e_1_3_2_37_2
  article-title: Fatty acids are rapidly delivered to and extracted from membranes by methyl-beta-cyclodextrin
  publication-title: J. Lipid Res.
– ident: e_1_3_2_35_2
  doi: 10.1074/jbc.M109.043737
– ident: e_1_3_2_42_2
  doi: 10.1016/j.tem.2018.04.003
– ident: e_1_3_2_22_2
  doi: 10.1016/j.cmet.2007.12.009
– ident: e_1_3_2_21_2
  doi: 10.1016/j.cmet.2016.10.002
– ident: e_1_3_2_18_2
  doi: 10.1042/bj20031425
– ident: e_1_3_2_45_2
  doi: 10.1007/s12265-011-9309-8
– ident: e_1_3_2_5_2
  doi: 10.2337/dc18-0071
– ident: e_1_3_2_2_2
  doi: 10.1016/j.tem.2015.07.006
– ident: e_1_3_2_9_2
  doi: 10.1016/j.celrep.2017.02.019
– ident: e_1_3_2_3_2
  doi: 10.1002/oby.20598
– ident: e_1_3_2_6_2
  doi: 10.1074/jbc.R115.653204
– ident: e_1_3_2_34_2
  doi: 10.1007/978-1-4757-5806-1_5
– ident: e_1_3_2_46_2
  doi: 10.1016/j.molmet.2015.02.007
– ident: e_1_3_2_19_2
  doi: 10.1128/MCB.18.9.5457
– ident: e_1_3_2_31_2
  doi: 10.1186/1471-2121-9-45
– ident: e_1_3_2_36_2
  doi: 10.1021/bi9013566
– ident: e_1_3_2_25_2
  doi: 10.1074/jbc.M110541200
– ident: e_1_3_2_11_2
  doi: 10.1194/jlr.P081281
– ident: e_1_3_2_33_2
  doi: 10.1016/j.bbrc.2007.01.135
– ident: e_1_3_2_23_2
  doi: 10.1074/jbc.M406499200
– ident: e_1_3_2_16_2
  doi: 10.2337/db17-1449
– ident: e_1_3_2_20_2
  doi: 10.1016/j.cmet.2007.01.002
– ident: e_1_3_2_38_2
  doi: 10.1152/ajpgi.00386.2005
– ident: e_1_3_2_26_2
  doi: 10.1128/MCB.23.21.7794-7808.2003
– ident: e_1_3_2_47_2
  doi: 10.1152/ajpendo.00182.2016
– ident: e_1_3_2_12_2
  doi: 10.1161/ATVBAHA.116.307497
– reference: 31346052 - Science. 2019 Jul 26;365(6451):319-320
– reference: 31693811 - N Engl J Med. 2019 Nov 7;381(19):1866-1869
– reference: 31899812 - Hepatology. 2020 Apr;71(4):1499-1501
SSID ssj0009593
Score 2.679482
Snippet Ceramides contribute to the lipotoxicity that underlies diabetes, hepatic steatosis, and heart disease. By genetically engineering mice, we deleted the enzyme...
Excess calorie intake can ultimately lead to a metabolic syndrome that interferes with fat or lipid metabolism. There are many different types of lipids, and...
Ceramides in focusExcess calorie intake can ultimately lead to a metabolic syndrome that interferes with fat or lipid metabolism. There are many different...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 386
SubjectTerms Ablation
Adipose tissue
Animals
Backbone
Cardiovascular diseases
Ceramide
Ceramides - chemistry
Ceramides - genetics
Ceramides - metabolism
Coronary artery disease
Desaturase
Diabetes mellitus
Diet
Diet, High-Fat - adverse effects
Disease resistance
Disorders
Enzymes
Fat metabolism
Fatty liver
Fatty Liver - genetics
Fatty Liver - metabolism
Gene Deletion
Genetic engineering
Glucose
Glucose metabolism
Heart diseases
High fat diet
Inserts
Insulin
Insulin resistance
Insulin Resistance - genetics
Leptin
Leptin - deficiency
Lipid metabolism
Lipids
Liver
Liver diseases
Membrane Proteins - genetics
Metabolic disorders
Metabolic syndrome
Metabolism
Mice
Mice, Mutant Strains
Nutrient deficiency
Oxidoreductases - genetics
Sphingolipids
Sphingolipids - chemistry
Sphingolipids - metabolism
Steatosis
Title Targeting a ceramide double bond improves insulin resistance and hepatic steatosis
URI https://www.jstor.org/stable/26762285
https://www.ncbi.nlm.nih.gov/pubmed/31273070
https://www.proquest.com/docview/2264398428
https://www.proquest.com/docview/2253283579
https://pubmed.ncbi.nlm.nih.gov/PMC6787918
Volume 365
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKJiReEBsMCgMZiYehKVUSO0382A2mCQkeRiftLXISm0aCtLTJpPHH8bdx_tl0rNLgJWoTx2p6X85357vvEHoX8TJkFaO61imgVJCAZ5UMBIXVuqBJxqWKQ37-Mj6_pJ-ukqvB4Hcva6lri1H56866kv-RKpwDuaoq2X-QrJ8UTsBnkC8cQcJwvJ-MdRq3LjM8LsWS_6grcVzNO1UNVajClFqHDHTOlUk5B-daGYyuTGAmFpqxVYm6na_qVd9Wda892KB-X6cnTZ-gODFpBC6rwN7WCzGczni3VNWaGkwz_k3t7fsw9LRegOXemnSlpbiGWb-O1oHyG00hoFRPYWrPLrh0ef4qkajuNBDr5mfdj2DooqnAlMk7rWxJkc2aZBRxqHpIxiHpa2pi2kpYSI6ppao1qpc4Sm3zzXTY-3uB6LW0FCPOr0lq6qI3qbhvLZE-cVG7TPE4txPkdoIHaDcGNwX07O7k5MPJ2VbaZ0su1Svbcr9hwy4yqbF3OT23c3d7xtD0CXpsvRg8MZDcQwPR7KOHpq_pzT7asxhY4SNLa_7-KbrwaMUcO7Rig1as0IodWrFFK16jFQNasUUr9mh9hi7PPk5PzwPb0SMowTBtg6SUUZISmVaUUU4FC0UGFiYY5bJIRFplMSs4Ux2hSCxKLsowKzhNWMWZBNebkQO008wb8QLhOOZJxAWTXBIqwaoiaRGVsL6UUZXINByikfs_89LS3auuK9_zLTIcoiN_w8IwvWwfeqAF5MfFY7Ap4iwZokMnsdzqiVWuHo-wDPz8IXrrL4MWV1tzvBHzTo1JiGI-TNkQPTcC9pOTCFyMUD1RuiF6P0AxxG9eaeqZZooHSzRlUfby_o_2Cj1av6KHaKddduI1mN1t8cZi-w-QeOBs
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+a+ceramide+double+bond+improves+insulin+resistance+and+hepatic+steatosis&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Chaurasia%2C+Bhagirath&rft.au=Tippetts%2C+Trevor+S.&rft.au=Mayoral+Monibas%2C+Rafael&rft.au=Liu%2C+Jinqi&rft.date=2019-07-26&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=365&rft.issue=6451&rft.spage=386&rft.epage=392&rft_id=info:doi/10.1126%2Fscience.aav3722&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aav3722
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon