RNA sequencing by direct tagmentation of RNA/DNA hybrids
Transcriptome profiling by RNA sequencing (RNA-seq) has been widely used to characterize cellular status, but it relies on second-strand complementary DNA (cDNA) synthesis to generate initial material for library preparation. Here we use bacterial transposase Tn5, which has been increasingly used in...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 6; pp. 2886 - 2893 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
11.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transcriptome profiling by RNA sequencing (RNA-seq) has been widely used to characterize cellular status, but it relies on second-strand complementary DNA (cDNA) synthesis to generate initial material for library preparation. Here we use bacterial transposase Tn5, which has been increasingly used in various high-throughput DNA analyses, to construct RNA-seq libraries without second-strand synthesis. We show that Tn5 transposome can randomly bind RNA/DNA heteroduplexes and add sequencing adapters onto RNA directly after reverse transcription. This method, Sequencing HEteRo RNA-DNA-hYbrid (SHERRY), is versatile and scalable. SHERRY accepts a wide range of starting materials, from bulk RNA to single cells. SHERRY offers a greatly simplified protocol and produces results with higher reproducibility and GC uniformity compared with prevailing RNA-seq methods. |
---|---|
AbstractList | Transcriptome profiling by RNA sequencing (RNA-seq) has been widely used to characterize cellular status, but it relies on second-strand complementary DNA (cDNA) synthesis to generate initial material for library preparation. Here we use bacterial transposase Tn5, which has been increasingly used in various high-throughput DNA analyses, to construct RNA-seq libraries without second-strand synthesis. We show that Tn5 transposome can randomly bind RNA/DNA heteroduplexes and add sequencing adapters onto RNA directly after reverse transcription. This method, Sequencing HEteRo RNA-DNA-hYbrid (SHERRY), is versatile and scalable. SHERRY accepts a wide range of starting materials, from bulk RNA to single cells. SHERRY offers a greatly simplified protocol and produces results with higher reproducibility and GC uniformity compared with prevailing RNA-seq methods. RNA sequencing is widely used to measure gene expression in biomedical research; therefore, improvements in the simplicity and accuracy of the technology are desirable. All existing RNA sequencing methods rely on the conversion of RNA into double-stranded DNA through reverse transcription followed by second-strand synthesis. The latter step requires additional enzymes and purification, and introduces sequence-dependent bias. Here, we show that Tn5 transposase, which randomly binds and cuts double-stranded DNA, can directly fragment and prime the RNA/DNA heteroduplexes generated by reverse transcription. The primed fragments are then subject to PCR amplification. This provides an approach for simple and accurate RNA characterization and quantification. Transcriptome profiling by RNA sequencing (RNA-seq) has been widely used to characterize cellular status, but it relies on second-strand complementary DNA (cDNA) synthesis to generate initial material for library preparation. Here we use bacterial transposase Tn5, which has been increasingly used in various high-throughput DNA analyses, to construct RNA-seq libraries without second-strand synthesis. We show that Tn5 transposome can randomly bind RNA/DNA heteroduplexes and add sequencing adapters onto RNA directly after reverse transcription. This method, Sequencing HEteRo RNA-DNA-hYbrid (SHERRY), is versatile and scalable. SHERRY accepts a wide range of starting materials, from bulk RNA to single cells. SHERRY offers a greatly simplified protocol and produces results with higher reproducibility and GC uniformity compared with prevailing RNA-seq methods. Transcriptome profiling by RNA sequencing (RNA-seq) has been widely used to characterize cellular status, but it relies on second-strand complementary DNA (cDNA) synthesis to generate initial material for library preparation. Here we use bacterial transposase Tn5, which has been increasingly used in various high-throughput DNA analyses, to construct RNA-seq libraries without second-strand synthesis. We show that Tn5 transposome can randomly bind RNA/DNA heteroduplexes and add sequencing adapters onto RNA directly after reverse transcription. This method, Sequencing HEteRo RNA-DNA-hYbrid (SHERRY), is versatile and scalable. SHERRY accepts a wide range of starting materials, from bulk RNA to single cells. SHERRY offers a greatly simplified protocol and produces results with higher reproducibility and GC uniformity compared with prevailing RNA-seq methods.Transcriptome profiling by RNA sequencing (RNA-seq) has been widely used to characterize cellular status, but it relies on second-strand complementary DNA (cDNA) synthesis to generate initial material for library preparation. Here we use bacterial transposase Tn5, which has been increasingly used in various high-throughput DNA analyses, to construct RNA-seq libraries without second-strand synthesis. We show that Tn5 transposome can randomly bind RNA/DNA heteroduplexes and add sequencing adapters onto RNA directly after reverse transcription. This method, Sequencing HEteRo RNA-DNA-hYbrid (SHERRY), is versatile and scalable. SHERRY accepts a wide range of starting materials, from bulk RNA to single cells. SHERRY offers a greatly simplified protocol and produces results with higher reproducibility and GC uniformity compared with prevailing RNA-seq methods. |
Author | Wang, Guanbo Xie, X. Sunney Sun, Yue Oh, Juntaek Wang, Dong Huang, Yanyi Di, Lin Yao, Jiacheng Lee, Raymond W. Wang, Jianbin Lao, Kaiqin Xu, Jun Li, Jie Fu, Yusi Wu, Yalei Zheng, Genhua Liu, Lu |
Author_xml | – sequence: 1 givenname: Lin surname: Di fullname: Di, Lin – sequence: 2 givenname: Yusi surname: Fu fullname: Fu, Yusi – sequence: 3 givenname: Yue surname: Sun fullname: Sun, Yue – sequence: 4 givenname: Jie surname: Li fullname: Li, Jie – sequence: 5 givenname: Lu surname: Liu fullname: Liu, Lu – sequence: 6 givenname: Jiacheng surname: Yao fullname: Yao, Jiacheng – sequence: 7 givenname: Guanbo surname: Wang fullname: Wang, Guanbo – sequence: 8 givenname: Yalei surname: Wu fullname: Wu, Yalei – sequence: 9 givenname: Kaiqin surname: Lao fullname: Lao, Kaiqin – sequence: 10 givenname: Raymond W. surname: Lee fullname: Lee, Raymond W. – sequence: 11 givenname: Genhua surname: Zheng fullname: Zheng, Genhua – sequence: 12 givenname: Jun surname: Xu fullname: Xu, Jun – sequence: 13 givenname: Juntaek surname: Oh fullname: Oh, Juntaek – sequence: 14 givenname: Dong surname: Wang fullname: Wang, Dong – sequence: 15 givenname: X. Sunney surname: Xie fullname: Xie, X. Sunney – sequence: 16 givenname: Yanyi surname: Huang fullname: Huang, Yanyi – sequence: 17 givenname: Jianbin surname: Wang fullname: Wang, Jianbin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31988135$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1vEzEQxS1URNPAmRNoJS69bDNe22v7glSV8iFVICE4W86snTra2MHeIOW_x1FKgB44WbJ_7_m9mQtyFlN0hLykcEVBssU22nJFNdUKgFL5hMwoaNr2XMMZmQF0slW84-fkopQ1AGih4Bk5Z1WgKBMzor5-vm6K-7FzEUNcNct9M4TscGomu9q4ONkppNgk31Rw8a7C9_tlDkN5Tp56Oxb34uGck-_vb7_dfGzvvnz4dHN916IAPbVC9955dMARB_CCIsV6x3vWa_RcDxSllt5LBV5ZFEvGENFL1M5xaS2bk7dH3-1uuXED1kjZjmabw8bmvUk2mH9fYrg3q_TTSOg6qkU1uHwwyKnWLJPZhIJuHG10aVdMx7gUFFiNNCdvHqHrtMux1quU4KrruTxQr_9OdIrye6gVWBwBzKmU7PwJoWAOazOHtZk_a6sK8UiB4Tj5WimM_9G9OurWZUr59E3X605JxtkvRkOlkQ |
CitedBy_id | crossref_primary_10_1016_j_crmeth_2021_100041 crossref_primary_10_1093_bfgp_elad009 crossref_primary_10_1016_j_ijantimicag_2020_105948 crossref_primary_10_1038_s41421_021_00248_3 crossref_primary_10_1038_s41592_022_01618_9 crossref_primary_10_1016_j_jgg_2021_08_005 crossref_primary_10_1021_jacs_3c06706 crossref_primary_10_1021_acs_analchem_4c04474 crossref_primary_10_1016_j_jgg_2021_08_007 crossref_primary_10_3389_fsurg_2022_934828 crossref_primary_10_3390_mps6020024 crossref_primary_10_1038_s41467_020_19345_0 crossref_primary_10_1016_j_fmre_2023_11_014 crossref_primary_10_1038_s41598_024_75120_x crossref_primary_10_7717_peerj_9689 crossref_primary_10_1002_smtd_202000792 crossref_primary_10_15406_jhvrv_2020_08_00227 crossref_primary_10_1038_s41598_021_83812_x crossref_primary_10_1038_s41587_024_02475_x crossref_primary_10_1038_s41592_022_01600_5 crossref_primary_10_1007_s12257_024_00118_1 crossref_primary_10_1007_s11426_020_9864_7 crossref_primary_10_1007_s00216_020_03046_0 crossref_primary_10_1093_gpbjnl_qzae072 crossref_primary_10_3389_fgene_2020_511286 crossref_primary_10_3389_fcell_2021_829990 crossref_primary_10_1038_s41588_024_01658_1 crossref_primary_10_1038_s12276_024_01164_8 crossref_primary_10_1186_s40168_022_01447_0 crossref_primary_10_14348_molcells_2023_2168 crossref_primary_10_1016_j_pep_2021_105866 crossref_primary_10_1038_s41467_021_26203_0 crossref_primary_10_3390_jof10090605 crossref_primary_10_3390_biotech13030030 crossref_primary_10_1021_acsinfecdis_4c00374 crossref_primary_10_1002_VIW_20220034 crossref_primary_10_1002_ijch_202300181 crossref_primary_10_21769_BioProtoc_4998 crossref_primary_10_1016_j_molcel_2020_11_030 crossref_primary_10_3748_wjg_v27_i35_5822 crossref_primary_10_1093_nar_gkae821 crossref_primary_10_1101_gr_277213_122 crossref_primary_10_1038_s41592_022_01619_8 crossref_primary_10_3389_fcell_2022_883861 crossref_primary_10_1016_j_sajb_2025_02_028 crossref_primary_10_1109_JSEN_2023_3276911 crossref_primary_10_1016_j_jmb_2021_167209 crossref_primary_10_1111_jipb_13395 crossref_primary_10_1016_j_tibtech_2023_05_010 crossref_primary_10_1093_nsr_nwaa264 crossref_primary_10_1038_s41598_021_90255_x crossref_primary_10_3390_plants12213725 crossref_primary_10_1186_s12915_022_01416_x crossref_primary_10_3389_fmicb_2022_932698 crossref_primary_10_1093_jxb_erac515 crossref_primary_10_3390_ijms252312845 crossref_primary_10_1038_s41592_022_01601_4 crossref_primary_10_1101_gr_275223_121 crossref_primary_10_1007_s00705_021_05091_1 crossref_primary_10_3390_ijms21218329 crossref_primary_10_1016_j_cej_2021_128759 crossref_primary_10_3389_fcell_2022_854317 crossref_primary_10_1038_s44222_023_00084_y crossref_primary_10_1186_s13059_023_02893_1 crossref_primary_10_3389_fgene_2023_1285599 crossref_primary_10_2139_ssrn_3802023 crossref_primary_10_3390_v13010065 crossref_primary_10_1126_sciadv_abe3516 crossref_primary_10_1007_s11426_023_1793_7 crossref_primary_10_1016_j_molcel_2023_08_010 crossref_primary_10_1007_s00216_023_05028_4 crossref_primary_10_1093_g3journal_jkae094 crossref_primary_10_7554_eLife_54919 crossref_primary_10_1093_nargab_lqab094 crossref_primary_10_3390_s21237823 crossref_primary_10_1021_acs_analchem_0c01613 |
Cites_doi | 10.1038/nmeth.1226 10.1126/science.aak9787 10.1038/s41592-018-0107-y 10.1038/s41467-018-05933-8 10.1172/jci.insight.124729 10.1038/nmeth.4179 10.1126/science.aam8999 10.3389/fonc.2019.00482 10.3389/fimmu.2018.02425 10.1038/nmeth.1315 10.1101/gr.177881.114 10.1126/science.289.5476.77 10.1074/jbc.M208968200 10.1093/nar/gkp596 10.3390/genes10010050 10.1101/gr.100396.109 10.1016/j.stem.2018.08.007 10.1038/nmeth.2688 10.1126/science.aat5641 10.1074/jbc.273.13.7367 10.1016/j.ygeno.2010.07.010 10.1126/science.aam8940 10.1146/annurev.genet.42.110807.091656 10.1093/nar/gkt1414 10.1038/ncomms14049 10.1038/nmeth.1223 10.1021/acs.analchem.6b02581 10.1128/JVI.00750-06 10.1016/0378-1119(83)90230-5 10.1016/j.cell.2005.04.024 10.1038/nmeth.1360 10.1002/dvdy.23850 10.1101/gr.127373.111 10.1186/s13059-016-0938-8 10.1038/s41593-017-0056-2 10.1038/nprot.2014.006 10.1126/science.1247651 10.1038/s41422-018-0074-y 10.1073/pnas.1812702115 10.1186/gb-2010-11-12-r119 |
ContentType | Journal Article |
Copyright | Copyright © 2020 the Author(s). Published by PNAS. Copyright National Academy of Sciences Feb 11, 2020 Copyright © 2020 the Author(s). Published by PNAS. 2020 |
Copyright_xml | – notice: Copyright © 2020 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Feb 11, 2020 – notice: Copyright © 2020 the Author(s). Published by PNAS. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1919800117 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 2893 |
ExternalDocumentID | PMC7022195 31988135 10_1073_pnas_1919800117 26928734 |
Genre | Research Support, Non-U.S. Gov't Evaluation Study Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: 21675098 – fundername: Ministry of Science and Technology of the People's Republic of China (MOST) grantid: 2018YFA0108100 – fundername: Beijing Brain Initiation grantid: Z181100001518004 – fundername: Ministry of Science and Technology of the People's Republic of China (MOST) grantid: 2018YFA0800200 – fundername: National Natural Science Foundation of China (NSFC) grantid: 21525521 – fundername: Ministry of Science and Technology of the People's Republic of China (MOST) grantid: 2018YFC1002300 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-596fefce04ccd0f51c1c59646369cf49d1c797ff780f8ac5b33cccf7c9ee47aa3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:01:42 EDT 2025 Fri Jul 11 05:50:21 EDT 2025 Mon Jun 30 08:16:23 EDT 2025 Mon Jul 21 05:47:42 EDT 2025 Tue Jul 01 03:40:15 EDT 2025 Thu Apr 24 23:02:39 EDT 2025 Thu May 29 09:13:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Tn5 transposase RNA-seq single cell |
Language | English |
License | Copyright © 2020 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-596fefce04ccd0f51c1c59646369cf49d1c797ff780f8ac5b33cccf7c9ee47aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 1L.D. and Y.F. contributed equally to this work. Author contributions: Y.F., K.L., X.S.X., Y.H., and J.W. designed research; L.D., Y.F., Y.S., J.L., L.L., G.W., J.X., J.O., and D.W. performed research; L.D., Y.F., L.L., J.Y., Y.W., R.W.L., G.Z., Y.H., and J.W. analyzed data; and L.D., X.S.X., Y.H., and J.W. wrote the paper. 2Present address: Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030. Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved December 31, 2019 (received for review November 11, 2019) |
ORCID | 0000-0002-2829-1546 0000-0001-6725-7925 0000-0002-7625-2779 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7022195 |
PMID | 31988135 |
PQID | 2354826476 |
PQPubID | 42026 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7022195 proquest_miscellaneous_2347510346 proquest_journals_2354826476 pubmed_primary_31988135 crossref_primary_10_1073_pnas_1919800117 crossref_citationtrail_10_1073_pnas_1919800117 jstor_primary_26928734 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-11 |
PublicationDateYYYYMMDD | 2020-02-11 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Wurtzel O. (e_1_3_4_3_2) 2010; 20 Picelli S. (e_1_3_4_17_2) 2014; 9 Lim D. (e_1_3_4_40_2) 2006; 80 Chen C. (e_1_3_4_29_2) 2017; 356 Rohrback S. (e_1_3_4_30_2) 2018; 115 Tang F. (e_1_3_4_16_2) 2009; 6 Majorek K. A. (e_1_3_4_35_2) 2014; 42 Cloonan N. (e_1_3_4_13_2) 2008; 5 Gertz J. (e_1_3_4_33_2) 2012; 22 Picelli S. (e_1_3_4_27_2) 2014; 24 Hochgerner H. (e_1_3_4_9_2) 2018; 21 Cao J. (e_1_3_4_22_2) 2017; 357 Nowotny M. (e_1_3_4_39_2) 2005; 121 Mortazavi A. (e_1_3_4_11_2) 2008; 5 See P. (e_1_3_4_24_2) 2018; 9 Davies D. R. (e_1_3_4_36_2) 2000; 289 Goryshin I. Y. (e_1_3_4_25_2) 1998; 273 Adey A. (e_1_3_4_26_2) 2010; 11 Liu Y. (e_1_3_4_1_2) 2018; 3 Armour C. D. (e_1_3_4_14_2) 2009; 6 Buenrostro J. D. (e_1_3_4_28_2) 2013; 10 Tan L. (e_1_3_4_31_2) 2018; 361 Penin A. A. (e_1_3_4_4_2) 2019; 10 Zheng G. X. (e_1_3_4_20_2) 2017; 8 Lai B. (e_1_3_4_32_2) 2018; 15 Civita P. (e_1_3_4_5_2) 2019; 9 Rosenberg A. B. (e_1_3_4_23_2) 2018; 360 Chen Y. (e_1_3_4_7_2) 2018; 28 Gierahn T. M. (e_1_3_4_21_2) 2017; 14 Cui P. (e_1_3_4_12_2) 2010; 96 Schmidt E. (e_1_3_4_2_2) 2018; 9 Brouilette S. (e_1_3_4_34_2) 2012; 241 Picelli S. (e_1_3_4_41_2) 2014; 24 Gubler U. (e_1_3_4_10_2) 1983; 25 Parkhomchuk D. (e_1_3_4_15_2) 2009; 37 Wang M. (e_1_3_4_8_2) 2018; 23 Jaitin D. A. (e_1_3_4_6_2) 2014; 343 Fu Y. (e_1_3_4_19_2) 2016; 88 Reznikoff W. S. (e_1_3_4_37_2) 2008; 42 Hashimshony T. (e_1_3_4_18_2) 2016; 17 Peterson G. (e_1_3_4_38_2) 2003; 278 |
References_xml | – volume: 5 start-page: 621 year: 2008 ident: e_1_3_4_11_2 article-title: Mapping and quantifying mammalian transcriptomes by RNA-Seq publication-title: Nat. Methods doi: 10.1038/nmeth.1226 – volume: 356 start-page: 189 year: 2017 ident: e_1_3_4_29_2 article-title: Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI) publication-title: Science doi: 10.1126/science.aak9787 – volume: 15 start-page: 741 year: 2018 ident: e_1_3_4_32_2 article-title: Trac-looping measures genome structure and chromatin accessibility publication-title: Nat. Methods doi: 10.1038/s41592-018-0107-y – volume: 9 start-page: 3622 year: 2018 ident: e_1_3_4_2_2 article-title: LincRNA H19 protects from dietary obesity by constraining expression of monoallelic genes in brown fat publication-title: Nat. Commun. doi: 10.1038/s41467-018-05933-8 – volume: 3 start-page: e124729 year: 2018 ident: e_1_3_4_1_2 article-title: Peptidylarginine deiminases 2 and 4 modulate innate and adaptive immune responses in TLR-7-dependent lupus publication-title: JCI Insight doi: 10.1172/jci.insight.124729 – volume: 14 start-page: 395 year: 2017 ident: e_1_3_4_21_2 article-title: Seq-Well: Portable, low-cost RNA sequencing of single cells at high throughput publication-title: Nat. Methods doi: 10.1038/nmeth.4179 – volume: 360 start-page: 176 year: 2018 ident: e_1_3_4_23_2 article-title: Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding publication-title: Science doi: 10.1126/science.aam8999 – volume: 9 start-page: 482 year: 2019 ident: e_1_3_4_5_2 article-title: Laser capture microdissection and RNA-seq analysis: High sensitivity approaches to explain histopathological heterogeneity in human glioblastoma FFPE archived tissues publication-title: Front. Oncol. doi: 10.3389/fonc.2019.00482 – volume: 9 start-page: 2425 year: 2018 ident: e_1_3_4_24_2 article-title: A single-cell sequencing guide for immunologists publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.02425 – volume: 6 start-page: 377 year: 2009 ident: e_1_3_4_16_2 article-title: mRNA-Seq whole-transcriptome analysis of a single cell publication-title: Nat. Methods doi: 10.1038/nmeth.1315 – volume: 24 start-page: 2033 year: 2014 ident: e_1_3_4_27_2 article-title: Tn5 transposase and tagmentation procedures for massively scaled sequencing projects publication-title: Genome Res. doi: 10.1101/gr.177881.114 – volume: 289 start-page: 77 year: 2000 ident: e_1_3_4_36_2 article-title: Three-dimensional structure of the Tn5 synaptic complex transposition intermediate publication-title: Science doi: 10.1126/science.289.5476.77 – volume: 278 start-page: 1904 year: 2003 ident: e_1_3_4_38_2 article-title: Tn5 transposase active site mutations suggest position of donor backbone DNA in synaptic complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.M208968200 – volume: 37 start-page: e123 year: 2009 ident: e_1_3_4_15_2 article-title: Transcriptome analysis by strand-specific sequencing of complementary DNA publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp596 – volume: 10 start-page: E50 year: 2019 ident: e_1_3_4_4_2 article-title: Comparative analysis of developmental transcriptome maps of Arabidopsis thaliana and Solanum lycopersicum publication-title: Genes (Basel) doi: 10.3390/genes10010050 – volume: 20 start-page: 133 year: 2010 ident: e_1_3_4_3_2 article-title: A single-base resolution map of an archaeal transcriptome publication-title: Genome Res. doi: 10.1101/gr.100396.109 – volume: 23 start-page: 599 year: 2018 ident: e_1_3_4_8_2 article-title: Single-cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.08.007 – volume: 10 start-page: 1213 year: 2013 ident: e_1_3_4_28_2 article-title: Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position publication-title: Nat. Methods doi: 10.1038/nmeth.2688 – volume: 361 start-page: 924 year: 2018 ident: e_1_3_4_31_2 article-title: Three-dimensional genome structures of single diploid human cells publication-title: Science doi: 10.1126/science.aat5641 – volume: 273 start-page: 7367 year: 1998 ident: e_1_3_4_25_2 article-title: Tn5 in vitro transposition publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.13.7367 – volume: 96 start-page: 259 year: 2010 ident: e_1_3_4_12_2 article-title: A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing publication-title: Genomics doi: 10.1016/j.ygeno.2010.07.010 – volume: 357 start-page: 661 year: 2017 ident: e_1_3_4_22_2 article-title: Comprehensive single-cell transcriptional profiling of a multicellular organism publication-title: Science doi: 10.1126/science.aam8940 – volume: 42 start-page: 269 year: 2008 ident: e_1_3_4_37_2 article-title: Transposon Tn5 publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.42.110807.091656 – volume: 42 start-page: 4160 year: 2014 ident: e_1_3_4_35_2 article-title: The RNase H-like superfamily: New members, comparative structural analysis and evolutionary classification publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1414 – volume: 8 start-page: 14049 year: 2017 ident: e_1_3_4_20_2 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: Nat. Commun. doi: 10.1038/ncomms14049 – volume: 5 start-page: 613 year: 2008 ident: e_1_3_4_13_2 article-title: Stem cell transcriptome profiling via massive-scale mRNA sequencing publication-title: Nat. Methods doi: 10.1038/nmeth.1223 – volume: 88 start-page: 10795 year: 2016 ident: e_1_3_4_19_2 article-title: Single cell total RNA sequencing through isothermal amplification in picoliter-droplet emulsion publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b02581 – volume: 80 start-page: 8379 year: 2006 ident: e_1_3_4_40_2 article-title: Crystal structure of the moloney murine leukemia virus RNase H domain publication-title: J. Virol. doi: 10.1128/JVI.00750-06 – volume: 25 start-page: 263 year: 1983 ident: e_1_3_4_10_2 article-title: A simple and very efficient method for generating cDNA libraries publication-title: Gene doi: 10.1016/0378-1119(83)90230-5 – volume: 121 start-page: 1005 year: 2005 ident: e_1_3_4_39_2 article-title: Crystal structures of RNase H bound to an RNA/DNA hybrid: Substrate specificity and metal-dependent catalysis publication-title: Cell doi: 10.1016/j.cell.2005.04.024 – volume: 24 start-page: 2033 year: 2014 ident: e_1_3_4_41_2 article-title: Tn5 transposase and tagmentation procedures for massively scaled sequencing projects publication-title: Genome Res. doi: 10.1101/gr.177881.114 – volume: 6 start-page: 647 year: 2009 ident: e_1_3_4_14_2 article-title: Digital transcriptome profiling using selective hexamer priming for cDNA synthesis publication-title: Nat. Methods doi: 10.1038/nmeth.1360 – volume: 241 start-page: 1584 year: 2012 ident: e_1_3_4_34_2 article-title: A simple and novel method for RNA-seq library preparation of single cell cDNA analysis by hyperactive Tn5 transposase publication-title: Dev. Dyn. doi: 10.1002/dvdy.23850 – volume: 22 start-page: 134 year: 2012 ident: e_1_3_4_33_2 article-title: Transposase mediated construction of RNA-seq libraries publication-title: Genome Res. doi: 10.1101/gr.127373.111 – volume: 17 start-page: 77 year: 2016 ident: e_1_3_4_18_2 article-title: CEL-Seq2: Sensitive highly-multiplexed single-cell RNA-seq publication-title: Genome Biol. doi: 10.1186/s13059-016-0938-8 – volume: 21 start-page: 290 year: 2018 ident: e_1_3_4_9_2 article-title: Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing publication-title: Nat. Neurosci. doi: 10.1038/s41593-017-0056-2 – volume: 9 start-page: 171 year: 2014 ident: e_1_3_4_17_2 article-title: Full-length RNA-seq from single cells using Smart-seq2 publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.006 – volume: 343 start-page: 776 year: 2014 ident: e_1_3_4_6_2 article-title: Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types publication-title: Science doi: 10.1126/science.1247651 – volume: 28 start-page: 879 year: 2018 ident: e_1_3_4_7_2 article-title: Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis publication-title: Cell Res. doi: 10.1038/s41422-018-0074-y – volume: 115 start-page: 10804 year: 2018 ident: e_1_3_4_30_2 article-title: Submegabase copy number variations arise during cerebral cortical neurogenesis as revealed by single-cell whole-genome sequencing publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1812702115 – volume: 11 start-page: R119 year: 2010 ident: e_1_3_4_26_2 article-title: Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition publication-title: Genome Biol. doi: 10.1186/gb-2010-11-12-r119 |
SSID | ssj0009580 |
Score | 2.58269 |
Snippet | Transcriptome profiling by RNA sequencing (RNA-seq) has been widely used to characterize cellular status, but it relies on second-strand complementary DNA... RNA sequencing is widely used to measure gene expression in biomedical research; therefore, improvements in the simplicity and accuracy of the technology are... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2886 |
SubjectTerms | Adapters Biological Sciences Chimera - genetics Complementary DNA Deoxyribonucleic acid DNA DNA - genetics DNA biosynthesis DNA fingerprinting DNA sequencing DNA, Complementary - genetics Gene expression Gene Library HEK293 Cells HeLa Cells Humans Hybrids Reverse transcription Ribonucleic acid RNA RNA - genetics Sequence Analysis, RNA - methods Single-Cell Analysis Synthesis Transposase Transposases - metabolism |
Title | RNA sequencing by direct tagmentation of RNA/DNA hybrids |
URI | https://www.jstor.org/stable/26928734 https://www.ncbi.nlm.nih.gov/pubmed/31988135 https://www.proquest.com/docview/2354826476 https://www.proquest.com/docview/2347510346 https://pubmed.ncbi.nlm.nih.gov/PMC7022195 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5RAEN-cNTF9MVatUqvBxIeaC9cDFhYeL62maezlYtqkb2QZdu0llmsKPNR_wn_Z2Q8-7qxG-0K4ZRa4nR_DzLLzG0I-0AAgicPc4xSoRwseeWmeR54PcioL3BO68tzZPD65oKeX0eVo9HOwaqmp8wn8uDev5CFaxTbUq8qS_Q_NdifFBtxH_eIWNYzbf9Lx1_lsbNdCq4gfPUnzhhrX_Nu1TSrS7iAK4lWOUfzqTqVoVUOfdNG9w6p2xcC8nSKc9Qkn1gpUY2-8mPfli4-XNrTvkNBos95Uy_6DU2maOhB90Z1Ol2I46YARpiqB0k86_O0uhtY2wDcgNTnSE2EMLPonXkxNidDOApv0TQu1NXuatETZ9qcpp_ib3UdDpYoVl7yaYACaJprqbiiJiru51jBAm5MkvuFI2aDaXpwdMfRp_DR6RB4HGHcE2tIPWZwTk9Nk_1jLFcXCw41rb5Mn7YXWPB6z6PW-cGZzVe7AzTl_Rp7a-MSdGbDtkJEon5OddtTdA0tT_vEFSRBUbo8-N79zDfrcIfrclXRR8BCx51rsvSQXnz-dH514tg6HB-hO1l6UxlJIEFMKUExl5IMP2Kao5lKQNC18YCmTkiVTmXCI8jAEAMkgFYIyzsNdslWuSvGauBwHMOQyiIAVFGTBfS4kpwFHT5RBIR0yaccqA0tSr2qlfM_0YgkWZmqcs36cHXLQdbgx_Cx_Ft3Vg9_JBXEaJCykDtlvtZHZp7vKghBjeYwWWOyQ991htL3qgxovxapRMpQpRkqKMq-M8rqTt9p3CFtTayegeN3Xj5TLK83vbjG49-Ceb8h2_9Duk636thFv0Xeu83caz78ADJHCWA |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNA+sequencing+by+direct+tagmentation+of+RNA%2FDNA+hybrids&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Di%2C+Lin&rft.au=Fu%2C+Yusi&rft.au=Sun%2C+Yue&rft.au=Li%2C+Jie&rft.date=2020-02-11&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=6&rft.spage=2886&rft.epage=2893&rft_id=info:doi/10.1073%2Fpnas.1919800117&rft_id=info%3Apmid%2F31988135&rft.externalDocID=PMC7022195 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |