Path Following for Autonomous Mobile Robots with Deep Reinforcement Learning

Autonomous mobile robots have become integral to daily life, providing crucial services across diverse domains. This paper focuses on path following, a fundamental technology and critical element in achieving autonomous mobility. Existing methods predominantly address tracking through steering contr...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 2; p. 561
Main Authors Cao, Yu, Ni, Kan, Kawaguchi, Takahiro, Hashimoto, Seiji
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Autonomous mobile robots have become integral to daily life, providing crucial services across diverse domains. This paper focuses on path following, a fundamental technology and critical element in achieving autonomous mobility. Existing methods predominantly address tracking through steering control, neglecting velocity control or relying on path-specific reference velocities, thereby constraining their generality. In this paper, we propose a novel approach that integrates the conventional pure pursuit algorithm with deep reinforcement learning for a nonholonomic mobile robot. Our methodology employs pure pursuit for steering control and utilizes the soft actor-critic algorithm to train a velocity control strategy within randomly generated path environments. Through simulation and experimental validation, our approach exhibits notable advancements in path convergence and adaptive velocity adjustments to accommodate paths with varying curvatures. Furthermore, this method holds the potential for broader applicability to vehicles adhering to nonholonomic constraints beyond the specific model examined in this paper. In summary, our study contributes to the progression of autonomous mobility by harmonizing conventional algorithms with cutting-edge deep reinforcement learning techniques, enhancing the robustness of path following.
AbstractList Autonomous mobile robots have become integral to daily life, providing crucial services across diverse domains. This paper focuses on path following, a fundamental technology and critical element in achieving autonomous mobility. Existing methods predominantly address tracking through steering control, neglecting velocity control or relying on path-specific reference velocities, thereby constraining their generality. In this paper, we propose a novel approach that integrates the conventional pure pursuit algorithm with deep reinforcement learning for a nonholonomic mobile robot. Our methodology employs pure pursuit for steering control and utilizes the soft actor-critic algorithm to train a velocity control strategy within randomly generated path environments. Through simulation and experimental validation, our approach exhibits notable advancements in path convergence and adaptive velocity adjustments to accommodate paths with varying curvatures. Furthermore, this method holds the potential for broader applicability to vehicles adhering to nonholonomic constraints beyond the specific model examined in this paper. In summary, our study contributes to the progression of autonomous mobility by harmonizing conventional algorithms with cutting-edge deep reinforcement learning techniques, enhancing the robustness of path following.
Autonomous mobile robots have become integral to daily life, providing crucial services across diverse domains. This paper focuses on path following, a fundamental technology and critical element in achieving autonomous mobility. Existing methods predominantly address tracking through steering control, neglecting velocity control or relying on path-specific reference velocities, thereby constraining their generality. In this paper, we propose a novel approach that integrates the conventional pure pursuit algorithm with deep reinforcement learning for a nonholonomic mobile robot. Our methodology employs pure pursuit for steering control and utilizes the soft actor-critic algorithm to train a velocity control strategy within randomly generated path environments. Through simulation and experimental validation, our approach exhibits notable advancements in path convergence and adaptive velocity adjustments to accommodate paths with varying curvatures. Furthermore, this method holds the potential for broader applicability to vehicles adhering to nonholonomic constraints beyond the specific model examined in this paper. In summary, our study contributes to the progression of autonomous mobility by harmonizing conventional algorithms with cutting-edge deep reinforcement learning techniques, enhancing the robustness of path following.Autonomous mobile robots have become integral to daily life, providing crucial services across diverse domains. This paper focuses on path following, a fundamental technology and critical element in achieving autonomous mobility. Existing methods predominantly address tracking through steering control, neglecting velocity control or relying on path-specific reference velocities, thereby constraining their generality. In this paper, we propose a novel approach that integrates the conventional pure pursuit algorithm with deep reinforcement learning for a nonholonomic mobile robot. Our methodology employs pure pursuit for steering control and utilizes the soft actor-critic algorithm to train a velocity control strategy within randomly generated path environments. Through simulation and experimental validation, our approach exhibits notable advancements in path convergence and adaptive velocity adjustments to accommodate paths with varying curvatures. Furthermore, this method holds the potential for broader applicability to vehicles adhering to nonholonomic constraints beyond the specific model examined in this paper. In summary, our study contributes to the progression of autonomous mobility by harmonizing conventional algorithms with cutting-edge deep reinforcement learning techniques, enhancing the robustness of path following.
Audience Academic
Author Cao, Yu
Kawaguchi, Takahiro
Hashimoto, Seiji
Ni, Kan
AuthorAffiliation Program of Intelligence and Control, Cluster of Electronics and Mechanical Engineering, School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan; t202d602@gunma-u.ac.jp (Y.C.); t202d003@gunma-u.ac.jp (K.N.); kawaguchi@gunma-u.ac.jp (T.K.)
AuthorAffiliation_xml – name: Program of Intelligence and Control, Cluster of Electronics and Mechanical Engineering, School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan; t202d602@gunma-u.ac.jp (Y.C.); t202d003@gunma-u.ac.jp (K.N.); kawaguchi@gunma-u.ac.jp (T.K.)
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0002-5194-0225
  surname: Cao
  fullname: Cao, Yu
  organization: Program of Intelligence and Control, Cluster of Electronics and Mechanical Engineering, School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan
– sequence: 2
  givenname: Kan
  surname: Ni
  fullname: Ni, Kan
  organization: Program of Intelligence and Control, Cluster of Electronics and Mechanical Engineering, School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan
– sequence: 3
  givenname: Takahiro
  orcidid: 0000-0003-4460-8694
  surname: Kawaguchi
  fullname: Kawaguchi, Takahiro
  organization: Program of Intelligence and Control, Cluster of Electronics and Mechanical Engineering, School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan
– sequence: 4
  givenname: Seiji
  surname: Hashimoto
  fullname: Hashimoto, Seiji
  organization: Program of Intelligence and Control, Cluster of Electronics and Mechanical Engineering, School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38257654$$D View this record in MEDLINE/PubMed
BookMark eNpdkt9vFCEQx4mpsT_0wX_AbOKLPlyFhV3gyVxqq03OaBp9JsDOXrnswgm7Nv73nfPqpTU8QOAz35nvMKfkKKYIhLxm9JxzTT-UWtCaNi17Rk6YqMVC1TU9enQ-JqelbCitOefqBTnmqm5k24gTsvpup9vqKg1DugtxXfUpV8t5SjGNaS7V1-TCANVNcmkq1V1A9hPAtrqBEBH1MEKcqhXYHDH6JXne26HAq4f9jPy8uvxx8WWx-vb5-mK5WviG6mnReOhZ70Ey5p12rgPOoBOWOmppq1QPLaAvwRrBOso1MO2g5dr3EhrngJ-R671ul-zGbHMYbf5jkg3m70XKa2PzFPwAptEAVHQU5aXQIJTwXArVtQooZrKo9XGvtZ3dCJ1HP9kOT0SfvsRwa9bpt2EM62sURYV3Dwo5_ZqhTGYMxcMw2AjYQ1NrJlWrGr1D3_6HbtKcI_ZqRympUU4idb6n1hYd7BqNiT2uDsbg8et7_BOzlIrqWtK2xYD3-wCfUykZ-kP5jJrdhJjDhCD75rHfA_lvJPg9IiS3gQ
CitedBy_id crossref_primary_10_3390_pr12050881
crossref_primary_10_3390_s24092769
Cites_doi 10.1108/01439911211217107
10.1038/nature16961
10.1109/TAC.2016.2638961
10.1109/TSMC.2020.2966631
10.1080/01691864.2019.1694068
10.1109/CDC.2009.5399744
10.3390/app13116847
10.3390/app9030368
10.1016/S0927-0507(05)80172-0
10.1177/0954407020954591
10.1109/TVT.2020.3014628
10.1007/978-3-642-03991-1
10.1109/ACCESS.2020.2975643
10.1007/978-3-540-73429-1
10.5772/51314
10.5772/61391
10.1243/09544070JAUTO1366
10.1007/s10514-020-09951-8
10.1109/TIV.2016.2578706
10.1017/CBO9780511804441
10.1109/OCEANS.2018.8604829
10.23919/ACC55779.2023.10155871
10.1016/j.jterra.2020.06.006
10.1080/00207179.2013.858829
10.1109/IVS.2019.8814130
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PIMPY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s24020561
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest - Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database
MEDLINE - Academic


CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_59ee04d0d4a749e484c3748d68e088fa
A780927066
10_3390_s24020561
38257654
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID ---
123
2WC
3V.
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
ABDBF
ABJCF
ABUWG
ADBBV
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BPHCQ
BVXVI
CCPQU
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
ITC
KB.
KQ8
L6V
M1P
M48
M7S
MODMG
M~E
NPM
OK1
P2P
P62
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
AAYXX
CITATION
BGLVJ
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c509t-5cef1fce711cb9bbde31ed4a0b0a0688fe6e33941541d039e19be639cf7e5bbe3
IEDL.DBID RPM
ISSN 1424-8220
IngestDate Tue Oct 22 15:14:54 EDT 2024
Tue Sep 17 21:28:52 EDT 2024
Sat Oct 26 04:56:02 EDT 2024
Sat Oct 26 19:17:48 EDT 2024
Tue Feb 06 05:31:35 EST 2024
Thu Sep 26 16:15:58 EDT 2024
Tue Oct 29 09:17:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords autonomous mobile robot
velocity control
deep reinforcement learning
path following
soft actor-critic
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-5cef1fce711cb9bbde31ed4a0b0a0688fe6e33941541d039e19be639cf7e5bbe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5194-0225
0000-0003-4460-8694
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154580/
PMID 38257654
PQID 2918798037
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_59ee04d0d4a749e484c3748d68e088fa
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11154580
proquest_miscellaneous_2917868590
proquest_journals_2918798037
gale_infotracacademiconefile_A780927066
crossref_primary_10_3390_s24020561
pubmed_primary_38257654
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Roshanianfard (ref_7) 2020; 91
Hancke (ref_3) 2010; 11
ref_14
ref_36
ref_13
ref_35
Huang (ref_10) 2010; 224
ref_34
ref_11
ref_33
ref_32
Shan (ref_8) 2015; 12
Puterman (ref_31) 1990; 2
Yu (ref_6) 2012; 39
ref_18
ref_17
ref_39
ref_16
ref_38
ref_15
ref_37
Isobe (ref_5) 2020; 34
Jin (ref_4) 2014; 87
Chen (ref_24) 2021; 235
Paden (ref_12) 2016; 1
Silver (ref_19) 2016; 529
Levine (ref_20) 2016; 17
ref_25
ref_45
Liu (ref_21) 2020; 51
ref_22
ref_44
Shan (ref_23) 2020; 69
ref_41
Hager (ref_30) 2006; 2
ref_40
ref_2
ref_29
ref_28
ref_27
ref_26
Ames (ref_43) 2016; 62
Alatise (ref_1) 2020; 8
Zhao (ref_9) 2012; 9
Morcego (ref_42) 2021; 45
References_xml – volume: 39
  start-page: 271
  year: 2012
  ident: ref_6
  article-title: An autonomous restaurant service robot with high positioning accuracy
  publication-title: Ind. Robot. Int. J.
  doi: 10.1108/01439911211217107
  contributor:
    fullname: Yu
– volume: 529
  start-page: 484
  year: 2016
  ident: ref_19
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
  contributor:
    fullname: Silver
– volume: 62
  start-page: 3861
  year: 2016
  ident: ref_43
  article-title: Control barrier function based quadratic programs for safety critical systems
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2016.2638961
  contributor:
    fullname: Ames
– ident: ref_32
– volume: 51
  start-page: 6962
  year: 2020
  ident: ref_21
  article-title: Multi-kernel online reinforcement learning for path tracking control of intelligent vehicles
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
  doi: 10.1109/TSMC.2020.2966631
  contributor:
    fullname: Liu
– volume: 34
  start-page: 157
  year: 2020
  ident: ref_5
  article-title: System for augmented human–robot interaction through mixed reality and robot training by non-experts in customer service environments
  publication-title: Adv. Robot.
  doi: 10.1080/01691864.2019.1694068
  contributor:
    fullname: Isobe
– ident: ref_26
– volume: 2
  start-page: 35
  year: 2006
  ident: ref_30
  article-title: A survey of nonlinear conjugate gradient methods
  publication-title: Pac. J. Optim.
  contributor:
    fullname: Hager
– ident: ref_34
– ident: ref_11
  doi: 10.1109/CDC.2009.5399744
– ident: ref_35
  doi: 10.3390/app13116847
– ident: ref_39
– ident: ref_40
– ident: ref_2
  doi: 10.3390/app9030368
– ident: ref_37
– ident: ref_14
– volume: 2
  start-page: 331
  year: 1990
  ident: ref_31
  article-title: Markov decision processes
  publication-title: Handbooks in Operations Research and Management Science
  doi: 10.1016/S0927-0507(05)80172-0
  contributor:
    fullname: Puterman
– volume: 235
  start-page: 541
  year: 2021
  ident: ref_24
  article-title: Deep reinforcement learning based path tracking controller for autonomous vehicle
  publication-title: Inst. Mech. Eng. Part J. Automob. Eng.
  doi: 10.1177/0954407020954591
  contributor:
    fullname: Chen
– ident: ref_18
– volume: 69
  start-page: 10581
  year: 2020
  ident: ref_23
  article-title: A reinforcement learning-based adaptive path tracking approach for autonomous driving
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3014628
  contributor:
    fullname: Shan
– ident: ref_16
  doi: 10.1007/978-3-642-03991-1
– volume: 8
  start-page: 39830
  year: 2020
  ident: ref_1
  article-title: A review on challenges of autonomous mobile robot and sensor fusion methods
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2975643
  contributor:
    fullname: Alatise
– ident: ref_15
  doi: 10.1007/978-3-540-73429-1
– ident: ref_25
– volume: 9
  start-page: 44
  year: 2012
  ident: ref_9
  article-title: Design of a control system for an autonomous vehicle based on adaptive-pid
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.5772/51314
  contributor:
    fullname: Zhao
– volume: 12
  start-page: 134
  year: 2015
  ident: ref_8
  article-title: CF-pursuit: A pursuit method with a clothoid fitting and a fuzzy controller for autonomous vehicles
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.5772/61391
  contributor:
    fullname: Shan
– volume: 224
  start-page: 997
  year: 2010
  ident: ref_10
  article-title: Parallel auto-parking of a model vehicle using a self-organizing fuzzy controller
  publication-title: Proc. Inst. Mech. Eng. Part J. Automob. Eng.
  doi: 10.1243/09544070JAUTO1366
  contributor:
    fullname: Huang
– ident: ref_33
– ident: ref_27
– volume: 17
  start-page: 1334
  year: 2016
  ident: ref_20
  article-title: End-to-end training of deep visuomotor policies
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Levine
– volume: 11
  start-page: 307
  year: 2010
  ident: ref_3
  article-title: Security challenges for user-oriented RFID applications within the Internet of thing
  publication-title: J. Internet Technol.
  contributor:
    fullname: Hancke
– volume: 45
  start-page: 119
  year: 2021
  ident: ref_42
  article-title: Deep reinforcement learning for quadrotor path following with adaptive velocity
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-020-09951-8
  contributor:
    fullname: Morcego
– volume: 1
  start-page: 33
  year: 2016
  ident: ref_12
  article-title: A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2016.2578706
  contributor:
    fullname: Paden
– ident: ref_29
  doi: 10.1017/CBO9780511804441
– ident: ref_41
– ident: ref_28
  doi: 10.1109/OCEANS.2018.8604829
– ident: ref_44
  doi: 10.23919/ACC55779.2023.10155871
– ident: ref_13
– volume: 91
  start-page: 155
  year: 2020
  ident: ref_7
  article-title: A review of autonomous agricultural vehicles (The experience of Hokkaido University)
  publication-title: J. Terramech.
  doi: 10.1016/j.jterra.2020.06.006
  contributor:
    fullname: Roshanianfard
– ident: ref_38
– volume: 87
  start-page: 787
  year: 2014
  ident: ref_4
  article-title: Navigation of autonomous vehicles for oil spill cleaning in dynamic and uncertain environments
  publication-title: Int. J. Control
  doi: 10.1080/00207179.2013.858829
  contributor:
    fullname: Jin
– ident: ref_17
– ident: ref_36
– ident: ref_45
– ident: ref_22
  doi: 10.1109/IVS.2019.8814130
SSID ssj0023338
Score 2.4796376
Snippet Autonomous mobile robots have become integral to daily life, providing crucial services across diverse domains. This paper focuses on path following, a...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 561
SubjectTerms Algorithms
autonomous mobile robot
Control theory
Deep learning
deep reinforcement learning
Distance learning
Kinematics
Machine learning
path following
Robotics
Robots
soft actor-critic
Vehicles
Velocity
velocity control
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAlM_QggxC4hTVju3YPi4tqwpRhCoq9WbZzgS4JBWbqn-_M0l2tREHLlxtH5w3nswbf7xh7IOua5GyiWXdYoqCETqW0Rhb1s6IVPksYkNvhy--1edX-su1ud4r9UV3wiZ54Am4E-MBhG5Eo6PVHrTTmRRTmtoBOkg7USPht8nUnGopzLwmHSGFSf3Jhs4QiCsvos8o0v_3r3gvFi3vSe4FnvUT9nhmjHw1zfSQPYDuKXu0pyP4jH39jjyOr9Gk_R02cCSifHU70HsFTOz5RZ_Q9_lln_phw2nnlZ8B3PBLGGVT87hDyGel1Z_P2dX684_T83Iuk1BmjPZDaTK0ss1gpczJp9SAkoBwiSQilZRpoQZEASO1lo1QHqRPgMQktxZMSqBesIOu7-AV41USrm09kjiVdRIS8Y2k-KW0AVvFumDvt_CFm0kNI2AWQRiHHcYF-0TA7gaQgPXYgGYNs1nDv8xasI9klkA4IPY5zq8FcJ4kWBVW1glfWSRMBTveWi7M_rcJlacq6k4oW7B3u270HDoOiR0g-DTGOlyTXhTs5WTo3ZyVo0TM6IK5xRJYfNSyp_v9a1TnlnI8jBSv_wcMR-xhhSxq2vM5ZgfDn1t4gyxoSG_HBX8P9D4GHQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9gIHxDeBggxC4hTVSewkPqEtdFUhWlUrKvUW2c6k5ZIs3VT8fWYSb9gIiaudgzMznnkztt8AfFR5Lp3XNs4bSlEoQtvYal3EeamlS42Xtua3w2fn-eml-nalr0LBbRuuVe584uCo685zjfwoNdwXu5RZ8XnzK-auUXy6Glpo3IeDlDKFdAEHxyfnF-sp5cooAxv5hDJK7o-2fJbAmHkWhQay_n9d8l5Mmt-X3AtAq8fwKCBHsRxV_QTuYfsUHu7xCT6D7xeE58SKVNv9pgFBgFQs73p-t0AJvjjrHPkAse5c128FV2DFV8SNWONAn-qHSqEIjKvXz-FydfLjy2kc2iXEnqJ-H2uPTdJ4LJLEO-NcjVmCtbLSScutZRrMkaRAEVsltcwMJsYhARTfFKidw-wFLNquxVcgUifLpjEE5jKvnEzKxlpm_sqUxiK1eQQfduKrNiMrRkXZBMu4mmQcwTELdvqAiayHge72ugr7otIGUapa0joLZVCVyjMhTp2XSP6vsRF8YrVULAeSvbfh1QCtk4mrqmVRSpMWBJwiONxprgr7cFv9tZoI3k_TtIP4WMS2SMLnb4qSbNPICF6Oip7WnJWckGkVQTkzgdlPzWfanzcDS3eSDIeS8vX_1_UGHqSEk8aqziEs-ts7fEs4p3fvgjH_AWtw_xo
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoED4k1KQQYhcQo4iZ3YB4SWx6pCFKGKlXqLbGfSIqGk3U0F_Htmkmy0ERy42o7kfGN7vvHjG4AXKs-lD9rFeU0hCnloFzutizg3WvrUBukqfjt8_CU_WqlPp_p0D7Y5NkcAN_8M7Tif1Gr949Wvy99vacK_4YiTQvbXGz4hYCZ8Da6nrMfFN_jUdJiQZlmf0JrfdMXkD-UgMDT_dOaWevX-v9foHSc1v0C545GWt-HWSCXFYrD9HdjD5i7c3BEYvAefvxLBE0uydfuTCgQxVLG46vghA0X84rj1tCiIk9a33Ubwlqz4gHghTrDXUw391qEYJVjP7sNq-fHb-6N4zJ8QB6IBXawD1kkdsEiS4K33FWYJVspJLx3nmqkxR0KBXLhKKplZTKxHYiyhLlB7j9kD2G_aBh-BSL00dW2J3WVBeZmY2jmWAsuUxiJ1eQTPt_CVF4NMRknhBWNcThhH8I6BnRqwsnVf0K7PynGilNoiSlVJ6mehLCqjAivkVLlBWhBrF8FLNkvJOBD2wY3PCKifrGRVLgojbVoQk4rgcGu5cjuuytRyenUjsyKCZ1M1TSk-J3ENEvjcpjA0WK2M4OFg6KnPmeEITasIzGwIzH5qXtN8P-9lu5OkP6WUB_-D1WO4kRJ9GjZ7DmG_W1_hE6I_nX_aD-4_ZBgCVA
  priority: 102
  providerName: Scholars Portal
Title Path Following for Autonomous Mobile Robots with Deep Reinforcement Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/38257654
https://www.proquest.com/docview/2918798037
https://www.proquest.com/docview/2917868590
https://pubmed.ncbi.nlm.nih.gov/PMC11154580
https://doaj.org/article/59ee04d0d4a749e484c3748d68e088fa
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SFEp6KH3XbbqopdCTs7ItWfJxk2YbSjcsSwN7M5I8TgONvWQd-vc78mNZ01svOkgyyDMjzTcj6RPAZ5Gm3DppwrSkEIU8tAmNlCpMteQ2zhw3hb87vLhKL6_F97VcH0A63IVpD-07e3ta_b47rW5_tWcrN3duOpwTmy4X51HU7vfw6SEckoUOMXofZiUUdXUcQgkF9NOt3z_wOPkYHifa42spRk6o5er_d0Xec0nj45J7_mf-DJ72wJHNugE-hwOsXsCTPTrBl_BjSXCOzUmz9R-qYIRH2eyh8dcWKL5ni9rSEsBWta2bLfMJWPYVccNW2LKnujZRyHrC1ZtXcD2_-Hl-GfavJYSOnH4TSodlVDpUUeRsZm2BSYSFMNxy41-WKTFFEgg5bBEVPMkwyiwSPnGlQmktJq_hqKorfAsstlyXZUZYLnHC8kiXxnjir0RIVLFJA_g0iC_fdKQYOQUTXtz5TtwBnHnB7jp4Huu2or6_yXtt5jJD5KLgNE4lMhRaOM-HU6QaafkrTQBfvFpyLweSvTP9pQEap-etymdK8yxWhJsCOBk0l_fTcJvHmX9MXfNEBfBx10wTyO-KmApJ-L6P0mSaGQ_gTafo3ZgHewlAj0xg9FPjFrLZlqR7sNF3___peziOCUJ1CZ8TOGruH_ADQaDGTsju14pKPf82gUdnF1fL1aRNJ1C5EHrSzoi_BpcMOg
link.rule.ids 230,315,730,783,787,867,888,2109,2228,12070,12779,21402,24332,27938,27939,31733,31734,33387,33388,33758,33759,43324,43614,43819,53806,53808,74081,74371,74638
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHKAHxJtAAYOQOEV1Eju2T2h5rBbYrVDVSnuzbGdSuCTbbir-PjNJdrsrJK52Ds7MeOabsf0NY-9lWYoQlU_LGlMUjNA-9UrptDRKhNxG4St6O7w4KWfn8vtSLceC23q8Vrnxib2jrtpINfLj3FJfbCMK_XF1mVLXKDpdHVto3GZ3iIeLuPP18ibhKjD_GtiECkztj9d0kkCIeS8G9VT9_zrknYi0f1tyJ_xMH7D7I27kk0HRD9ktaB6xwx02wcds_hPRHJ-iYts_OMARjvLJdUevFjC954s2oAfgp21ouzWn-iv_ArDip9CTp8a-TshHvtWLJ-x8-vXs8ywdmyWkEWN-l6oIdVZH0FkWgw2hgiKDSnoRhKfGMjWUgFLAeC2zShQWMhsA4UmsNagQoHjKDpq2geeM50GYurYI5Yoog8hM7T3xfhVSgc59mbB3G_G51cCJ4TCXIBm7rYwT9okEu_2AaKz7gfbqwo27wikLIGQlcJ1aWpBGRqLDqUoD6P1qn7APpBZHckDZRz--GcB1Em2Vm2gjbK4RNiXsaKM5N-7CtbuxmYS93U7j_qFDEd8ACp--0QYt04qEPRsUvV1zYSgdUzJhZs8E9n5qf6b5_avn6M6y_khSvPj_ut6wu7OzxdzNv538eMnu5YiYhvrOETvorq7hFSKeLrzuzfovSlMAtA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkJwQDxLoIBBSJyiOomdxwltaVcF2tVqRaXeItuZFC7Jtpuqf5-ZxBt2hcTVzsGZGc98Y4-_Afik0lRap02Y1pSiUIQ2odE6C9NcSxsXTpqK3w6fz9PTC_X9Ul_6-qe1L6vc-MTeUVet4zPyw7jgvtg58_HUvixicTz7sroOuYMU37T6dhr3YS9TZFUT2Ds6mS-WY_qVUDY2cAsllOgfrvlegfHzTkTqifv_dc9b8Wm3dnIrGM2ewGOPIsV0UPtTuIfNM3i0xS34HM4WhO3EjNTc3tGAIHAqprcdv2GgZF-ct5b8gVi2tu3Wgk9jxTHiSiyxp1J1_amh8OyrVy_gYnby8-tp6FsnhI4QQBdqh3VUO8yiyNnC2gqTCCtlpJWG28zUmCJJgaK3iiqZFBgVFgmsuDpDbS0mL2HStA2-AhFbmdd1QcAuccrKKK-NYRawRGnMYpMG8HEjvnI1MGSUlFmwjMtRxgEcsWDHD5jUuh9ob65Kv0dKXSBKVUlaZ6YKVLlyTI5TpTmSL6xNAJ9ZLSXLgWTvjH9BQOtkEqtymuWyiDMCUQEcbDRX-j25Lv9aUAAfxmnaTXxFYhok4fM3WU52WsgA9gdFj2tOck7OtAog3zGBnZ_anWl-_-oZu6Oov6CUr_-_rvfwgGy6PPs2__EGHsYEn4bDngOYdDe3-JbgT2ffebv-A6hGBlc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Path+Following+for+Autonomous+Mobile+Robots+with+Deep+Reinforcement+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cao%2C+Yu&rft.au=Ni%2C+Kan&rft.au=Kawaguchi%2C+Takahiro&rft.au=Hashimoto%2C+Seiji&rft.date=2024-01-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=2&rft.spage=561&rft_id=info:doi/10.3390%2Fs24020561&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24020561
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon