Path Following for Autonomous Mobile Robots with Deep Reinforcement Learning
Autonomous mobile robots have become integral to daily life, providing crucial services across diverse domains. This paper focuses on path following, a fundamental technology and critical element in achieving autonomous mobility. Existing methods predominantly address tracking through steering contr...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 2; p. 561 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Autonomous mobile robots have become integral to daily life, providing crucial services across diverse domains. This paper focuses on path following, a fundamental technology and critical element in achieving autonomous mobility. Existing methods predominantly address tracking through steering control, neglecting velocity control or relying on path-specific reference velocities, thereby constraining their generality. In this paper, we propose a novel approach that integrates the conventional pure pursuit algorithm with deep reinforcement learning for a nonholonomic mobile robot. Our methodology employs pure pursuit for steering control and utilizes the soft actor-critic algorithm to train a velocity control strategy within randomly generated path environments. Through simulation and experimental validation, our approach exhibits notable advancements in path convergence and adaptive velocity adjustments to accommodate paths with varying curvatures. Furthermore, this method holds the potential for broader applicability to vehicles adhering to nonholonomic constraints beyond the specific model examined in this paper. In summary, our study contributes to the progression of autonomous mobility by harmonizing conventional algorithms with cutting-edge deep reinforcement learning techniques, enhancing the robustness of path following. |
---|---|
AbstractList | Autonomous mobile robots have become integral to daily life, providing crucial services across diverse domains. This paper focuses on path following, a fundamental technology and critical element in achieving autonomous mobility. Existing methods predominantly address tracking through steering control, neglecting velocity control or relying on path-specific reference velocities, thereby constraining their generality. In this paper, we propose a novel approach that integrates the conventional pure pursuit algorithm with deep reinforcement learning for a nonholonomic mobile robot. Our methodology employs pure pursuit for steering control and utilizes the soft actor-critic algorithm to train a velocity control strategy within randomly generated path environments. Through simulation and experimental validation, our approach exhibits notable advancements in path convergence and adaptive velocity adjustments to accommodate paths with varying curvatures. Furthermore, this method holds the potential for broader applicability to vehicles adhering to nonholonomic constraints beyond the specific model examined in this paper. In summary, our study contributes to the progression of autonomous mobility by harmonizing conventional algorithms with cutting-edge deep reinforcement learning techniques, enhancing the robustness of path following. Autonomous mobile robots have become integral to daily life, providing crucial services across diverse domains. This paper focuses on path following, a fundamental technology and critical element in achieving autonomous mobility. Existing methods predominantly address tracking through steering control, neglecting velocity control or relying on path-specific reference velocities, thereby constraining their generality. In this paper, we propose a novel approach that integrates the conventional pure pursuit algorithm with deep reinforcement learning for a nonholonomic mobile robot. Our methodology employs pure pursuit for steering control and utilizes the soft actor-critic algorithm to train a velocity control strategy within randomly generated path environments. Through simulation and experimental validation, our approach exhibits notable advancements in path convergence and adaptive velocity adjustments to accommodate paths with varying curvatures. Furthermore, this method holds the potential for broader applicability to vehicles adhering to nonholonomic constraints beyond the specific model examined in this paper. In summary, our study contributes to the progression of autonomous mobility by harmonizing conventional algorithms with cutting-edge deep reinforcement learning techniques, enhancing the robustness of path following.Autonomous mobile robots have become integral to daily life, providing crucial services across diverse domains. This paper focuses on path following, a fundamental technology and critical element in achieving autonomous mobility. Existing methods predominantly address tracking through steering control, neglecting velocity control or relying on path-specific reference velocities, thereby constraining their generality. In this paper, we propose a novel approach that integrates the conventional pure pursuit algorithm with deep reinforcement learning for a nonholonomic mobile robot. Our methodology employs pure pursuit for steering control and utilizes the soft actor-critic algorithm to train a velocity control strategy within randomly generated path environments. Through simulation and experimental validation, our approach exhibits notable advancements in path convergence and adaptive velocity adjustments to accommodate paths with varying curvatures. Furthermore, this method holds the potential for broader applicability to vehicles adhering to nonholonomic constraints beyond the specific model examined in this paper. In summary, our study contributes to the progression of autonomous mobility by harmonizing conventional algorithms with cutting-edge deep reinforcement learning techniques, enhancing the robustness of path following. |
Audience | Academic |
Author | Cao, Yu Kawaguchi, Takahiro Hashimoto, Seiji Ni, Kan |
AuthorAffiliation | Program of Intelligence and Control, Cluster of Electronics and Mechanical Engineering, School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan; t202d602@gunma-u.ac.jp (Y.C.); t202d003@gunma-u.ac.jp (K.N.); kawaguchi@gunma-u.ac.jp (T.K.) |
AuthorAffiliation_xml | – name: Program of Intelligence and Control, Cluster of Electronics and Mechanical Engineering, School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan; t202d602@gunma-u.ac.jp (Y.C.); t202d003@gunma-u.ac.jp (K.N.); kawaguchi@gunma-u.ac.jp (T.K.) |
Author_xml | – sequence: 1 givenname: Yu orcidid: 0000-0002-5194-0225 surname: Cao fullname: Cao, Yu organization: Program of Intelligence and Control, Cluster of Electronics and Mechanical Engineering, School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan – sequence: 2 givenname: Kan surname: Ni fullname: Ni, Kan organization: Program of Intelligence and Control, Cluster of Electronics and Mechanical Engineering, School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan – sequence: 3 givenname: Takahiro orcidid: 0000-0003-4460-8694 surname: Kawaguchi fullname: Kawaguchi, Takahiro organization: Program of Intelligence and Control, Cluster of Electronics and Mechanical Engineering, School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan – sequence: 4 givenname: Seiji surname: Hashimoto fullname: Hashimoto, Seiji organization: Program of Intelligence and Control, Cluster of Electronics and Mechanical Engineering, School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38257654$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkt9vFCEQx4mpsT_0wX_AbOKLPlyFhV3gyVxqq03OaBp9JsDOXrnswgm7Nv73nfPqpTU8QOAz35nvMKfkKKYIhLxm9JxzTT-UWtCaNi17Rk6YqMVC1TU9enQ-JqelbCitOefqBTnmqm5k24gTsvpup9vqKg1DugtxXfUpV8t5SjGNaS7V1-TCANVNcmkq1V1A9hPAtrqBEBH1MEKcqhXYHDH6JXne26HAq4f9jPy8uvxx8WWx-vb5-mK5WviG6mnReOhZ70Ey5p12rgPOoBOWOmppq1QPLaAvwRrBOso1MO2g5dr3EhrngJ-R671ul-zGbHMYbf5jkg3m70XKa2PzFPwAptEAVHQU5aXQIJTwXArVtQooZrKo9XGvtZ3dCJ1HP9kOT0SfvsRwa9bpt2EM62sURYV3Dwo5_ZqhTGYMxcMw2AjYQ1NrJlWrGr1D3_6HbtKcI_ZqRympUU4idb6n1hYd7BqNiT2uDsbg8et7_BOzlIrqWtK2xYD3-wCfUykZ-kP5jJrdhJjDhCD75rHfA_lvJPg9IiS3gQ |
CitedBy_id | crossref_primary_10_3390_pr12050881 crossref_primary_10_3390_s24092769 |
Cites_doi | 10.1108/01439911211217107 10.1038/nature16961 10.1109/TAC.2016.2638961 10.1109/TSMC.2020.2966631 10.1080/01691864.2019.1694068 10.1109/CDC.2009.5399744 10.3390/app13116847 10.3390/app9030368 10.1016/S0927-0507(05)80172-0 10.1177/0954407020954591 10.1109/TVT.2020.3014628 10.1007/978-3-642-03991-1 10.1109/ACCESS.2020.2975643 10.1007/978-3-540-73429-1 10.5772/51314 10.5772/61391 10.1243/09544070JAUTO1366 10.1007/s10514-020-09951-8 10.1109/TIV.2016.2578706 10.1017/CBO9780511804441 10.1109/OCEANS.2018.8604829 10.23919/ACC55779.2023.10155871 10.1016/j.jterra.2020.06.006 10.1080/00207179.2013.858829 10.1109/IVS.2019.8814130 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | NPM AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PIMPY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s24020561 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest - Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_59ee04d0d4a749e484c3748d68e088fa A780927066 10_3390_s24020561 38257654 |
Genre | Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | --- 123 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH ABDBF ABJCF ABUWG ADBBV AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BPHCQ BVXVI CCPQU CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO ITC KB. KQ8 L6V M1P M48 M7S MODMG M~E NPM OK1 P2P P62 PDBOC PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M AAYXX CITATION BGLVJ 7XB 8FK AZQEC DWQXO K9. PQEST PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c509t-5cef1fce711cb9bbde31ed4a0b0a0688fe6e33941541d039e19be639cf7e5bbe3 |
IEDL.DBID | RPM |
ISSN | 1424-8220 |
IngestDate | Tue Oct 22 15:14:54 EDT 2024 Tue Sep 17 21:28:52 EDT 2024 Sat Oct 26 04:56:02 EDT 2024 Sat Oct 26 19:17:48 EDT 2024 Tue Feb 06 05:31:35 EST 2024 Thu Sep 26 16:15:58 EDT 2024 Tue Oct 29 09:17:57 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | autonomous mobile robot velocity control deep reinforcement learning path following soft actor-critic |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-5cef1fce711cb9bbde31ed4a0b0a0688fe6e33941541d039e19be639cf7e5bbe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5194-0225 0000-0003-4460-8694 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154580/ |
PMID | 38257654 |
PQID | 2918798037 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_59ee04d0d4a749e484c3748d68e088fa pubmedcentral_primary_oai_pubmedcentral_nih_gov_11154580 proquest_miscellaneous_2917868590 proquest_journals_2918798037 gale_infotracacademiconefile_A780927066 crossref_primary_10_3390_s24020561 pubmed_primary_38257654 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Roshanianfard (ref_7) 2020; 91 Hancke (ref_3) 2010; 11 ref_14 ref_36 ref_13 ref_35 Huang (ref_10) 2010; 224 ref_34 ref_11 ref_33 ref_32 Shan (ref_8) 2015; 12 Puterman (ref_31) 1990; 2 Yu (ref_6) 2012; 39 ref_18 ref_17 ref_39 ref_16 ref_38 ref_15 ref_37 Isobe (ref_5) 2020; 34 Jin (ref_4) 2014; 87 Chen (ref_24) 2021; 235 Paden (ref_12) 2016; 1 Silver (ref_19) 2016; 529 Levine (ref_20) 2016; 17 ref_25 ref_45 Liu (ref_21) 2020; 51 ref_22 ref_44 Shan (ref_23) 2020; 69 ref_41 Hager (ref_30) 2006; 2 ref_40 ref_2 ref_29 ref_28 ref_27 ref_26 Ames (ref_43) 2016; 62 Alatise (ref_1) 2020; 8 Zhao (ref_9) 2012; 9 Morcego (ref_42) 2021; 45 |
References_xml | – volume: 39 start-page: 271 year: 2012 ident: ref_6 article-title: An autonomous restaurant service robot with high positioning accuracy publication-title: Ind. Robot. Int. J. doi: 10.1108/01439911211217107 contributor: fullname: Yu – volume: 529 start-page: 484 year: 2016 ident: ref_19 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 contributor: fullname: Silver – volume: 62 start-page: 3861 year: 2016 ident: ref_43 article-title: Control barrier function based quadratic programs for safety critical systems publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2016.2638961 contributor: fullname: Ames – ident: ref_32 – volume: 51 start-page: 6962 year: 2020 ident: ref_21 article-title: Multi-kernel online reinforcement learning for path tracking control of intelligent vehicles publication-title: IEEE Trans. Syst. Man, Cybern. Syst. doi: 10.1109/TSMC.2020.2966631 contributor: fullname: Liu – volume: 34 start-page: 157 year: 2020 ident: ref_5 article-title: System for augmented human–robot interaction through mixed reality and robot training by non-experts in customer service environments publication-title: Adv. Robot. doi: 10.1080/01691864.2019.1694068 contributor: fullname: Isobe – ident: ref_26 – volume: 2 start-page: 35 year: 2006 ident: ref_30 article-title: A survey of nonlinear conjugate gradient methods publication-title: Pac. J. Optim. contributor: fullname: Hager – ident: ref_34 – ident: ref_11 doi: 10.1109/CDC.2009.5399744 – ident: ref_35 doi: 10.3390/app13116847 – ident: ref_39 – ident: ref_40 – ident: ref_2 doi: 10.3390/app9030368 – ident: ref_37 – ident: ref_14 – volume: 2 start-page: 331 year: 1990 ident: ref_31 article-title: Markov decision processes publication-title: Handbooks in Operations Research and Management Science doi: 10.1016/S0927-0507(05)80172-0 contributor: fullname: Puterman – volume: 235 start-page: 541 year: 2021 ident: ref_24 article-title: Deep reinforcement learning based path tracking controller for autonomous vehicle publication-title: Inst. Mech. Eng. Part J. Automob. Eng. doi: 10.1177/0954407020954591 contributor: fullname: Chen – ident: ref_18 – volume: 69 start-page: 10581 year: 2020 ident: ref_23 article-title: A reinforcement learning-based adaptive path tracking approach for autonomous driving publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3014628 contributor: fullname: Shan – ident: ref_16 doi: 10.1007/978-3-642-03991-1 – volume: 8 start-page: 39830 year: 2020 ident: ref_1 article-title: A review on challenges of autonomous mobile robot and sensor fusion methods publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2975643 contributor: fullname: Alatise – ident: ref_15 doi: 10.1007/978-3-540-73429-1 – ident: ref_25 – volume: 9 start-page: 44 year: 2012 ident: ref_9 article-title: Design of a control system for an autonomous vehicle based on adaptive-pid publication-title: Int. J. Adv. Robot. Syst. doi: 10.5772/51314 contributor: fullname: Zhao – volume: 12 start-page: 134 year: 2015 ident: ref_8 article-title: CF-pursuit: A pursuit method with a clothoid fitting and a fuzzy controller for autonomous vehicles publication-title: Int. J. Adv. Robot. Syst. doi: 10.5772/61391 contributor: fullname: Shan – volume: 224 start-page: 997 year: 2010 ident: ref_10 article-title: Parallel auto-parking of a model vehicle using a self-organizing fuzzy controller publication-title: Proc. Inst. Mech. Eng. Part J. Automob. Eng. doi: 10.1243/09544070JAUTO1366 contributor: fullname: Huang – ident: ref_33 – ident: ref_27 – volume: 17 start-page: 1334 year: 2016 ident: ref_20 article-title: End-to-end training of deep visuomotor policies publication-title: J. Mach. Learn. Res. contributor: fullname: Levine – volume: 11 start-page: 307 year: 2010 ident: ref_3 article-title: Security challenges for user-oriented RFID applications within the Internet of thing publication-title: J. Internet Technol. contributor: fullname: Hancke – volume: 45 start-page: 119 year: 2021 ident: ref_42 article-title: Deep reinforcement learning for quadrotor path following with adaptive velocity publication-title: Auton. Robot. doi: 10.1007/s10514-020-09951-8 contributor: fullname: Morcego – volume: 1 start-page: 33 year: 2016 ident: ref_12 article-title: A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles publication-title: IEEE Trans. Intell. Veh. doi: 10.1109/TIV.2016.2578706 contributor: fullname: Paden – ident: ref_29 doi: 10.1017/CBO9780511804441 – ident: ref_41 – ident: ref_28 doi: 10.1109/OCEANS.2018.8604829 – ident: ref_44 doi: 10.23919/ACC55779.2023.10155871 – ident: ref_13 – volume: 91 start-page: 155 year: 2020 ident: ref_7 article-title: A review of autonomous agricultural vehicles (The experience of Hokkaido University) publication-title: J. Terramech. doi: 10.1016/j.jterra.2020.06.006 contributor: fullname: Roshanianfard – ident: ref_38 – volume: 87 start-page: 787 year: 2014 ident: ref_4 article-title: Navigation of autonomous vehicles for oil spill cleaning in dynamic and uncertain environments publication-title: Int. J. Control doi: 10.1080/00207179.2013.858829 contributor: fullname: Jin – ident: ref_17 – ident: ref_36 – ident: ref_45 – ident: ref_22 doi: 10.1109/IVS.2019.8814130 |
SSID | ssj0023338 |
Score | 2.4796376 |
Snippet | Autonomous mobile robots have become integral to daily life, providing crucial services across diverse domains. This paper focuses on path following, a... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 561 |
SubjectTerms | Algorithms autonomous mobile robot Control theory Deep learning deep reinforcement learning Distance learning Kinematics Machine learning path following Robotics Robots soft actor-critic Vehicles Velocity velocity control |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAlM_QggxC4hTVju3YPi4tqwpRhCoq9WbZzgS4JBWbqn-_M0l2tREHLlxtH5w3nswbf7xh7IOua5GyiWXdYoqCETqW0Rhb1s6IVPksYkNvhy--1edX-su1ud4r9UV3wiZ54Am4E-MBhG5Eo6PVHrTTmRRTmtoBOkg7USPht8nUnGopzLwmHSGFSf3Jhs4QiCsvos8o0v_3r3gvFi3vSe4FnvUT9nhmjHw1zfSQPYDuKXu0pyP4jH39jjyOr9Gk_R02cCSifHU70HsFTOz5RZ_Q9_lln_phw2nnlZ8B3PBLGGVT87hDyGel1Z_P2dX684_T83Iuk1BmjPZDaTK0ss1gpczJp9SAkoBwiSQilZRpoQZEASO1lo1QHqRPgMQktxZMSqBesIOu7-AV41USrm09kjiVdRIS8Y2k-KW0AVvFumDvt_CFm0kNI2AWQRiHHcYF-0TA7gaQgPXYgGYNs1nDv8xasI9klkA4IPY5zq8FcJ4kWBVW1glfWSRMBTveWi7M_rcJlacq6k4oW7B3u270HDoOiR0g-DTGOlyTXhTs5WTo3ZyVo0TM6IK5xRJYfNSyp_v9a1TnlnI8jBSv_wcMR-xhhSxq2vM5ZgfDn1t4gyxoSG_HBX8P9D4GHQ priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9gIHxDeBggxC4hTVSewkPqEtdFUhWlUrKvUW2c6k5ZIs3VT8fWYSb9gIiaudgzMznnkztt8AfFR5Lp3XNs4bSlEoQtvYal3EeamlS42Xtua3w2fn-eml-nalr0LBbRuuVe584uCo685zjfwoNdwXu5RZ8XnzK-auUXy6Glpo3IeDlDKFdAEHxyfnF-sp5cooAxv5hDJK7o-2fJbAmHkWhQay_n9d8l5Mmt-X3AtAq8fwKCBHsRxV_QTuYfsUHu7xCT6D7xeE58SKVNv9pgFBgFQs73p-t0AJvjjrHPkAse5c128FV2DFV8SNWONAn-qHSqEIjKvXz-FydfLjy2kc2iXEnqJ-H2uPTdJ4LJLEO-NcjVmCtbLSScutZRrMkaRAEVsltcwMJsYhARTfFKidw-wFLNquxVcgUifLpjEE5jKvnEzKxlpm_sqUxiK1eQQfduKrNiMrRkXZBMu4mmQcwTELdvqAiayHge72ugr7otIGUapa0joLZVCVyjMhTp2XSP6vsRF8YrVULAeSvbfh1QCtk4mrqmVRSpMWBJwiONxprgr7cFv9tZoI3k_TtIP4WMS2SMLnb4qSbNPICF6Oip7WnJWckGkVQTkzgdlPzWfanzcDS3eSDIeS8vX_1_UGHqSEk8aqziEs-ts7fEs4p3fvgjH_AWtw_xo priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoED4k1KQQYhcQo4iZ3YB4SWx6pCFKGKlXqLbGfSIqGk3U0F_Htmkmy0ERy42o7kfGN7vvHjG4AXKs-lD9rFeU0hCnloFzutizg3WvrUBukqfjt8_CU_WqlPp_p0D7Y5NkcAN_8M7Tif1Gr949Wvy99vacK_4YiTQvbXGz4hYCZ8Da6nrMfFN_jUdJiQZlmf0JrfdMXkD-UgMDT_dOaWevX-v9foHSc1v0C545GWt-HWSCXFYrD9HdjD5i7c3BEYvAefvxLBE0uydfuTCgQxVLG46vghA0X84rj1tCiIk9a33Ubwlqz4gHghTrDXUw391qEYJVjP7sNq-fHb-6N4zJ8QB6IBXawD1kkdsEiS4K33FWYJVspJLx3nmqkxR0KBXLhKKplZTKxHYiyhLlB7j9kD2G_aBh-BSL00dW2J3WVBeZmY2jmWAsuUxiJ1eQTPt_CVF4NMRknhBWNcThhH8I6BnRqwsnVf0K7PynGilNoiSlVJ6mehLCqjAivkVLlBWhBrF8FLNkvJOBD2wY3PCKifrGRVLgojbVoQk4rgcGu5cjuuytRyenUjsyKCZ1M1TSk-J3ENEvjcpjA0WK2M4OFg6KnPmeEITasIzGwIzH5qXtN8P-9lu5OkP6WUB_-D1WO4kRJ9GjZ7DmG_W1_hE6I_nX_aD-4_ZBgCVA priority: 102 providerName: Scholars Portal |
Title | Path Following for Autonomous Mobile Robots with Deep Reinforcement Learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38257654 https://www.proquest.com/docview/2918798037 https://www.proquest.com/docview/2917868590 https://pubmed.ncbi.nlm.nih.gov/PMC11154580 https://doaj.org/article/59ee04d0d4a749e484c3748d68e088fa |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SFEp6KH3XbbqopdCTs7ItWfJxk2YbSjcsSwN7M5I8TgONvWQd-vc78mNZ01svOkgyyDMjzTcj6RPAZ5Gm3DppwrSkEIU8tAmNlCpMteQ2zhw3hb87vLhKL6_F97VcH0A63IVpD-07e3ta_b47rW5_tWcrN3duOpwTmy4X51HU7vfw6SEckoUOMXofZiUUdXUcQgkF9NOt3z_wOPkYHifa42spRk6o5er_d0Xec0nj45J7_mf-DJ72wJHNugE-hwOsXsCTPTrBl_BjSXCOzUmz9R-qYIRH2eyh8dcWKL5ni9rSEsBWta2bLfMJWPYVccNW2LKnujZRyHrC1ZtXcD2_-Hl-GfavJYSOnH4TSodlVDpUUeRsZm2BSYSFMNxy41-WKTFFEgg5bBEVPMkwyiwSPnGlQmktJq_hqKorfAsstlyXZUZYLnHC8kiXxnjir0RIVLFJA_g0iC_fdKQYOQUTXtz5TtwBnHnB7jp4Huu2or6_yXtt5jJD5KLgNE4lMhRaOM-HU6QaafkrTQBfvFpyLweSvTP9pQEap-etymdK8yxWhJsCOBk0l_fTcJvHmX9MXfNEBfBx10wTyO-KmApJ-L6P0mSaGQ_gTafo3ZgHewlAj0xg9FPjFrLZlqR7sNF3___peziOCUJ1CZ8TOGruH_ADQaDGTsju14pKPf82gUdnF1fL1aRNJ1C5EHrSzoi_BpcMOg |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,12070,12779,21402,24332,27938,27939,31733,31734,33387,33388,33758,33759,43324,43614,43819,53806,53808,74081,74371,74638 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHKAHxJtAAYOQOEV1Eju2T2h5rBbYrVDVSnuzbGdSuCTbbir-PjNJdrsrJK52Ds7MeOabsf0NY-9lWYoQlU_LGlMUjNA-9UrptDRKhNxG4St6O7w4KWfn8vtSLceC23q8Vrnxib2jrtpINfLj3FJfbCMK_XF1mVLXKDpdHVto3GZ3iIeLuPP18ibhKjD_GtiECkztj9d0kkCIeS8G9VT9_zrknYi0f1tyJ_xMH7D7I27kk0HRD9ktaB6xwx02wcds_hPRHJ-iYts_OMARjvLJdUevFjC954s2oAfgp21ouzWn-iv_ArDip9CTp8a-TshHvtWLJ-x8-vXs8ywdmyWkEWN-l6oIdVZH0FkWgw2hgiKDSnoRhKfGMjWUgFLAeC2zShQWMhsA4UmsNagQoHjKDpq2geeM50GYurYI5Yoog8hM7T3xfhVSgc59mbB3G_G51cCJ4TCXIBm7rYwT9okEu_2AaKz7gfbqwo27wikLIGQlcJ1aWpBGRqLDqUoD6P1qn7APpBZHckDZRz--GcB1Em2Vm2gjbK4RNiXsaKM5N-7CtbuxmYS93U7j_qFDEd8ACp--0QYt04qEPRsUvV1zYSgdUzJhZs8E9n5qf6b5_avn6M6y_khSvPj_ut6wu7OzxdzNv538eMnu5YiYhvrOETvorq7hFSKeLrzuzfovSlMAtA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkJwQDxLoIBBSJyiOomdxwltaVcF2tVqRaXeItuZFC7Jtpuqf5-ZxBt2hcTVzsGZGc98Y4-_Afik0lRap02Y1pSiUIQ2odE6C9NcSxsXTpqK3w6fz9PTC_X9Ul_6-qe1L6vc-MTeUVet4zPyw7jgvtg58_HUvixicTz7sroOuYMU37T6dhr3YS9TZFUT2Ds6mS-WY_qVUDY2cAsllOgfrvlegfHzTkTqifv_dc9b8Wm3dnIrGM2ewGOPIsV0UPtTuIfNM3i0xS34HM4WhO3EjNTc3tGAIHAqprcdv2GgZF-ct5b8gVi2tu3Wgk9jxTHiSiyxp1J1_amh8OyrVy_gYnby8-tp6FsnhI4QQBdqh3VUO8yiyNnC2gqTCCtlpJWG28zUmCJJgaK3iiqZFBgVFgmsuDpDbS0mL2HStA2-AhFbmdd1QcAuccrKKK-NYRawRGnMYpMG8HEjvnI1MGSUlFmwjMtRxgEcsWDHD5jUuh9ob65Kv0dKXSBKVUlaZ6YKVLlyTI5TpTmSL6xNAJ9ZLSXLgWTvjH9BQOtkEqtymuWyiDMCUQEcbDRX-j25Lv9aUAAfxmnaTXxFYhok4fM3WU52WsgA9gdFj2tOck7OtAog3zGBnZ_anWl-_-oZu6Oov6CUr_-_rvfwgGy6PPs2__EGHsYEn4bDngOYdDe3-JbgT2ffebv-A6hGBlc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Path+Following+for+Autonomous+Mobile+Robots+with+Deep+Reinforcement+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cao%2C+Yu&rft.au=Ni%2C+Kan&rft.au=Kawaguchi%2C+Takahiro&rft.au=Hashimoto%2C+Seiji&rft.date=2024-01-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=2&rft.spage=561&rft_id=info:doi/10.3390%2Fs24020561&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24020561 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |