Bayesian-Based Hyperparameter Optimization of 1D-CNN for Structural Anomaly Detection

With the rapid development of sensor technology, structural health monitoring data have tended to become more massive. Deep learning has advantages when handling big data, and has therefore been widely researched for diagnosing structural anomalies. However, for the diagnosis of different structural...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 11; p. 5058
Main Authors Li, Xiaofei, Guo, Hainan, Xu, Langxing, Xing, Zezheng
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 25.05.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the rapid development of sensor technology, structural health monitoring data have tended to become more massive. Deep learning has advantages when handling big data, and has therefore been widely researched for diagnosing structural anomalies. However, for the diagnosis of different structural abnormalities, the model hyperparameters need to be adjusted according to different application scenarios, which is a complicated process. In this paper, a new strategy for building and optimizing 1D-CNN models is proposed that is suitable for diagnosing damage to different types of structure. This strategy involves optimizing hyperparameters with the Bayesian algorithm and improving model recognition accuracy using data fusion technology. Under the condition of sparse sensor measurement points, the entire structure is monitored, and the high-precision diagnosis of structural damage is performed. This method improves the applicability of the model to different structure detection scenarios, and avoids the shortcomings of traditional hyperparameter adjustment methods based on experience and subjectivity. In preliminary research on the simply supported beam test case, the efficient and accurate identification of parameter changes in small local elements was achieved. Furthermore, publicly available structural datasets were utilized to verify the robustness of the method, and a high identification accuracy rate of 99.85% was achieved. Compared with other methods described in the literature, this strategy shows significant advantages in terms of sensor occupancy rate, computational cost, and identification accuracy.
AbstractList With the rapid development of sensor technology, structural health monitoring data have tended to become more massive. Deep learning has advantages when handling big data, and has therefore been widely researched for diagnosing structural anomalies. However, for the diagnosis of different structural abnormalities, the model hyperparameters need to be adjusted according to different application scenarios, which is a complicated process. In this paper, a new strategy for building and optimizing 1D-CNN models is proposed that is suitable for diagnosing damage to different types of structure. This strategy involves optimizing hyperparameters with the Bayesian algorithm and improving model recognition accuracy using data fusion technology. Under the condition of sparse sensor measurement points, the entire structure is monitored, and the high-precision diagnosis of structural damage is performed. This method improves the applicability of the model to different structure detection scenarios, and avoids the shortcomings of traditional hyperparameter adjustment methods based on experience and subjectivity. In preliminary research on the simply supported beam test case, the efficient and accurate identification of parameter changes in small local elements was achieved. Furthermore, publicly available structural datasets were utilized to verify the robustness of the method, and a high identification accuracy rate of 99.85% was achieved. Compared with other methods described in the literature, this strategy shows significant advantages in terms of sensor occupancy rate, computational cost, and identification accuracy.
With the rapid development of sensor technology, structural health monitoring data have tended to become more massive. Deep learning has advantages when handling big data, and has therefore been widely researched for diagnosing structural anomalies. However, for the diagnosis of different structural abnormalities, the model hyperparameters need to be adjusted according to different application scenarios, which is a complicated process. In this paper, a new strategy for building and optimizing 1D-CNN models is proposed that is suitable for diagnosing damage to different types of structure. This strategy involves optimizing hyperparameters with the Bayesian algorithm and improving model recognition accuracy using data fusion technology. Under the condition of sparse sensor measurement points, the entire structure is monitored, and the high-precision diagnosis of structural damage is performed. This method improves the applicability of the model to different structure detection scenarios, and avoids the shortcomings of traditional hyperparameter adjustment methods based on experience and subjectivity. In preliminary research on the simply supported beam test case, the efficient and accurate identification of parameter changes in small local elements was achieved. Furthermore, publicly available structural datasets were utilized to verify the robustness of the method, and a high identification accuracy rate of 99.85% was achieved. Compared with other methods described in the literature, this strategy shows significant advantages in terms of sensor occupancy rate, computational cost, and identification accuracy.With the rapid development of sensor technology, structural health monitoring data have tended to become more massive. Deep learning has advantages when handling big data, and has therefore been widely researched for diagnosing structural anomalies. However, for the diagnosis of different structural abnormalities, the model hyperparameters need to be adjusted according to different application scenarios, which is a complicated process. In this paper, a new strategy for building and optimizing 1D-CNN models is proposed that is suitable for diagnosing damage to different types of structure. This strategy involves optimizing hyperparameters with the Bayesian algorithm and improving model recognition accuracy using data fusion technology. Under the condition of sparse sensor measurement points, the entire structure is monitored, and the high-precision diagnosis of structural damage is performed. This method improves the applicability of the model to different structure detection scenarios, and avoids the shortcomings of traditional hyperparameter adjustment methods based on experience and subjectivity. In preliminary research on the simply supported beam test case, the efficient and accurate identification of parameter changes in small local elements was achieved. Furthermore, publicly available structural datasets were utilized to verify the robustness of the method, and a high identification accuracy rate of 99.85% was achieved. Compared with other methods described in the literature, this strategy shows significant advantages in terms of sensor occupancy rate, computational cost, and identification accuracy.
Audience Academic
Author Guo, Hainan
Li, Xiaofei
Xu, Langxing
Xing, Zezheng
AuthorAffiliation 2 College of Information Science and Engineering, University of Jinan, Jinan 250022, China; xing_zz@stu.ujn.edu.cn
1 College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China; guohainan@dlmu.edu.cn (H.G.); xlx@dlmu.edu.cn (L.X.)
AuthorAffiliation_xml – name: 2 College of Information Science and Engineering, University of Jinan, Jinan 250022, China; xing_zz@stu.ujn.edu.cn
– name: 1 College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China; guohainan@dlmu.edu.cn (H.G.); xlx@dlmu.edu.cn (L.X.)
Author_xml – sequence: 1
  givenname: Xiaofei
  orcidid: 0000-0002-8836-2158
  surname: Li
  fullname: Li, Xiaofei
– sequence: 2
  givenname: Hainan
  surname: Guo
  fullname: Guo, Hainan
– sequence: 3
  givenname: Langxing
  surname: Xu
  fullname: Xu, Langxing
– sequence: 4
  givenname: Zezheng
  surname: Xing
  fullname: Xing, Zezheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37299785$$D View this record in MEDLINE/PubMed
BookMark eNplkk1v1DAQhi1URNuFA38AReICh7SOncTxCW23QCtV7QF6tibOZPEqiYOdIC2_nuluW7VFPtiaeeb1fB2zg8EPyNj7jJ9IqflpFDLLCl5Ur9hRlos8rYTgB0_eh-w4xg3nQkpZvWGHUgmtVVUcsdsz2GJ0MKRnELFJLrYjhhEC9DhhSG7GyfXuL0zOD4lvk-w8XV1fJ60PyY8pzHaaA3TJcvA9dNvknGLsHfqWvW6hi_ju_l6w229ff64u0qub75er5VVqC66ntKhlXelK16LmDWLZVnljCwDdCk4GqaDNc9QlglbKItpWN6LiktyqKQHkgl3udRsPGzMG10PYGg_O7Aw-rA2EydkODeqMNG1Z55bnNWqoeQlKlXVWW2WpMQv2Za81znWPjcVhotqeiT73DO6XWfs_JuOiKHKRkcKne4Xgf88YJ9O7aLHrYEA_RyMqkZdaFKok9OMLdOPnMFCvdhTPtMgrok721BqoAje0nj62dBrsnaUdaB3Zl6qgBHSpNQV8eFrDY_IP8ybgdA_Y4GMM2Brrpt10Sdl1VIu52yjzuFEU8flFxIPo_-w_tKPKlg
CitedBy_id crossref_primary_10_1016_j_jer_2025_01_001
crossref_primary_10_3390_cancers16122200
crossref_primary_10_1177_14759217241263954
crossref_primary_10_1016_j_ijpharm_2024_124001
crossref_primary_10_1177_10775463251315863
crossref_primary_10_1007_s12205_024_1994_3
crossref_primary_10_1016_j_knosys_2024_111785
crossref_primary_10_1016_j_dajour_2024_100470
crossref_primary_10_1016_j_ymssp_2024_112276
Cites_doi 10.2172/249299
10.1111/mice.12313
10.1177/1475921720916928
10.3390/s21123950
10.1016/j.jsv.2016.10.043
10.1016/j.eswa.2010.06.093
10.1111/mice.12517
10.1016/j.eswa.2007.08.008
10.1049/iet-wss.2018.5099
10.1016/j.measurement.2022.110939
10.1106/XU88-UW1T-A6AM-X7EA
10.1016/j.isatra.2022.01.013
10.1016/j.istruc.2020.12.036
10.1111/mice.12447
10.3390/sym13111998
10.1109/MCSoC.2019.00020
10.1016/j.autcon.2022.104271
10.1016/j.apenergy.2019.01.055
10.1016/S0141-0296(96)00149-6
10.1007/s10489-020-02092-6
10.3390/s20041059
10.3390/s22010328
10.1007/s13349-020-00434-z
10.1007/s00500-021-06629-w
10.1016/j.oceaneng.2022.111202
10.3390/s21237990
10.1016/j.jsv.2009.02.002
10.1016/j.ymssp.2021.108738
10.1016/j.jsv.2017.02.052
10.1016/j.istruc.2021.10.029
10.3390/s23010543
10.1007/s00704-021-03843-2
10.1006/jsvi.1997.0961
10.1155/2014/837963
10.1016/j.ymssp.2012.10.002
10.1007/s11012-016-0510-3
10.1177/1475921719846051
10.3390/coatings12030313
10.1021/acsaelm.0c00746
10.1016/j.measurement.2021.110101
10.3390/healthcare10030494
10.4028/www.scientific.net/KEM.569-570.1241
10.1016/j.jsv.2011.09.004
10.1016/j.neucom.2017.09.069
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23115058
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (OA)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
MEDLINE - Academic



PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_e9100dc6b4c04be9ab06a776b1bc7c23
PMC10255421
A752559699
37299785
10_3390_s23115058
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c509t-5b3b8989b2b0dee6f84dc5aa9f200de37af44e96ea977ceecf9d2803f207d6aa3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 00:36:44 EDT 2025
Thu Aug 21 18:37:56 EDT 2025
Fri Jul 11 08:26:32 EDT 2025
Fri Jul 25 20:02:23 EDT 2025
Tue Jun 10 20:11:31 EDT 2025
Wed Feb 19 02:23:39 EST 2025
Tue Jul 01 01:20:07 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords structural anomaly detection
1-D convolutional neural network
Bayesian optimization algorithm
decision-level fusion
vibration signals
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-5b3b8989b2b0dee6f84dc5aa9f200de37af44e96ea977ceecf9d2803f207d6aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8836-2158
OpenAccessLink https://doaj.org/article/e9100dc6b4c04be9ab06a776b1bc7c23
PMID 37299785
PQID 2824019248
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_e9100dc6b4c04be9ab06a776b1bc7c23
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10255421
proquest_miscellaneous_2824692576
proquest_journals_2824019248
gale_infotracacademiconefile_A752559699
pubmed_primary_37299785
crossref_citationtrail_10_3390_s23115058
crossref_primary_10_3390_s23115058
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-25
PublicationDateYYYYMMDD 2023-05-25
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-25
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Azimi (ref_50) 2020; 35
Lin (ref_38) 2017; 32
Wang (ref_33) 2021; 29
Abdeljaber (ref_34) 2017; 388
Li (ref_14) 2013; 569
Chang (ref_16) 2000; 11
Ratcliffe (ref_8) 1997; 204
Abdeljaber (ref_35) 2016; 2016
ref_19
Meisam (ref_21) 2022; 193
Ibrahim (ref_24) 2022; 147
Zhou (ref_18) 2014; 2014
ref_25
ref_22
Almutairi (ref_42) 2021; 34
He (ref_47) 2019; 237
Khiem (ref_10) 2014; 20
ref_28
ref_27
Truong (ref_49) 2022; 253
Guo (ref_20) 2020; 19
Mehrjoo (ref_17) 2008; 35
He (ref_30) 2020; 20
Tang (ref_29) 2022; 129
Sharma (ref_40) 2020; 10
Chen (ref_32) 2021; 51
Li (ref_31) 2021; 186
ref_37
Wedyan (ref_1) 2021; 3
Salawu (ref_7) 1997; 19
Zhang (ref_9) 2012; 331
Ragam (ref_2) 2019; 9
Capecchi (ref_11) 2016; 51
Abdeljaber (ref_36) 2018; 275
ref_46
ref_45
ref_43
Vigneshwaran (ref_26) 2022; 26
ref_3
Zhang (ref_39) 2019; 34
Takieldeen (ref_23) 2022; 72
Pedram (ref_15) 2017; 397
Jiang (ref_48) 2011; 38
Fang (ref_13) 2009; 324
Zhang (ref_12) 2013; 35
ref_5
ref_4
Flah (ref_44) 2022; 139
ref_6
Zhou (ref_41) 2022; 168
References_xml – volume: 20
  start-page: 1417
  year: 2014
  ident: ref_10
  article-title: A procedure for multiple crack identification in beam-like structures from natural vibration mode
  publication-title: J. Sound Vib.
– ident: ref_5
  doi: 10.2172/249299
– volume: 32
  start-page: 1025
  year: 2017
  ident: ref_38
  article-title: Structural Damage Detection with Automatic Feature-Extraction through Deep Learning
  publication-title: Comput-Aided Civ. Inf.
  doi: 10.1111/mice.12313
– volume: 20
  start-page: 1392
  year: 2020
  ident: ref_30
  article-title: Damage identification based on convolutional neural network and recurrence graph for beam bridge
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921720916928
– ident: ref_43
  doi: 10.3390/s21123950
– volume: 388
  start-page: 154
  year: 2017
  ident: ref_34
  article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.10.043
– volume: 38
  start-page: 511
  year: 2011
  ident: ref_48
  article-title: Two-stage structural damage detection using fuzzy neural networks and data fusion techniques
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2010.06.093
– volume: 35
  start-page: 597
  year: 2020
  ident: ref_50
  article-title: Structural health monitoring using extremely compressed data through deep learning
  publication-title: Comput.-Aided Civ. Inf.
  doi: 10.1111/mice.12517
– volume: 35
  start-page: 1122
  year: 2008
  ident: ref_17
  article-title: Damage detection of truss bridge joints using Artificial Neural Networks
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2007.08.008
– volume: 2016
  start-page: 1719
  year: 2016
  ident: ref_35
  article-title: Dynamic testing of a laboratory stadium structure
  publication-title: ASCE Geotech. Struct. Eng. Congr.
– volume: 9
  start-page: 103
  year: 2019
  ident: ref_2
  article-title: Application of MEMS-based accelerometer wireless sensor systems for monitoring of blast-induced ground vibration and structural health: A review
  publication-title: IET Wirel. Sens. Syst.
  doi: 10.1049/iet-wss.2018.5099
– volume: 193
  start-page: 110939
  year: 2022
  ident: ref_21
  article-title: State-of-the-art review on advancements of data mining in structural health monitoring
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110939
– volume: 11
  start-page: 32
  year: 2000
  ident: ref_16
  article-title: Structural damage detection using an iterative neural network
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1106/XU88-UW1T-A6AM-X7EA
– volume: 129
  start-page: 555
  year: 2022
  ident: ref_29
  article-title: Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization
  publication-title: Isa Trans.
  doi: 10.1016/j.isatra.2022.01.013
– volume: 29
  start-page: 1537
  year: 2021
  ident: ref_33
  article-title: A novel structural damage identification scheme based on deep learning framework
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.12.036
– volume: 34
  start-page: 822
  year: 2019
  ident: ref_39
  article-title: Vibration-based structural state identification by a 1-dimensional convolutional neural network
  publication-title: Comput.-Aided Civ. Inf.
  doi: 10.1111/mice.12447
– ident: ref_6
  doi: 10.3390/sym13111998
– ident: ref_22
  doi: 10.1109/MCSoC.2019.00020
– volume: 139
  start-page: 104271
  year: 2022
  ident: ref_44
  article-title: Localization and classification of structural damage using deep learning single-channel signal-based measurement
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104271
– volume: 237
  start-page: 103
  year: 2019
  ident: ref_47
  article-title: A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2019.01.055
– volume: 19
  start-page: 718
  year: 1997
  ident: ref_7
  article-title: Detection of structural damage through changes in frequency: A review
  publication-title: Eng. Struct.
  doi: 10.1016/S0141-0296(96)00149-6
– volume: 51
  start-page: 5598
  year: 2021
  ident: ref_32
  article-title: Sensor data-driven structural damage detection based on deep convolutional neural networks and continuous wavelet transform
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-02092-6
– ident: ref_45
– ident: ref_19
  doi: 10.3390/s20041059
– ident: ref_28
  doi: 10.3390/s22010328
– volume: 10
  start-page: 1057
  year: 2020
  ident: ref_40
  article-title: One-dimensional convolutional neural network-based damage detection in structural joints
  publication-title: J. Civ. Struct. Health Monit.
  doi: 10.1007/s13349-020-00434-z
– volume: 26
  start-page: 6857
  year: 2022
  ident: ref_26
  article-title: Identification of shed damage on 11-kV polymer insulator using Bayesian optimized convolution neural network
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-06629-w
– volume: 253
  start-page: 111202
  year: 2022
  ident: ref_49
  article-title: An effective framework for real-time structural damage detection using one-dimensional convolutional gated recurrent unit neural network and high performance computing
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2022.111202
– ident: ref_25
  doi: 10.3390/s21237990
– volume: 324
  start-page: 40
  year: 2009
  ident: ref_13
  article-title: Power mode shapes for early damage detection in linear structures
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2009.02.002
– volume: 168
  start-page: 108738
  year: 2022
  ident: ref_41
  article-title: A hybrid methodology for structural damage detection uniting FEM and 1D-CNNs: Demonstration on typical high-pile wharf
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108738
– volume: 397
  start-page: 51
  year: 2017
  ident: ref_15
  article-title: Damage detection by a FE model updating method using power spectral density: Numerical and experimental investigation
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.02.052
– ident: ref_37
– volume: 34
  start-page: 4435
  year: 2021
  ident: ref_42
  article-title: A methodological approach towards evaluating structural damage severity using 1D CNNs
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.10.029
– ident: ref_3
  doi: 10.3390/s23010543
– volume: 147
  start-page: 1015
  year: 2022
  ident: ref_24
  article-title: Sunshine duration measurements and predictions in Saharan Algeria region: An improved ensemble learning approach
  publication-title: Theor. Appl. Clim.
  doi: 10.1007/s00704-021-03843-2
– volume: 204
  start-page: 505
  year: 1997
  ident: ref_8
  article-title: Damage detection using a modified Laplacian operator on mode shape data
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1997.0961
– volume: 2014
  start-page: 837963
  year: 2014
  ident: ref_18
  article-title: Damage localization of cable-supported bridges using modal frequency data and probabilistic neural network
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2014/837963
– volume: 35
  start-page: 238
  year: 2013
  ident: ref_12
  article-title: Damage detection method based on operating deflection shape curvature extracted from dynamic response of a passing vehicle
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2012.10.002
– ident: ref_46
– volume: 51
  start-page: 2847
  year: 2016
  ident: ref_11
  article-title: Damage identification in a parabolic arch by means of natural frequencies, modal shapes and curvatures
  publication-title: Meccanica
  doi: 10.1007/s11012-016-0510-3
– volume: 19
  start-page: 424
  year: 2020
  ident: ref_20
  article-title: Damage detection in a novel deep-learning framework: A robust method for feature extraction
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921719846051
– ident: ref_4
  doi: 10.3390/coatings12030313
– volume: 72
  start-page: 1465
  year: 2022
  ident: ref_23
  article-title: Dipper Throated Optimization Algorithm for Unconstrained Function and Feature Selection
  publication-title: Comput.Mater. Contin.
– volume: 3
  start-page: 504
  year: 2021
  ident: ref_1
  article-title: Acceleration Sensors: Sensing Mechanisms, Emerging Fabrication Strategies, Materials, and Applications
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.0c00746
– volume: 186
  start-page: 110101
  year: 2021
  ident: ref_31
  article-title: Structural damage identification under nonstationary excitations through recurrence plot and multi-label convolutional neural network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110101
– ident: ref_27
  doi: 10.3390/healthcare10030494
– volume: 569
  start-page: 1241
  year: 2013
  ident: ref_14
  article-title: Damage detection of shear connectors based on power spectral density transmissibility
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.569-570.1241
– volume: 331
  start-page: 291
  year: 2012
  ident: ref_9
  article-title: Damage detection by mode shape squares extracted from a passing vehicle
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2011.09.004
– volume: 275
  start-page: 1308
  year: 2018
  ident: ref_36
  article-title: 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.069
SSID ssj0023338
Score 2.4428008
Snippet With the rapid development of sensor technology, structural health monitoring data have tended to become more massive. Deep learning has advantages when...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5058
SubjectTerms 1-D convolutional neural network
Accuracy
Analysis
Bayesian optimization algorithm
Big data
decision-level fusion
Deep learning
Identification
Measuring instruments
Neural networks
Optimization algorithms
Sensors
structural anomaly detection
vibration signals
Wavelet transforms
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (OA)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnuCAKJ-BggxCgktUr-3Y8XG3pVohsRxgpd4sf0UgdbMVXQ79951JslFWIHHhGvvgjGf85snjNwDvPddR8mzKmKiFmbK-DCnVJc_IL7wIpkp0o_tlpZdr9fmyupy0-qKasF4euDfcaUY84ynqoCJXIVsfuPbG6DAL0UTR6Xwi5u3J1EC1JDKvXkdIIqk_vREkKsOpr_sEfTqR_j-P4gkWHdZJToDn4hE8HDJGNu9Xegz3cvsYHkx0BJ_AeuFvM72GLBcISoktkVz-IlHvDRW7sK94LGyG95Zs27DZeXm2WjFMV9m3Tj6WpDfYvN1u_NUtO8-7rjyrfQrri0_fz5bl0C-hjAj7u7IKMlA3yCACTznrplYpVt7bBkMhZWl8o1S2OntM-hAcY2MTNafCYZO09_IZHLXbNr8AFqyMTS2iSgjfUfpaS6U5Gl-k2iTBC_i4t6OLg5g49bS4ckgqyORuNHkB78ap172Cxt8mLWgzxgkket19QFdwgyu4f7lCAR9oKx2FJi4m-uGFAf4SiVy5uamIQGlrCzjZ77YbYvbGIflUlPAqXM3bcRijja5QfJu3v_s52hJJK-B57xzjmukCFDl5VUB94DYHP3U40v780Sl6z4jZKTF7-T_M8AruC4wAKnEQ1QkcoSPl15g57cKbLkjuANSsGL0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8SalVAYhwSWqN3bs5IR2W6oVEssBVtpb5FfaSt2k7S6H_ntmEm-6K1CvsQ9-zHjmi8ffB_DJcOUEDzp1niTMZGlS632R8oD4wmRW555udH_M1HQuvy_yRfzhtopllZszsTuofevoH_kRQgNJ6Ygsvl5dp6QaRberUULjITwi6jIq6dKLO8AlEH_1bEICof3RKiNqGU7q7lsxqKPq__dA3opIu9WSW-Hn9Bk8jXkjG_cb_RwehOYFPNliE3wJ84m5DfQmMp1gaPJsihDzhqi9l1Tywn7i4bCMry5ZW7PRSXo8mzFMWtmvjkSWCDjYuGmX5vKWnYR1V6TVvIL56bffx9M0qiakDoP_Os2tsKQJaTPLfQiqLqR3uTFljQ7hg9CmljKUKhhM_TBEurr0JFGFzdorY8Rr2GvaJrwFZkvh6iJz0mMQd8IUSkjFS2MzX2if8QS-bNaxcpFSnJQtLiuEFrTk1bDkCXwcul71PBr_6zShzRg6EPV196G9OauiJ1UBExzunbLScWkDjoYro7WyI-u0y0QCn2krK3JQHIwz8Z0BTomorqqxzglGqbJM4GCz21X03FV1Z2cJfBia0efoIsU0of3T91ElQbUE3vTGMYyZrkERmecJFDtmszOp3Zbm4rzj9R4RvpPZaP_-cb2Dx6R5TyUMWX4Ae2gi4T1mRmt72Jn_X_2dD4w
  priority: 102
  providerName: ProQuest
Title Bayesian-Based Hyperparameter Optimization of 1D-CNN for Structural Anomaly Detection
URI https://www.ncbi.nlm.nih.gov/pubmed/37299785
https://www.proquest.com/docview/2824019248
https://www.proquest.com/docview/2824692576
https://pubmed.ncbi.nlm.nih.gov/PMC10255421
https://doaj.org/article/e9100dc6b4c04be9ab06a776b1bc7c23
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wKHFW-yLFVASHAJuI5jJweE2t0tFdIWBFTqLfIrgNQm0C0S_ffMJGnUiD1wySF2lLE9k5kv9nwD8EIzaWPmVWQdlTATmY6Mc2nEPOILzY1KHO3oXs3kdC4-LJLFAexqbLYTeH0jtKN6UvP18vWfX9t3aPBvCXEiZH9zzYkyhiXpIRyjQ1Jkn1ei20zgcVwXtKacrgj9IWsIhvqP9txSzd7_7zd6z0n1D1DueaTJHThpQ8lw1Kz9XTjw5T24vUcweB_mY731lCYZjdFbuXCKqHNNbN8rOgUTfsTvxapNxAyrIhxeROezWYhxbPil5pUlTo5wVFYrvdyGF35Tn9sqH8B8cvn1fBq1hRQii_HAJkpMbKhMpOGGOe9lkQpnE62zAm3E-VjpQgifSa8xGkSvaYvMUdUqbFZOah0_hKOyKv1jCE0W2yLlVjj06zbWqYyFZJk23KXKcRbAq9085rZlGadiF8sc0QZNed5NeQDPu64_G2qNmzqNaTG6DsSGXd-o1t_y1rhyjzEPc1YaYZkwHqVhUislzdBYZXkcwEtaypy0CIWxuk09wCER-1U-UgkhK5llAZztVjvf6WKOqFRQJCxQmmddM5oh7a3o0le_mz4yI_QWwKNGOTqZaWcUwXoSQNpTm96g-i3lj-811feQIJ_gw9P_ePETuMVR2eloA0_O4Aj1xD_FiGljBnCoFgqv6eT9AI7Hl7NPnwf134dBbSl_Acu8GTU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGeAAeEHcCAwICwUs013bs-AGhdmXq2FYeWKW-Zb4FkNZkrEWof4rfyDm5dK1AvO01tiLH5_rFx98h5LWh0nEaVOI8tjAT2iTW-yyhAfCFYValHk90j8dyNBGfpul0i_zu7sJgWWXnE2tH7SuH_8h3ARoITEdE9uH8R4Jdo_B0tWuh0ajFYVj-Asg2f38wBPm-YWz_48neKGm7CiQOguMiSS232DPRMkt9CLLIhHepMboAhfGBK1MIEbQMBlIjCCGu0B5bOMGw8tIYDu-9Rq5D4KVoUWp6CfA44L2GvYhzTXfnDKlsKHaTX4t5dWuAvwPAWgTcrM5cC3f7d8jtNk-N-41i3SVbobxHbq2xF94nk4FZBryDmQwgFPp4BJD2AqnEZ1hiE38GZzRrb3nGVRH3hsneeBxDkhx_qUlrkfAj7pfVzJwt42FY1EVh5QMyuZL9fEi2y6oMj0lsNXdFxpzwkDQ4bjLJhaTaWOYz5RmNyLtuH3PXUphjJ42zHKAMbnm-2vKIvFpNPW94O_41aYDCWE1Aqu36QXXxNW8tNw-QUFHvpBWOChtgNVQapaTtWacc4xF5i6LM0SHAYpxp7zXAJyG1Vt5XKcI2qXVEdjpp562nmOeXeh2Rl6thsHE8uDFlqH42c6RGaBiRR41yrNaMx65aZWlEsg212fiozZHy-7eaR7yHeFKw3pP_r-sFuTE6OT7Kjw7Gh0_JTQZ6juUTLN0h26Au4RlkZQv7vDaFmJxete39AZHzTpM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkBA8IO4EBhgEgpeoru3YyQNC7UrVMShIUKlvmW9hk9ZkrEWof41fxzlJ2rUC8bbX2Iocn-sXH3-HkJeGKSdY0LHz2MJMZia23qcxC4AvDLc68Xii-2msRhP5YZpMd8jv1V0YLKtc-cTaUfvK4T_yDkADiemITDtFWxbxZTB8d_Yjxg5SeNK6aqfRqMhhWP4C-DZ_ezAAWb_ifPj-2_4objsMxA4C5SJOrLDYP9Fyy3wIqkild4kxWQHK44PQppAyZCoYSJMgnLgi89jOCYa1V8YIeO8VclWLpIs2pqcXYE8A9muYjITIWGfOkdaGYWf5jfhXtwn4OxhsRMPtSs2N0De8RW62OSvtNUp2m-yE8g65scFkeJdM-mYZ8D5m3Iew6OkI4O050orPsNyGfgbHNGtvfNKqoN1BvD8eU0iY6deawBbJP2ivrGbmdEkHYVEXiJX3yORS9vM-2S2rMjwk1GbCFSl30kMC4YRJlZCKZcZyn2rPWUTerPYxdy2dOXbVOM0B1uCW5-stj8iL9dSzhsPjX5P6KIz1BKTdrh9U59_z1orzAMkV805Z6Zi0AVbDlNFa2a512nERkdcoyhydAyzGmfaOA3wS0mzlPZ0ghFNZFpG9lbTz1mvM8wsdj8jz9TDYOx7imDJUP5s5KkOYGJEHjXKs14xHsJlOk4ikW2qz9VHbI-XJcc0p3kVsKXn30f_X9YxcA6vLPx6MDx-T6xzUHCspeLJHdkFbwhNI0Bb2aW0JlBxdtun9AeIRUsk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian-Based+Hyperparameter+Optimization+of+1D-CNN+for+Structural+Anomaly+Detection&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Xiaofei&rft.au=Guo%2C+Hainan&rft.au=Xu%2C+Langxing&rft.au=Xing%2C+Zezheng&rft.date=2023-05-25&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=11&rft_id=info:doi/10.3390%2Fs23115058&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon