Bayesian-Based Hyperparameter Optimization of 1D-CNN for Structural Anomaly Detection
With the rapid development of sensor technology, structural health monitoring data have tended to become more massive. Deep learning has advantages when handling big data, and has therefore been widely researched for diagnosing structural anomalies. However, for the diagnosis of different structural...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 11; p. 5058 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
25.05.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the rapid development of sensor technology, structural health monitoring data have tended to become more massive. Deep learning has advantages when handling big data, and has therefore been widely researched for diagnosing structural anomalies. However, for the diagnosis of different structural abnormalities, the model hyperparameters need to be adjusted according to different application scenarios, which is a complicated process. In this paper, a new strategy for building and optimizing 1D-CNN models is proposed that is suitable for diagnosing damage to different types of structure. This strategy involves optimizing hyperparameters with the Bayesian algorithm and improving model recognition accuracy using data fusion technology. Under the condition of sparse sensor measurement points, the entire structure is monitored, and the high-precision diagnosis of structural damage is performed. This method improves the applicability of the model to different structure detection scenarios, and avoids the shortcomings of traditional hyperparameter adjustment methods based on experience and subjectivity. In preliminary research on the simply supported beam test case, the efficient and accurate identification of parameter changes in small local elements was achieved. Furthermore, publicly available structural datasets were utilized to verify the robustness of the method, and a high identification accuracy rate of 99.85% was achieved. Compared with other methods described in the literature, this strategy shows significant advantages in terms of sensor occupancy rate, computational cost, and identification accuracy. |
---|---|
AbstractList | With the rapid development of sensor technology, structural health monitoring data have tended to become more massive. Deep learning has advantages when handling big data, and has therefore been widely researched for diagnosing structural anomalies. However, for the diagnosis of different structural abnormalities, the model hyperparameters need to be adjusted according to different application scenarios, which is a complicated process. In this paper, a new strategy for building and optimizing 1D-CNN models is proposed that is suitable for diagnosing damage to different types of structure. This strategy involves optimizing hyperparameters with the Bayesian algorithm and improving model recognition accuracy using data fusion technology. Under the condition of sparse sensor measurement points, the entire structure is monitored, and the high-precision diagnosis of structural damage is performed. This method improves the applicability of the model to different structure detection scenarios, and avoids the shortcomings of traditional hyperparameter adjustment methods based on experience and subjectivity. In preliminary research on the simply supported beam test case, the efficient and accurate identification of parameter changes in small local elements was achieved. Furthermore, publicly available structural datasets were utilized to verify the robustness of the method, and a high identification accuracy rate of 99.85% was achieved. Compared with other methods described in the literature, this strategy shows significant advantages in terms of sensor occupancy rate, computational cost, and identification accuracy. With the rapid development of sensor technology, structural health monitoring data have tended to become more massive. Deep learning has advantages when handling big data, and has therefore been widely researched for diagnosing structural anomalies. However, for the diagnosis of different structural abnormalities, the model hyperparameters need to be adjusted according to different application scenarios, which is a complicated process. In this paper, a new strategy for building and optimizing 1D-CNN models is proposed that is suitable for diagnosing damage to different types of structure. This strategy involves optimizing hyperparameters with the Bayesian algorithm and improving model recognition accuracy using data fusion technology. Under the condition of sparse sensor measurement points, the entire structure is monitored, and the high-precision diagnosis of structural damage is performed. This method improves the applicability of the model to different structure detection scenarios, and avoids the shortcomings of traditional hyperparameter adjustment methods based on experience and subjectivity. In preliminary research on the simply supported beam test case, the efficient and accurate identification of parameter changes in small local elements was achieved. Furthermore, publicly available structural datasets were utilized to verify the robustness of the method, and a high identification accuracy rate of 99.85% was achieved. Compared with other methods described in the literature, this strategy shows significant advantages in terms of sensor occupancy rate, computational cost, and identification accuracy.With the rapid development of sensor technology, structural health monitoring data have tended to become more massive. Deep learning has advantages when handling big data, and has therefore been widely researched for diagnosing structural anomalies. However, for the diagnosis of different structural abnormalities, the model hyperparameters need to be adjusted according to different application scenarios, which is a complicated process. In this paper, a new strategy for building and optimizing 1D-CNN models is proposed that is suitable for diagnosing damage to different types of structure. This strategy involves optimizing hyperparameters with the Bayesian algorithm and improving model recognition accuracy using data fusion technology. Under the condition of sparse sensor measurement points, the entire structure is monitored, and the high-precision diagnosis of structural damage is performed. This method improves the applicability of the model to different structure detection scenarios, and avoids the shortcomings of traditional hyperparameter adjustment methods based on experience and subjectivity. In preliminary research on the simply supported beam test case, the efficient and accurate identification of parameter changes in small local elements was achieved. Furthermore, publicly available structural datasets were utilized to verify the robustness of the method, and a high identification accuracy rate of 99.85% was achieved. Compared with other methods described in the literature, this strategy shows significant advantages in terms of sensor occupancy rate, computational cost, and identification accuracy. |
Audience | Academic |
Author | Guo, Hainan Li, Xiaofei Xu, Langxing Xing, Zezheng |
AuthorAffiliation | 2 College of Information Science and Engineering, University of Jinan, Jinan 250022, China; xing_zz@stu.ujn.edu.cn 1 College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China; guohainan@dlmu.edu.cn (H.G.); xlx@dlmu.edu.cn (L.X.) |
AuthorAffiliation_xml | – name: 2 College of Information Science and Engineering, University of Jinan, Jinan 250022, China; xing_zz@stu.ujn.edu.cn – name: 1 College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China; guohainan@dlmu.edu.cn (H.G.); xlx@dlmu.edu.cn (L.X.) |
Author_xml | – sequence: 1 givenname: Xiaofei orcidid: 0000-0002-8836-2158 surname: Li fullname: Li, Xiaofei – sequence: 2 givenname: Hainan surname: Guo fullname: Guo, Hainan – sequence: 3 givenname: Langxing surname: Xu fullname: Xu, Langxing – sequence: 4 givenname: Zezheng surname: Xing fullname: Xing, Zezheng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37299785$$D View this record in MEDLINE/PubMed |
BookMark | eNplkk1v1DAQhi1URNuFA38AReICh7SOncTxCW23QCtV7QF6tibOZPEqiYOdIC2_nuluW7VFPtiaeeb1fB2zg8EPyNj7jJ9IqflpFDLLCl5Ur9hRlos8rYTgB0_eh-w4xg3nQkpZvWGHUgmtVVUcsdsz2GJ0MKRnELFJLrYjhhEC9DhhSG7GyfXuL0zOD4lvk-w8XV1fJ60PyY8pzHaaA3TJcvA9dNvknGLsHfqWvW6hi_ju_l6w229ff64u0qub75er5VVqC66ntKhlXelK16LmDWLZVnljCwDdCk4GqaDNc9QlglbKItpWN6LiktyqKQHkgl3udRsPGzMG10PYGg_O7Aw-rA2EydkODeqMNG1Z55bnNWqoeQlKlXVWW2WpMQv2Za81znWPjcVhotqeiT73DO6XWfs_JuOiKHKRkcKne4Xgf88YJ9O7aLHrYEA_RyMqkZdaFKok9OMLdOPnMFCvdhTPtMgrok721BqoAje0nj62dBrsnaUdaB3Zl6qgBHSpNQV8eFrDY_IP8ybgdA_Y4GMM2Brrpt10Sdl1VIu52yjzuFEU8flFxIPo_-w_tKPKlg |
CitedBy_id | crossref_primary_10_1016_j_jer_2025_01_001 crossref_primary_10_3390_cancers16122200 crossref_primary_10_1177_14759217241263954 crossref_primary_10_1016_j_ijpharm_2024_124001 crossref_primary_10_1177_10775463251315863 crossref_primary_10_1007_s12205_024_1994_3 crossref_primary_10_1016_j_knosys_2024_111785 crossref_primary_10_1016_j_dajour_2024_100470 crossref_primary_10_1016_j_ymssp_2024_112276 |
Cites_doi | 10.2172/249299 10.1111/mice.12313 10.1177/1475921720916928 10.3390/s21123950 10.1016/j.jsv.2016.10.043 10.1016/j.eswa.2010.06.093 10.1111/mice.12517 10.1016/j.eswa.2007.08.008 10.1049/iet-wss.2018.5099 10.1016/j.measurement.2022.110939 10.1106/XU88-UW1T-A6AM-X7EA 10.1016/j.isatra.2022.01.013 10.1016/j.istruc.2020.12.036 10.1111/mice.12447 10.3390/sym13111998 10.1109/MCSoC.2019.00020 10.1016/j.autcon.2022.104271 10.1016/j.apenergy.2019.01.055 10.1016/S0141-0296(96)00149-6 10.1007/s10489-020-02092-6 10.3390/s20041059 10.3390/s22010328 10.1007/s13349-020-00434-z 10.1007/s00500-021-06629-w 10.1016/j.oceaneng.2022.111202 10.3390/s21237990 10.1016/j.jsv.2009.02.002 10.1016/j.ymssp.2021.108738 10.1016/j.jsv.2017.02.052 10.1016/j.istruc.2021.10.029 10.3390/s23010543 10.1007/s00704-021-03843-2 10.1006/jsvi.1997.0961 10.1155/2014/837963 10.1016/j.ymssp.2012.10.002 10.1007/s11012-016-0510-3 10.1177/1475921719846051 10.3390/coatings12030313 10.1021/acsaelm.0c00746 10.1016/j.measurement.2021.110101 10.3390/healthcare10030494 10.4028/www.scientific.net/KEM.569-570.1241 10.1016/j.jsv.2011.09.004 10.1016/j.neucom.2017.09.069 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23115058 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (OA) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_e9100dc6b4c04be9ab06a776b1bc7c23 PMC10255421 A752559699 37299785 10_3390_s23115058 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c509t-5b3b8989b2b0dee6f84dc5aa9f200de37af44e96ea977ceecf9d2803f207d6aa3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 00:36:44 EDT 2025 Thu Aug 21 18:37:56 EDT 2025 Fri Jul 11 08:26:32 EDT 2025 Fri Jul 25 20:02:23 EDT 2025 Tue Jun 10 20:11:31 EDT 2025 Wed Feb 19 02:23:39 EST 2025 Tue Jul 01 01:20:07 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | structural anomaly detection 1-D convolutional neural network Bayesian optimization algorithm decision-level fusion vibration signals |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-5b3b8989b2b0dee6f84dc5aa9f200de37af44e96ea977ceecf9d2803f207d6aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8836-2158 |
OpenAccessLink | https://doaj.org/article/e9100dc6b4c04be9ab06a776b1bc7c23 |
PMID | 37299785 |
PQID | 2824019248 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e9100dc6b4c04be9ab06a776b1bc7c23 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10255421 proquest_miscellaneous_2824692576 proquest_journals_2824019248 gale_infotracacademiconefile_A752559699 pubmed_primary_37299785 crossref_citationtrail_10_3390_s23115058 crossref_primary_10_3390_s23115058 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-25 |
PublicationDateYYYYMMDD | 2023-05-25 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Azimi (ref_50) 2020; 35 Lin (ref_38) 2017; 32 Wang (ref_33) 2021; 29 Abdeljaber (ref_34) 2017; 388 Li (ref_14) 2013; 569 Chang (ref_16) 2000; 11 Ratcliffe (ref_8) 1997; 204 Abdeljaber (ref_35) 2016; 2016 ref_19 Meisam (ref_21) 2022; 193 Ibrahim (ref_24) 2022; 147 Zhou (ref_18) 2014; 2014 ref_25 ref_22 Almutairi (ref_42) 2021; 34 He (ref_47) 2019; 237 Khiem (ref_10) 2014; 20 ref_28 ref_27 Truong (ref_49) 2022; 253 Guo (ref_20) 2020; 19 Mehrjoo (ref_17) 2008; 35 He (ref_30) 2020; 20 Tang (ref_29) 2022; 129 Sharma (ref_40) 2020; 10 Chen (ref_32) 2021; 51 Li (ref_31) 2021; 186 ref_37 Wedyan (ref_1) 2021; 3 Salawu (ref_7) 1997; 19 Zhang (ref_9) 2012; 331 Ragam (ref_2) 2019; 9 Capecchi (ref_11) 2016; 51 Abdeljaber (ref_36) 2018; 275 ref_46 ref_45 ref_43 Vigneshwaran (ref_26) 2022; 26 ref_3 Zhang (ref_39) 2019; 34 Takieldeen (ref_23) 2022; 72 Pedram (ref_15) 2017; 397 Jiang (ref_48) 2011; 38 Fang (ref_13) 2009; 324 Zhang (ref_12) 2013; 35 ref_5 ref_4 Flah (ref_44) 2022; 139 ref_6 Zhou (ref_41) 2022; 168 |
References_xml | – volume: 20 start-page: 1417 year: 2014 ident: ref_10 article-title: A procedure for multiple crack identification in beam-like structures from natural vibration mode publication-title: J. Sound Vib. – ident: ref_5 doi: 10.2172/249299 – volume: 32 start-page: 1025 year: 2017 ident: ref_38 article-title: Structural Damage Detection with Automatic Feature-Extraction through Deep Learning publication-title: Comput-Aided Civ. Inf. doi: 10.1111/mice.12313 – volume: 20 start-page: 1392 year: 2020 ident: ref_30 article-title: Damage identification based on convolutional neural network and recurrence graph for beam bridge publication-title: Struct. Health Monit. doi: 10.1177/1475921720916928 – ident: ref_43 doi: 10.3390/s21123950 – volume: 388 start-page: 154 year: 2017 ident: ref_34 article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.10.043 – volume: 38 start-page: 511 year: 2011 ident: ref_48 article-title: Two-stage structural damage detection using fuzzy neural networks and data fusion techniques publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2010.06.093 – volume: 35 start-page: 597 year: 2020 ident: ref_50 article-title: Structural health monitoring using extremely compressed data through deep learning publication-title: Comput.-Aided Civ. Inf. doi: 10.1111/mice.12517 – volume: 35 start-page: 1122 year: 2008 ident: ref_17 article-title: Damage detection of truss bridge joints using Artificial Neural Networks publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2007.08.008 – volume: 2016 start-page: 1719 year: 2016 ident: ref_35 article-title: Dynamic testing of a laboratory stadium structure publication-title: ASCE Geotech. Struct. Eng. Congr. – volume: 9 start-page: 103 year: 2019 ident: ref_2 article-title: Application of MEMS-based accelerometer wireless sensor systems for monitoring of blast-induced ground vibration and structural health: A review publication-title: IET Wirel. Sens. Syst. doi: 10.1049/iet-wss.2018.5099 – volume: 193 start-page: 110939 year: 2022 ident: ref_21 article-title: State-of-the-art review on advancements of data mining in structural health monitoring publication-title: Measurement doi: 10.1016/j.measurement.2022.110939 – volume: 11 start-page: 32 year: 2000 ident: ref_16 article-title: Structural damage detection using an iterative neural network publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1106/XU88-UW1T-A6AM-X7EA – volume: 129 start-page: 555 year: 2022 ident: ref_29 article-title: Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization publication-title: Isa Trans. doi: 10.1016/j.isatra.2022.01.013 – volume: 29 start-page: 1537 year: 2021 ident: ref_33 article-title: A novel structural damage identification scheme based on deep learning framework publication-title: Structures doi: 10.1016/j.istruc.2020.12.036 – volume: 34 start-page: 822 year: 2019 ident: ref_39 article-title: Vibration-based structural state identification by a 1-dimensional convolutional neural network publication-title: Comput.-Aided Civ. Inf. doi: 10.1111/mice.12447 – ident: ref_6 doi: 10.3390/sym13111998 – ident: ref_22 doi: 10.1109/MCSoC.2019.00020 – volume: 139 start-page: 104271 year: 2022 ident: ref_44 article-title: Localization and classification of structural damage using deep learning single-channel signal-based measurement publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104271 – volume: 237 start-page: 103 year: 2019 ident: ref_47 article-title: A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2019.01.055 – volume: 19 start-page: 718 year: 1997 ident: ref_7 article-title: Detection of structural damage through changes in frequency: A review publication-title: Eng. Struct. doi: 10.1016/S0141-0296(96)00149-6 – volume: 51 start-page: 5598 year: 2021 ident: ref_32 article-title: Sensor data-driven structural damage detection based on deep convolutional neural networks and continuous wavelet transform publication-title: Appl. Intell. doi: 10.1007/s10489-020-02092-6 – ident: ref_45 – ident: ref_19 doi: 10.3390/s20041059 – ident: ref_28 doi: 10.3390/s22010328 – volume: 10 start-page: 1057 year: 2020 ident: ref_40 article-title: One-dimensional convolutional neural network-based damage detection in structural joints publication-title: J. Civ. Struct. Health Monit. doi: 10.1007/s13349-020-00434-z – volume: 26 start-page: 6857 year: 2022 ident: ref_26 article-title: Identification of shed damage on 11-kV polymer insulator using Bayesian optimized convolution neural network publication-title: Soft Comput. doi: 10.1007/s00500-021-06629-w – volume: 253 start-page: 111202 year: 2022 ident: ref_49 article-title: An effective framework for real-time structural damage detection using one-dimensional convolutional gated recurrent unit neural network and high performance computing publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2022.111202 – ident: ref_25 doi: 10.3390/s21237990 – volume: 324 start-page: 40 year: 2009 ident: ref_13 article-title: Power mode shapes for early damage detection in linear structures publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2009.02.002 – volume: 168 start-page: 108738 year: 2022 ident: ref_41 article-title: A hybrid methodology for structural damage detection uniting FEM and 1D-CNNs: Demonstration on typical high-pile wharf publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108738 – volume: 397 start-page: 51 year: 2017 ident: ref_15 article-title: Damage detection by a FE model updating method using power spectral density: Numerical and experimental investigation publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.02.052 – ident: ref_37 – volume: 34 start-page: 4435 year: 2021 ident: ref_42 article-title: A methodological approach towards evaluating structural damage severity using 1D CNNs publication-title: Structures doi: 10.1016/j.istruc.2021.10.029 – ident: ref_3 doi: 10.3390/s23010543 – volume: 147 start-page: 1015 year: 2022 ident: ref_24 article-title: Sunshine duration measurements and predictions in Saharan Algeria region: An improved ensemble learning approach publication-title: Theor. Appl. Clim. doi: 10.1007/s00704-021-03843-2 – volume: 204 start-page: 505 year: 1997 ident: ref_8 article-title: Damage detection using a modified Laplacian operator on mode shape data publication-title: J. Sound Vib. doi: 10.1006/jsvi.1997.0961 – volume: 2014 start-page: 837963 year: 2014 ident: ref_18 article-title: Damage localization of cable-supported bridges using modal frequency data and probabilistic neural network publication-title: Math. Probl. Eng. doi: 10.1155/2014/837963 – volume: 35 start-page: 238 year: 2013 ident: ref_12 article-title: Damage detection method based on operating deflection shape curvature extracted from dynamic response of a passing vehicle publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2012.10.002 – ident: ref_46 – volume: 51 start-page: 2847 year: 2016 ident: ref_11 article-title: Damage identification in a parabolic arch by means of natural frequencies, modal shapes and curvatures publication-title: Meccanica doi: 10.1007/s11012-016-0510-3 – volume: 19 start-page: 424 year: 2020 ident: ref_20 article-title: Damage detection in a novel deep-learning framework: A robust method for feature extraction publication-title: Struct. Health Monit. doi: 10.1177/1475921719846051 – ident: ref_4 doi: 10.3390/coatings12030313 – volume: 72 start-page: 1465 year: 2022 ident: ref_23 article-title: Dipper Throated Optimization Algorithm for Unconstrained Function and Feature Selection publication-title: Comput.Mater. Contin. – volume: 3 start-page: 504 year: 2021 ident: ref_1 article-title: Acceleration Sensors: Sensing Mechanisms, Emerging Fabrication Strategies, Materials, and Applications publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.0c00746 – volume: 186 start-page: 110101 year: 2021 ident: ref_31 article-title: Structural damage identification under nonstationary excitations through recurrence plot and multi-label convolutional neural network publication-title: Measurement doi: 10.1016/j.measurement.2021.110101 – ident: ref_27 doi: 10.3390/healthcare10030494 – volume: 569 start-page: 1241 year: 2013 ident: ref_14 article-title: Damage detection of shear connectors based on power spectral density transmissibility publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.569-570.1241 – volume: 331 start-page: 291 year: 2012 ident: ref_9 article-title: Damage detection by mode shape squares extracted from a passing vehicle publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2011.09.004 – volume: 275 start-page: 1308 year: 2018 ident: ref_36 article-title: 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.069 |
SSID | ssj0023338 |
Score | 2.4428008 |
Snippet | With the rapid development of sensor technology, structural health monitoring data have tended to become more massive. Deep learning has advantages when... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5058 |
SubjectTerms | 1-D convolutional neural network Accuracy Analysis Bayesian optimization algorithm Big data decision-level fusion Deep learning Identification Measuring instruments Neural networks Optimization algorithms Sensors structural anomaly detection vibration signals Wavelet transforms |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (OA) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnuCAKJ-BggxCgktUr-3Y8XG3pVohsRxgpd4sf0UgdbMVXQ79951JslFWIHHhGvvgjGf85snjNwDvPddR8mzKmKiFmbK-DCnVJc_IL7wIpkp0o_tlpZdr9fmyupy0-qKasF4euDfcaUY84ynqoCJXIVsfuPbG6DAL0UTR6Xwi5u3J1EC1JDKvXkdIIqk_vREkKsOpr_sEfTqR_j-P4gkWHdZJToDn4hE8HDJGNu9Xegz3cvsYHkx0BJ_AeuFvM72GLBcISoktkVz-IlHvDRW7sK94LGyG95Zs27DZeXm2WjFMV9m3Tj6WpDfYvN1u_NUtO8-7rjyrfQrri0_fz5bl0C-hjAj7u7IKMlA3yCACTznrplYpVt7bBkMhZWl8o1S2OntM-hAcY2MTNafCYZO09_IZHLXbNr8AFqyMTS2iSgjfUfpaS6U5Gl-k2iTBC_i4t6OLg5g49bS4ckgqyORuNHkB78ap172Cxt8mLWgzxgkket19QFdwgyu4f7lCAR9oKx2FJi4m-uGFAf4SiVy5uamIQGlrCzjZ77YbYvbGIflUlPAqXM3bcRijja5QfJu3v_s52hJJK-B57xzjmukCFDl5VUB94DYHP3U40v780Sl6z4jZKTF7-T_M8AruC4wAKnEQ1QkcoSPl15g57cKbLkjuANSsGL0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8SalVAYhwSWqN3bs5IR2W6oVEssBVtpb5FfaSt2k7S6H_ntmEm-6K1CvsQ9-zHjmi8ffB_DJcOUEDzp1niTMZGlS632R8oD4wmRW555udH_M1HQuvy_yRfzhtopllZszsTuofevoH_kRQgNJ6Ygsvl5dp6QaRberUULjITwi6jIq6dKLO8AlEH_1bEICof3RKiNqGU7q7lsxqKPq__dA3opIu9WSW-Hn9Bk8jXkjG_cb_RwehOYFPNliE3wJ84m5DfQmMp1gaPJsihDzhqi9l1Tywn7i4bCMry5ZW7PRSXo8mzFMWtmvjkSWCDjYuGmX5vKWnYR1V6TVvIL56bffx9M0qiakDoP_Os2tsKQJaTPLfQiqLqR3uTFljQ7hg9CmljKUKhhM_TBEurr0JFGFzdorY8Rr2GvaJrwFZkvh6iJz0mMQd8IUSkjFS2MzX2if8QS-bNaxcpFSnJQtLiuEFrTk1bDkCXwcul71PBr_6zShzRg6EPV196G9OauiJ1UBExzunbLScWkDjoYro7WyI-u0y0QCn2krK3JQHIwz8Z0BTomorqqxzglGqbJM4GCz21X03FV1Z2cJfBia0efoIsU0of3T91ElQbUE3vTGMYyZrkERmecJFDtmszOp3Zbm4rzj9R4RvpPZaP_-cb2Dx6R5TyUMWX4Ae2gi4T1mRmt72Jn_X_2dD4w priority: 102 providerName: ProQuest |
Title | Bayesian-Based Hyperparameter Optimization of 1D-CNN for Structural Anomaly Detection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37299785 https://www.proquest.com/docview/2824019248 https://www.proquest.com/docview/2824692576 https://pubmed.ncbi.nlm.nih.gov/PMC10255421 https://doaj.org/article/e9100dc6b4c04be9ab06a776b1bc7c23 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wKHFW-yLFVASHAJuI5jJweE2t0tFdIWBFTqLfIrgNQm0C0S_ffMJGnUiD1wySF2lLE9k5kv9nwD8EIzaWPmVWQdlTATmY6Mc2nEPOILzY1KHO3oXs3kdC4-LJLFAexqbLYTeH0jtKN6UvP18vWfX9t3aPBvCXEiZH9zzYkyhiXpIRyjQ1Jkn1ei20zgcVwXtKacrgj9IWsIhvqP9txSzd7_7zd6z0n1D1DueaTJHThpQ8lw1Kz9XTjw5T24vUcweB_mY731lCYZjdFbuXCKqHNNbN8rOgUTfsTvxapNxAyrIhxeROezWYhxbPil5pUlTo5wVFYrvdyGF35Tn9sqH8B8cvn1fBq1hRQii_HAJkpMbKhMpOGGOe9lkQpnE62zAm3E-VjpQgifSa8xGkSvaYvMUdUqbFZOah0_hKOyKv1jCE0W2yLlVjj06zbWqYyFZJk23KXKcRbAq9085rZlGadiF8sc0QZNed5NeQDPu64_G2qNmzqNaTG6DsSGXd-o1t_y1rhyjzEPc1YaYZkwHqVhUislzdBYZXkcwEtaypy0CIWxuk09wCER-1U-UgkhK5llAZztVjvf6WKOqFRQJCxQmmddM5oh7a3o0le_mz4yI_QWwKNGOTqZaWcUwXoSQNpTm96g-i3lj-811feQIJ_gw9P_ePETuMVR2eloA0_O4Aj1xD_FiGljBnCoFgqv6eT9AI7Hl7NPnwf134dBbSl_Acu8GTU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGeAAeEHcCAwICwUs013bs-AGhdmXq2FYeWKW-Zb4FkNZkrEWof4rfyDm5dK1AvO01tiLH5_rFx98h5LWh0nEaVOI8tjAT2iTW-yyhAfCFYValHk90j8dyNBGfpul0i_zu7sJgWWXnE2tH7SuH_8h3ARoITEdE9uH8R4Jdo_B0tWuh0ajFYVj-Asg2f38wBPm-YWz_48neKGm7CiQOguMiSS232DPRMkt9CLLIhHepMboAhfGBK1MIEbQMBlIjCCGu0B5bOMGw8tIYDu-9Rq5D4KVoUWp6CfA44L2GvYhzTXfnDKlsKHaTX4t5dWuAvwPAWgTcrM5cC3f7d8jtNk-N-41i3SVbobxHbq2xF94nk4FZBryDmQwgFPp4BJD2AqnEZ1hiE38GZzRrb3nGVRH3hsneeBxDkhx_qUlrkfAj7pfVzJwt42FY1EVh5QMyuZL9fEi2y6oMj0lsNXdFxpzwkDQ4bjLJhaTaWOYz5RmNyLtuH3PXUphjJ42zHKAMbnm-2vKIvFpNPW94O_41aYDCWE1Aqu36QXXxNW8tNw-QUFHvpBWOChtgNVQapaTtWacc4xF5i6LM0SHAYpxp7zXAJyG1Vt5XKcI2qXVEdjpp562nmOeXeh2Rl6thsHE8uDFlqH42c6RGaBiRR41yrNaMx65aZWlEsg212fiozZHy-7eaR7yHeFKw3pP_r-sFuTE6OT7Kjw7Gh0_JTQZ6juUTLN0h26Au4RlkZQv7vDaFmJxete39AZHzTpM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkBA8IO4EBhgEgpeoru3YyQNC7UrVMShIUKlvmW9hk9ZkrEWof41fxzlJ2rUC8bbX2Iocn-sXH3-HkJeGKSdY0LHz2MJMZia23qcxC4AvDLc68Xii-2msRhP5YZpMd8jv1V0YLKtc-cTaUfvK4T_yDkADiemITDtFWxbxZTB8d_Yjxg5SeNK6aqfRqMhhWP4C-DZ_ezAAWb_ifPj-2_4objsMxA4C5SJOrLDYP9Fyy3wIqkild4kxWQHK44PQppAyZCoYSJMgnLgi89jOCYa1V8YIeO8VclWLpIs2pqcXYE8A9muYjITIWGfOkdaGYWf5jfhXtwn4OxhsRMPtSs2N0De8RW62OSvtNUp2m-yE8g65scFkeJdM-mYZ8D5m3Iew6OkI4O050orPsNyGfgbHNGtvfNKqoN1BvD8eU0iY6deawBbJP2ivrGbmdEkHYVEXiJX3yORS9vM-2S2rMjwk1GbCFSl30kMC4YRJlZCKZcZyn2rPWUTerPYxdy2dOXbVOM0B1uCW5-stj8iL9dSzhsPjX5P6KIz1BKTdrh9U59_z1orzAMkV805Z6Zi0AVbDlNFa2a512nERkdcoyhydAyzGmfaOA3wS0mzlPZ0ghFNZFpG9lbTz1mvM8wsdj8jz9TDYOx7imDJUP5s5KkOYGJEHjXKs14xHsJlOk4ikW2qz9VHbI-XJcc0p3kVsKXn30f_X9YxcA6vLPx6MDx-T6xzUHCspeLJHdkFbwhNI0Bb2aW0JlBxdtun9AeIRUsk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian-Based+Hyperparameter+Optimization+of+1D-CNN+for+Structural+Anomaly+Detection&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Xiaofei&rft.au=Guo%2C+Hainan&rft.au=Xu%2C+Langxing&rft.au=Xing%2C+Zezheng&rft.date=2023-05-25&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=11&rft_id=info:doi/10.3390%2Fs23115058&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |