Reversing the direction of drug transport mediated by the human multidrug transporter P-glycoprotein

P-glycoprotein (P-gp), also known as ABCB1, is a cell membrane transporter that mediates the efflux of chemically dissimilar amphipathic drugs and confers resistance to chemotherapy in most cancers. Homologous transmembrane helices (TMHs) 6 and 12 of human P-gp connect the transmembrane domains with...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 47; pp. 29609 - 29617
Main Authors Sajid, Andaleeb, Lusvarghi, Sabrina, Murakami, Megumi, Chufan, Eduardo E., Abel, Biebele, Gottesman, Michael M., Durell, Stewart R., Ambudkar, Suresh V.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 24.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract P-glycoprotein (P-gp), also known as ABCB1, is a cell membrane transporter that mediates the efflux of chemically dissimilar amphipathic drugs and confers resistance to chemotherapy in most cancers. Homologous transmembrane helices (TMHs) 6 and 12 of human P-gp connect the transmembrane domains with its nucleotide-binding domains, and several residues in these TMHs contribute to the drug-binding pocket. To investigate the role of these helices in the transport function of P-gp, we substituted a group of 14 conserved residues (seven in both TMHs 6 and 12) with alanine and generated a mutant termed 14A. Although the 14A mutant lost the ability to pump most of the substrates tested out of cancer cells, surprisingly, it acquired a new function. It was able to import four substrates, including rhodamine 123 (Rh123) and the taxol derivative flutax-1. Similar to the efflux function of wild-type P-gp, we found that uptake by the 14A mutant is ATP hydrolysis-, substrate concentration-, and time-dependent. Consistent with the uptake function, the mutant P-gp also hypersensitizes HeLa cells to Rh123 by 2- to 2.5-fold. Further mutagenesis identified residues from both TMHs 6 and 12 that synergistically form a switch in the central region of the two helices that governs whether a given substrate is pumped out of or into the cell. Transforming P-gp or an ABC drug exporter from an efflux transporter into a drug uptake pump would constitute a paradigm shift in efforts to overcome cancer drug resistance.
AbstractList Significance The multidrug transporter P-glycoprotein protects tissues from xenobiotics and other toxic compounds by pumping them out of cells. This transporter has been implicated in altering the bioavailability of chemotherapeutic drugs and in the development of multidrug resistance in tumor cells. Despite decades of research, the modulation of P-glycoprotein to overcome drug resistance in the clinic has not been successful. Here, by substituting a group of 14 conserved residues in homologous transmembrane helices 6 and 12 with alanine, we generated a mutant that exhibits a change in the direction of transport from export to import for certain drug substrates including the taxol derivative flutax-1. The ability to convert P-glycoprotein into a drug importer provides a strategy to combat cancer drug resistance. P-glycoprotein (P-gp), also known as ABCB1, is a cell membrane transporter that mediates the efflux of chemically dissimilar amphipathic drugs and confers resistance to chemotherapy in most cancers. Homologous transmembrane helices (TMHs) 6 and 12 of human P-gp connect the transmembrane domains with its nucleotide-binding domains, and several residues in these TMHs contribute to the drug-binding pocket. To investigate the role of these helices in the transport function of P-gp, we substituted a group of 14 conserved residues (seven in both TMHs 6 and 12) with alanine and generated a mutant termed 14A. Although the 14A mutant lost the ability to pump most of the substrates tested out of cancer cells, surprisingly, it acquired a new function. It was able to import four substrates, including rhodamine 123 (Rh123) and the taxol derivative flutax-1. Similar to the efflux function of wild-type P-gp, we found that uptake by the 14A mutant is ATP hydrolysis-, substrate concentration-, and time-dependent. Consistent with the uptake function, the mutant P-gp also hypersensitizes HeLa cells to Rh123 by 2- to 2.5-fold. Further mutagenesis identified residues from both TMHs 6 and 12 that synergistically form a switch in the central region of the two helices that governs whether a given substrate is pumped out of or into the cell. Transforming P-gp or an ABC drug exporter from an efflux transporter into a drug uptake pump would constitute a paradigm shift in efforts to overcome cancer drug resistance.
P-glycoprotein (P-gp), also known as ABCB1, is a cell membrane transporter that mediates the efflux of chemically dissimilar amphipathic drugs and confers resistance to chemotherapy in most cancers. Homologous transmembrane helices (TMHs) 6 and 12 of human P-gp connect the transmembrane domains with its nucleotide-binding domains, and several residues in these TMHs contribute to the drug-binding pocket. To investigate the role of these helices in the transport function of P-gp, we substituted a group of 14 conserved residues (seven in both TMHs 6 and 12) with alanine and generated a mutant termed 14A. Although the 14A mutant lost the ability to pump most of the substrates tested out of cancer cells, surprisingly, it acquired a new function. It was able to import four substrates, including rhodamine 123 (Rh123) and the taxol derivative flutax-1. Similar to the efflux function of wild-type P-gp, we found that uptake by the 14A mutant is ATP hydrolysis-, substrate concentration-, and time-dependent. Consistent with the uptake function, the mutant P-gp also hypersensitizes HeLa cells to Rh123 by 2- to 2.5-fold. Further mutagenesis identified residues from both TMHs 6 and 12 that synergistically form a switch in the central region of the two helices that governs whether a given substrate is pumped out of or into the cell. Transforming P-gp or an ABC drug exporter from an efflux transporter into a drug uptake pump would constitute a paradigm shift in efforts to overcome cancer drug resistance.
The multidrug transporter P-glycoprotein protects tissues from xenobiotics and other toxic compounds by pumping them out of cells. This transporter has been implicated in altering the bioavailability of chemotherapeutic drugs and in the development of multidrug resistance in tumor cells. Despite decades of research, the modulation of P-glycoprotein to overcome drug resistance in the clinic has not been successful. Here, by substituting a group of 14 conserved residues in homologous transmembrane helices 6 and 12 with alanine, we generated a mutant that exhibits a change in the direction of transport from export to import for certain drug substrates including the taxol derivative flutax-1. The ability to convert P-glycoprotein into a drug importer provides a strategy to combat cancer drug resistance. P-glycoprotein (P-gp), also known as ABCB1, is a cell membrane transporter that mediates the efflux of chemically dissimilar amphipathic drugs and confers resistance to chemotherapy in most cancers. Homologous transmembrane helices (TMHs) 6 and 12 of human P-gp connect the transmembrane domains with its nucleotide-binding domains, and several residues in these TMHs contribute to the drug-binding pocket. To investigate the role of these helices in the transport function of P-gp, we substituted a group of 14 conserved residues (seven in both TMHs 6 and 12) with alanine and generated a mutant termed 14A. Although the 14A mutant lost the ability to pump most of the substrates tested out of cancer cells, surprisingly, it acquired a new function. It was able to import four substrates, including rhodamine 123 (Rh123) and the taxol derivative flutax-1. Similar to the efflux function of wild-type P-gp, we found that uptake by the 14A mutant is ATP hydrolysis-, substrate concentration-, and time-dependent. Consistent with the uptake function, the mutant P-gp also hypersensitizes HeLa cells to Rh123 by 2- to 2.5-fold. Further mutagenesis identified residues from both TMHs 6 and 12 that synergistically form a switch in the central region of the two helices that governs whether a given substrate is pumped out of or into the cell. Transforming P-gp or an ABC drug exporter from an efflux transporter into a drug uptake pump would constitute a paradigm shift in efforts to overcome cancer drug resistance.
Author Murakami, Megumi
Lusvarghi, Sabrina
Abel, Biebele
Ambudkar, Suresh V.
Durell, Stewart R.
Chufan, Eduardo E.
Gottesman, Michael M.
Sajid, Andaleeb
Author_xml – sequence: 1
  givenname: Andaleeb
  surname: Sajid
  fullname: Sajid, Andaleeb
– sequence: 2
  givenname: Sabrina
  surname: Lusvarghi
  fullname: Lusvarghi, Sabrina
– sequence: 3
  givenname: Megumi
  surname: Murakami
  fullname: Murakami, Megumi
– sequence: 4
  givenname: Eduardo E.
  surname: Chufan
  fullname: Chufan, Eduardo E.
– sequence: 5
  givenname: Biebele
  surname: Abel
  fullname: Abel, Biebele
– sequence: 6
  givenname: Michael M.
  surname: Gottesman
  fullname: Gottesman, Michael M.
– sequence: 7
  givenname: Stewart R.
  surname: Durell
  fullname: Durell, Stewart R.
– sequence: 8
  givenname: Suresh V.
  surname: Ambudkar
  fullname: Ambudkar, Suresh V.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33168729$$D View this record in MEDLINE/PubMed
BookMark eNpVkUFr3DAQhUVISTZpzzmlGHp2MpJsyboUSkibQKCltGchS-NdLbuSK8mB_fdxuummOQ3M--bNg3dGjkMMSMgFhSsKkl-PweQrBlQwCZTKI7KgoGgtGgXHZAHAZN01rDklZzmvAUC1HZyQU86p6CRTC-J-4iOm7MOyKiusnE9oi4-hikPl0jRvkwl5jKlUW3TeFHRVv_vLrqatCdV22hT_lsRU_aiXm52NY4oFfXhP3g1mk_HDyzwnv7_e_rq5qx--f7u_-fJQ2xZUqVvb2YbSHlsYpBGsZU3Le25tJ3pgzoDAwXFwihqO3QC0tVwgBe56oI5Jfk4-733HqZ_TWgxzpo0ek9-atNPReP1WCX6ll_FRSwm8VWI2-PRikOKfCXPR6zilMGfWrBFNJxrG1Exd7ymbYs4Jh8MHCvq5Fv1ci36tZb74-H-wA_-vhxm43APrXGI66EwoCR3l_AmJf5dF
CitedBy_id crossref_primary_10_3389_fphar_2024_1380371
crossref_primary_10_1038_s41568_023_00612_3
crossref_primary_10_1111_bcpt_13635
crossref_primary_10_1124_dmd_122_001110
crossref_primary_10_1038_s41589_022_01205_1
crossref_primary_10_1016_j_foodchem_2023_137156
crossref_primary_10_1002_slct_202304711
crossref_primary_10_3390_biom14020231
crossref_primary_10_1186_s43066_021_00127_2
crossref_primary_10_1021_acs_jchemed_2c00109
crossref_primary_10_1016_j_pestbp_2024_105899
crossref_primary_10_3390_molecules26185629
crossref_primary_10_1016_j_dcmed_2021_12_001
crossref_primary_10_1016_j_drup_2023_101009
crossref_primary_10_1248_cpb_c21_01021
crossref_primary_10_1016_j_drup_2024_101065
crossref_primary_10_3390_molecules27041420
crossref_primary_10_3390_cancers15133459
crossref_primary_10_1016_j_colsurfb_2023_113134
crossref_primary_10_3390_pharmaceutics13111829
crossref_primary_10_3390_pharmaceutics14061131
crossref_primary_10_1016_j_bbrc_2023_04_039
crossref_primary_10_1039_D4AN00803K
crossref_primary_10_1371_journal_pgen_1010115
crossref_primary_10_1111_php_13970
crossref_primary_10_1039_D2SC00841F
crossref_primary_10_3390_metabo14030163
crossref_primary_10_1038_s41467_024_46917_1
crossref_primary_10_20517_cdr_2023_152
Cites_doi 10.1007/978-3-319-23476-2_1
10.1038/nrc706
10.1016/j.pep.2019.03.002
10.1016/0005-2736(76)90160-7
10.1074/jbc.M103498200
10.1124/dmd.119.087734
10.1021/bi900373x
10.1016/j.bcp.2017.07.014
10.1073/pnas.0134257100
10.1126/science.aav7102
10.1016/0003-2697(73)90217-0
10.1371/journal.pone.0204693
10.1042/BCJ20190736
10.1038/ncomms1927
10.1124/dmd.111.042721
10.1002/jcc.20289
10.1016/j.febslet.2005.08.061
10.1021/bi973045u
10.1038/s41422-019-0222-z
10.1021/cr9000226
10.1074/jbc.272.34.20986
10.1016/0263-7855(96)00018-5
10.1038/s41598-018-30984-8
10.1126/science.aar7389
10.1016/bs.acr.2014.10.003
10.1107/S1399004715000978
10.1007/BF00373382
10.1038/nmeth.2089
10.1021/ct300400x
10.1126/science.2237415
10.1371/journal.pone.0082463
10.1074/jbc.M010044200
10.1038/nsmb.3216
10.1126/science.1071142
10.1074/jbc.M601917200
10.1016/j.omtm.2020.04.017
10.1038/s41586-020-2136-9
10.1074/jbc.M111.284554
10.1038/sj.onc.1206948
10.12688/f1000research.21295.1
10.1002/jcc.20945
10.1038/sj.leu.2400658
ContentType Journal Article
Copyright Copyright © 2020 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Nov 24, 2020
Copyright © 2020 the Author(s). Published by PNAS. 2020
Copyright_xml – notice: Copyright © 2020 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Nov 24, 2020
– notice: Copyright © 2020 the Author(s). Published by PNAS. 2020
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
DOI 10.1073/pnas.2016270117
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
DatabaseTitleList CrossRef


MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 29617
ExternalDocumentID 10_1073_pnas_2016270117
33168729
26970813
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural Research Program, NIH
  grantid: n/a
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c509t-5c8c411be50f7a6252453b3cc86b02da06efd30d91a3e8f015c36e103db01d273
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:25:48 EDT 2024
Thu Oct 10 19:33:52 EDT 2024
Fri Aug 23 01:31:49 EDT 2024
Sat Sep 28 08:45:37 EDT 2024
Fri Feb 02 07:18:37 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords P-glycoprotein
drug transport
multidrug resistance
mechanism
ABC transporter
Language English
License Copyright © 2020 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-5c8c411be50f7a6252453b3cc86b02da06efd30d91a3e8f015c36e103db01d273
Notes Author contributions: A.S., S.L., E.E.C., and S.V.A. designed research; A.S., S.L., M.M., E.E.C., and B.A. performed research; A.S., S.L., M.M., E.E.C., and B.A. analyzed data; S.R.D. carried out in silico studies including molecular dynamics simulations; A.S., S.L., M.M.G., S.R.D., and S.V.A. wrote the paper; and S.V.A. supervised the study.
Reviewers: B.B., University of Kentucky; and C.V.S., Purdue University.
Contributed by Michael M. Gottesman, September 30, 2020 (sent for review July 31, 2020; reviewed by Björn Bauer and Cynthia Vianne Stauffacher)
ORCID 0000-0001-8908-2097
0000-0001-6248-4985
0000-0002-3920-2166
0000-0002-2639-4955
0000-0003-1793-0450
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703596/
PMID 33168729
PQID 2464864229
PQPubID 42026
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7703596
proquest_journals_2464864229
crossref_primary_10_1073_pnas_2016270117
pubmed_primary_33168729
jstor_primary_26970813
PublicationCentury 2000
PublicationDate 2020-11-24
PublicationDateYYYYMMDD 2020-11-24
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
Swier L. J. Y. M. (e_1_3_4_32_2) 2016
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
Darzynkiewicz Z. (e_1_3_4_19_2) 1982; 42
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_14_2
Stein W. D. (e_1_3_4_22_2) 2015
e_1_3_4_35_2
e_1_3_4_17_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – start-page: 3
  volume-title: ABC Transporters–40 Years on
  year: 2016
  ident: e_1_3_4_32_2
  doi: 10.1007/978-3-319-23476-2_1
  contributor:
    fullname: Swier L. J. Y. M.
– ident: e_1_3_4_3_2
  doi: 10.1038/nrc706
– ident: e_1_3_4_40_2
  doi: 10.1016/j.pep.2019.03.002
– ident: e_1_3_4_4_2
  doi: 10.1016/0005-2736(76)90160-7
– ident: e_1_3_4_12_2
  doi: 10.1074/jbc.M103498200
– ident: e_1_3_4_35_2
  doi: 10.1124/dmd.119.087734
– volume-title: Channels, Carriers, and Pumps: An Introduction to Membrane Transport
  year: 2015
  ident: e_1_3_4_22_2
  contributor:
    fullname: Stein W. D.
– ident: e_1_3_4_14_2
  doi: 10.1021/bi900373x
– ident: e_1_3_4_9_2
  doi: 10.1016/j.bcp.2017.07.014
– ident: e_1_3_4_29_2
  doi: 10.1073/pnas.0134257100
– ident: e_1_3_4_5_2
  doi: 10.1126/science.aav7102
– ident: e_1_3_4_38_2
  doi: 10.1016/0003-2697(73)90217-0
– ident: e_1_3_4_10_2
  doi: 10.1371/journal.pone.0204693
– ident: e_1_3_4_23_2
  doi: 10.1042/BCJ20190736
– ident: e_1_3_4_26_2
  doi: 10.1038/ncomms1927
– ident: e_1_3_4_34_2
  doi: 10.1124/dmd.111.042721
– ident: e_1_3_4_41_2
  doi: 10.1002/jcc.20289
– ident: e_1_3_4_28_2
  doi: 10.1016/j.febslet.2005.08.061
– volume: 42
  start-page: 799
  year: 1982
  ident: e_1_3_4_19_2
  article-title: Interaction of rhodamine 123 with living cells studied by flow cytometry
  publication-title: Cancer Res.
  contributor:
    fullname: Darzynkiewicz Z.
– ident: e_1_3_4_36_2
  doi: 10.1021/bi973045u
– ident: e_1_3_4_27_2
  doi: 10.1038/s41422-019-0222-z
– ident: e_1_3_4_2_2
  doi: 10.1021/cr9000226
– ident: e_1_3_4_13_2
  doi: 10.1074/jbc.272.34.20986
– ident: e_1_3_4_44_2
  doi: 10.1016/0263-7855(96)00018-5
– ident: e_1_3_4_16_2
  doi: 10.1038/s41598-018-30984-8
– ident: e_1_3_4_6_2
  doi: 10.1126/science.aar7389
– ident: e_1_3_4_15_2
  doi: 10.1016/bs.acr.2014.10.003
– ident: e_1_3_4_11_2
  doi: 10.1107/S1399004715000978
– ident: e_1_3_4_21_2
  doi: 10.1007/BF00373382
– ident: e_1_3_4_39_2
  doi: 10.1038/nmeth.2089
– ident: e_1_3_4_42_2
  doi: 10.1021/ct300400x
– ident: e_1_3_4_24_2
  doi: 10.1126/science.2237415
– ident: e_1_3_4_8_2
  doi: 10.1371/journal.pone.0082463
– ident: e_1_3_4_37_2
  doi: 10.1074/jbc.M010044200
– ident: e_1_3_4_25_2
  doi: 10.1038/nsmb.3216
– ident: e_1_3_4_31_2
  doi: 10.1126/science.1071142
– ident: e_1_3_4_20_2
  doi: 10.1074/jbc.M601917200
– ident: e_1_3_4_33_2
  doi: 10.1016/j.omtm.2020.04.017
– ident: e_1_3_4_30_2
  doi: 10.1038/s41586-020-2136-9
– ident: e_1_3_4_17_2
  doi: 10.1074/jbc.M111.284554
– ident: e_1_3_4_1_2
  doi: 10.1038/sj.onc.1206948
– ident: e_1_3_4_7_2
  doi: 10.12688/f1000research.21295.1
– ident: e_1_3_4_43_2
  doi: 10.1002/jcc.20945
– ident: e_1_3_4_18_2
  doi: 10.1038/sj.leu.2400658
SSID ssj0009580
Score 2.5301752
Snippet P-glycoprotein (P-gp), also known as ABCB1, is a cell membrane transporter that mediates the efflux of chemically dissimilar amphipathic drugs and confers...
Significance The multidrug transporter P-glycoprotein protects tissues from xenobiotics and other toxic compounds by pumping them out of cells. This...
The multidrug transporter P-glycoprotein protects tissues from xenobiotics and other toxic compounds by pumping them out of cells. This transporter has been...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 29609
SubjectTerms Adenosine triphosphate
Alanine
Amino Acid Substitution - physiology
Animals
ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism
ATP-Binding Cassette Transporters - metabolism
Binding
Binding Sites - physiology
Biological Sciences
Biological Transport - physiology
Cancer
Cell Line
Cell Line, Tumor
Cell membranes
Chemotherapy
Domains
Drug resistance
Drug Resistance, Multiple - physiology
Drug Resistance, Neoplasm - physiology
Efflux
Glycoproteins
HeLa Cells
Helices
Homology
Humans
Insecta
Molecular Docking Simulation - methods
Mutagenesis
Mutants
Nucleotides
P-Glycoprotein
Paclitaxel
Pharmaceutical Preparations - metabolism
Residues
Rhodamine
Rhodamine 123 - metabolism
Substrate Specificity - physiology
Substrates
Taxol
Transmembrane domains
Title Reversing the direction of drug transport mediated by the human multidrug transporter P-glycoprotein
URI https://www.jstor.org/stable/26970813
https://www.ncbi.nlm.nih.gov/pubmed/33168729
https://www.proquest.com/docview/2464864229
https://pubmed.ncbi.nlm.nih.gov/PMC7703596
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS-RAEC3Ug3hZdP3YqLv0YQ96aCf9nRxFVmTBRUTBW0h_6YBmhnE8-O-tdJLREU97TapD6FedfkVevQb47axSypWRljxyKh0TtA5O0yKKUJfaspDEmJf_9MWt_Hun7lZADb0wSbTv7PikeXw6acYPSVs5fXKjQSc2uro8M6Y1ntOjVVjFBB1K9IXTbtH1nXD8_EouBz8fI0bTpm4dupnmprVC24B10Z7b1PHL912pEyZ-RTk_Kyc_bEXnm_Ct55DktHvXLVgJzXfY6lfpMznqraSPt8FfhyS7aO4JEj3S7V-IBJlE4mcveHXwNiephQTpJ7GvKTYd3keS3nA5MszIFb1_fHWT5PEwbnbg9vzPzdkF7c9VoA7pwZwqVzjJmA0qj6bGAohLJaxwrtA2577OdYhe5L5ktQhFRMLghA4sF97mzCPf2YW1ZtKEH0CkrAutPK9NyCXzGp_mVJRB2-iRi7AMjoZ5raadfUaVfnsbUbVoVO9oZLCb5n0Rx3VpkLCIDA4HIKp-geE4qWWBtRMvM9jrMFkMHEDNwCyhtQhoLbWX72CmJWvtPrP2_3vkAWzwtiJnjHJ5CGvz2Uv4ibRlbn-lNH0DZovtow
link.rule.ids 230,315,730,783,787,888,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qRYJuCgUKgQJesCgLz8TvZIkqqgE6VYVa1F0Uv9oRbWY0zCzar8dx4ilTsYFtfK8l6_hxrnJ8DPDBaCGEKT0uqaeYG8Jw7YzEhWeuLqUmLooxx8dydMa_novzDRDpLkwU7Rs9GTRX14Nmchm1lbNrM0w6seHJ-ECp1nhODh_Aw7Bec5mK9JXXbtHdPKFhA-aUJ0cfxYazpm49uomkqjVD24JHrH25qWOYd-dSJ038G-m8r5384zA6fAI_0jA6DcrPwXKhB-b2nsPjP4_zKWz39BR96pp3YMM1z2Cn3wB-of3epfrjc7DfXVR0NBcocEjUHY0BZDT1yM6X4WuyTUfxdkpgtkjfxNj4LiCKUsb1SDdHJ_ji6sZMo33EpHkBZ4efTw9GuH-yAZvAPBZYmMJwQrQTuVd1qK0oF0wzYwqpc2rrXDpvWW5LUjNX-MBFDJOO5MzqnNhApXZhs5k27hUgzutCCktr5XJOrAy9GeG5k9rbQHNIBvsJsGrWOXNU8Y-6YlULc3UHcwa7EdBVHJWlClyIZbCXEK76tRvyuORFKMtomcHLDuxVYpotGai1abAKaN2611sCuNG1uwfz9X9nvofHo9PxUXX05fjbG9iibeFPCKZ8DzYX86V7G9jRQr-La-E32fMPrw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9RAFH5RTAgXFRStoM6BAx5m2_ndHgm6AQSyIZIQL03nF26E7mbdPeBf73TaLizxxLV9r8nkmx_fS7_5HsCe0UIIU3hcUE8xN4ThyhmJc89cVUhNXBRjnp3Lo0t-ciWuHrT6iqJ9o8eD-uZ2UI9_RW3l9NakvU4sHZ0dKtUYz8l0an36HF6ENZvlfaG-9NvN29snNGzCnPLe1UexdFpXjU83kVQ1hmgbsM6a7k0ty7w_m1p54v-I52P95IMDafgKfvZDaXUovweLuR6Yv49cHp801tfwsqOp6KAN2YRnrt6CzW4j-IP2O7fqL2_AXrio7KivUeCSqD0iA9ho4pGdLcLT3j4dxVsqgeEifRdjY39AFCWNq5Fuhkb4-ubOTKKNxLh-C5fDbz8Oj3DXugGbwEDmWJjccEK0E5lXVaixKBdMM2NyqTNqq0w6b1lmC1Ixl_vASQyTjmTM6ozYQKm2Ya2e1O49IM6rXApLK-UyTqwMXzPCcye1t4HukAT2e9DKaevQUcY_64qVDdTlPdQJbEdQl3FUFipwIpbAbo9y2a3hkMclz0N5RosE3rWALxP7GZOAWpkKy4DGtXv1TQA4und3gH54cuZnWB99HZanx-ffd2CDNvU_IZjyXVibzxbuYyBJc_0pLod_WWISLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversing+the+direction+of+drug+transport+mediated+by+the+human+multidrug+transporter+P-glycoprotein&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Sajid%2C+Andaleeb&rft.au=Lusvarghi%2C+Sabrina&rft.au=Murakami%2C+Megumi&rft.au=Chufan%2C+Eduardo+E&rft.date=2020-11-24&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=47&rft.spage=29609&rft_id=info:doi/10.1073%2Fpnas.2016270117&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon