Reversing the direction of drug transport mediated by the human multidrug transporter P-glycoprotein
P-glycoprotein (P-gp), also known as ABCB1, is a cell membrane transporter that mediates the efflux of chemically dissimilar amphipathic drugs and confers resistance to chemotherapy in most cancers. Homologous transmembrane helices (TMHs) 6 and 12 of human P-gp connect the transmembrane domains with...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 47; pp. 29609 - 29617 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
24.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | P-glycoprotein (P-gp), also known as ABCB1, is a cell membrane transporter that mediates the efflux of chemically dissimilar amphipathic drugs and confers resistance to chemotherapy in most cancers. Homologous transmembrane helices (TMHs) 6 and 12 of human P-gp connect the transmembrane domains with its nucleotide-binding domains, and several residues in these TMHs contribute to the drug-binding pocket. To investigate the role of these helices in the transport function of P-gp, we substituted a group of 14 conserved residues (seven in both TMHs 6 and 12) with alanine and generated a mutant termed 14A. Although the 14A mutant lost the ability to pump most of the substrates tested out of cancer cells, surprisingly, it acquired a new function. It was able to import four substrates, including rhodamine 123 (Rh123) and the taxol derivative flutax-1. Similar to the efflux function of wild-type P-gp, we found that uptake by the 14A mutant is ATP hydrolysis-, substrate concentration-, and time-dependent. Consistent with the uptake function, the mutant P-gp also hypersensitizes HeLa cells to Rh123 by 2- to 2.5-fold. Further mutagenesis identified residues from both TMHs 6 and 12 that synergistically form a switch in the central region of the two helices that governs whether a given substrate is pumped out of or into the cell. Transforming P-gp or an ABC drug exporter from an efflux transporter into a drug uptake pump would constitute a paradigm shift in efforts to overcome cancer drug resistance. |
---|---|
AbstractList | Significance
The multidrug transporter P-glycoprotein protects tissues from xenobiotics and other toxic compounds by pumping them out of cells. This transporter has been implicated in altering the bioavailability of chemotherapeutic drugs and in the development of multidrug resistance in tumor cells. Despite decades of research, the modulation of P-glycoprotein to overcome drug resistance in the clinic has not been successful. Here, by substituting a group of 14 conserved residues in homologous transmembrane helices 6 and 12 with alanine, we generated a mutant that exhibits a change in the direction of transport from export to import for certain drug substrates including the taxol derivative flutax-1. The ability to convert P-glycoprotein into a drug importer provides a strategy to combat cancer drug resistance.
P-glycoprotein (P-gp), also known as ABCB1, is a cell membrane transporter that mediates the efflux of chemically dissimilar amphipathic drugs and confers resistance to chemotherapy in most cancers. Homologous transmembrane helices (TMHs) 6 and 12 of human P-gp connect the transmembrane domains with its nucleotide-binding domains, and several residues in these TMHs contribute to the drug-binding pocket. To investigate the role of these helices in the transport function of P-gp, we substituted a group of 14 conserved residues (seven in both TMHs 6 and 12) with alanine and generated a mutant termed 14A. Although the 14A mutant lost the ability to pump most of the substrates tested out of cancer cells, surprisingly, it acquired a new function. It was able to import four substrates, including rhodamine 123 (Rh123) and the taxol derivative flutax-1. Similar to the efflux function of wild-type P-gp, we found that uptake by the 14A mutant is ATP hydrolysis-, substrate concentration-, and time-dependent. Consistent with the uptake function, the mutant P-gp also hypersensitizes HeLa cells to Rh123 by 2- to 2.5-fold. Further mutagenesis identified residues from both TMHs 6 and 12 that synergistically form a switch in the central region of the two helices that governs whether a given substrate is pumped out of or into the cell. Transforming P-gp or an ABC drug exporter from an efflux transporter into a drug uptake pump would constitute a paradigm shift in efforts to overcome cancer drug resistance. P-glycoprotein (P-gp), also known as ABCB1, is a cell membrane transporter that mediates the efflux of chemically dissimilar amphipathic drugs and confers resistance to chemotherapy in most cancers. Homologous transmembrane helices (TMHs) 6 and 12 of human P-gp connect the transmembrane domains with its nucleotide-binding domains, and several residues in these TMHs contribute to the drug-binding pocket. To investigate the role of these helices in the transport function of P-gp, we substituted a group of 14 conserved residues (seven in both TMHs 6 and 12) with alanine and generated a mutant termed 14A. Although the 14A mutant lost the ability to pump most of the substrates tested out of cancer cells, surprisingly, it acquired a new function. It was able to import four substrates, including rhodamine 123 (Rh123) and the taxol derivative flutax-1. Similar to the efflux function of wild-type P-gp, we found that uptake by the 14A mutant is ATP hydrolysis-, substrate concentration-, and time-dependent. Consistent with the uptake function, the mutant P-gp also hypersensitizes HeLa cells to Rh123 by 2- to 2.5-fold. Further mutagenesis identified residues from both TMHs 6 and 12 that synergistically form a switch in the central region of the two helices that governs whether a given substrate is pumped out of or into the cell. Transforming P-gp or an ABC drug exporter from an efflux transporter into a drug uptake pump would constitute a paradigm shift in efforts to overcome cancer drug resistance. The multidrug transporter P-glycoprotein protects tissues from xenobiotics and other toxic compounds by pumping them out of cells. This transporter has been implicated in altering the bioavailability of chemotherapeutic drugs and in the development of multidrug resistance in tumor cells. Despite decades of research, the modulation of P-glycoprotein to overcome drug resistance in the clinic has not been successful. Here, by substituting a group of 14 conserved residues in homologous transmembrane helices 6 and 12 with alanine, we generated a mutant that exhibits a change in the direction of transport from export to import for certain drug substrates including the taxol derivative flutax-1. The ability to convert P-glycoprotein into a drug importer provides a strategy to combat cancer drug resistance. P-glycoprotein (P-gp), also known as ABCB1, is a cell membrane transporter that mediates the efflux of chemically dissimilar amphipathic drugs and confers resistance to chemotherapy in most cancers. Homologous transmembrane helices (TMHs) 6 and 12 of human P-gp connect the transmembrane domains with its nucleotide-binding domains, and several residues in these TMHs contribute to the drug-binding pocket. To investigate the role of these helices in the transport function of P-gp, we substituted a group of 14 conserved residues (seven in both TMHs 6 and 12) with alanine and generated a mutant termed 14A. Although the 14A mutant lost the ability to pump most of the substrates tested out of cancer cells, surprisingly, it acquired a new function. It was able to import four substrates, including rhodamine 123 (Rh123) and the taxol derivative flutax-1. Similar to the efflux function of wild-type P-gp, we found that uptake by the 14A mutant is ATP hydrolysis-, substrate concentration-, and time-dependent. Consistent with the uptake function, the mutant P-gp also hypersensitizes HeLa cells to Rh123 by 2- to 2.5-fold. Further mutagenesis identified residues from both TMHs 6 and 12 that synergistically form a switch in the central region of the two helices that governs whether a given substrate is pumped out of or into the cell. Transforming P-gp or an ABC drug exporter from an efflux transporter into a drug uptake pump would constitute a paradigm shift in efforts to overcome cancer drug resistance. |
Author | Murakami, Megumi Lusvarghi, Sabrina Abel, Biebele Ambudkar, Suresh V. Durell, Stewart R. Chufan, Eduardo E. Gottesman, Michael M. Sajid, Andaleeb |
Author_xml | – sequence: 1 givenname: Andaleeb surname: Sajid fullname: Sajid, Andaleeb – sequence: 2 givenname: Sabrina surname: Lusvarghi fullname: Lusvarghi, Sabrina – sequence: 3 givenname: Megumi surname: Murakami fullname: Murakami, Megumi – sequence: 4 givenname: Eduardo E. surname: Chufan fullname: Chufan, Eduardo E. – sequence: 5 givenname: Biebele surname: Abel fullname: Abel, Biebele – sequence: 6 givenname: Michael M. surname: Gottesman fullname: Gottesman, Michael M. – sequence: 7 givenname: Stewart R. surname: Durell fullname: Durell, Stewart R. – sequence: 8 givenname: Suresh V. surname: Ambudkar fullname: Ambudkar, Suresh V. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33168729$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUFr3DAQhUVISTZpzzmlGHp2MpJsyboUSkibQKCltGchS-NdLbuSK8mB_fdxuummOQ3M--bNg3dGjkMMSMgFhSsKkl-PweQrBlQwCZTKI7KgoGgtGgXHZAHAZN01rDklZzmvAUC1HZyQU86p6CRTC-J-4iOm7MOyKiusnE9oi4-hikPl0jRvkwl5jKlUW3TeFHRVv_vLrqatCdV22hT_lsRU_aiXm52NY4oFfXhP3g1mk_HDyzwnv7_e_rq5qx--f7u_-fJQ2xZUqVvb2YbSHlsYpBGsZU3Le25tJ3pgzoDAwXFwihqO3QC0tVwgBe56oI5Jfk4-733HqZ_TWgxzpo0ek9-atNPReP1WCX6ll_FRSwm8VWI2-PRikOKfCXPR6zilMGfWrBFNJxrG1Exd7ymbYs4Jh8MHCvq5Fv1ci36tZb74-H-wA_-vhxm43APrXGI66EwoCR3l_AmJf5dF |
CitedBy_id | crossref_primary_10_3389_fphar_2024_1380371 crossref_primary_10_1038_s41568_023_00612_3 crossref_primary_10_1111_bcpt_13635 crossref_primary_10_1124_dmd_122_001110 crossref_primary_10_1038_s41589_022_01205_1 crossref_primary_10_1016_j_foodchem_2023_137156 crossref_primary_10_1002_slct_202304711 crossref_primary_10_3390_biom14020231 crossref_primary_10_1186_s43066_021_00127_2 crossref_primary_10_1021_acs_jchemed_2c00109 crossref_primary_10_1016_j_pestbp_2024_105899 crossref_primary_10_3390_molecules26185629 crossref_primary_10_1016_j_dcmed_2021_12_001 crossref_primary_10_1016_j_drup_2023_101009 crossref_primary_10_1248_cpb_c21_01021 crossref_primary_10_1016_j_drup_2024_101065 crossref_primary_10_3390_molecules27041420 crossref_primary_10_3390_cancers15133459 crossref_primary_10_1016_j_colsurfb_2023_113134 crossref_primary_10_3390_pharmaceutics13111829 crossref_primary_10_3390_pharmaceutics14061131 crossref_primary_10_1016_j_bbrc_2023_04_039 crossref_primary_10_1039_D4AN00803K crossref_primary_10_1371_journal_pgen_1010115 crossref_primary_10_1111_php_13970 crossref_primary_10_1039_D2SC00841F crossref_primary_10_3390_metabo14030163 crossref_primary_10_1038_s41467_024_46917_1 crossref_primary_10_20517_cdr_2023_152 |
Cites_doi | 10.1007/978-3-319-23476-2_1 10.1038/nrc706 10.1016/j.pep.2019.03.002 10.1016/0005-2736(76)90160-7 10.1074/jbc.M103498200 10.1124/dmd.119.087734 10.1021/bi900373x 10.1016/j.bcp.2017.07.014 10.1073/pnas.0134257100 10.1126/science.aav7102 10.1016/0003-2697(73)90217-0 10.1371/journal.pone.0204693 10.1042/BCJ20190736 10.1038/ncomms1927 10.1124/dmd.111.042721 10.1002/jcc.20289 10.1016/j.febslet.2005.08.061 10.1021/bi973045u 10.1038/s41422-019-0222-z 10.1021/cr9000226 10.1074/jbc.272.34.20986 10.1016/0263-7855(96)00018-5 10.1038/s41598-018-30984-8 10.1126/science.aar7389 10.1016/bs.acr.2014.10.003 10.1107/S1399004715000978 10.1007/BF00373382 10.1038/nmeth.2089 10.1021/ct300400x 10.1126/science.2237415 10.1371/journal.pone.0082463 10.1074/jbc.M010044200 10.1038/nsmb.3216 10.1126/science.1071142 10.1074/jbc.M601917200 10.1016/j.omtm.2020.04.017 10.1038/s41586-020-2136-9 10.1074/jbc.M111.284554 10.1038/sj.onc.1206948 10.12688/f1000research.21295.1 10.1002/jcc.20945 10.1038/sj.leu.2400658 |
ContentType | Journal Article |
Copyright | Copyright © 2020 the Author(s). Published by PNAS. Copyright National Academy of Sciences Nov 24, 2020 Copyright © 2020 the Author(s). Published by PNAS. 2020 |
Copyright_xml | – notice: Copyright © 2020 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Nov 24, 2020 – notice: Copyright © 2020 the Author(s). Published by PNAS. 2020 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1073/pnas.2016270117 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 29617 |
ExternalDocumentID | 10_1073_pnas_2016270117 33168729 26970813 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: Intramural Research Program, NIH grantid: n/a |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADZLD AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS F5P FRP GX1 HH5 HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZA5 ZCA ~02 ~KM ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c509t-5c8c411be50f7a6252453b3cc86b02da06efd30d91a3e8f015c36e103db01d273 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:25:48 EDT 2024 Thu Oct 10 19:33:52 EDT 2024 Fri Aug 23 01:31:49 EDT 2024 Sat Sep 28 08:45:37 EDT 2024 Fri Feb 02 07:18:37 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Keywords | P-glycoprotein drug transport multidrug resistance mechanism ABC transporter |
Language | English |
License | Copyright © 2020 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-5c8c411be50f7a6252453b3cc86b02da06efd30d91a3e8f015c36e103db01d273 |
Notes | Author contributions: A.S., S.L., E.E.C., and S.V.A. designed research; A.S., S.L., M.M., E.E.C., and B.A. performed research; A.S., S.L., M.M., E.E.C., and B.A. analyzed data; S.R.D. carried out in silico studies including molecular dynamics simulations; A.S., S.L., M.M.G., S.R.D., and S.V.A. wrote the paper; and S.V.A. supervised the study. Reviewers: B.B., University of Kentucky; and C.V.S., Purdue University. Contributed by Michael M. Gottesman, September 30, 2020 (sent for review July 31, 2020; reviewed by Björn Bauer and Cynthia Vianne Stauffacher) |
ORCID | 0000-0001-8908-2097 0000-0001-6248-4985 0000-0002-3920-2166 0000-0002-2639-4955 0000-0003-1793-0450 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703596/ |
PMID | 33168729 |
PQID | 2464864229 |
PQPubID | 42026 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7703596 proquest_journals_2464864229 crossref_primary_10_1073_pnas_2016270117 pubmed_primary_33168729 jstor_primary_26970813 |
PublicationCentury | 2000 |
PublicationDate | 2020-11-24 |
PublicationDateYYYYMMDD | 2020-11-24 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 Swier L. J. Y. M. (e_1_3_4_32_2) 2016 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 Darzynkiewicz Z. (e_1_3_4_19_2) 1982; 42 e_1_3_4_25_2 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_14_2 Stein W. D. (e_1_3_4_22_2) 2015 e_1_3_4_35_2 e_1_3_4_17_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – start-page: 3 volume-title: ABC Transporters–40 Years on year: 2016 ident: e_1_3_4_32_2 doi: 10.1007/978-3-319-23476-2_1 contributor: fullname: Swier L. J. Y. M. – ident: e_1_3_4_3_2 doi: 10.1038/nrc706 – ident: e_1_3_4_40_2 doi: 10.1016/j.pep.2019.03.002 – ident: e_1_3_4_4_2 doi: 10.1016/0005-2736(76)90160-7 – ident: e_1_3_4_12_2 doi: 10.1074/jbc.M103498200 – ident: e_1_3_4_35_2 doi: 10.1124/dmd.119.087734 – volume-title: Channels, Carriers, and Pumps: An Introduction to Membrane Transport year: 2015 ident: e_1_3_4_22_2 contributor: fullname: Stein W. D. – ident: e_1_3_4_14_2 doi: 10.1021/bi900373x – ident: e_1_3_4_9_2 doi: 10.1016/j.bcp.2017.07.014 – ident: e_1_3_4_29_2 doi: 10.1073/pnas.0134257100 – ident: e_1_3_4_5_2 doi: 10.1126/science.aav7102 – ident: e_1_3_4_38_2 doi: 10.1016/0003-2697(73)90217-0 – ident: e_1_3_4_10_2 doi: 10.1371/journal.pone.0204693 – ident: e_1_3_4_23_2 doi: 10.1042/BCJ20190736 – ident: e_1_3_4_26_2 doi: 10.1038/ncomms1927 – ident: e_1_3_4_34_2 doi: 10.1124/dmd.111.042721 – ident: e_1_3_4_41_2 doi: 10.1002/jcc.20289 – ident: e_1_3_4_28_2 doi: 10.1016/j.febslet.2005.08.061 – volume: 42 start-page: 799 year: 1982 ident: e_1_3_4_19_2 article-title: Interaction of rhodamine 123 with living cells studied by flow cytometry publication-title: Cancer Res. contributor: fullname: Darzynkiewicz Z. – ident: e_1_3_4_36_2 doi: 10.1021/bi973045u – ident: e_1_3_4_27_2 doi: 10.1038/s41422-019-0222-z – ident: e_1_3_4_2_2 doi: 10.1021/cr9000226 – ident: e_1_3_4_13_2 doi: 10.1074/jbc.272.34.20986 – ident: e_1_3_4_44_2 doi: 10.1016/0263-7855(96)00018-5 – ident: e_1_3_4_16_2 doi: 10.1038/s41598-018-30984-8 – ident: e_1_3_4_6_2 doi: 10.1126/science.aar7389 – ident: e_1_3_4_15_2 doi: 10.1016/bs.acr.2014.10.003 – ident: e_1_3_4_11_2 doi: 10.1107/S1399004715000978 – ident: e_1_3_4_21_2 doi: 10.1007/BF00373382 – ident: e_1_3_4_39_2 doi: 10.1038/nmeth.2089 – ident: e_1_3_4_42_2 doi: 10.1021/ct300400x – ident: e_1_3_4_24_2 doi: 10.1126/science.2237415 – ident: e_1_3_4_8_2 doi: 10.1371/journal.pone.0082463 – ident: e_1_3_4_37_2 doi: 10.1074/jbc.M010044200 – ident: e_1_3_4_25_2 doi: 10.1038/nsmb.3216 – ident: e_1_3_4_31_2 doi: 10.1126/science.1071142 – ident: e_1_3_4_20_2 doi: 10.1074/jbc.M601917200 – ident: e_1_3_4_33_2 doi: 10.1016/j.omtm.2020.04.017 – ident: e_1_3_4_30_2 doi: 10.1038/s41586-020-2136-9 – ident: e_1_3_4_17_2 doi: 10.1074/jbc.M111.284554 – ident: e_1_3_4_1_2 doi: 10.1038/sj.onc.1206948 – ident: e_1_3_4_7_2 doi: 10.12688/f1000research.21295.1 – ident: e_1_3_4_43_2 doi: 10.1002/jcc.20945 – ident: e_1_3_4_18_2 doi: 10.1038/sj.leu.2400658 |
SSID | ssj0009580 |
Score | 2.5301752 |
Snippet | P-glycoprotein (P-gp), also known as ABCB1, is a cell membrane transporter that mediates the efflux of chemically dissimilar amphipathic drugs and confers... Significance The multidrug transporter P-glycoprotein protects tissues from xenobiotics and other toxic compounds by pumping them out of cells. This... The multidrug transporter P-glycoprotein protects tissues from xenobiotics and other toxic compounds by pumping them out of cells. This transporter has been... |
SourceID | pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 29609 |
SubjectTerms | Adenosine triphosphate Alanine Amino Acid Substitution - physiology Animals ATP Binding Cassette Transporter, Subfamily B, Member 1 - metabolism ATP-Binding Cassette Transporters - metabolism Binding Binding Sites - physiology Biological Sciences Biological Transport - physiology Cancer Cell Line Cell Line, Tumor Cell membranes Chemotherapy Domains Drug resistance Drug Resistance, Multiple - physiology Drug Resistance, Neoplasm - physiology Efflux Glycoproteins HeLa Cells Helices Homology Humans Insecta Molecular Docking Simulation - methods Mutagenesis Mutants Nucleotides P-Glycoprotein Paclitaxel Pharmaceutical Preparations - metabolism Residues Rhodamine Rhodamine 123 - metabolism Substrate Specificity - physiology Substrates Taxol Transmembrane domains |
Title | Reversing the direction of drug transport mediated by the human multidrug transporter P-glycoprotein |
URI | https://www.jstor.org/stable/26970813 https://www.ncbi.nlm.nih.gov/pubmed/33168729 https://www.proquest.com/docview/2464864229 https://pubmed.ncbi.nlm.nih.gov/PMC7703596 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS-RAEC3Ug3hZdP3YqLv0YQ96aCf9nRxFVmTBRUTBW0h_6YBmhnE8-O-tdJLREU97TapD6FedfkVevQb47axSypWRljxyKh0TtA5O0yKKUJfaspDEmJf_9MWt_Hun7lZADb0wSbTv7PikeXw6acYPSVs5fXKjQSc2uro8M6Y1ntOjVVjFBB1K9IXTbtH1nXD8_EouBz8fI0bTpm4dupnmprVC24B10Z7b1PHL912pEyZ-RTk_Kyc_bEXnm_Ct55DktHvXLVgJzXfY6lfpMznqraSPt8FfhyS7aO4JEj3S7V-IBJlE4mcveHXwNiephQTpJ7GvKTYd3keS3nA5MszIFb1_fHWT5PEwbnbg9vzPzdkF7c9VoA7pwZwqVzjJmA0qj6bGAohLJaxwrtA2577OdYhe5L5ktQhFRMLghA4sF97mzCPf2YW1ZtKEH0CkrAutPK9NyCXzGp_mVJRB2-iRi7AMjoZ5raadfUaVfnsbUbVoVO9oZLCb5n0Rx3VpkLCIDA4HIKp-geE4qWWBtRMvM9jrMFkMHEDNwCyhtQhoLbWX72CmJWvtPrP2_3vkAWzwtiJnjHJ5CGvz2Uv4ibRlbn-lNH0DZovtow |
link.rule.ids | 230,315,730,783,787,888,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qRYJuCgUKgQJesCgLz8TvZIkqqgE6VYVa1F0Uv9oRbWY0zCzar8dx4ilTsYFtfK8l6_hxrnJ8DPDBaCGEKT0uqaeYG8Jw7YzEhWeuLqUmLooxx8dydMa_novzDRDpLkwU7Rs9GTRX14Nmchm1lbNrM0w6seHJ-ECp1nhODh_Aw7Bec5mK9JXXbtHdPKFhA-aUJ0cfxYazpm49uomkqjVD24JHrH25qWOYd-dSJ038G-m8r5384zA6fAI_0jA6DcrPwXKhB-b2nsPjP4_zKWz39BR96pp3YMM1z2Cn3wB-of3epfrjc7DfXVR0NBcocEjUHY0BZDT1yM6X4WuyTUfxdkpgtkjfxNj4LiCKUsb1SDdHJ_ji6sZMo33EpHkBZ4efTw9GuH-yAZvAPBZYmMJwQrQTuVd1qK0oF0wzYwqpc2rrXDpvWW5LUjNX-MBFDJOO5MzqnNhApXZhs5k27hUgzutCCktr5XJOrAy9GeG5k9rbQHNIBvsJsGrWOXNU8Y-6YlULc3UHcwa7EdBVHJWlClyIZbCXEK76tRvyuORFKMtomcHLDuxVYpotGai1abAKaN2611sCuNG1uwfz9X9nvofHo9PxUXX05fjbG9iibeFPCKZ8DzYX86V7G9jRQr-La-E32fMPrw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9RAFH5RTAgXFRStoM6BAx5m2_ndHgm6AQSyIZIQL03nF26E7mbdPeBf73TaLizxxLV9r8nkmx_fS7_5HsCe0UIIU3hcUE8xN4ThyhmJc89cVUhNXBRjnp3Lo0t-ciWuHrT6iqJ9o8eD-uZ2UI9_RW3l9NakvU4sHZ0dKtUYz8l0an36HF6ENZvlfaG-9NvN29snNGzCnPLe1UexdFpXjU83kVQ1hmgbsM6a7k0ty7w_m1p54v-I52P95IMDafgKfvZDaXUovweLuR6Yv49cHp801tfwsqOp6KAN2YRnrt6CzW4j-IP2O7fqL2_AXrio7KivUeCSqD0iA9ho4pGdLcLT3j4dxVsqgeEifRdjY39AFCWNq5Fuhkb4-ubOTKKNxLh-C5fDbz8Oj3DXugGbwEDmWJjccEK0E5lXVaixKBdMM2NyqTNqq0w6b1lmC1Ixl_vASQyTjmTM6ozYQKm2Ya2e1O49IM6rXApLK-UyTqwMXzPCcye1t4HukAT2e9DKaevQUcY_64qVDdTlPdQJbEdQl3FUFipwIpbAbo9y2a3hkMclz0N5RosE3rWALxP7GZOAWpkKy4DGtXv1TQA4und3gH54cuZnWB99HZanx-ffd2CDNvU_IZjyXVibzxbuYyBJc_0pLod_WWISLw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversing+the+direction+of+drug+transport+mediated+by+the+human+multidrug+transporter+P-glycoprotein&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Sajid%2C+Andaleeb&rft.au=Lusvarghi%2C+Sabrina&rft.au=Murakami%2C+Megumi&rft.au=Chufan%2C+Eduardo+E&rft.date=2020-11-24&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=47&rft.spage=29609&rft_id=info:doi/10.1073%2Fpnas.2016270117&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |