The Use of Triaxial Accelerometers and Machine Learning Algorithms for Behavioural Identification in Domestic Dogs (Canis familiaris): A Validation Study
Assessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles such as hunting, military or service. Common methods of behavioural assessment can be time consuming, labour-intensive, and subject to bias,...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 18; p. 5955 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
13.09.2024
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s24185955 |
Cover
Loading…
Abstract | Assessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles such as hunting, military or service. Common methods of behavioural assessment can be time consuming, labour-intensive, and subject to bias, making large-scale and rapid implementation challenging. Objective, practical and time effective behaviour measures may be facilitated by remote and automated devices such as accelerometers. This study, therefore, aimed to validate the ActiGraph® accelerometer as a tool for behavioural classification. This study used a machine learning method that identified nine dog behaviours with an overall accuracy of 74% (range for each behaviour was 54 to 93%). In addition, overall body dynamic acceleration was found to be correlated with the amount of time spent exhibiting active behaviours (barking, locomotion, scratching, sniffing, and standing; R2 = 0.91, p < 0.001). Machine learning was an effective method to build a model to classify behaviours such as barking, defecating, drinking, eating, locomotion, resting-asleep, resting-alert, sniffing, and standing with high overall accuracy whilst maintaining a large behavioural repertoire. |
---|---|
AbstractList | Assessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles such as hunting, military or service. Common methods of behavioural assessment can be time consuming, labour-intensive, and subject to bias, making large-scale and rapid implementation challenging. Objective, practical and time effective behaviour measures may be facilitated by remote and automated devices such as accelerometers. This study, therefore, aimed to validate the ActiGraph® accelerometer as a tool for behavioural classification. This study used a machine learning method that identified nine dog behaviours with an overall accuracy of 74% (range for each behaviour was 54 to 93%). In addition, overall body dynamic acceleration was found to be correlated with the amount of time spent exhibiting active behaviours (barking, locomotion, scratching, sniffing, and standing; R2 = 0.91, p < 0.001). Machine learning was an effective method to build a model to classify behaviours such as barking, defecating, drinking, eating, locomotion, resting-asleep, resting-alert, sniffing, and standing with high overall accuracy whilst maintaining a large behavioural repertoire. Assessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles such as hunting, military or service. Common methods of behavioural assessment can be time consuming, labour-intensive, and subject to bias, making large-scale and rapid implementation challenging. Objective, practical and time effective behaviour measures may be facilitated by remote and automated devices such as accelerometers. This study, therefore, aimed to validate the ActiGraph® accelerometer as a tool for behavioural classification. This study used a machine learning method that identified nine dog behaviours with an overall accuracy of 74% (range for each behaviour was 54 to 93%). In addition, overall body dynamic acceleration was found to be correlated with the amount of time spent exhibiting active behaviours (barking, locomotion, scratching, sniffing, and standing; R2 = 0.91, p < 0.001). Machine learning was an effective method to build a model to classify behaviours such as barking, defecating, drinking, eating, locomotion, resting-asleep, resting-alert, sniffing, and standing with high overall accuracy whilst maintaining a large behavioural repertoire.Assessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles such as hunting, military or service. Common methods of behavioural assessment can be time consuming, labour-intensive, and subject to bias, making large-scale and rapid implementation challenging. Objective, practical and time effective behaviour measures may be facilitated by remote and automated devices such as accelerometers. This study, therefore, aimed to validate the ActiGraph® accelerometer as a tool for behavioural classification. This study used a machine learning method that identified nine dog behaviours with an overall accuracy of 74% (range for each behaviour was 54 to 93%). In addition, overall body dynamic acceleration was found to be correlated with the amount of time spent exhibiting active behaviours (barking, locomotion, scratching, sniffing, and standing; R2 = 0.91, p < 0.001). Machine learning was an effective method to build a model to classify behaviours such as barking, defecating, drinking, eating, locomotion, resting-asleep, resting-alert, sniffing, and standing with high overall accuracy whilst maintaining a large behavioural repertoire. Assessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles such as hunting, military or service. Common methods of behavioural assessment can be time consuming, labour-intensive, and subject to bias, making large-scale and rapid implementation challenging. Objective, practical and time effective behaviour measures may be facilitated by remote and automated devices such as accelerometers. This study, therefore, aimed to validate the ActiGraph accelerometer as a tool for behavioural classification. This study used a machine learning method that identified nine dog behaviours with an overall accuracy of 74% (range for each behaviour was 54 to 93%). In addition, overall body dynamic acceleration was found to be correlated with the amount of time spent exhibiting active behaviours (barking, locomotion, scratching, sniffing, and standing; R = 0.91, < 0.001). Machine learning was an effective method to build a model to classify behaviours such as barking, defecating, drinking, eating, locomotion, resting-asleep, resting-alert, sniffing, and standing with high overall accuracy whilst maintaining a large behavioural repertoire. Assessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles such as hunting, military or service. Common methods of behavioural assessment can be time consuming, labour-intensive, and subject to bias, making large-scale and rapid implementation challenging. Objective, practical and time effective behaviour measures may be facilitated by remote and automated devices such as accelerometers. This study, therefore, aimed to validate the ActiGraph ® accelerometer as a tool for behavioural classification. This study used a machine learning method that identified nine dog behaviours with an overall accuracy of 74% (range for each behaviour was 54 to 93%). In addition, overall body dynamic acceleration was found to be correlated with the amount of time spent exhibiting active behaviours (barking, locomotion, scratching, sniffing, and standing; R 2 = 0.91, p < 0.001). Machine learning was an effective method to build a model to classify behaviours such as barking, defecating, drinking, eating, locomotion, resting-asleep, resting-alert, sniffing, and standing with high overall accuracy whilst maintaining a large behavioural repertoire. Assessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles such as hunting, military or service. Common methods of behavioural assessment can be time consuming, labour-intensive, and subject to bias, making large-scale and rapid implementation challenging. Objective, practical and time effective behaviour measures may be facilitated by remote and automated devices such as accelerometers. This study, therefore, aimed to validate the ActiGraph[sup.®] accelerometer as a tool for behavioural classification. This study used a machine learning method that identified nine dog behaviours with an overall accuracy of 74% (range for each behaviour was 54 to 93%). In addition, overall body dynamic acceleration was found to be correlated with the amount of time spent exhibiting active behaviours (barking, locomotion, scratching, sniffing, and standing; R[sup.2] = 0.91, p < 0.001). Machine learning was an effective method to build a model to classify behaviours such as barking, defecating, drinking, eating, locomotion, resting-asleep, resting-alert, sniffing, and standing with high overall accuracy whilst maintaining a large behavioural repertoire. |
Audience | Academic |
Author | Corner-Thomas, Rene Draganova, Ina Thomas, David Smit, Michelle Andrews, Christopher Redmond, Cushla |
AuthorAffiliation | School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand; cushla-r-@hotmail.com (C.R.); m.smit@massey.ac.nz (M.S.); i.draganova@massey.ac.nz (I.D.); r.corner@massey.ac.nz (R.C.-T.); c.j.andrews@massey.ac.nz (C.A.) |
AuthorAffiliation_xml | – name: School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand; cushla-r-@hotmail.com (C.R.); m.smit@massey.ac.nz (M.S.); i.draganova@massey.ac.nz (I.D.); r.corner@massey.ac.nz (R.C.-T.); c.j.andrews@massey.ac.nz (C.A.) |
Author_xml | – sequence: 1 givenname: Cushla surname: Redmond fullname: Redmond, Cushla – sequence: 2 givenname: Michelle orcidid: 0000-0003-0554-5125 surname: Smit fullname: Smit, Michelle – sequence: 3 givenname: Ina orcidid: 0000-0002-2131-4012 surname: Draganova fullname: Draganova, Ina – sequence: 4 givenname: Rene orcidid: 0000-0002-7398-2653 surname: Corner-Thomas fullname: Corner-Thomas, Rene – sequence: 5 givenname: David orcidid: 0000-0001-7460-9351 surname: Thomas fullname: Thomas, David – sequence: 6 givenname: Christopher orcidid: 0000-0003-3049-1835 surname: Andrews fullname: Andrews, Christopher |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39338701$$D View this record in MEDLINE/PubMed |
BookMark | eNplks9O3DAQxqOKqsC2h75AZakXOCzYcbKJe6m2238rUfVQ6NWynfHuoMQGO4vKo_RtO7CAgCqHsezv-8XzefaLnRADFMVbwY-kVPw4l5Voa1XXL4o9UZXVtC1LvvNovVvs53zOeSmlbF8Vu1JRbbjYK_6eroGdZWDRs9OE5g-ans2dgx5SHGCElJkJHfth3BoDsBMwKWBYsXm_ignH9ZCZj4l9grW5wrhJZF92EEb06MyIMTAM7DOh8oiOFqvMDhYmINnMgD2ahPnwA5uz36bHbuv4NW6669fFS2_6DG_u6qQ4-_rldPF9evLz23IxP5m6mqtxWnNrVaeASzGrLciuhgasLVtJ_VnlG9_MpLStL0mpWqeshboBT6cldN7LSbHccrtozvVFwsGkax0N6tuNmFbaJLp7D7rsWt-oRjZe-YpbacEZql3TVmXpjCXWxy3rYmMH6BzlQIE8gT49CbjWq3ilhahk3c4EEQ7uCClebig0PWCm1-hNgLjJWgrBleCz9kb6_pn0nPIPlNWtaqZkRdRJcbRVrQx1gMFH-rGjr4MBHc2RR9qft4I3quZtQ4Z3j3t4uPz9zJDgeCtwKeacwGuH4-3DERl7Lbi-mUr9MJXkOHzmuIf-r_0HXqvimw |
CitedBy_id | crossref_primary_10_3390_s24237641 |
Cites_doi | 10.1016/j.jveb.2013.11.003 10.1007/978-3-319-23528-8_13 10.1111/jsap.12142 10.3390/s23167165 10.1371/journal.pone.0118432 10.1111/j.1467-2995.2007.00367.x 10.1080/10888705.2014.856241 10.1163/156853098X00069 10.1016/j.applanim.2005.11.018 10.2460/ajvr.70.4.444 10.1016/j.compag.2021.106610 10.1016/j.anbehav.2016.12.005 10.1016/j.applanim.2014.11.020 10.1016/j.jveb.2014.09.001 10.1111/2041-210X.12584 10.3390/ani11051262 10.1186/2050-3385-1-20 10.1371/journal.pone.0077814 10.1016/j.nmd.2009.07.014 10.1016/j.physbeh.2016.03.020 10.1016/j.applanim.2009.04.008 10.3390/s24082623 10.1186/s12917-015-0457-y 10.1080/10255842.2012.713655 10.1007/978-3-030-60796-8_35 10.3390/app9224938 10.1016/j.jembe.2018.12.003 10.3390/ani8120230 10.1016/j.applanim.2016.08.012 10.1016/j.jveb.2016.10.007 10.1111/jvim.15760 10.1088/1742-6596/1655/1/012087 10.1371/journal.pone.0188481 10.1016/j.applanim.2021.105393 10.1016/j.applanim.2015.11.019 10.1111/j.1748-5827.2010.01025.x 10.1016/S0168-1591(02)00121-1 10.1016/S0149-7634(05)80130-7 10.1016/j.applanim.2005.04.008 10.1016/j.prevetmed.2014.10.003 10.3390/ani13091506 10.1613/jair.1.11192 10.1186/s12917-017-0971-1 10.1016/j.jveb.2019.08.001 10.1242/jeb.058602 10.2460/javma.2005.226.2010 10.1111/jsap.12587 10.1186/s12917-017-1228-8 10.1016/j.rvsc.2011.08.005 10.1038/s41598-023-39112-7 10.1016/j.csbj.2017.07.005 10.3390/s21206816 10.3390/s18082649 10.1371/journal.pone.0286429 10.2165/00007256-200232120-00004 10.3389/fvets.2018.00103 10.1016/j.applanim.2011.11.016 10.1016/j.cvsm.2006.08.005 10.2460/javma.237.1.66 10.2460/ajvr.72.7.866 10.1109/TKDE.2009.187 10.1016/j.applanim.2022.105725 10.2460/ajvr.68.5.468 10.1242/jeb.184085 10.1016/j.applanim.2009.03.005 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s24185955 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest One Academic url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_2d8f79737f9f40b3beca40bd78422cab PMC11435861 A810795087 39338701 10_3390_s24185955 |
Genre | Journal Article |
GeographicLocations | New Zealand United States--US |
GeographicLocations_xml | – name: United States--US – name: New Zealand |
GrantInformation_xml | – fundername: Healthy Pets New Zealand grantid: N/A – fundername: Centre for Canine Nutrition, Massey University – fundername: Healthy Pets New Zealand |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c509t-50bb9d9e03165be3d5e7ebb283701b9f7f7633b8f250b98c9bbe57ef7012edff3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:29:33 EDT 2025 Thu Aug 21 18:31:18 EDT 2025 Fri Jul 11 13:46:31 EDT 2025 Sat Jul 26 01:21:19 EDT 2025 Tue Jun 10 21:02:33 EDT 2025 Mon Jul 21 05:40:19 EDT 2025 Tue Jul 01 03:51:13 EDT 2025 Thu Apr 24 23:09:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | random forest behaviour classification overall activity algorithm |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-50bb9d9e03165be3d5e7ebb283701b9f7f7633b8f250b98c9bbe57ef7012edff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2131-4012 0000-0003-0554-5125 0000-0001-7460-9351 0000-0003-3049-1835 0000-0002-7398-2653 |
OpenAccessLink | https://doaj.org/article/2d8f79737f9f40b3beca40bd78422cab |
PMID | 39338701 |
PQID | 3110693414 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2d8f79737f9f40b3beca40bd78422cab pubmedcentral_primary_oai_pubmedcentral_nih_gov_11435861 proquest_miscellaneous_3110910681 proquest_journals_3110693414 gale_infotracacademiconefile_A810795087 pubmed_primary_39338701 crossref_citationtrail_10_3390_s24185955 crossref_primary_10_3390_s24185955 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240913 |
PublicationDateYYYYMMDD | 2024-09-13 |
PublicationDate_xml | – month: 9 year: 2024 text: 20240913 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Hounslow (ref_60) 2019; 512 Laflamme (ref_44) 2006; 36 Williams (ref_18) 2002; 32 Lee (ref_50) 2022; 255 Walker (ref_49) 2016; 184 Riaboff (ref_45) 2022; 192 Fukuzawa (ref_51) 2015; 10 ref_54 ref_53 ref_52 Yam (ref_25) 2011; 52 Barrey (ref_22) 2009; 19 Martiskainen (ref_64) 2009; 119 King (ref_3) 2012; 137 Morrison (ref_15) 2013; 54 Clark (ref_41) 2014; 78 Michel (ref_39) 2011; 72 Jones (ref_16) 2014; 17 ref_59 Preston (ref_26) 2012; 93 Hoffman (ref_30) 2019; 34 Helm (ref_58) 2016; 57 Lascelles (ref_13) 2008; 35 Dow (ref_14) 2009; 70 ref_69 Menache (ref_1) 1998; 6 ref_68 ref_67 ref_66 ref_21 ref_65 Jones (ref_7) 2005; 95 ref_20 ref_63 ref_62 Nurwulan (ref_34) 2020; 1655 ref_28 Hansen (ref_19) 2007; 68 ref_27 Svartberg (ref_2) 2002; 79 Valletta (ref_31) 2017; 124 ref_70 Clarke (ref_42) 2016; 174 Brown (ref_24) 2010; 237 ref_33 ref_32 Shaik (ref_55) 2018; Volume 2 Protopopova (ref_6) 2016; 159 Pillard (ref_36) 2012; 15 Diederich (ref_4) 2006; 97 ref_37 Cheung (ref_40) 2014; 9 Wasikowski (ref_61) 2010; 22 Bardini (ref_57) 2017; 15 (ref_11) 1991; 15 Moreau (ref_23) 2009; 119 Friard (ref_47) 2016; 7 Duffy (ref_9) 2014; 117 Rayment (ref_10) 2015; 163 Garcia (ref_56) 2018; 61 Nathan (ref_35) 2012; 215 Nettifee (ref_38) 2020; 34 ref_46 ref_43 Kumpulainen (ref_29) 2021; 241 Wiener (ref_12) 2016; 16 Chan (ref_17) 2005; 226 ref_48 ref_8 ref_5 |
References_xml | – volume: 9 start-page: 66 year: 2014 ident: ref_40 article-title: A comparison of uniaxial and triaxial accelerometers for the assessment of physical activity in dogs publication-title: J. Vet. Behav. doi: 10.1016/j.jveb.2013.11.003 – ident: ref_62 doi: 10.1007/978-3-319-23528-8_13 – volume: 54 start-page: 570 year: 2013 ident: ref_15 article-title: Associations between obesity and physical activity in dogs: A preliminary investigation publication-title: J. Small Anim. Pract. doi: 10.1111/jsap.12142 – ident: ref_70 doi: 10.3390/s23167165 – ident: ref_63 doi: 10.1371/journal.pone.0118432 – volume: 35 start-page: 173 year: 2008 ident: ref_13 article-title: Evaluation of a digitally integrated accelerometer-based activity monitor for the measurement of activity in cats publication-title: Vet. Anaesth. Analg. doi: 10.1111/j.1467-2995.2007.00367.x – volume: 17 start-page: 18 year: 2014 ident: ref_16 article-title: Use of accelerometers to measure stress levels in shelter dogs publication-title: J. Appl. Anim. Welf. Sci. doi: 10.1080/10888705.2014.856241 – volume: 6 start-page: 67 year: 1998 ident: ref_1 article-title: Dogs and human beings: A story of friendship publication-title: Soc. Anim. doi: 10.1163/156853098X00069 – volume: 97 start-page: 51 year: 2006 ident: ref_4 article-title: Behavioural testing in dogs: A review of methodology in search for standardisation publication-title: Appl. Anim. Behav. Sci. doi: 10.1016/j.applanim.2005.11.018 – volume: 70 start-page: 444 year: 2009 ident: ref_14 article-title: Evaluation of optimal sampling interval for activity monitoring in companion dogs publication-title: Am. J. Vet. Res. doi: 10.2460/ajvr.70.4.444 – volume: 192 start-page: 106610 year: 2022 ident: ref_45 article-title: Predicting livestock behaviour using accelerometers: A systematic review of processing techniques for ruminant behaviour prediction from raw accelerometer data publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106610 – ident: ref_21 doi: 10.3390/s23167165 – volume: 124 start-page: 203 year: 2017 ident: ref_31 article-title: Applications of machine learning in animal behaviour studies publication-title: Anim. Behav. doi: 10.1016/j.anbehav.2016.12.005 – volume: 163 start-page: 1 year: 2015 ident: ref_10 article-title: Applied personality assessment in domestic dogs: Limitations and caveats publication-title: Appl. Anim. Behav. Sci. doi: 10.1016/j.applanim.2014.11.020 – volume: 10 start-page: 12 year: 2015 ident: ref_51 article-title: Influence of changes in luminous emittance before bedtime on sleep in companion dogs publication-title: J. Vet. Behav. doi: 10.1016/j.jveb.2014.09.001 – volume: 7 start-page: 1325 year: 2016 ident: ref_47 article-title: BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12584 – volume: Volume 2 start-page: 253 year: 2018 ident: ref_55 article-title: A Brief survey on random forest ensembles in classification model publication-title: Proceedings of the International Conference on Innovative Computing and Communications: Proceedings of ICICC – ident: ref_37 doi: 10.3390/ani11051262 – ident: ref_46 doi: 10.1186/2050-3385-1-20 – ident: ref_33 doi: 10.1371/journal.pone.0077814 – volume: 19 start-page: 788 year: 2009 ident: ref_22 article-title: Gait analysis using accelerometry in dystrophin-deficient dogs publication-title: Neuromuscul. Disord. doi: 10.1016/j.nmd.2009.07.014 – volume: 78 start-page: 226 year: 2014 ident: ref_41 article-title: Evaluation of a novel accelerometer for kinetic gait analysis in dogs publication-title: Can. J. Vet. Res. – volume: 159 start-page: 95 year: 2016 ident: ref_6 article-title: Effects of sheltering on physiology, immune function, behavior, and the welfare of dogs publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2016.03.020 – volume: 119 start-page: 158 year: 2009 ident: ref_23 article-title: Use of a tri-axial accelerometer for automated recording and classification of goats’ grazing behaviour publication-title: Appl. Anim. Behav. Sci. doi: 10.1016/j.applanim.2009.04.008 – ident: ref_69 doi: 10.3390/s24082623 – ident: ref_20 doi: 10.1186/s12917-015-0457-y – volume: 15 start-page: 246 year: 2012 ident: ref_36 article-title: Development of a 3D accelerometric device for gait analysis in dogs publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2012.713655 – ident: ref_53 doi: 10.1007/978-3-030-60796-8_35 – ident: ref_48 – ident: ref_27 doi: 10.3390/app9224938 – volume: 512 start-page: 22 year: 2019 ident: ref_60 article-title: Assessing the effects of sampling frequency on behavioural classification of accelerometer data publication-title: J. Exp. Mar. Biol. Ecol. doi: 10.1016/j.jembe.2018.12.003 – ident: ref_32 doi: 10.3390/ani8120230 – volume: 184 start-page: 97 year: 2016 ident: ref_49 article-title: Qualitative Behaviour Assessment of dogs in the shelter and home environment and relationship with quantitative behaviour assessment and physiological responses publication-title: Appl. Anim. Behav. Sci. doi: 10.1016/j.applanim.2016.08.012 – volume: 16 start-page: 81 year: 2016 ident: ref_12 article-title: Use of questionnaire-based data to assess dog personality publication-title: J. Vet. Behav. doi: 10.1016/j.jveb.2016.10.007 – volume: 34 start-page: 1239 year: 2020 ident: ref_38 article-title: Evaluation of a collar-mounted accelerometer for detecting seizure activity in dogs publication-title: J. Vet. Intern. Med. doi: 10.1111/jvim.15760 – volume: 1655 start-page: 012087 year: 2020 ident: ref_34 article-title: Random forest for human daily activity recognition publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1655/1/012087 – ident: ref_65 doi: 10.1371/journal.pone.0188481 – volume: 241 start-page: 105393 year: 2021 ident: ref_29 article-title: Dog behaviour classification with movement sensors placed on the harness and the collar publication-title: Appl. Anim. Behav. Sci. doi: 10.1016/j.applanim.2021.105393 – volume: 174 start-page: 99 year: 2016 ident: ref_42 article-title: Automated monitoring of resting in dogs publication-title: Appl. Anim. Behav. Sci. doi: 10.1016/j.applanim.2015.11.019 – volume: 52 start-page: 86 year: 2011 ident: ref_25 article-title: Validity, practical utility and reliability of Actigraph accelerometry for the measurement of habitual physical activity in dogs publication-title: J. Small Anim. Pract. doi: 10.1111/j.1748-5827.2010.01025.x – volume: 79 start-page: 133 year: 2002 ident: ref_2 article-title: Personality traits in the domestic dog (Canis familiaris) publication-title: Appl. Anim. Behav. Sci. doi: 10.1016/S0168-1591(02)00121-1 – volume: 15 start-page: 447 year: 1991 ident: ref_11 article-title: Measuring behaviour: The tools and the strategies publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/S0149-7634(05)80130-7 – volume: 95 start-page: 1 year: 2005 ident: ref_7 article-title: Temperament and personality in dogs (Canis familiaris): A review and evaluation of past research publication-title: Appl. Anim. Behav. Sci. doi: 10.1016/j.applanim.2005.04.008 – volume: 117 start-page: 601 year: 2014 ident: ref_9 article-title: Evaluation of a behavioral assessment tool for dogs relinquished to shelters publication-title: Prev. Vet. Med. doi: 10.1016/j.prevetmed.2014.10.003 – ident: ref_5 doi: 10.3390/ani13091506 – volume: 61 start-page: 863 year: 2018 ident: ref_56 article-title: SMOTE for learning from imbalanced data: Progress and challenges, marking the 15-year anniversary publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.1.11192 – ident: ref_67 doi: 10.1186/s12917-017-0971-1 – volume: 34 start-page: 30 year: 2019 ident: ref_30 article-title: An actigraphy-based comparison of shelter dog and owned dog activity patterns publication-title: J. Vet. Behav. doi: 10.1016/j.jveb.2019.08.001 – volume: 215 start-page: 986 year: 2012 ident: ref_35 article-title: Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: General concepts and tools illustrated for griffon vultures publication-title: J. Exp. Biol. doi: 10.1242/jeb.058602 – volume: 226 start-page: 2010 year: 2005 ident: ref_17 article-title: Use of pedometers to measure physical activity in dogs publication-title: J. Am. Vet. Med. Assoc. doi: 10.2460/javma.2005.226.2010 – volume: 57 start-page: 600 year: 2016 ident: ref_58 article-title: Use of accelerometry to investigate physical activity in dogs receiving chemotherapy publication-title: J. Small Anim. Pract. doi: 10.1111/jsap.12587 – ident: ref_68 doi: 10.1186/s12917-017-1228-8 – volume: 93 start-page: 412 year: 2012 ident: ref_26 article-title: Accelerometer validity and placement for detection of changes in physical activity in dogs under controlled conditions on a treadmill publication-title: Res. Vet. Sci. doi: 10.1016/j.rvsc.2011.08.005 – ident: ref_52 doi: 10.1038/s41598-023-39112-7 – volume: 15 start-page: 396 year: 2017 ident: ref_57 article-title: Multi-level and hybrid modelling approaches for systems biology publication-title: Comput. Struct. Biotech. J. doi: 10.1016/j.csbj.2017.07.005 – ident: ref_54 doi: 10.3390/s21206816 – ident: ref_28 doi: 10.3390/s18082649 – ident: ref_59 doi: 10.1371/journal.pone.0286429 – volume: 32 start-page: 795 year: 2002 ident: ref_18 article-title: Utility of pedometers for assessing physical activity: Convergent validity publication-title: Sports Med. doi: 10.2165/00007256-200232120-00004 – ident: ref_8 doi: 10.3389/fvets.2018.00103 – volume: 137 start-page: 1 year: 2012 ident: ref_3 article-title: Breeding dogs for beauty and behaviour: Why scientists need to do more to develop valid and reliable behaviour assessments for dogs kept as companions publication-title: Appl. Anim. Behav. Sci. doi: 10.1016/j.applanim.2011.11.016 – volume: 36 start-page: 1283 year: 2006 ident: ref_44 article-title: Understanding and managing obesity in dogs and cats publication-title: Vet. Clin. Small Anim. Pract. doi: 10.1016/j.cvsm.2006.08.005 – volume: 237 start-page: 66 year: 2010 ident: ref_24 article-title: Use of an activity monitor to detect response to treatment in dogs with osteoarthritis publication-title: J. Am. Vet. Med. Assoc. doi: 10.2460/javma.237.1.66 – volume: 72 start-page: 866 year: 2011 ident: ref_39 article-title: Determination and application of cut points for accelerometer-based activity counts of activities with differing intensity in pet dogs publication-title: Am. J. Vet. Res. doi: 10.2460/ajvr.72.7.866 – ident: ref_43 – volume: 22 start-page: 1388 year: 2010 ident: ref_61 article-title: Combating the small sample class imbalance problem using feature selection publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.187 – volume: 255 start-page: 105725 year: 2022 ident: ref_50 article-title: Development of a pilot human-canine ethogram for an animal-assisted education programme in primary schools–A case study publication-title: Appl. Anim. Behav. Sci. doi: 10.1016/j.applanim.2022.105725 – volume: 68 start-page: 468 year: 2007 ident: ref_19 article-title: Evaluation of an accelerometer for at-home monitoring of spontaneous activity in dogs publication-title: Am. J. Vet. Res. doi: 10.2460/ajvr.68.5.468 – ident: ref_66 doi: 10.1242/jeb.184085 – volume: 119 start-page: 32 year: 2009 ident: ref_64 article-title: Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines publication-title: Appl. Anim. Behav. Sci. doi: 10.1016/j.applanim.2009.03.005 |
SSID | ssj0023338 |
Score | 2.4335217 |
Snippet | Assessing the behaviour and physical attributes of domesticated dogs is critical for predicting the suitability of animals for companionship or specific roles... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5955 |
SubjectTerms | Accelerometers Accelerometry - instrumentation Accelerometry - methods algorithm Algorithms Animals Batteries Behavior Behavior, Animal - physiology behaviour classification Data collection Data mining Dogs Female Locomotion - physiology Machine Learning Male Nutrition research overall activity random forest Surveillance |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAlGegIIOQKIeoiR2_uC2FqkIqpy7qLbITexupZFGzlcpP4d8yE3ujrEDiwmmjtZM4nhnPN8n4G0Le-sCEl9KA8hYhr6QXudENz4MuhWWmcOX4of3sqzxdVl8uxMWs1BfmhEV64DhxR6zVQRnFVTChKhyHe1r4bZWuGGusw9UXfN42mEqhFofIK_IIcQjqjwaGHC0G9_PNvM9I0v_nUjzzRbt5kjPHc_KA3E-IkS7iSPfJHd8_JPdmPIKPyC8QNl0Onq4DPQeNuu3whKYBl4JsBEigSW3f0rMxc9LTRKq6oour1fq621x-HyiAV5rIEpGJg8YdvCG90qNdTz_BpZDVGQ5WAz08tn0Hp-ELkg4rGb7_QBf0G8D6WKWJYobiz8dkefL5_Pg0TzUX8gagwyYXhXOmNR5sXQrneSu88s6NHDmlM0EFWJC40yDiwoFUjXNeKB-glfk2BP6E7PXr3j8jVDFmpbAmiNJWwSoLFu6RfjVYg7AvI4dbWdRNIiTHuhhXNQQmKLZ6EltG3kxdf0QWjr91-ogCnTogcfb4B6hTndSp_pc6ZeQdqkON5g2DaWzapQCPhERZ9UJDvIyVc1VGDrYaUye7H2oOaEoaQAZVRl5PzWCx-BnG9n59E_sASJO6zMjTqGDTmLkBxYW5zIjeUb2dh9pt6bvLkRW8ROSrZfn8f0zDC3KXAXrDxJiSH5C9zfWNfwnoa-NejYb2GzRjMFU priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8SalIIOQKIeoiR3HMRe0FKoKqZy6aG-RndjbSCUpzVYqP4V_y0ziTXcF4pQodiI787bH3wC8dZ5Ll-camTfxcZY7GeuiErEvUmm4Tmw6bLSffMuP59nXhVyEBbc-pFWudeKgqOuuojXyA4F2Kteoc7OPFz9jqhpFu6uhhMZtuEPQZZTSpRY3AZfA-GtEExIY2h_0nJBaNJ3q27BBA1T_3wp5wyJtZ0tumJ-jB3A_-I1sNhL6Idxy7SO4t4Em-Bh-I8nZvHes8-wU-eq6oReqCg0LYRIQjCYzbc1OhvxJxwK06pLNzpc409XZj56hC8sCZCLhcbDxHK8PC3usadln_BRhO-PNsmf7h6Zt8DVaJmmonuH7D2zGvqNzP9ZqYpSn-OsJzI--nB4ex6HyQlyhA7GKZWKtrrVDic-ldaKWTjlrB6Sc1GqvPKolYQskdGKRttpaJ5Xz2Mpd7b14Cjtt17rnwBTnJpdGe5mazBtlUM4dgbB6o8n5i2B_TYuyCrDkVB3jvMTwhMhWTmSL4M3U9WLE4vhXp09E0KkDwWcPD7rLZRmkseR14ZVWQnnts8QKZGSD11oVGeeVsRG8I3YoSchxMJUJZxVwSgSXVc4KjJqpfq6KYG_NMWWQ_r684dUIXk_NKLe0GWNa112NfdBVy4s0gmcjg01jFhoZF_9lBMUW621Narulbc4GbPCU_N8iT3f_P64XcJejd0aJL6nYg53V5ZV7id7Vyr4aROgPlSMm5g priority: 102 providerName: ProQuest |
Title | The Use of Triaxial Accelerometers and Machine Learning Algorithms for Behavioural Identification in Domestic Dogs (Canis familiaris): A Validation Study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39338701 https://www.proquest.com/docview/3110693414 https://www.proquest.com/docview/3110910681 https://pubmed.ncbi.nlm.nih.gov/PMC11435861 https://doaj.org/article/2d8f79737f9f40b3beca40bd78422cab |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7a5QUeEHcCozIIifEQljhxHCMh1I2VCakTQivqW2QndheppNB20vZT-Leck6RRI_bASxLVdpX4fMf-fPsOwBvruLBJohC8gfPjxApfpXnkuzQUmqvAhPVC-_g8OZvEX6diugObGJttBa5uHdpRPKnJcv7--vfNJ3T4jzTixCH70YqTAosSYhf28VGSf47jbjGBR1Ed0JrOdPnYHwaNwFC_aK9bqtX7_22jtzqp_gbKrR5pdB_utVSSDRvbP4AdWz2Eu1sCg4_gD6KATVaWLRy7QKhdl1Qgz7GvIZkCUtZkuirYuN5SaVmrtjpjw_lssSzXlz9XDFkta1UUSaKDNUd7XTvXx8qKfca_IrlnfJit2OGJrkosRjMnJYU4fPeBDdkP5PtN-CZGWxdvHsNkdHpxcua3wRj8HDnF2heBMapQFhuBRBgbFcJKa0wtnhMa5aTDlioyKdo-MGhuZYwV0jpM5bZwLnoCe9Wiss-ASc51IrRyItSx01Kj61vSZXVaER_04HBjiyxvlcopYMY8wxELmS3rzObB6y7rr0ae47ZMx2TQLgMpatc_LJazrHXQjBepk0pG0ikXByZCbGu8FzKNOc-18eAtwSEjJOLL5Lo9voCfRApa2TDFgTSF1JUeHGwQk23wnEVIsxKFlCH24FWXjK5M6zO6sourJg-ytyQNPXjaAKx750ghiLEuPUh70Ot9VD-lKi9rufCQKHGahM__p65ewB2OtI12xITRAeytl1f2JdKutRnArpxKvKajLwPYPz49__Z9UE9hDGp3-wtPNDAX |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsC0R6s2ru214uEUGipUtr0lKDczK69m1oqTqlTQX8Kf4LfyIztpIlA3HqKFa-tXc83r318A_DaOh7bJFEI3sD5UWJjX6W58F0axpqrwITNQvvgKOmPos_jeLwGv-dnYWhb5dwmNoa6mOY0R74t0E8lCm1u9OH0u09Vo2h1dV5Co4XFgb34gSlb_X5_F-X7hvO9T8Odvt9VFfBzdI4zPw6MUYWyiOYkNlYUsZXWmIYFJjTKSYcqJ0yKgwgM9lsZY2NpHd7ltnBO4HuvwXV0vAFplBxfJngC872WvUgIFWzXnJhhFJ0iXPJ5TWmAvx3Akgdc3Z255O727sDtLk5lvRZYd2HNVvfg1hJ74X34hRBjo9qyqWNDxPHPkh7Ic3RkxIFAtJ1MVwUbNPs1LeuoXCesdzLBLzs7_lYzDJlZR9FI_B-sPTfsuolEVlZsF19FXNJ4ManZ5o6uSnyMpmVKqp-49Y712BdMJtraUIz2RV48gNGVyOQhrFfTyj4GJjnXSayVi0MdOS012hVLpK9OKwo2PdicyyLLOxp0qsZxkmE6RGLLFmLz4NWi6WnL_fGvRh9JoIsGRNfd_DE9m2Sd9me8SJ1UUkinXBQYgYqj8beQacR5ro0HbwkOGRkV7Eyuu7MROCSi58p6KWbpVK9XerAxR0zWWZs6u9QND14ubqOdoMUfXdnpedsGQ8MkDT141AJs0WehELj4LT1IV6C3MqjVO1V53HCRhxRvp0n45P_9egE3-sPBYXa4f3TwFG5yjAxp000oNmB9dnZun2FkNzPPG3Vi8PWq9fcPcCNkyw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFD4aQ0JwgfgnMMAgEOMiamIncYyEUFmpNsYmLtapd8FO7C7SSMfSCfYovApPxzlJ2rUCcberRLET2Tn_9vF3AF5ax2ObJAqZN3B-lNjYV2kufJeGseYqMGGz0b63n2yPok_jeLwGv-dnYSitcq4TG0VdTHNaI-8JtFOJQp0b9VyXFvFlMHx_8t2nClK00zovp9GyyK49_4HhW_1uZ4C0fsX58OPB1rbfVRjwczSUMz8OjFGFssjZSWysKGIrrTENIkxolJMOxU-YFCcUGJyDMsbG0jps5bZwTuB3r8BVKeKQZEyOL4I9gbFfi2QkhAp6NSeUGEUnCpfsX1Mm4G9jsGQNVzM1l0zf8Bbc7HxW1m-Z7Das2eoO3FhCMrwLv5Dd2Ki2bOrYAfL0z5JeyHM0aoSHQBCeTFcF22tyNy3rYF0nrH88wT87O_pWM3SfWQfXSFggrD1D7LpFRVZWbICfIlxpvJnUbHNLVyW-Rks0JdVSfPOW9dkhBhZtnShGOZLn92B0KTS5D-vVtLIPgUnOdRJr5eJQR05LjTrGEgCs04ocTw8257TI8g4SnSpzHGcYGhHZsgXZPHix6HrS4oD8q9MHIuiiA0F3Nw-mp5Os0wQZL1InlRTSKRcFRqAQabwWMo04z7Xx4DWxQ0YKBgeT6-6cBE6JoLqyfooRO9XulR5szDkm6zRPnV3IiQfPF82oM2gjSFd2etb2QTcxSUMPHrQMthizUMi4-C89SFdYb2VSqy1VedTgkofke6dJ-Oj_43oG11Bys887-7uP4TpHJ5Hyb0KxAeuz0zP7BJ28mXnaSBODr5ctvn8A2K1pAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Use+of+Triaxial+Accelerometers+and+Machine+Learning+Algorithms+for+Behavioural+Identification+in+Domestic+Dogs+%28Canis+familiaris%29%3A+A+Validation+Study&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Redmond%2C+Cushla&rft.au=Smit%2C+Michelle&rft.au=Draganova%2C+Ina&rft.au=Corner-Thomas%2C+Rene&rft.date=2024-09-13&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=18&rft.spage=5955&rft_id=info:doi/10.3390%2Fs24185955&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24185955 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |