Effect of Sphingomyelin Headgroup Size on Molecular Properties and Interactions with Cholesterol

Sphingomyelins (SMs) and sterols are important constituents of the plasma membrane and have also been identified as major lipid components in membrane rafts. Using SM analogs with decreasing headgroup methylation, we systemically analyzed the effect of headgroup size on membrane properties and inter...

Full description

Saved in:
Bibliographic Details
Published inBiophysical journal Vol. 99; no. 10; pp. 3300 - 3308
Main Authors Björkbom, Anders, Róg, Tomasz, Kaszuba, Karol, Kurita, Mayuko, Yamaguchi, Shou, Lönnfors, Max, Nyholm, Thomas K.M., Vattulainen, Ilpo, Katsumura, Shigeo, Slotte, J. Peter
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 17.11.2010
Biophysical Society
The Biophysical Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sphingomyelins (SMs) and sterols are important constituents of the plasma membrane and have also been identified as major lipid components in membrane rafts. Using SM analogs with decreasing headgroup methylation, we systemically analyzed the effect of headgroup size on membrane properties and interactions with cholesterol. An increase in headgroup size resulted in a decrease in the main phase transition. Atom-scale molecular-dynamics simulations were in agreement with the fluorescence anisotropy experiments, showing that molecular areas increased and acyl chain order decreased with increasing headgroup size. Furthermore, the transition temperatures were constantly higher for SM headgroup analogs compared to corresponding phosphatidylcholine headgroup analogs. The sterol affinity for phospholipid bilayers was assessed using a sterol-partitioning assay and an increased headgroup size increased sterol affinity for the bilayer, with a higher sterol affinity for SM analogs as compared to phosphatidylcholine analogs. Moreover, the size of the headgroup affected the formation and composition of cholesterol-containing ordered domains. Palmitoyl-SM (the largest headgroup) seemed to attract more cholesterol into ordered domains than the other SM analogs with smaller headgroups. The ordering and condensing effect of cholesterol on membrane lipids was also largest for palmitoyl-SM as compared to the smaller SM analogs. The results show that the size of the SM headgroup is crucially important for SM-SM and SM-sterol interactions. Our results further emphasize that interfacial electrostatic interactions are important for stabilizing cholesterol interactions with SMs.
AbstractList Sphingomyelins (SMs) and sterols are important constituents of the plasma membrane and have also been identified as major lipid components in membrane rafts. Using SM analogs with decreasing headgroup methylation, we systemically analyzed the effect of headgroup size on membrane properties and interactions with cholesterol. An increase in headgroup size resulted in a decrease in the main phase transition. Atom-scale molecular-dynamics simulations were in agreement with the fluorescence anisotropy experiments, showing that molecular areas increased and acyl chain order decreased with increasing headgroup size. Furthermore, the transition temperatures were constantly higher for SM headgroup analogs compared to corresponding phosphatidylcholine headgroup analogs. The sterol affinity for phospholipid bilayers was assessed using a sterol-partitioning assay and an increased headgroup size increased sterol affinity for the bilayer, with a higher sterol affinity for SM analogs as compared to phosphatidylcholine analogs. Moreover, the size of the headgroup affected the formation and composition of cholesterol-containing ordered domains. Palmitoyl-SM (the largest headgroup) seemed to attract more cholesterol into ordered domains than the other SM analogs with smaller headgroups. The ordering and condensing effect of cholesterol on membrane lipids was also largest for palmitoyl-SM as compared to the smaller SM analogs. The results show that the size of the SM headgroup is crucially important for SM-SM and SM-sterol interactions. Our results further emphasize that interfacial electrostatic interactions are important for stabilizing cholesterol interactions with SMs. [PUBLICATION ABSTRACT]
Sphingomyelins (SMs) and sterols are important constituents of the plasma membrane and have also been identified as major lipid components in membrane rafts. Using SM analogs with decreasing headgroup methylation, we systemically analyzed the effect of headgroup size on membrane properties and interactions with cholesterol. An increase in headgroup size resulted in a decrease in the main phase transition. Atom-scale molecular-dynamics simulations were in agreement with the fluorescence anisotropy experiments, showing that molecular areas increased and acyl chain order decreased with increasing headgroup size. Furthermore, the transition temperatures were constantly higher for SM headgroup analogs compared to corresponding phosphatidylcholine headgroup analogs. The sterol affinity for phospholipid bilayers was assessed using a sterol-partitioning assay and an increased headgroup size increased sterol affinity for the bilayer, with a higher sterol affinity for SM analogs as compared to phosphatidylcholine analogs. Moreover, the size of the headgroup affected the formation and composition of cholesterol-containing ordered domains. Palmitoyl-SM (the largest headgroup) seemed to attract more cholesterol into ordered domains than the other SM analogs with smaller headgroups. The ordering and condensing effect of cholesterol on membrane lipids was also largest for palmitoyl-SM as compared to the smaller SM analogs. The results show that the size of the SM headgroup is crucially important for SM-SM and SM-sterol interactions. Our results further emphasize that interfacial electrostatic interactions are important for stabilizing cholesterol interactions with SMs.Sphingomyelins (SMs) and sterols are important constituents of the plasma membrane and have also been identified as major lipid components in membrane rafts. Using SM analogs with decreasing headgroup methylation, we systemically analyzed the effect of headgroup size on membrane properties and interactions with cholesterol. An increase in headgroup size resulted in a decrease in the main phase transition. Atom-scale molecular-dynamics simulations were in agreement with the fluorescence anisotropy experiments, showing that molecular areas increased and acyl chain order decreased with increasing headgroup size. Furthermore, the transition temperatures were constantly higher for SM headgroup analogs compared to corresponding phosphatidylcholine headgroup analogs. The sterol affinity for phospholipid bilayers was assessed using a sterol-partitioning assay and an increased headgroup size increased sterol affinity for the bilayer, with a higher sterol affinity for SM analogs as compared to phosphatidylcholine analogs. Moreover, the size of the headgroup affected the formation and composition of cholesterol-containing ordered domains. Palmitoyl-SM (the largest headgroup) seemed to attract more cholesterol into ordered domains than the other SM analogs with smaller headgroups. The ordering and condensing effect of cholesterol on membrane lipids was also largest for palmitoyl-SM as compared to the smaller SM analogs. The results show that the size of the SM headgroup is crucially important for SM-SM and SM-sterol interactions. Our results further emphasize that interfacial electrostatic interactions are important for stabilizing cholesterol interactions with SMs.
Sphingomyelins (SMs) and sterols are important constituents of the plasma membrane and have also been identified as major lipid components in membrane rafts. Using SM analogs with decreasing headgroup methylation, we systemically analyzed the effect of headgroup size on membrane properties and interactions with cholesterol. An increase in headgroup size resulted in a decrease in the main phase transition. Atom-scale molecular-dynamics simulations were in agreement with the fluorescence anisotropy experiments, showing that molecular areas increased and acyl chain order decreased with increasing headgroup size. Furthermore, the transition temperatures were constantly higher for SM headgroup analogs compared to corresponding phosphatidylcholine headgroup analogs. The sterol affinity for phospholipid bilayers was assessed using a sterol-partitioning assay and an increased headgroup size increased sterol affinity for the bilayer, with a higher sterol affinity for SM analogs as compared to phosphatidylcholine analogs. Moreover, the size of the headgroup affected the formation and composition of cholesterol-containing ordered domains. Palmitoyl-SM (the largest headgroup) seemed to attract more cholesterol into ordered domains than the other SM analogs with smaller headgroups. The ordering and condensing effect of cholesterol on membrane lipids was also largest for palmitoyl-SM as compared to the smaller SM analogs. The results show that the size of the SM headgroup is crucially important for SM-SM and SM-sterol interactions. Our results further emphasize that interfacial electrostatic interactions are important for stabilizing cholesterol interactions with SMs.
Author Slotte, J. Peter
Róg, Tomasz
Vattulainen, Ilpo
Björkbom, Anders
Katsumura, Shigeo
Kaszuba, Karol
Yamaguchi, Shou
Lönnfors, Max
Nyholm, Thomas K.M.
Kurita, Mayuko
AuthorAffiliation Department of Physics, Tampere University of Technology, Tampere, Finland
Department of Physics and Biophysics, University of Warmia and Mazury, Olsztyn, Poland
Department of Applied Physics, Aalto University of Science and Technology, Espoo, Finland
School of Science and Technology, Kwansei Gakuin University, Sanda City, Japan
Department of Biosciences, Åbo Akademi University, Turku, Finland
MEMPHYS Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
AuthorAffiliation_xml – name: MEMPHYS Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
– name: Department of Biosciences, Åbo Akademi University, Turku, Finland
– name: Department of Physics, Tampere University of Technology, Tampere, Finland
– name: Department of Physics and Biophysics, University of Warmia and Mazury, Olsztyn, Poland
– name: School of Science and Technology, Kwansei Gakuin University, Sanda City, Japan
– name: Department of Applied Physics, Aalto University of Science and Technology, Espoo, Finland
Author_xml – sequence: 1
  givenname: Anders
  surname: Björkbom
  fullname: Björkbom, Anders
  email: anders.bjorkbom@abo.fi
  organization: Department of Biosciences, Åbo Akademi University, Turku, Finland
– sequence: 2
  givenname: Tomasz
  surname: Róg
  fullname: Róg, Tomasz
  organization: Department of Physics, Tampere University of Technology, Tampere, Finland
– sequence: 3
  givenname: Karol
  surname: Kaszuba
  fullname: Kaszuba, Karol
  organization: Department of Physics, Tampere University of Technology, Tampere, Finland
– sequence: 4
  givenname: Mayuko
  surname: Kurita
  fullname: Kurita, Mayuko
  organization: School of Science and Technology, Kwansei Gakuin University, Sanda City, Japan
– sequence: 5
  givenname: Shou
  surname: Yamaguchi
  fullname: Yamaguchi, Shou
  organization: School of Science and Technology, Kwansei Gakuin University, Sanda City, Japan
– sequence: 6
  givenname: Max
  surname: Lönnfors
  fullname: Lönnfors, Max
  organization: Department of Biosciences, Åbo Akademi University, Turku, Finland
– sequence: 7
  givenname: Thomas K.M.
  surname: Nyholm
  fullname: Nyholm, Thomas K.M.
  organization: Department of Biosciences, Åbo Akademi University, Turku, Finland
– sequence: 8
  givenname: Ilpo
  surname: Vattulainen
  fullname: Vattulainen, Ilpo
  organization: Department of Physics, Tampere University of Technology, Tampere, Finland
– sequence: 9
  givenname: Shigeo
  surname: Katsumura
  fullname: Katsumura, Shigeo
  organization: School of Science and Technology, Kwansei Gakuin University, Sanda City, Japan
– sequence: 10
  givenname: J. Peter
  surname: Slotte
  fullname: Slotte, J. Peter
  organization: Department of Biosciences, Åbo Akademi University, Turku, Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21081078$$D View this record in MEDLINE/PubMed
BookMark eNqFUsFu1DAQtVAR3RY-gAuKuHDKMk7sxBYSEloVWqkIpMLZcpzJrqOsHeykqHwN38KX4WhbBD2Uk2XPe2-eZ94JOXLeISHPKawp0Op1v27Gfl1AuoNcA5OPyIpyVuQAojoiKwCo8pJJfkxOYuwBaMGBPiHHBQVBoRYros-6Ds2U-S67GnfWbf3-BgfrsnPU7Tb4ecyu7A_MvMs--gHNPOiQfQ5-xDBZjJl27a-fF27CoM1kvYvZdzvtss0ugWN69cNT8rjTQ8Rnt-cp-fr-7MvmPL_89OFi8-4yNxzklCeXTWdaWQNtGskl56gZEwZLI2tTYaE1tLzRQtQogbVdCwVAga2o6oaZqjwlbw-649zssTXopqAHNQa71-FGeW3VvxVnd2rrr1UhBdRsEXh1KxD8tzm5V3sbDQ6DdujnqETFGK1kyf-PBMF4WfM6IV_eQ_Z-Di7NQQlaMJ7aLo1f_O38j-W7LSVAfQCY4GMM2CljJ72MO33EDoqCWvKgepXyoJY8KJAq5SEx6T3mnfhDnDcHDqZtXVsMKhqLzmBrQ4qKar19gP0biOvPuQ
CitedBy_id crossref_primary_10_3390_ijms23158771
crossref_primary_10_1016_j_bpj_2015_12_043
crossref_primary_10_1073_pnas_1103742108
crossref_primary_10_1016_j_chemphyslip_2014_10_004
crossref_primary_10_1016_j_bpj_2019_06_019
crossref_primary_10_1016_j_bbamem_2011_10_013
crossref_primary_10_1016_j_bpj_2016_04_042
crossref_primary_10_3390_toxins11060370
crossref_primary_10_1016_j_jcis_2024_10_112
crossref_primary_10_1021_la4018129
crossref_primary_10_1002_anie_201700570
crossref_primary_10_1016_j_bpj_2019_02_002
crossref_primary_10_1134_S1068162020030164
crossref_primary_10_1016_j_chemphyslip_2012_02_009
crossref_primary_10_1016_j_bbamem_2016_01_024
crossref_primary_10_1016_j_bbamem_2019_05_001
crossref_primary_10_1016_j_bpj_2019_05_015
crossref_primary_10_1016_j_bpj_2019_05_014
crossref_primary_10_1016_j_bpj_2023_02_029
crossref_primary_10_1016_j_bpj_2019_05_010
crossref_primary_10_1016_j_plipres_2019_100988
crossref_primary_10_3390_ijms21238915
crossref_primary_10_1080_87559129_2021_2015773
crossref_primary_10_1016_j_bbamem_2012_06_004
crossref_primary_10_1016_j_cclet_2017_11_006
crossref_primary_10_1111_j_1471_4159_2012_07813_x
crossref_primary_10_1021_la3051324
crossref_primary_10_1016_j_bbamem_2011_01_009
crossref_primary_10_1021_acs_langmuir_6b01968
crossref_primary_10_1016_j_bbamem_2012_11_009
crossref_primary_10_1021_acs_biochem_0c00840
crossref_primary_10_3390_membranes11060449
crossref_primary_10_1016_j_biochi_2020_08_002
crossref_primary_10_1016_j_bpj_2011_09_006
crossref_primary_10_1002_ange_201700570
crossref_primary_10_1016_j_bpj_2016_07_035
crossref_primary_10_1021_acs_jpcb_2c03127
crossref_primary_10_1021_acs_chemrev_8b00538
crossref_primary_10_1016_j_jconrel_2018_10_021
crossref_primary_10_1016_j_bpj_2015_11_3515
crossref_primary_10_1016_j_bbamem_2011_04_004
crossref_primary_10_1016_j_bpj_2015_09_009
crossref_primary_10_1016_j_bbamem_2011_08_026
crossref_primary_10_1021_acs_langmuir_7b01370
crossref_primary_10_1016_j_chemphyslip_2018_07_002
crossref_primary_10_1016_j_bbamem_2015_12_008
crossref_primary_10_1016_j_bbamem_2016_02_038
crossref_primary_10_1016_j_bpj_2012_12_026
crossref_primary_10_1016_j_bbalip_2021_158944
crossref_primary_10_1007_s00018_011_0894_0
crossref_primary_10_1016_j_bpj_2011_03_066
crossref_primary_10_3389_fcell_2016_00106
crossref_primary_10_1016_j_plipres_2013_05_001
crossref_primary_10_1016_j_bbamem_2015_11_014
crossref_primary_10_1146_annurev_genom_091212_153412
crossref_primary_10_1016_j_bbamem_2014_12_017
crossref_primary_10_1021_acs_langmuir_0c01000
crossref_primary_10_1021_acs_biochem_6b00935
crossref_primary_10_1016_j_aanat_2016_10_005
crossref_primary_10_1016_j_bbapap_2021_140696
crossref_primary_10_1016_j_bpj_2017_03_016
crossref_primary_10_1242_jcs_258336
crossref_primary_10_1016_j_plipres_2012_12_001
crossref_primary_10_1016_j_plipres_2019_100995
crossref_primary_10_1039_C7CP01025G
crossref_primary_10_3389_fimmu_2021_613591
Cites_doi 10.1016/S0005-2736(98)00260-0
10.1063/1.2976443
10.1021/jp064931u
10.1038/nature07596
10.1529/biophysj.104.048702
10.1016/S0006-3495(00)76691-4
10.1016/j.bbamem.2004.11.002
10.1529/biophysj.108.133744
10.1016/S0006-3495(99)77369-8
10.1016/0009-3084(91)90079-Q
10.1038/nrm2330
10.1016/S0006-3495(99)77254-1
10.1016/S0006-3495(90)82374-2
10.1016/0304-4157(87)90013-X
10.1016/j.bbamem.2006.09.003
10.1529/biophysj.104.054718
10.1016/j.bbamem.2007.04.009
10.1016/S0006-3495(02)75444-1
10.1194/jlr.E600002-JLR200
10.1038/nrm1925
10.1016/j.bbamem.2008.10.004
10.1016/S0006-3495(99)77286-3
10.1074/jbc.M104776200
10.1529/biophysj.108.138123
10.1016/j.bbamem.2009.12.025
10.1021/bi00197a016
10.1126/science.1174621
10.1021/bi00417a001
10.1016/S0304-4157(98)00006-9
10.1016/S0006-3495(03)74664-5
10.1016/S0006-3495(01)76245-5
10.1016/j.bbamem.2008.03.005
10.1529/biophysj.104.058149
10.1016/j.bbamem.2004.05.012
10.1016/0009-3084(79)90034-3
10.1529/biophysj.106.080887
10.1529/biophysj.106.088427
10.1021/bi00337a022
10.1038/42408
10.1016/0304-4157(87)90017-7
10.1016/S0006-3495(02)73965-9
10.1016/0009-3084(92)90055-T
10.1016/j.bbamcr.2005.06.010
ContentType Journal Article
Copyright 2010 Biophysical Society
Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Copyright Biophysical Society Nov 17, 2010
2010 by the Biophysical Society. 2010 Biophysical Society
Copyright_xml – notice: 2010 Biophysical Society
– notice: Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Biophysical Society Nov 17, 2010
– notice: 2010 by the Biophysical Society. 2010 Biophysical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7TK
7TM
7U9
8FD
FR3
H94
K9.
P64
7X8
7TB
7U5
L7M
5PM
DOI 10.1016/j.bpj.2010.09.049
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE - Academic
Solid State and Superconductivity Abstracts
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1542-0086
EndPage 3308
ExternalDocumentID PMC2980746
2197998491
21081078
10_1016_j_bpj_2010_09_049
S0006349510011999
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-~X
.55
.GJ
0R~
23N
2WC
3O-
3V.
4.4
457
53G
5GY
5RE
62-
6I.
6J9
6TJ
7X2
7X7
88A
88E
88I
8AF
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AALRI
AAQXK
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABUWG
ABVKL
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADJPV
ADMUD
AENEX
AEXQZ
AFKRA
AFRAH
AFTJW
AGHFR
AGKMS
AHMBA
AHPSJ
AI.
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
ARAPS
ASPBG
ATCPS
AVWKF
AYCSE
AZFZN
AZQEC
BAWUL
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
D0L
DIK
DU5
DWQXO
E3Z
EBS
EJD
F20
F5P
FCP
FDB
FEDTE
FGOYB
FRP
FYUFA
G-2
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HX~
HYE
HZ~
IH2
IXB
JIG
KQ8
L7B
LK8
M0K
M0L
M1P
M2O
M2P
M2Q
M41
M7P
MVM
N9A
NCXOZ
O-L
O9-
OK1
OZT
P2P
P62
PQQKQ
PRG
PROAC
PSQYO
Q2X
R2-
RCE
RIG
RNS
ROL
RPM
RWL
S0X
SES
SSZ
TAE
TBP
TN5
UKHRP
UKR
VH1
WH7
WOQ
WOW
WQ6
X7M
YNY
YWH
YYP
ZA5
ZGI
ZXP
~02
~KM
AAMRU
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEUPX
AEUYN
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
ALIPV
APXCP
CITATION
H13
PHGZM
PHGZT
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7TK
7TM
7U9
8FD
EFKBS
FR3
H94
K9.
P64
7X8
7TB
7U5
L7M
5PM
ID FETCH-LOGICAL-c509t-495bfcd9701bb95955ea448ce3c97c6e2aa0d5ba887e904dfd02002ed867b4c63
IEDL.DBID IXB
ISSN 0006-3495
1542-0086
IngestDate Thu Aug 21 14:32:20 EDT 2025
Fri Jul 11 15:39:16 EDT 2025
Mon Jul 21 09:22:49 EDT 2025
Fri Jul 25 10:37:41 EDT 2025
Thu Jan 02 22:40:16 EST 2025
Tue Jul 01 03:33:00 EDT 2025
Thu Apr 24 23:08:59 EDT 2025
Fri Feb 23 02:25:03 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
This document may be redistributed and reused, subject to certain conditions.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-495bfcd9701bb95955ea448ce3c97c6e2aa0d5ba887e904dfd02002ed867b4c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://www.cell.com/article/S0006349510011999/pdf
PMID 21081078
PQID 812454636
PQPubID 7454
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2980746
proquest_miscellaneous_864416935
proquest_miscellaneous_808453757
proquest_journals_812454636
pubmed_primary_21081078
crossref_citationtrail_10_1016_j_bpj_2010_09_049
crossref_primary_10_1016_j_bpj_2010_09_049
elsevier_sciencedirect_doi_10_1016_j_bpj_2010_09_049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-11-17
PublicationDateYYYYMMDD 2010-11-17
PublicationDate_xml – month: 11
  year: 2010
  text: 2010-11-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Biophysical journal
PublicationTitleAlternate Biophys J
PublicationYear 2010
Publisher Elsevier Inc
Biophysical Society
The Biophysical Society
Publisher_xml – name: Elsevier Inc
– name: Biophysical Society
– name: The Biophysical Society
References Mason, O'Leary (bib30) 1990; 58
Simons, van Meer (bib10) 1988; 27
Térová, Heczko, Slotte (bib22) 2005; 88
Koynova, Caffrey (bib34) 1998; 1376
Silvius, McElhaney (bib17) 1979; 24
Aittoniemi, Róg, Vattulainen (bib39) 2006; 110
Björkbom, Yamamoto, Slotte (bib19) 2008; 1778
Huang, Buboltz, Feigenson (bib25) 1999; 1417
Xu, Bittman, London (bib7) 2001; 276
Smaby, Brockman, Brown (bib13) 1994; 33
Pasenkiewicz-Gierula, Róg, Kusumi (bib20) 2000; 78
Silvius (bib33) 1991; 57
Martinez-Seara, Róg, Vattulainen (bib38) 2008; 129
Yu, Hui (bib31) 1992; 62
van Meer, Voelker, Feigenson (bib1) 2008; 9
Hancock (bib11) 2006; 7
Eggeling, Ringemann, Hell (bib3) 2009; 457
Lingwood, Simons (bib5) 2010; 327
de Almeida, Loura, Prieto (bib37) 2002; 82
Phillips, Johnson, Rothblat (bib16) 1987; 906
Björkqvist, Nyholm, Ramstedt (bib2) 2005; 88
Veatch, Keller (bib6) 2005; 1746
Pike (bib8) 2006; 47
Martinez-Seara, Róg, Reigada (bib15) 2008; 95
Gagné, Stamatatos, Silvius (bib28) 1985; 24
Kusube, Matsuki, Kaneshina (bib29) 2005; 1668
Maunula, Björkqvist, Ramstedt (bib43) 2007; 1768
Boggs (bib40) 1987; 906
Pasenkiewicz-Gierula, Takaoka, Kusumi (bib42) 1999; 76
Niemelä, Hyvönen, Vattulainen (bib23) 2004; 87
Huang, Feigenson (bib24) 1999; 76
Anderson, McConnell (bib26) 2002; 83
Somerharju, Virtanen, Hermansson (bib27) 2009; 1788
Simons, Ikonen (bib9) 1997; 387
Nyholm, Grandell, Slotte (bib32) 2010; 1798
Björkbom, Ramstedt, Slotte (bib14) 2007; 1768
Ramstedt, Slotte (bib12) 1999; 76
Lee (bib41) 2004; 1666
de Almeida, Fedorov, Prieto (bib35) 2003; 85
Halling, Ramstedt, Nyholm (bib36) 2008; 95
Feigenson, Buboltz (bib4) 2001; 80
Aittoniemi, Niemelä, Vattulainen (bib18) 2007; 92
Róg, Pasenkiewicz-Gierula (bib21) 2006; 91
Martinez-Seara (10.1016/j.bpj.2010.09.049_bib38) 2008; 129
Xu (10.1016/j.bpj.2010.09.049_bib7) 2001; 276
Veatch (10.1016/j.bpj.2010.09.049_bib6) 2005; 1746
Halling (10.1016/j.bpj.2010.09.049_bib36) 2008; 95
Silvius (10.1016/j.bpj.2010.09.049_bib17) 1979; 24
Somerharju (10.1016/j.bpj.2010.09.049_bib27) 2009; 1788
Gagné (10.1016/j.bpj.2010.09.049_bib28) 1985; 24
Eggeling (10.1016/j.bpj.2010.09.049_bib3) 2009; 457
Térová (10.1016/j.bpj.2010.09.049_bib22) 2005; 88
Lee (10.1016/j.bpj.2010.09.049_bib41) 2004; 1666
Yu (10.1016/j.bpj.2010.09.049_bib31) 1992; 62
Silvius (10.1016/j.bpj.2010.09.049_bib33) 1991; 57
Aittoniemi (10.1016/j.bpj.2010.09.049_bib18) 2007; 92
Aittoniemi (10.1016/j.bpj.2010.09.049_bib39) 2006; 110
Björkqvist (10.1016/j.bpj.2010.09.049_bib2) 2005; 88
Simons (10.1016/j.bpj.2010.09.049_bib9) 1997; 387
Lingwood (10.1016/j.bpj.2010.09.049_bib5) 2010; 327
Maunula (10.1016/j.bpj.2010.09.049_bib43) 2007; 1768
Feigenson (10.1016/j.bpj.2010.09.049_bib4) 2001; 80
Hancock (10.1016/j.bpj.2010.09.049_bib11) 2006; 7
Boggs (10.1016/j.bpj.2010.09.049_bib40) 1987; 906
Huang (10.1016/j.bpj.2010.09.049_bib25) 1999; 1417
Simons (10.1016/j.bpj.2010.09.049_bib10) 1988; 27
Björkbom (10.1016/j.bpj.2010.09.049_bib14) 2007; 1768
Pike (10.1016/j.bpj.2010.09.049_bib8) 2006; 47
Pasenkiewicz-Gierula (10.1016/j.bpj.2010.09.049_bib20) 2000; 78
Martinez-Seara (10.1016/j.bpj.2010.09.049_bib15) 2008; 95
de Almeida (10.1016/j.bpj.2010.09.049_bib35) 2003; 85
Róg (10.1016/j.bpj.2010.09.049_bib21) 2006; 91
Huang (10.1016/j.bpj.2010.09.049_bib24) 1999; 76
de Almeida (10.1016/j.bpj.2010.09.049_bib37) 2002; 82
Niemelä (10.1016/j.bpj.2010.09.049_bib23) 2004; 87
Koynova (10.1016/j.bpj.2010.09.049_bib34) 1998; 1376
Nyholm (10.1016/j.bpj.2010.09.049_bib32) 2010; 1798
Phillips (10.1016/j.bpj.2010.09.049_bib16) 1987; 906
Smaby (10.1016/j.bpj.2010.09.049_bib13) 1994; 33
Kusube (10.1016/j.bpj.2010.09.049_bib29) 2005; 1668
van Meer (10.1016/j.bpj.2010.09.049_bib1) 2008; 9
Anderson (10.1016/j.bpj.2010.09.049_bib26) 2002; 83
Pasenkiewicz-Gierula (10.1016/j.bpj.2010.09.049_bib42) 1999; 76
Ramstedt (10.1016/j.bpj.2010.09.049_bib12) 1999; 76
Björkbom (10.1016/j.bpj.2010.09.049_bib19) 2008; 1778
Mason (10.1016/j.bpj.2010.09.049_bib30) 1990; 58
9177342 - Nature. 1997 Jun 5;387(6633):569-72
20044567 - Science. 2010 Jan 1;327(5961):46-50
3297153 - Biochim Biophys Acta. 1987 Jun 24;906(2):223-76
3307919 - Biochim Biophys Acta. 1987 Oct 5;906(3):353-404
15315947 - Biophys J. 2004 Nov;87(5):2976-89
19044940 - J Chem Phys. 2008 Sep 14;129(10):105103
15519309 - Biochim Biophys Acta. 2004 Nov 3;1666(1-2):62-87
11371452 - Biophys J. 2001 Jun;80(6):2775-88
1423804 - Chem Phys Lipids. 1992 Jul;62(1):69-78
4052405 - Biochemistry. 1985 Jul 30;24(16):4400-8
19098897 - Nature. 2009 Feb 26;457(7233):1159-62
19007747 - Biochim Biophys Acta. 2009 Jan;1788(1):12-23
15792981 - Biophys J. 2005 Jun;88(6):4054-63
17181184 - J Phys Chem B. 2006 Dec 28;110(51):25562-4
15653729 - Biophys J. 2005 Apr;88(4):2661-9
16645198 - J Lipid Res. 2006 Jul;47(7):1597-8
15670728 - Biochim Biophys Acta. 2005 Feb 1;1668(1):25-32
10076038 - Biochim Biophys Acta. 1999 Feb 4;1417(1):89-100
10692323 - Biophys J. 2000 Mar;78(3):1376-89
18216768 - Nat Rev Mol Cell Biol. 2008 Feb;9(2):112-24
9666088 - Biochim Biophys Acta. 1998 Jun 29;1376(1):91-145
10049307 - Biophys J. 1999 Mar;76(3):1228-40
3064805 - Biochemistry. 1988 Aug 23;27(17):6197-202
9929492 - Biophys J. 1999 Feb;76(2):908-15
10096908 - Biophys J. 1999 Apr;76(4):2142-57
14507704 - Biophys J. 2003 Oct;85(4):2406-16
16043244 - Biochim Biophys Acta. 2005 Dec 30;1746(3):172-85
18621818 - Biophys J. 2008 Oct;95(7):3295-305
11432870 - J Biol Chem. 2001 Sep 7;276(36):33540-6
18641061 - Biophys J. 2008 Oct;95(8):3861-71
8049216 - Biochemistry. 1994 Aug 9;33(31):9135-42
17114220 - Biophys J. 2007 Feb 15;92(4):1125-37
11806924 - Biophys J. 2002 Feb;82(2):823-34
17499576 - Biochim Biophys Acta. 2007 Jul;1768(7):1839-47
2054907 - Chem Phys Lipids. 1991 Mar;57(2-3):241-52
16625153 - Nat Rev Mol Cell Biol. 2006 Jun;7(6):456-62
16920840 - Biophys J. 2006 Nov 15;91(10):3756-67
17055448 - Biochim Biophys Acta. 2007 Feb;1768(2):336-45
18395514 - Biochim Biophys Acta. 2008 Jun;1778(6):1501-7
2383637 - Biophys J. 1990 Jul;58(1):277-81
20044977 - Biochim Biophys Acta. 2010 May;1798(5):1008-13
12324422 - Biophys J. 2002 Oct;83(4):2039-52
References_xml – volume: 327
  start-page: 46
  year: 2010
  end-page: 50
  ident: bib5
  article-title: Lipid rafts as a membrane-organizing principle
  publication-title: Science
– volume: 1746
  start-page: 172
  year: 2005
  end-page: 185
  ident: bib6
  article-title: Seeing spots: complex phase behavior in simple membranes
  publication-title: Biochim. Biophys. Acta
– volume: 27
  start-page: 6197
  year: 1988
  end-page: 6202
  ident: bib10
  article-title: Lipid sorting in epithelial cells
  publication-title: Biochemistry
– volume: 85
  start-page: 2406
  year: 2003
  end-page: 2416
  ident: bib35
  article-title: Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts
  publication-title: Biophys. J.
– volume: 387
  start-page: 569
  year: 1997
  end-page: 572
  ident: bib9
  article-title: Functional rafts in cell membranes
  publication-title: Nature
– volume: 33
  start-page: 9135
  year: 1994
  end-page: 9142
  ident: bib13
  article-title: Cholesterol's interfacial interactions with sphingomyelins and phosphatidylcholines: hydrocarbon chain structure determines the magnitude of condensation
  publication-title: Biochemistry
– volume: 7
  start-page: 456
  year: 2006
  end-page: 462
  ident: bib11
  article-title: Lipid rafts: contentious only from simplistic standpoints
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 76
  start-page: 2142
  year: 1999
  end-page: 2157
  ident: bib24
  article-title: A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers
  publication-title: Biophys. J.
– volume: 110
  start-page: 25562
  year: 2006
  end-page: 25564
  ident: bib39
  article-title: Tilt: major factor in sterols' ordering capability in membranes
  publication-title: J. Phys. Chem. B.
– volume: 62
  start-page: 69
  year: 1992
  end-page: 78
  ident: bib31
  article-title: Methylation effects on the microdomain structures of phosphatidylethanolamine monolayers
  publication-title: Chem. Phys. Lipids
– volume: 1778
  start-page: 1501
  year: 2008
  end-page: 1507
  ident: bib19
  article-title: Importance of the phosphocholine linkage on sphingomyelin molecular properties and interactions with cholesterol; a study with phosphate oxygen modified sphingomyelin-analogues
  publication-title: Biochim. Biophys. Acta
– volume: 83
  start-page: 2039
  year: 2002
  end-page: 2052
  ident: bib26
  article-title: A thermodynamic model for extended complexes of cholesterol and phospholipid
  publication-title: Biophys. J.
– volume: 24
  start-page: 4400
  year: 1985
  end-page: 4408
  ident: bib28
  article-title: Physical properties and surface interactions of bilayer membranes containing N-methylated phosphatidylethanolamines
  publication-title: Biochemistry
– volume: 87
  start-page: 2976
  year: 2004
  end-page: 2989
  ident: bib23
  article-title: Structure and dynamics of sphingomyelin bilayer: insight gained through systematic comparison to phosphatidylcholine
  publication-title: Biophys. J.
– volume: 1788
  start-page: 12
  year: 2009
  end-page: 23
  ident: bib27
  article-title: The superlattice model of lateral organization of membranes and its implications on membrane lipid homeostasis
  publication-title: Biochim. Biophys. Acta
– volume: 1798
  start-page: 1008
  year: 2010
  end-page: 1013
  ident: bib32
  article-title: Sterol affinity for bilayer membranes is affected by their ceramide content and the ceramide chain length
  publication-title: Biochim. Biophys. Acta
– volume: 1666
  start-page: 62
  year: 2004
  end-page: 87
  ident: bib41
  article-title: How lipids affect the activities of integral membrane proteins
  publication-title: Biochim. Biophys. Acta
– volume: 57
  start-page: 241
  year: 1991
  end-page: 252
  ident: bib33
  article-title: Thermotropic properties of phospholipid analogues
  publication-title: Chem. Phys. Lipids
– volume: 1376
  start-page: 91
  year: 1998
  end-page: 145
  ident: bib34
  article-title: Phases and phase transitions of the phosphatidylcholines
  publication-title: Biochim. Biophys. Acta
– volume: 1668
  start-page: 25
  year: 2005
  end-page: 32
  ident: bib29
  article-title: Thermotropic and barotropic phase transitions of N-methylated dipalmitoylphosphatidylethanolamine bilayers
  publication-title: Biochim. Biophys. Acta
– volume: 457
  start-page: 1159
  year: 2009
  end-page: 1162
  ident: bib3
  article-title: Direct observation of the nanoscale dynamics of membrane lipids in a living cell
  publication-title: Nature
– volume: 9
  start-page: 112
  year: 2008
  end-page: 124
  ident: bib1
  article-title: Membrane lipids: where they are and how they behave
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 906
  start-page: 353
  year: 1987
  end-page: 404
  ident: bib40
  article-title: Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function
  publication-title: Biochim. Biophys. Acta
– volume: 76
  start-page: 1228
  year: 1999
  end-page: 1240
  ident: bib42
  article-title: Charge pairing of headgroups in phosphatidylcholine membranes: a molecular dynamics simulation study
  publication-title: Biophys. J.
– volume: 1768
  start-page: 1839
  year: 2007
  end-page: 1847
  ident: bib14
  article-title: Phosphatidylcholine and sphingomyelin containing an elaidoyl fatty acid can form cholesterol-rich lateral domains in bilayer membranes
  publication-title: Biochim. Biophys. Acta
– volume: 95
  start-page: 3295
  year: 2008
  end-page: 3305
  ident: bib15
  article-title: Interplay of unsaturated phospholipids and cholesterol in membranes: effect of the double-bond position
  publication-title: Biophys. J.
– volume: 76
  start-page: 908
  year: 1999
  end-page: 915
  ident: bib12
  article-title: Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length
  publication-title: Biophys. J.
– volume: 58
  start-page: 277
  year: 1990
  end-page: 281
  ident: bib30
  article-title: Effects of headgroup methylation and acyl chain length on the volume of melting of phosphatidylethanolamines
  publication-title: Biophys. J.
– volume: 82
  start-page: 823
  year: 2002
  end-page: 834
  ident: bib37
  article-title: Nonequilibrium phenomena in the phase separation of a two-component lipid bilayer
  publication-title: Biophys. J.
– volume: 92
  start-page: 1125
  year: 2007
  end-page: 1137
  ident: bib18
  article-title: Insight into the putative specific interactions between cholesterol, sphingomyelin, and palmitoyl-oleoyl phosphatidylcholine
  publication-title: Biophys. J.
– volume: 80
  start-page: 2775
  year: 2001
  end-page: 2788
  ident: bib4
  article-title: Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol
  publication-title: Biophys. J.
– volume: 95
  start-page: 3861
  year: 2008
  end-page: 3871
  ident: bib36
  article-title: Cholesterol interactions with fluid-phase phospholipids: effect on the lateral organization of the bilayer
  publication-title: Biophys. J.
– volume: 91
  start-page: 3756
  year: 2006
  end-page: 3767
  ident: bib21
  article-title: Cholesterol-sphingomyelin interactions: a molecular dynamics simulation study
  publication-title: Biophys. J.
– volume: 47
  start-page: 1597
  year: 2006
  end-page: 1598
  ident: bib8
  article-title: Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function
  publication-title: J. Lipid Res.
– volume: 129
  start-page: 105103
  year: 2008
  ident: bib38
  article-title: Influence of cis double-bond parametrization on lipid membrane properties: how seemingly insignificant details in force-field change even qualitative trends
  publication-title: J. Chem. Phys.
– volume: 88
  start-page: 4054
  year: 2005
  end-page: 4063
  ident: bib2
  article-title: Domain formation and stability in complex lipid bilayers as reported by cholestatrienol
  publication-title: Biophys. J.
– volume: 276
  start-page: 33540
  year: 2001
  end-page: 33546
  ident: bib7
  article-title: Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide
  publication-title: J. Biol. Chem.
– volume: 1417
  start-page: 89
  year: 1999
  end-page: 100
  ident: bib25
  article-title: Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers
  publication-title: Biochim. Biophys. Acta
– volume: 1768
  start-page: 336
  year: 2007
  end-page: 345
  ident: bib43
  article-title: Differences in the domain forming properties of N-palmitoylated neutral glycosphingolipids in bilayer membranes
  publication-title: Biochim. Biophys. Acta
– volume: 906
  start-page: 223
  year: 1987
  end-page: 276
  ident: bib16
  article-title: Mechanisms and consequences of cellular cholesterol exchange and transfer
  publication-title: Biochim. Biophys. Acta
– volume: 88
  start-page: 2661
  year: 2005
  end-page: 2669
  ident: bib22
  article-title: On the importance of the phosphocholine methyl groups for sphingomyelin/cholesterol interactions in membranes: a study with ceramide phosphoethanolamine
  publication-title: Biophys. J.
– volume: 24
  start-page: 287
  year: 1979
  end-page: 296
  ident: bib17
  article-title: Effects of phospholipid acyl chain structure on physical properties: I. Isobranched phosphatidylcholines
  publication-title: Chem. Phys. Lipids
– volume: 78
  start-page: 1376
  year: 2000
  end-page: 1389
  ident: bib20
  article-title: Cholesterol effects on the phosphatidylcholine bilayer polar region: a molecular simulation study
  publication-title: Biophys. J.
– volume: 1417
  start-page: 89
  year: 1999
  ident: 10.1016/j.bpj.2010.09.049_bib25
  article-title: Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0005-2736(98)00260-0
– volume: 129
  start-page: 105103
  year: 2008
  ident: 10.1016/j.bpj.2010.09.049_bib38
  article-title: Influence of cis double-bond parametrization on lipid membrane properties: how seemingly insignificant details in force-field change even qualitative trends
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2976443
– volume: 110
  start-page: 25562
  year: 2006
  ident: 10.1016/j.bpj.2010.09.049_bib39
  article-title: Tilt: major factor in sterols' ordering capability in membranes
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp064931u
– volume: 457
  start-page: 1159
  year: 2009
  ident: 10.1016/j.bpj.2010.09.049_bib3
  article-title: Direct observation of the nanoscale dynamics of membrane lipids in a living cell
  publication-title: Nature
  doi: 10.1038/nature07596
– volume: 87
  start-page: 2976
  year: 2004
  ident: 10.1016/j.bpj.2010.09.049_bib23
  article-title: Structure and dynamics of sphingomyelin bilayer: insight gained through systematic comparison to phosphatidylcholine
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.048702
– volume: 78
  start-page: 1376
  year: 2000
  ident: 10.1016/j.bpj.2010.09.049_bib20
  article-title: Cholesterol effects on the phosphatidylcholine bilayer polar region: a molecular simulation study
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(00)76691-4
– volume: 1668
  start-page: 25
  year: 2005
  ident: 10.1016/j.bpj.2010.09.049_bib29
  article-title: Thermotropic and barotropic phase transitions of N-methylated dipalmitoylphosphatidylethanolamine bilayers
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2004.11.002
– volume: 95
  start-page: 3861
  year: 2008
  ident: 10.1016/j.bpj.2010.09.049_bib36
  article-title: Cholesterol interactions with fluid-phase phospholipids: effect on the lateral organization of the bilayer
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.108.133744
– volume: 76
  start-page: 2142
  year: 1999
  ident: 10.1016/j.bpj.2010.09.049_bib24
  article-title: A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(99)77369-8
– volume: 57
  start-page: 241
  year: 1991
  ident: 10.1016/j.bpj.2010.09.049_bib33
  article-title: Thermotropic properties of phospholipid analogues
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/0009-3084(91)90079-Q
– volume: 9
  start-page: 112
  year: 2008
  ident: 10.1016/j.bpj.2010.09.049_bib1
  article-title: Membrane lipids: where they are and how they behave
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2330
– volume: 76
  start-page: 908
  year: 1999
  ident: 10.1016/j.bpj.2010.09.049_bib12
  article-title: Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(99)77254-1
– volume: 58
  start-page: 277
  year: 1990
  ident: 10.1016/j.bpj.2010.09.049_bib30
  article-title: Effects of headgroup methylation and acyl chain length on the volume of melting of phosphatidylethanolamines
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(90)82374-2
– volume: 906
  start-page: 223
  year: 1987
  ident: 10.1016/j.bpj.2010.09.049_bib16
  article-title: Mechanisms and consequences of cellular cholesterol exchange and transfer
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4157(87)90013-X
– volume: 1768
  start-page: 336
  year: 2007
  ident: 10.1016/j.bpj.2010.09.049_bib43
  article-title: Differences in the domain forming properties of N-palmitoylated neutral glycosphingolipids in bilayer membranes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2006.09.003
– volume: 88
  start-page: 4054
  year: 2005
  ident: 10.1016/j.bpj.2010.09.049_bib2
  article-title: Domain formation and stability in complex lipid bilayers as reported by cholestatrienol
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.054718
– volume: 1768
  start-page: 1839
  year: 2007
  ident: 10.1016/j.bpj.2010.09.049_bib14
  article-title: Phosphatidylcholine and sphingomyelin containing an elaidoyl fatty acid can form cholesterol-rich lateral domains in bilayer membranes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2007.04.009
– volume: 82
  start-page: 823
  year: 2002
  ident: 10.1016/j.bpj.2010.09.049_bib37
  article-title: Nonequilibrium phenomena in the phase separation of a two-component lipid bilayer
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(02)75444-1
– volume: 47
  start-page: 1597
  year: 2006
  ident: 10.1016/j.bpj.2010.09.049_bib8
  article-title: Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.E600002-JLR200
– volume: 7
  start-page: 456
  year: 2006
  ident: 10.1016/j.bpj.2010.09.049_bib11
  article-title: Lipid rafts: contentious only from simplistic standpoints
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1925
– volume: 1788
  start-page: 12
  year: 2009
  ident: 10.1016/j.bpj.2010.09.049_bib27
  article-title: The superlattice model of lateral organization of membranes and its implications on membrane lipid homeostasis
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2008.10.004
– volume: 76
  start-page: 1228
  year: 1999
  ident: 10.1016/j.bpj.2010.09.049_bib42
  article-title: Charge pairing of headgroups in phosphatidylcholine membranes: a molecular dynamics simulation study
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(99)77286-3
– volume: 276
  start-page: 33540
  year: 2001
  ident: 10.1016/j.bpj.2010.09.049_bib7
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M104776200
– volume: 95
  start-page: 3295
  year: 2008
  ident: 10.1016/j.bpj.2010.09.049_bib15
  article-title: Interplay of unsaturated phospholipids and cholesterol in membranes: effect of the double-bond position
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.108.138123
– volume: 1798
  start-page: 1008
  year: 2010
  ident: 10.1016/j.bpj.2010.09.049_bib32
  article-title: Sterol affinity for bilayer membranes is affected by their ceramide content and the ceramide chain length
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2009.12.025
– volume: 33
  start-page: 9135
  year: 1994
  ident: 10.1016/j.bpj.2010.09.049_bib13
  article-title: Cholesterol's interfacial interactions with sphingomyelins and phosphatidylcholines: hydrocarbon chain structure determines the magnitude of condensation
  publication-title: Biochemistry
  doi: 10.1021/bi00197a016
– volume: 327
  start-page: 46
  year: 2010
  ident: 10.1016/j.bpj.2010.09.049_bib5
  article-title: Lipid rafts as a membrane-organizing principle
  publication-title: Science
  doi: 10.1126/science.1174621
– volume: 27
  start-page: 6197
  year: 1988
  ident: 10.1016/j.bpj.2010.09.049_bib10
  article-title: Lipid sorting in epithelial cells
  publication-title: Biochemistry
  doi: 10.1021/bi00417a001
– volume: 1376
  start-page: 91
  year: 1998
  ident: 10.1016/j.bpj.2010.09.049_bib34
  article-title: Phases and phase transitions of the phosphatidylcholines
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0304-4157(98)00006-9
– volume: 85
  start-page: 2406
  year: 2003
  ident: 10.1016/j.bpj.2010.09.049_bib35
  article-title: Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(03)74664-5
– volume: 80
  start-page: 2775
  year: 2001
  ident: 10.1016/j.bpj.2010.09.049_bib4
  article-title: Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(01)76245-5
– volume: 1778
  start-page: 1501
  year: 2008
  ident: 10.1016/j.bpj.2010.09.049_bib19
  article-title: Importance of the phosphocholine linkage on sphingomyelin molecular properties and interactions with cholesterol; a study with phosphate oxygen modified sphingomyelin-analogues
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2008.03.005
– volume: 88
  start-page: 2661
  year: 2005
  ident: 10.1016/j.bpj.2010.09.049_bib22
  article-title: On the importance of the phosphocholine methyl groups for sphingomyelin/cholesterol interactions in membranes: a study with ceramide phosphoethanolamine
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.058149
– volume: 1666
  start-page: 62
  year: 2004
  ident: 10.1016/j.bpj.2010.09.049_bib41
  article-title: How lipids affect the activities of integral membrane proteins
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2004.05.012
– volume: 24
  start-page: 287
  year: 1979
  ident: 10.1016/j.bpj.2010.09.049_bib17
  article-title: Effects of phospholipid acyl chain structure on physical properties: I. Isobranched phosphatidylcholines
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/0009-3084(79)90034-3
– volume: 91
  start-page: 3756
  year: 2006
  ident: 10.1016/j.bpj.2010.09.049_bib21
  article-title: Cholesterol-sphingomyelin interactions: a molecular dynamics simulation study
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.080887
– volume: 92
  start-page: 1125
  year: 2007
  ident: 10.1016/j.bpj.2010.09.049_bib18
  article-title: Insight into the putative specific interactions between cholesterol, sphingomyelin, and palmitoyl-oleoyl phosphatidylcholine
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.088427
– volume: 24
  start-page: 4400
  year: 1985
  ident: 10.1016/j.bpj.2010.09.049_bib28
  article-title: Physical properties and surface interactions of bilayer membranes containing N-methylated phosphatidylethanolamines
  publication-title: Biochemistry
  doi: 10.1021/bi00337a022
– volume: 387
  start-page: 569
  year: 1997
  ident: 10.1016/j.bpj.2010.09.049_bib9
  article-title: Functional rafts in cell membranes
  publication-title: Nature
  doi: 10.1038/42408
– volume: 906
  start-page: 353
  year: 1987
  ident: 10.1016/j.bpj.2010.09.049_bib40
  article-title: Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4157(87)90017-7
– volume: 83
  start-page: 2039
  year: 2002
  ident: 10.1016/j.bpj.2010.09.049_bib26
  article-title: A thermodynamic model for extended complexes of cholesterol and phospholipid
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(02)73965-9
– volume: 62
  start-page: 69
  year: 1992
  ident: 10.1016/j.bpj.2010.09.049_bib31
  article-title: Methylation effects on the microdomain structures of phosphatidylethanolamine monolayers
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/0009-3084(92)90055-T
– volume: 1746
  start-page: 172
  year: 2005
  ident: 10.1016/j.bpj.2010.09.049_bib6
  article-title: Seeing spots: complex phase behavior in simple membranes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2005.06.010
– reference: 16920840 - Biophys J. 2006 Nov 15;91(10):3756-67
– reference: 15653729 - Biophys J. 2005 Apr;88(4):2661-9
– reference: 20044977 - Biochim Biophys Acta. 2010 May;1798(5):1008-13
– reference: 10049307 - Biophys J. 1999 Mar;76(3):1228-40
– reference: 18395514 - Biochim Biophys Acta. 2008 Jun;1778(6):1501-7
– reference: 15670728 - Biochim Biophys Acta. 2005 Feb 1;1668(1):25-32
– reference: 10076038 - Biochim Biophys Acta. 1999 Feb 4;1417(1):89-100
– reference: 16043244 - Biochim Biophys Acta. 2005 Dec 30;1746(3):172-85
– reference: 3307919 - Biochim Biophys Acta. 1987 Oct 5;906(3):353-404
– reference: 19098897 - Nature. 2009 Feb 26;457(7233):1159-62
– reference: 14507704 - Biophys J. 2003 Oct;85(4):2406-16
– reference: 3297153 - Biochim Biophys Acta. 1987 Jun 24;906(2):223-76
– reference: 10692323 - Biophys J. 2000 Mar;78(3):1376-89
– reference: 16625153 - Nat Rev Mol Cell Biol. 2006 Jun;7(6):456-62
– reference: 1423804 - Chem Phys Lipids. 1992 Jul;62(1):69-78
– reference: 18641061 - Biophys J. 2008 Oct;95(8):3861-71
– reference: 12324422 - Biophys J. 2002 Oct;83(4):2039-52
– reference: 9177342 - Nature. 1997 Jun 5;387(6633):569-72
– reference: 17114220 - Biophys J. 2007 Feb 15;92(4):1125-37
– reference: 2054907 - Chem Phys Lipids. 1991 Mar;57(2-3):241-52
– reference: 15792981 - Biophys J. 2005 Jun;88(6):4054-63
– reference: 17181184 - J Phys Chem B. 2006 Dec 28;110(51):25562-4
– reference: 17499576 - Biochim Biophys Acta. 2007 Jul;1768(7):1839-47
– reference: 10096908 - Biophys J. 1999 Apr;76(4):2142-57
– reference: 15315947 - Biophys J. 2004 Nov;87(5):2976-89
– reference: 17055448 - Biochim Biophys Acta. 2007 Feb;1768(2):336-45
– reference: 9666088 - Biochim Biophys Acta. 1998 Jun 29;1376(1):91-145
– reference: 16645198 - J Lipid Res. 2006 Jul;47(7):1597-8
– reference: 11806924 - Biophys J. 2002 Feb;82(2):823-34
– reference: 11432870 - J Biol Chem. 2001 Sep 7;276(36):33540-6
– reference: 19007747 - Biochim Biophys Acta. 2009 Jan;1788(1):12-23
– reference: 11371452 - Biophys J. 2001 Jun;80(6):2775-88
– reference: 18621818 - Biophys J. 2008 Oct;95(7):3295-305
– reference: 8049216 - Biochemistry. 1994 Aug 9;33(31):9135-42
– reference: 20044567 - Science. 2010 Jan 1;327(5961):46-50
– reference: 9929492 - Biophys J. 1999 Feb;76(2):908-15
– reference: 18216768 - Nat Rev Mol Cell Biol. 2008 Feb;9(2):112-24
– reference: 19044940 - J Chem Phys. 2008 Sep 14;129(10):105103
– reference: 2383637 - Biophys J. 1990 Jul;58(1):277-81
– reference: 3064805 - Biochemistry. 1988 Aug 23;27(17):6197-202
– reference: 15519309 - Biochim Biophys Acta. 2004 Nov 3;1666(1-2):62-87
– reference: 4052405 - Biochemistry. 1985 Jul 30;24(16):4400-8
SSID ssj0012501
Score 2.2860332
Snippet Sphingomyelins (SMs) and sterols are important constituents of the plasma membrane and have also been identified as major lipid components in membrane rafts....
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3300
SubjectTerms Affinity
Analogs
Anisotropy
Cholestenes - chemistry
Cholesterol
Cholesterol - metabolism
Diphenylhexatriene - chemistry
Fluorescence
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
Lipids
Membrane
Membrane Microdomains - metabolism
Membranes
Models, Biological
Molecular dynamics
Molecules
Order disorder
Phase Transition
Simulation
Sphingomyelins - chemistry
Sphingomyelins - metabolism
Sterols
Transition Temperature
Transition temperatures
Unilamellar Liposomes - chemistry
Water
Title Effect of Sphingomyelin Headgroup Size on Molecular Properties and Interactions with Cholesterol
URI https://dx.doi.org/10.1016/j.bpj.2010.09.049
https://www.ncbi.nlm.nih.gov/pubmed/21081078
https://www.proquest.com/docview/812454636
https://www.proquest.com/docview/808453757
https://www.proquest.com/docview/864416935
https://pubmed.ncbi.nlm.nih.gov/PMC2980746
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhEMilNP110xYdeiq40dr6PbZLwtKSkJAG9iYsWaIbUntJNofkafIsebLO2LLptmUPvfhgjYw10mhGo5lvCPkgdNSSGZ_XMbqcuwAi5Scmj0YEUXlWFxwThY9P5OyCf52L-RaZDrkwGFaZ9v5-T-926_TmIHHzYLlYYI4vqFeOFgLilhlM4iu57pL45l_GmwRQ8alqnsyRerjZ7GK83PIyRXeZTwzhNP-tm_62Pf8MofxNJx09JU-SMUk_9_-7R7ZC84zs9OUl756Tqocmpm2k50v0NLU_7zD9nM5gYrt0Dnq-uA-0bejxUCWXnqJ3_hphVmnV1I8Pncuwz364oei1pVMsqYv4Cu3VC3JxdPh9OstTSYXcg2WwyoEBLvraKDZxzggjRKjggOZD6Y3yMhRVxWrhKth6gmG8jjXDKI5Qa6kc97J8SbabtgmvCVVh4r0ueTHhEZQafhNUvYhRFb5kzmWEDcy0PuGNY9mLKzsEll1a4L9F_ltmLPA_Ix_HLssebGMTMR9myK6tGAvKYFO3_WE2bRLXG4tWDtYFkBmhYyvIGV6eVE1ob4GEaS5KJdQGErQtpSlFRl71q2McBRysNRy0dUbU2roZCRDle72lWfzo0L4Lg3hF8s3_DXef7HbxDhi4qN6S7dX1bXgHZtTKve_kBJ7fzvQv3yge3A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5Rqqq9VH03pQ8feqqU4k3sOD62K9DSsqgSIO3Nih1bLKLJCpYD_Bp-C7-MmbzUpdUeeo3HUTL2PDye-Qbgs8xDnnHt4jIEGwvrUaTcSMdBSy8Lx8tEUKHw9CCbHIsfMznbgHFfC0NplZ3ub3V6o627J9sdN7cX8znV-KJ5FeQhEG6Z1g_gIXoDiqRzb_Z9uEpAG9-1zctiIu-vNpskL7s47dK79FdOeJr_Nk5_O5_3cyj_MEq7z-Bp502yb-0HP4cNX72AR21_yauXULTYxKwO7HBBoab69xXVn7MJrmxTz8EO59ee1RWb9m1y2S8Kz58TziorqvL2pokZtuUPF4zCtmxMPXUJYKE-ewXHuztH40nc9VSIHboGyxgZYIMrteIja7XUUvoCT2jOp04rl_mkKHgpbYG6x2suylBySuPwZZ4pK1yWvobNqq78W2DKj5zLU5GMRECrRu9EWy9DUIlLubUR8J6ZxnWA49T34sz0mWWnBvlviP-Ga4P8j-DLMGXRom2sIxb9CpmVLWPQGqybttWvpunk9cKQm0ONAbII2DCKgka3J0Xl60sk4bmQqZJqDQk5l5lOZQRv2t0x_AWerHM8aecRqJV9MxAQzPfqSDU_aeC-E02ARdm7__vdT_B4cjTdN_t7Bz-34EmT_EBZjOo9bC7PL_0H9KmW9mMjM3eD-SEH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+sphingomyelin+headgroup+size+on+molecular+properties+and+interactions+with+cholesterol&rft.jtitle=Biophysical+journal&rft.au=Bj%C3%B6rkbom%2C+Anders&rft.au=R%C3%B3g%2C+Tomasz&rft.au=Kaszuba%2C+Karol&rft.au=Kurita%2C+Mayuko&rft.date=2010-11-17&rft.eissn=1542-0086&rft.volume=99&rft.issue=10&rft.spage=3300&rft_id=info:doi/10.1016%2Fj.bpj.2010.09.049&rft_id=info%3Apmid%2F21081078&rft.externalDocID=21081078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon