The Use of Triaxial Accelerometers and Machine Learning Algorithms for Behavioural Identification in Domestic Dogs (Canis familiaris): A Validation Study

Assessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles such as hunting, military or service. Common methods of behavioural assessment can be time consuming, labour-intensive, and subject to bias,...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 18; p. 5955
Main Authors Redmond, Cushla, Smit, Michelle, Draganova, Ina, Corner-Thomas, Rene, Thomas, David, Andrews, Christopher
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 13.09.2024
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s24185955

Cover

Loading…
Abstract Assessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles such as hunting, military or service. Common methods of behavioural assessment can be time consuming, labour-intensive, and subject to bias, making large-scale and rapid implementation challenging. Objective, practical and time effective behaviour measures may be facilitated by remote and automated devices such as accelerometers. This study, therefore, aimed to validate the ActiGraph® accelerometer as a tool for behavioural classification. This study used a machine learning method that identified nine dog behaviours with an overall accuracy of 74% (range for each behaviour was 54 to 93%). In addition, overall body dynamic acceleration was found to be correlated with the amount of time spent exhibiting active behaviours (barking, locomotion, scratching, sniffing, and standing; R2 = 0.91, p < 0.001). Machine learning was an effective method to build a model to classify behaviours such as barking, defecating, drinking, eating, locomotion, resting-asleep, resting-alert, sniffing, and standing with high overall accuracy whilst maintaining a large behavioural repertoire.
AbstractList Assessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles such as hunting, military or service. Common methods of behavioural assessment can be time consuming, labour-intensive, and subject to bias, making large-scale and rapid implementation challenging. Objective, practical and time effective behaviour measures may be facilitated by remote and automated devices such as accelerometers. This study, therefore, aimed to validate the ActiGraph® accelerometer as a tool for behavioural classification. This study used a machine learning method that identified nine dog behaviours with an overall accuracy of 74% (range for each behaviour was 54 to 93%). In addition, overall body dynamic acceleration was found to be correlated with the amount of time spent exhibiting active behaviours (barking, locomotion, scratching, sniffing, and standing; R2 = 0.91, p < 0.001). Machine learning was an effective method to build a model to classify behaviours such as barking, defecating, drinking, eating, locomotion, resting-asleep, resting-alert, sniffing, and standing with high overall accuracy whilst maintaining a large behavioural repertoire.
Assessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles such as hunting, military or service. Common methods of behavioural assessment can be time consuming, labour-intensive, and subject to bias, making large-scale and rapid implementation challenging. Objective, practical and time effective behaviour measures may be facilitated by remote and automated devices such as accelerometers. This study, therefore, aimed to validate the ActiGraph® accelerometer as a tool for behavioural classification. This study used a machine learning method that identified nine dog behaviours with an overall accuracy of 74% (range for each behaviour was 54 to 93%). In addition, overall body dynamic acceleration was found to be correlated with the amount of time spent exhibiting active behaviours (barking, locomotion, scratching, sniffing, and standing; R2 = 0.91, p < 0.001). Machine learning was an effective method to build a model to classify behaviours such as barking, defecating, drinking, eating, locomotion, resting-asleep, resting-alert, sniffing, and standing with high overall accuracy whilst maintaining a large behavioural repertoire.Assessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles such as hunting, military or service. Common methods of behavioural assessment can be time consuming, labour-intensive, and subject to bias, making large-scale and rapid implementation challenging. Objective, practical and time effective behaviour measures may be facilitated by remote and automated devices such as accelerometers. This study, therefore, aimed to validate the ActiGraph® accelerometer as a tool for behavioural classification. This study used a machine learning method that identified nine dog behaviours with an overall accuracy of 74% (range for each behaviour was 54 to 93%). In addition, overall body dynamic acceleration was found to be correlated with the amount of time spent exhibiting active behaviours (barking, locomotion, scratching, sniffing, and standing; R2 = 0.91, p < 0.001). Machine learning was an effective method to build a model to classify behaviours such as barking, defecating, drinking, eating, locomotion, resting-asleep, resting-alert, sniffing, and standing with high overall accuracy whilst maintaining a large behavioural repertoire.
Assessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles such as hunting, military or service. Common methods of behavioural assessment can be time consuming, labour-intensive, and subject to bias, making large-scale and rapid implementation challenging. Objective, practical and time effective behaviour measures may be facilitated by remote and automated devices such as accelerometers. This study, therefore, aimed to validate the ActiGraph accelerometer as a tool for behavioural classification. This study used a machine learning method that identified nine dog behaviours with an overall accuracy of 74% (range for each behaviour was 54 to 93%). In addition, overall body dynamic acceleration was found to be correlated with the amount of time spent exhibiting active behaviours (barking, locomotion, scratching, sniffing, and standing; R = 0.91, < 0.001). Machine learning was an effective method to build a model to classify behaviours such as barking, defecating, drinking, eating, locomotion, resting-asleep, resting-alert, sniffing, and standing with high overall accuracy whilst maintaining a large behavioural repertoire.
Assessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles such as hunting, military or service. Common methods of behavioural assessment can be time consuming, labour-intensive, and subject to bias, making large-scale and rapid implementation challenging. Objective, practical and time effective behaviour measures may be facilitated by remote and automated devices such as accelerometers. This study, therefore, aimed to validate the ActiGraph ® accelerometer as a tool for behavioural classification. This study used a machine learning method that identified nine dog behaviours with an overall accuracy of 74% (range for each behaviour was 54 to 93%). In addition, overall body dynamic acceleration was found to be correlated with the amount of time spent exhibiting active behaviours (barking, locomotion, scratching, sniffing, and standing; R 2 = 0.91, p < 0.001). Machine learning was an effective method to build a model to classify behaviours such as barking, defecating, drinking, eating, locomotion, resting-asleep, resting-alert, sniffing, and standing with high overall accuracy whilst maintaining a large behavioural repertoire.
Assessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles such as hunting, military or service. Common methods of behavioural assessment can be time consuming, labour-intensive, and subject to bias, making large-scale and rapid implementation challenging. Objective, practical and time effective behaviour measures may be facilitated by remote and automated devices such as accelerometers. This study, therefore, aimed to validate the ActiGraph[sup.®] accelerometer as a tool for behavioural classification. This study used a machine learning method that identified nine dog behaviours with an overall accuracy of 74% (range for each behaviour was 54 to 93%). In addition, overall body dynamic acceleration was found to be correlated with the amount of time spent exhibiting active behaviours (barking, locomotion, scratching, sniffing, and standing; R[sup.2] = 0.91, p < 0.001). Machine learning was an effective method to build a model to classify behaviours such as barking, defecating, drinking, eating, locomotion, resting-asleep, resting-alert, sniffing, and standing with high overall accuracy whilst maintaining a large behavioural repertoire.
Audience Academic
Author Corner-Thomas, Rene
Draganova, Ina
Thomas, David
Smit, Michelle
Andrews, Christopher
Redmond, Cushla
AuthorAffiliation School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand; cushla-r-@hotmail.com (C.R.); m.smit@massey.ac.nz (M.S.); i.draganova@massey.ac.nz (I.D.); r.corner@massey.ac.nz (R.C.-T.); c.j.andrews@massey.ac.nz (C.A.)
AuthorAffiliation_xml – name: School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand; cushla-r-@hotmail.com (C.R.); m.smit@massey.ac.nz (M.S.); i.draganova@massey.ac.nz (I.D.); r.corner@massey.ac.nz (R.C.-T.); c.j.andrews@massey.ac.nz (C.A.)
Author_xml – sequence: 1
  givenname: Cushla
  surname: Redmond
  fullname: Redmond, Cushla
– sequence: 2
  givenname: Michelle
  orcidid: 0000-0003-0554-5125
  surname: Smit
  fullname: Smit, Michelle
– sequence: 3
  givenname: Ina
  orcidid: 0000-0002-2131-4012
  surname: Draganova
  fullname: Draganova, Ina
– sequence: 4
  givenname: Rene
  orcidid: 0000-0002-7398-2653
  surname: Corner-Thomas
  fullname: Corner-Thomas, Rene
– sequence: 5
  givenname: David
  orcidid: 0000-0001-7460-9351
  surname: Thomas
  fullname: Thomas, David
– sequence: 6
  givenname: Christopher
  orcidid: 0000-0003-3049-1835
  surname: Andrews
  fullname: Andrews, Christopher
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39338701$$D View this record in MEDLINE/PubMed
BookMark eNplks9O3DAQxqOKqsC2h75AZakXOCzYcbKJe6m2238rUfVQ6NWynfHuoMQGO4vKo_RtO7CAgCqHsezv-8XzefaLnRADFMVbwY-kVPw4l5Voa1XXL4o9UZXVtC1LvvNovVvs53zOeSmlbF8Vu1JRbbjYK_6eroGdZWDRs9OE5g-ans2dgx5SHGCElJkJHfth3BoDsBMwKWBYsXm_ignH9ZCZj4l9grW5wrhJZF92EEb06MyIMTAM7DOh8oiOFqvMDhYmINnMgD2ahPnwA5uz36bHbuv4NW6669fFS2_6DG_u6qQ4-_rldPF9evLz23IxP5m6mqtxWnNrVaeASzGrLciuhgasLVtJ_VnlG9_MpLStL0mpWqeshboBT6cldN7LSbHccrtozvVFwsGkax0N6tuNmFbaJLp7D7rsWt-oRjZe-YpbacEZql3TVmXpjCXWxy3rYmMH6BzlQIE8gT49CbjWq3ilhahk3c4EEQ7uCClebig0PWCm1-hNgLjJWgrBleCz9kb6_pn0nPIPlNWtaqZkRdRJcbRVrQx1gMFH-rGjr4MBHc2RR9qft4I3quZtQ4Z3j3t4uPz9zJDgeCtwKeacwGuH4-3DERl7Lbi-mUr9MJXkOHzmuIf-r_0HXqvimw
CitedBy_id crossref_primary_10_3390_s24237641
Cites_doi 10.1016/j.jveb.2013.11.003
10.1007/978-3-319-23528-8_13
10.1111/jsap.12142
10.3390/s23167165
10.1371/journal.pone.0118432
10.1111/j.1467-2995.2007.00367.x
10.1080/10888705.2014.856241
10.1163/156853098X00069
10.1016/j.applanim.2005.11.018
10.2460/ajvr.70.4.444
10.1016/j.compag.2021.106610
10.1016/j.anbehav.2016.12.005
10.1016/j.applanim.2014.11.020
10.1016/j.jveb.2014.09.001
10.1111/2041-210X.12584
10.3390/ani11051262
10.1186/2050-3385-1-20
10.1371/journal.pone.0077814
10.1016/j.nmd.2009.07.014
10.1016/j.physbeh.2016.03.020
10.1016/j.applanim.2009.04.008
10.3390/s24082623
10.1186/s12917-015-0457-y
10.1080/10255842.2012.713655
10.1007/978-3-030-60796-8_35
10.3390/app9224938
10.1016/j.jembe.2018.12.003
10.3390/ani8120230
10.1016/j.applanim.2016.08.012
10.1016/j.jveb.2016.10.007
10.1111/jvim.15760
10.1088/1742-6596/1655/1/012087
10.1371/journal.pone.0188481
10.1016/j.applanim.2021.105393
10.1016/j.applanim.2015.11.019
10.1111/j.1748-5827.2010.01025.x
10.1016/S0168-1591(02)00121-1
10.1016/S0149-7634(05)80130-7
10.1016/j.applanim.2005.04.008
10.1016/j.prevetmed.2014.10.003
10.3390/ani13091506
10.1613/jair.1.11192
10.1186/s12917-017-0971-1
10.1016/j.jveb.2019.08.001
10.1242/jeb.058602
10.2460/javma.2005.226.2010
10.1111/jsap.12587
10.1186/s12917-017-1228-8
10.1016/j.rvsc.2011.08.005
10.1038/s41598-023-39112-7
10.1016/j.csbj.2017.07.005
10.3390/s21206816
10.3390/s18082649
10.1371/journal.pone.0286429
10.2165/00007256-200232120-00004
10.3389/fvets.2018.00103
10.1016/j.applanim.2011.11.016
10.1016/j.cvsm.2006.08.005
10.2460/javma.237.1.66
10.2460/ajvr.72.7.866
10.1109/TKDE.2009.187
10.1016/j.applanim.2022.105725
10.2460/ajvr.68.5.468
10.1242/jeb.184085
10.1016/j.applanim.2009.03.005
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24185955
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest One Academic
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_2d8f79737f9f40b3beca40bd78422cab
PMC11435861
A810795087
39338701
10_3390_s24185955
Genre Journal Article
GeographicLocations New Zealand
United States--US
GeographicLocations_xml – name: United States--US
– name: New Zealand
GrantInformation_xml – fundername: Healthy Pets New Zealand
  grantid: N/A
– fundername: Centre for Canine Nutrition, Massey University
– fundername: Healthy Pets New Zealand
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c509t-50bb9d9e03165be3d5e7ebb283701b9f7f7633b8f250b98c9bbe57ef7012edff3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:29:33 EDT 2025
Thu Aug 21 18:31:18 EDT 2025
Fri Jul 11 13:46:31 EDT 2025
Sat Jul 26 01:21:19 EDT 2025
Tue Jun 10 21:02:33 EDT 2025
Mon Jul 21 05:40:19 EDT 2025
Tue Jul 01 03:51:13 EDT 2025
Thu Apr 24 23:09:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords random forest
behaviour classification
overall activity
algorithm
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-50bb9d9e03165be3d5e7ebb283701b9f7f7633b8f250b98c9bbe57ef7012edff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2131-4012
0000-0003-0554-5125
0000-0001-7460-9351
0000-0003-3049-1835
0000-0002-7398-2653
OpenAccessLink https://doaj.org/article/2d8f79737f9f40b3beca40bd78422cab
PMID 39338701
PQID 3110693414
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_2d8f79737f9f40b3beca40bd78422cab
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11435861
proquest_miscellaneous_3110910681
proquest_journals_3110693414
gale_infotracacademiconefile_A810795087
pubmed_primary_39338701
crossref_citationtrail_10_3390_s24185955
crossref_primary_10_3390_s24185955
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240913
PublicationDateYYYYMMDD 2024-09-13
PublicationDate_xml – month: 9
  year: 2024
  text: 20240913
  day: 13
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hounslow (ref_60) 2019; 512
Laflamme (ref_44) 2006; 36
Williams (ref_18) 2002; 32
Lee (ref_50) 2022; 255
Walker (ref_49) 2016; 184
Riaboff (ref_45) 2022; 192
Fukuzawa (ref_51) 2015; 10
ref_54
ref_53
ref_52
Yam (ref_25) 2011; 52
Barrey (ref_22) 2009; 19
Martiskainen (ref_64) 2009; 119
King (ref_3) 2012; 137
Morrison (ref_15) 2013; 54
Clark (ref_41) 2014; 78
Michel (ref_39) 2011; 72
Jones (ref_16) 2014; 17
ref_59
Preston (ref_26) 2012; 93
Hoffman (ref_30) 2019; 34
Helm (ref_58) 2016; 57
Lascelles (ref_13) 2008; 35
Dow (ref_14) 2009; 70
ref_69
Menache (ref_1) 1998; 6
ref_68
ref_67
ref_66
ref_21
ref_65
Jones (ref_7) 2005; 95
ref_20
ref_63
ref_62
Nurwulan (ref_34) 2020; 1655
ref_28
Hansen (ref_19) 2007; 68
ref_27
Svartberg (ref_2) 2002; 79
Valletta (ref_31) 2017; 124
ref_70
Clarke (ref_42) 2016; 174
Brown (ref_24) 2010; 237
ref_33
ref_32
Shaik (ref_55) 2018; Volume 2
Protopopova (ref_6) 2016; 159
Pillard (ref_36) 2012; 15
Diederich (ref_4) 2006; 97
ref_37
Cheung (ref_40) 2014; 9
Wasikowski (ref_61) 2010; 22
Bardini (ref_57) 2017; 15
(ref_11) 1991; 15
Moreau (ref_23) 2009; 119
Friard (ref_47) 2016; 7
Duffy (ref_9) 2014; 117
Rayment (ref_10) 2015; 163
Garcia (ref_56) 2018; 61
Nathan (ref_35) 2012; 215
Nettifee (ref_38) 2020; 34
ref_46
ref_43
Kumpulainen (ref_29) 2021; 241
Wiener (ref_12) 2016; 16
Chan (ref_17) 2005; 226
ref_48
ref_8
ref_5
References_xml – volume: 9
  start-page: 66
  year: 2014
  ident: ref_40
  article-title: A comparison of uniaxial and triaxial accelerometers for the assessment of physical activity in dogs
  publication-title: J. Vet. Behav.
  doi: 10.1016/j.jveb.2013.11.003
– ident: ref_62
  doi: 10.1007/978-3-319-23528-8_13
– volume: 54
  start-page: 570
  year: 2013
  ident: ref_15
  article-title: Associations between obesity and physical activity in dogs: A preliminary investigation
  publication-title: J. Small Anim. Pract.
  doi: 10.1111/jsap.12142
– ident: ref_70
  doi: 10.3390/s23167165
– ident: ref_63
  doi: 10.1371/journal.pone.0118432
– volume: 35
  start-page: 173
  year: 2008
  ident: ref_13
  article-title: Evaluation of a digitally integrated accelerometer-based activity monitor for the measurement of activity in cats
  publication-title: Vet. Anaesth. Analg.
  doi: 10.1111/j.1467-2995.2007.00367.x
– volume: 17
  start-page: 18
  year: 2014
  ident: ref_16
  article-title: Use of accelerometers to measure stress levels in shelter dogs
  publication-title: J. Appl. Anim. Welf. Sci.
  doi: 10.1080/10888705.2014.856241
– volume: 6
  start-page: 67
  year: 1998
  ident: ref_1
  article-title: Dogs and human beings: A story of friendship
  publication-title: Soc. Anim.
  doi: 10.1163/156853098X00069
– volume: 97
  start-page: 51
  year: 2006
  ident: ref_4
  article-title: Behavioural testing in dogs: A review of methodology in search for standardisation
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2005.11.018
– volume: 70
  start-page: 444
  year: 2009
  ident: ref_14
  article-title: Evaluation of optimal sampling interval for activity monitoring in companion dogs
  publication-title: Am. J. Vet. Res.
  doi: 10.2460/ajvr.70.4.444
– volume: 192
  start-page: 106610
  year: 2022
  ident: ref_45
  article-title: Predicting livestock behaviour using accelerometers: A systematic review of processing techniques for ruminant behaviour prediction from raw accelerometer data
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106610
– ident: ref_21
  doi: 10.3390/s23167165
– volume: 124
  start-page: 203
  year: 2017
  ident: ref_31
  article-title: Applications of machine learning in animal behaviour studies
  publication-title: Anim. Behav.
  doi: 10.1016/j.anbehav.2016.12.005
– volume: 163
  start-page: 1
  year: 2015
  ident: ref_10
  article-title: Applied personality assessment in domestic dogs: Limitations and caveats
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2014.11.020
– volume: 10
  start-page: 12
  year: 2015
  ident: ref_51
  article-title: Influence of changes in luminous emittance before bedtime on sleep in companion dogs
  publication-title: J. Vet. Behav.
  doi: 10.1016/j.jveb.2014.09.001
– volume: 7
  start-page: 1325
  year: 2016
  ident: ref_47
  article-title: BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12584
– volume: Volume 2
  start-page: 253
  year: 2018
  ident: ref_55
  article-title: A Brief survey on random forest ensembles in classification model
  publication-title: Proceedings of the International Conference on Innovative Computing and Communications: Proceedings of ICICC
– ident: ref_37
  doi: 10.3390/ani11051262
– ident: ref_46
  doi: 10.1186/2050-3385-1-20
– ident: ref_33
  doi: 10.1371/journal.pone.0077814
– volume: 19
  start-page: 788
  year: 2009
  ident: ref_22
  article-title: Gait analysis using accelerometry in dystrophin-deficient dogs
  publication-title: Neuromuscul. Disord.
  doi: 10.1016/j.nmd.2009.07.014
– volume: 78
  start-page: 226
  year: 2014
  ident: ref_41
  article-title: Evaluation of a novel accelerometer for kinetic gait analysis in dogs
  publication-title: Can. J. Vet. Res.
– volume: 159
  start-page: 95
  year: 2016
  ident: ref_6
  article-title: Effects of sheltering on physiology, immune function, behavior, and the welfare of dogs
  publication-title: Physiol. Behav.
  doi: 10.1016/j.physbeh.2016.03.020
– volume: 119
  start-page: 158
  year: 2009
  ident: ref_23
  article-title: Use of a tri-axial accelerometer for automated recording and classification of goats’ grazing behaviour
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2009.04.008
– ident: ref_69
  doi: 10.3390/s24082623
– ident: ref_20
  doi: 10.1186/s12917-015-0457-y
– volume: 15
  start-page: 246
  year: 2012
  ident: ref_36
  article-title: Development of a 3D accelerometric device for gait analysis in dogs
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2012.713655
– ident: ref_53
  doi: 10.1007/978-3-030-60796-8_35
– ident: ref_48
– ident: ref_27
  doi: 10.3390/app9224938
– volume: 512
  start-page: 22
  year: 2019
  ident: ref_60
  article-title: Assessing the effects of sampling frequency on behavioural classification of accelerometer data
  publication-title: J. Exp. Mar. Biol. Ecol.
  doi: 10.1016/j.jembe.2018.12.003
– ident: ref_32
  doi: 10.3390/ani8120230
– volume: 184
  start-page: 97
  year: 2016
  ident: ref_49
  article-title: Qualitative Behaviour Assessment of dogs in the shelter and home environment and relationship with quantitative behaviour assessment and physiological responses
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2016.08.012
– volume: 16
  start-page: 81
  year: 2016
  ident: ref_12
  article-title: Use of questionnaire-based data to assess dog personality
  publication-title: J. Vet. Behav.
  doi: 10.1016/j.jveb.2016.10.007
– volume: 34
  start-page: 1239
  year: 2020
  ident: ref_38
  article-title: Evaluation of a collar-mounted accelerometer for detecting seizure activity in dogs
  publication-title: J. Vet. Intern. Med.
  doi: 10.1111/jvim.15760
– volume: 1655
  start-page: 012087
  year: 2020
  ident: ref_34
  article-title: Random forest for human daily activity recognition
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1655/1/012087
– ident: ref_65
  doi: 10.1371/journal.pone.0188481
– volume: 241
  start-page: 105393
  year: 2021
  ident: ref_29
  article-title: Dog behaviour classification with movement sensors placed on the harness and the collar
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2021.105393
– volume: 174
  start-page: 99
  year: 2016
  ident: ref_42
  article-title: Automated monitoring of resting in dogs
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2015.11.019
– volume: 52
  start-page: 86
  year: 2011
  ident: ref_25
  article-title: Validity, practical utility and reliability of Actigraph accelerometry for the measurement of habitual physical activity in dogs
  publication-title: J. Small Anim. Pract.
  doi: 10.1111/j.1748-5827.2010.01025.x
– volume: 79
  start-page: 133
  year: 2002
  ident: ref_2
  article-title: Personality traits in the domestic dog (Canis familiaris)
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/S0168-1591(02)00121-1
– volume: 15
  start-page: 447
  year: 1991
  ident: ref_11
  article-title: Measuring behaviour: The tools and the strategies
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/S0149-7634(05)80130-7
– volume: 95
  start-page: 1
  year: 2005
  ident: ref_7
  article-title: Temperament and personality in dogs (Canis familiaris): A review and evaluation of past research
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2005.04.008
– volume: 117
  start-page: 601
  year: 2014
  ident: ref_9
  article-title: Evaluation of a behavioral assessment tool for dogs relinquished to shelters
  publication-title: Prev. Vet. Med.
  doi: 10.1016/j.prevetmed.2014.10.003
– ident: ref_5
  doi: 10.3390/ani13091506
– volume: 61
  start-page: 863
  year: 2018
  ident: ref_56
  article-title: SMOTE for learning from imbalanced data: Progress and challenges, marking the 15-year anniversary
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.1.11192
– ident: ref_67
  doi: 10.1186/s12917-017-0971-1
– volume: 34
  start-page: 30
  year: 2019
  ident: ref_30
  article-title: An actigraphy-based comparison of shelter dog and owned dog activity patterns
  publication-title: J. Vet. Behav.
  doi: 10.1016/j.jveb.2019.08.001
– volume: 215
  start-page: 986
  year: 2012
  ident: ref_35
  article-title: Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: General concepts and tools illustrated for griffon vultures
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.058602
– volume: 226
  start-page: 2010
  year: 2005
  ident: ref_17
  article-title: Use of pedometers to measure physical activity in dogs
  publication-title: J. Am. Vet. Med. Assoc.
  doi: 10.2460/javma.2005.226.2010
– volume: 57
  start-page: 600
  year: 2016
  ident: ref_58
  article-title: Use of accelerometry to investigate physical activity in dogs receiving chemotherapy
  publication-title: J. Small Anim. Pract.
  doi: 10.1111/jsap.12587
– ident: ref_68
  doi: 10.1186/s12917-017-1228-8
– volume: 93
  start-page: 412
  year: 2012
  ident: ref_26
  article-title: Accelerometer validity and placement for detection of changes in physical activity in dogs under controlled conditions on a treadmill
  publication-title: Res. Vet. Sci.
  doi: 10.1016/j.rvsc.2011.08.005
– ident: ref_52
  doi: 10.1038/s41598-023-39112-7
– volume: 15
  start-page: 396
  year: 2017
  ident: ref_57
  article-title: Multi-level and hybrid modelling approaches for systems biology
  publication-title: Comput. Struct. Biotech. J.
  doi: 10.1016/j.csbj.2017.07.005
– ident: ref_54
  doi: 10.3390/s21206816
– ident: ref_28
  doi: 10.3390/s18082649
– ident: ref_59
  doi: 10.1371/journal.pone.0286429
– volume: 32
  start-page: 795
  year: 2002
  ident: ref_18
  article-title: Utility of pedometers for assessing physical activity: Convergent validity
  publication-title: Sports Med.
  doi: 10.2165/00007256-200232120-00004
– ident: ref_8
  doi: 10.3389/fvets.2018.00103
– volume: 137
  start-page: 1
  year: 2012
  ident: ref_3
  article-title: Breeding dogs for beauty and behaviour: Why scientists need to do more to develop valid and reliable behaviour assessments for dogs kept as companions
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2011.11.016
– volume: 36
  start-page: 1283
  year: 2006
  ident: ref_44
  article-title: Understanding and managing obesity in dogs and cats
  publication-title: Vet. Clin. Small Anim. Pract.
  doi: 10.1016/j.cvsm.2006.08.005
– volume: 237
  start-page: 66
  year: 2010
  ident: ref_24
  article-title: Use of an activity monitor to detect response to treatment in dogs with osteoarthritis
  publication-title: J. Am. Vet. Med. Assoc.
  doi: 10.2460/javma.237.1.66
– volume: 72
  start-page: 866
  year: 2011
  ident: ref_39
  article-title: Determination and application of cut points for accelerometer-based activity counts of activities with differing intensity in pet dogs
  publication-title: Am. J. Vet. Res.
  doi: 10.2460/ajvr.72.7.866
– ident: ref_43
– volume: 22
  start-page: 1388
  year: 2010
  ident: ref_61
  article-title: Combating the small sample class imbalance problem using feature selection
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.187
– volume: 255
  start-page: 105725
  year: 2022
  ident: ref_50
  article-title: Development of a pilot human-canine ethogram for an animal-assisted education programme in primary schools–A case study
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2022.105725
– volume: 68
  start-page: 468
  year: 2007
  ident: ref_19
  article-title: Evaluation of an accelerometer for at-home monitoring of spontaneous activity in dogs
  publication-title: Am. J. Vet. Res.
  doi: 10.2460/ajvr.68.5.468
– ident: ref_66
  doi: 10.1242/jeb.184085
– volume: 119
  start-page: 32
  year: 2009
  ident: ref_64
  article-title: Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines
  publication-title: Appl. Anim. Behav. Sci.
  doi: 10.1016/j.applanim.2009.03.005
SSID ssj0023338
Score 2.4335217
Snippet Assessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5955
SubjectTerms Accelerometers
Accelerometry - instrumentation
Accelerometry - methods
algorithm
Algorithms
Animals
Batteries
Behavior
Behavior, Animal - physiology
behaviour classification
Data collection
Data mining
Dogs
Female
Locomotion - physiology
Machine Learning
Male
Nutrition research
overall activity
random forest
Surveillance
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAlGegIIOQKIeoiR2_uC2FqkIqpy7qLbITexupZFGzlcpP4d8yE3ujrEDiwmmjtZM4nhnPN8n4G0Le-sCEl9KA8hYhr6QXudENz4MuhWWmcOX4of3sqzxdVl8uxMWs1BfmhEV64DhxR6zVQRnFVTChKhyHe1r4bZWuGGusw9UXfN42mEqhFofIK_IIcQjqjwaGHC0G9_PNvM9I0v_nUjzzRbt5kjPHc_KA3E-IkS7iSPfJHd8_JPdmPIKPyC8QNl0Onq4DPQeNuu3whKYBl4JsBEigSW3f0rMxc9LTRKq6oour1fq621x-HyiAV5rIEpGJg8YdvCG90qNdTz_BpZDVGQ5WAz08tn0Hp-ELkg4rGb7_QBf0G8D6WKWJYobiz8dkefL5_Pg0TzUX8gagwyYXhXOmNR5sXQrneSu88s6NHDmlM0EFWJC40yDiwoFUjXNeKB-glfk2BP6E7PXr3j8jVDFmpbAmiNJWwSoLFu6RfjVYg7AvI4dbWdRNIiTHuhhXNQQmKLZ6EltG3kxdf0QWjr91-ogCnTogcfb4B6hTndSp_pc6ZeQdqkON5g2DaWzapQCPhERZ9UJDvIyVc1VGDrYaUye7H2oOaEoaQAZVRl5PzWCx-BnG9n59E_sASJO6zMjTqGDTmLkBxYW5zIjeUb2dh9pt6bvLkRW8ROSrZfn8f0zDC3KXAXrDxJiSH5C9zfWNfwnoa-NejYb2GzRjMFU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8SalIIOQKIeoiR3HMRe0FKoKqZy6aG-RndjbSCUpzVYqP4V_y0ziTXcF4pQodiI787bH3wC8dZ5Ll-camTfxcZY7GeuiErEvUmm4Tmw6bLSffMuP59nXhVyEBbc-pFWudeKgqOuuojXyA4F2Kteoc7OPFz9jqhpFu6uhhMZtuEPQZZTSpRY3AZfA-GtEExIY2h_0nJBaNJ3q27BBA1T_3wp5wyJtZ0tumJ-jB3A_-I1sNhL6Idxy7SO4t4Em-Bh-I8nZvHes8-wU-eq6oReqCg0LYRIQjCYzbc1OhvxJxwK06pLNzpc409XZj56hC8sCZCLhcbDxHK8PC3usadln_BRhO-PNsmf7h6Zt8DVaJmmonuH7D2zGvqNzP9ZqYpSn-OsJzI--nB4ex6HyQlyhA7GKZWKtrrVDic-ldaKWTjlrB6Sc1GqvPKolYQskdGKRttpaJ5Xz2Mpd7b14Cjtt17rnwBTnJpdGe5mazBtlUM4dgbB6o8n5i2B_TYuyCrDkVB3jvMTwhMhWTmSL4M3U9WLE4vhXp09E0KkDwWcPD7rLZRmkseR14ZVWQnnts8QKZGSD11oVGeeVsRG8I3YoSchxMJUJZxVwSgSXVc4KjJqpfq6KYG_NMWWQ_r684dUIXk_NKLe0GWNa112NfdBVy4s0gmcjg01jFhoZF_9lBMUW621Narulbc4GbPCU_N8iT3f_P64XcJejd0aJL6nYg53V5ZV7id7Vyr4aROgPlSMm5g
  priority: 102
  providerName: ProQuest
Title The Use of Triaxial Accelerometers and Machine Learning Algorithms for Behavioural Identification in Domestic Dogs (Canis familiaris): A Validation Study
URI https://www.ncbi.nlm.nih.gov/pubmed/39338701
https://www.proquest.com/docview/3110693414
https://www.proquest.com/docview/3110910681
https://pubmed.ncbi.nlm.nih.gov/PMC11435861
https://doaj.org/article/2d8f79737f9f40b3beca40bd78422cab
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7a5QUeEHcCozIIifEQljhxHCMh1I2VCakTQivqW2QndheppNB20vZT-Leck6RRI_bASxLVdpX4fMf-fPsOwBvruLBJohC8gfPjxApfpXnkuzQUmqvAhPVC-_g8OZvEX6diugObGJttBa5uHdpRPKnJcv7--vfNJ3T4jzTixCH70YqTAosSYhf28VGSf47jbjGBR1Ed0JrOdPnYHwaNwFC_aK9bqtX7_22jtzqp_gbKrR5pdB_utVSSDRvbP4AdWz2Eu1sCg4_gD6KATVaWLRy7QKhdl1Qgz7GvIZkCUtZkuirYuN5SaVmrtjpjw_lssSzXlz9XDFkta1UUSaKDNUd7XTvXx8qKfca_IrlnfJit2OGJrkosRjMnJYU4fPeBDdkP5PtN-CZGWxdvHsNkdHpxcua3wRj8HDnF2heBMapQFhuBRBgbFcJKa0wtnhMa5aTDlioyKdo-MGhuZYwV0jpM5bZwLnoCe9Wiss-ASc51IrRyItSx01Kj61vSZXVaER_04HBjiyxvlcopYMY8wxELmS3rzObB6y7rr0ae47ZMx2TQLgMpatc_LJazrHXQjBepk0pG0ikXByZCbGu8FzKNOc-18eAtwSEjJOLL5Lo9voCfRApa2TDFgTSF1JUeHGwQk23wnEVIsxKFlCH24FWXjK5M6zO6sourJg-ytyQNPXjaAKx750ghiLEuPUh70Ot9VD-lKi9rufCQKHGahM__p65ewB2OtI12xITRAeytl1f2JdKutRnArpxKvKajLwPYPz49__Z9UE9hDGp3-wtPNDAX
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsC0R6s2ru214uEUGipUtr0lKDczK69m1oqTqlTQX8Kf4LfyIztpIlA3HqKFa-tXc83r318A_DaOh7bJFEI3sD5UWJjX6W58F0axpqrwITNQvvgKOmPos_jeLwGv-dnYWhb5dwmNoa6mOY0R74t0E8lCm1u9OH0u09Vo2h1dV5Co4XFgb34gSlb_X5_F-X7hvO9T8Odvt9VFfBzdI4zPw6MUYWyiOYkNlYUsZXWmIYFJjTKSYcqJ0yKgwgM9lsZY2NpHd7ltnBO4HuvwXV0vAFplBxfJngC872WvUgIFWzXnJhhFJ0iXPJ5TWmAvx3Akgdc3Z255O727sDtLk5lvRZYd2HNVvfg1hJ74X34hRBjo9qyqWNDxPHPkh7Ic3RkxIFAtJ1MVwUbNPs1LeuoXCesdzLBLzs7_lYzDJlZR9FI_B-sPTfsuolEVlZsF19FXNJ4ManZ5o6uSnyMpmVKqp-49Y712BdMJtraUIz2RV48gNGVyOQhrFfTyj4GJjnXSayVi0MdOS012hVLpK9OKwo2PdicyyLLOxp0qsZxkmE6RGLLFmLz4NWi6WnL_fGvRh9JoIsGRNfd_DE9m2Sd9me8SJ1UUkinXBQYgYqj8beQacR5ro0HbwkOGRkV7Eyuu7MROCSi58p6KWbpVK9XerAxR0zWWZs6u9QND14ubqOdoMUfXdnpedsGQ8MkDT141AJs0WehELj4LT1IV6C3MqjVO1V53HCRhxRvp0n45P_9egE3-sPBYXa4f3TwFG5yjAxp000oNmB9dnZun2FkNzPPG3Vi8PWq9fcPcCNkyw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFD4aQ0JwgfgnMMAgEOMiamIncYyEUFmpNsYmLtapd8FO7C7SSMfSCfYovApPxzlJ2rUCcberRLET2Tn_9vF3AF5ax2ObJAqZN3B-lNjYV2kufJeGseYqMGGz0b63n2yPok_jeLwGv-dnYSitcq4TG0VdTHNaI-8JtFOJQp0b9VyXFvFlMHx_8t2nClK00zovp9GyyK49_4HhW_1uZ4C0fsX58OPB1rbfVRjwczSUMz8OjFGFssjZSWysKGIrrTENIkxolJMOxU-YFCcUGJyDMsbG0jps5bZwTuB3r8BVKeKQZEyOL4I9gbFfi2QkhAp6NSeUGEUnCpfsX1Mm4G9jsGQNVzM1l0zf8Bbc7HxW1m-Z7Das2eoO3FhCMrwLv5Dd2Ki2bOrYAfL0z5JeyHM0aoSHQBCeTFcF22tyNy3rYF0nrH88wT87O_pWM3SfWQfXSFggrD1D7LpFRVZWbICfIlxpvJnUbHNLVyW-Rks0JdVSfPOW9dkhBhZtnShGOZLn92B0KTS5D-vVtLIPgUnOdRJr5eJQR05LjTrGEgCs04ocTw8257TI8g4SnSpzHGcYGhHZsgXZPHix6HrS4oD8q9MHIuiiA0F3Nw-mp5Os0wQZL1InlRTSKRcFRqAQabwWMo04z7Xx4DWxQ0YKBgeT6-6cBE6JoLqyfooRO9XulR5szDkm6zRPnV3IiQfPF82oM2gjSFd2etb2QTcxSUMPHrQMthizUMi4-C89SFdYb2VSqy1VedTgkofke6dJ-Oj_43oG11Bys887-7uP4TpHJ5Hyb0KxAeuz0zP7BJ28mXnaSBODr5ctvn8A2K1pAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Use+of+Triaxial+Accelerometers+and+Machine+Learning+Algorithms+for+Behavioural+Identification+in+Domestic+Dogs+%28Canis+familiaris%29%3A+A+Validation+Study&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Redmond%2C+Cushla&rft.au=Smit%2C+Michelle&rft.au=Draganova%2C+Ina&rft.au=Corner-Thomas%2C+Rene&rft.date=2024-09-13&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=18&rft.spage=5955&rft_id=info:doi/10.3390%2Fs24185955&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24185955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon