A pathogenic and clonally expanded B cell transcriptome in active multiple sclerosis
Central nervous system B cells have several potential roles in multiple sclerosis (MS): secretors of proinflammatory cytokines and chemokines, presenters of autoantigens to T cells, producers of pathogenic antibodies, and reservoirs for viruses that trigger demyelination. To interrogate these roles,...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 37; pp. 22932 - 22943 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
15.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Central nervous system B cells have several potential roles in multiple sclerosis (MS): secretors of proinflammatory cytokines and chemokines, presenters of autoantigens to T cells, producers of pathogenic antibodies, and reservoirs for viruses that trigger demyelination. To interrogate these roles, single-cell RNA sequencing (scRNA-Seq) was performed on paired cerebrospinal fluid (CSF) and blood from subjects with relapsing-remitting MS (RRMS; n = 12), other neurologic diseases (ONDs; n = 1), and healthy controls (HCs; n = 3). Single-cell immunoglobulin sequencing (scIg-Seq) was performed on a subset of these subjects and additional RRMS (n = 4), clinically isolated syndrome (n = 2), and OND (n = 2) subjects. Further, paired CSF and blood B cell subsets (RRMS; n = 7) were isolated using fluorescence activated cell sorting for bulk RNA sequencing (RNA-Seq). Independent analyses across technologies demonstrated that nuclear factor kappa B (NF-κB) and cholesterol biosynthesis pathways were activated, and specific cytokine and chemokine receptors were up-regulated in CSF memory B cells. Further, SMAD/TGF-β1 signaling was down-regulated in CSF plasmablasts/plasma cells. Clonally expanded, somatically hypermutated IgM+ and IgG1+ CSF B cells were associated with inflammation, blood–brain barrier breakdown, and intrathecal Ig synthesis. While we identified memory B cells and plasmablast/plasma cells with highly similar Ig heavy-chain sequences across MS subjects, similarities were also identified with ONDs and HCs. No viral transcripts, including from Epstein–Barr virus, were detected. Our findings support the hypothesis that in MS, CSF B cells are driven to an inflammatory and clonally expanded memory and plasmablast/plasma cell phenotype. |
---|---|
AbstractList | Central nervous system B cells have several potential roles in multiple sclerosis (MS): secretors of proinflammatory cytokines and chemokines, presenters of autoantigens to T cells, producers of pathogenic antibodies, and reservoirs for viruses that trigger demyelination. To interrogate these roles, single-cell RNA sequencing (scRNA-Seq) was performed on paired cerebrospinal fluid (CSF) and blood from subjects with relapsing-remitting MS (RRMS; n = 12), other neurologic diseases (ONDs; n = 1), and healthy controls (HCs; n = 3). Single-cell immunoglobulin sequencing (scIg-Seq) was performed on a subset of these subjects and additional RRMS (n = 4), clinically isolated syndrome (n = 2), and OND (n = 2) subjects. Further, paired CSF and blood B cell subsets (RRMS; n = 7) were isolated using fluorescence activated cell sorting for bulk RNA sequencing (RNA-Seq). Independent analyses across technologies demonstrated that nuclear factor kappa B (NF-κB) and cholesterol biosynthesis pathways were activated, and specific cytokine and chemokine receptors were up-regulated in CSF memory B cells. Further, SMAD/TGF-β1 signaling was down-regulated in CSF plasmablasts/plasma cells. Clonally expanded, somatically hypermutated IgM+ and IgG1+ CSF B cells were associated with inflammation, blood–brain barrier breakdown, and intrathecal Ig synthesis. While we identified memory B cells and plasmablast/plasma cells with highly similar Ig heavy-chain sequences across MS subjects, similarities were also identified with ONDs and HCs. No viral transcripts, including from Epstein–Barr virus, were detected. Our findings support the hypothesis that in MS, CSF B cells are driven to an inflammatory and clonally expanded memory and plasmablast/plasma cell phenotype. B cells serve as a key weapon against infectious diseases. They also contribute to multiple autoimmune diseases, including multiple sclerosis (MS) where depletion of B cells is a highly effective therapy. We describe a comprehensive profile of central nervous system (CNS)-specific transcriptional B cell phenotypes in MS at single-cell resolution with paired immune repertoires. We reveal a polyclonal immunoglobulin M (IgM) and IgG1 cerebrospinal fluid B cell expansion polarized toward an inflammatory, memory and plasmablast/plasma cell phenotype, with differential up-regulation of specific proinflammatory pathways. We did not find evidence that CNS B cells harbor a neurotropic virus. These data support the targeting of activated resident B cells in the CNS as a potentially effective strategy for control of treatment-resistant chronic disease. Central nervous system B cells have several potential roles in multiple sclerosis (MS): secretors of proinflammatory cytokines and chemokines, presenters of autoantigens to T cells, producers of pathogenic antibodies, and reservoirs for viruses that trigger demyelination. To interrogate these roles, single-cell RNA sequencing (scRNA-Seq) was performed on paired cerebrospinal fluid (CSF) and blood from subjects with relapsing-remitting MS (RRMS; n = 12), other neurologic diseases (ONDs; n = 1), and healthy controls (HCs; n = 3). Single-cell immunoglobulin sequencing (scIg-Seq) was performed on a subset of these subjects and additional RRMS ( n = 4), clinically isolated syndrome ( n = 2), and OND ( n = 2) subjects. Further, paired CSF and blood B cell subsets (RRMS; n = 7) were isolated using fluorescence activated cell sorting for bulk RNA sequencing (RNA-Seq). Independent analyses across technologies demonstrated that nuclear factor kappa B (NF-κB) and cholesterol biosynthesis pathways were activated, and specific cytokine and chemokine receptors were up-regulated in CSF memory B cells. Further, SMAD/TGF-β1 signaling was down-regulated in CSF plasmablasts/plasma cells. Clonally expanded, somatically hypermutated IgM+ and IgG1+ CSF B cells were associated with inflammation, blood–brain barrier breakdown, and intrathecal Ig synthesis. While we identified memory B cells and plasmablast/plasma cells with highly similar Ig heavy-chain sequences across MS subjects, similarities were also identified with ONDs and HCs. No viral transcripts, including from Epstein–Barr virus, were detected. Our findings support the hypothesis that in MS, CSF B cells are driven to an inflammatory and clonally expanded memory and plasmablast/plasma cell phenotype. Central nervous system B cells have several potential roles in multiple sclerosis (MS): secretors of proinflammatory cytokines and chemokines, presenters of autoantigens to T cells, producers of pathogenic antibodies, and reservoirs for viruses that trigger demyelination. To interrogate these roles, single-cell RNA sequencing (scRNA-Seq) was performed on paired cerebrospinal fluid (CSF) and blood from subjects with relapsing-remitting MS (RRMS; n = 12), other neurologic diseases (ONDs; n = 1), and healthy controls (HCs; n = 3). Single-cell immunoglobulin sequencing (scIg-Seq) was performed on a subset of these subjects and additional RRMS (n = 4), clinically isolated syndrome (n = 2), and OND (n = 2) subjects. Further, paired CSF and blood B cell subsets (RRMS; n = 7) were isolated using fluorescence activated cell sorting for bulk RNA sequencing (RNA-Seq). Independent analyses across technologies demonstrated that nuclear factor kappa B (NF-κB) and cholesterol biosynthesis pathways were activated, and specific cytokine and chemokine receptors were up-regulated in CSF memory B cells. Further, SMAD/TGF-β1 signaling was down-regulated in CSF plasmablasts/plasma cells. Clonally expanded, somatically hypermutated IgM+ and IgG1+ CSF B cells were associated with inflammation, blood-brain barrier breakdown, and intrathecal Ig synthesis. While we identified memory B cells and plasmablast/plasma cells with highly similar Ig heavy-chain sequences across MS subjects, similarities were also identified with ONDs and HCs. No viral transcripts, including from Epstein-Barr virus, were detected. Our findings support the hypothesis that in MS, CSF B cells are driven to an inflammatory and clonally expanded memory and plasmablast/plasma cell phenotype.Central nervous system B cells have several potential roles in multiple sclerosis (MS): secretors of proinflammatory cytokines and chemokines, presenters of autoantigens to T cells, producers of pathogenic antibodies, and reservoirs for viruses that trigger demyelination. To interrogate these roles, single-cell RNA sequencing (scRNA-Seq) was performed on paired cerebrospinal fluid (CSF) and blood from subjects with relapsing-remitting MS (RRMS; n = 12), other neurologic diseases (ONDs; n = 1), and healthy controls (HCs; n = 3). Single-cell immunoglobulin sequencing (scIg-Seq) was performed on a subset of these subjects and additional RRMS (n = 4), clinically isolated syndrome (n = 2), and OND (n = 2) subjects. Further, paired CSF and blood B cell subsets (RRMS; n = 7) were isolated using fluorescence activated cell sorting for bulk RNA sequencing (RNA-Seq). Independent analyses across technologies demonstrated that nuclear factor kappa B (NF-κB) and cholesterol biosynthesis pathways were activated, and specific cytokine and chemokine receptors were up-regulated in CSF memory B cells. Further, SMAD/TGF-β1 signaling was down-regulated in CSF plasmablasts/plasma cells. Clonally expanded, somatically hypermutated IgM+ and IgG1+ CSF B cells were associated with inflammation, blood-brain barrier breakdown, and intrathecal Ig synthesis. While we identified memory B cells and plasmablast/plasma cells with highly similar Ig heavy-chain sequences across MS subjects, similarities were also identified with ONDs and HCs. No viral transcripts, including from Epstein-Barr virus, were detected. Our findings support the hypothesis that in MS, CSF B cells are driven to an inflammatory and clonally expanded memory and plasmablast/plasma cell phenotype. Central nervous system B cells have several potential roles in multiple sclerosis (MS): secretors of proinflammatory cytokines and chemokines, presenters of autoantigens to T cells, producers of pathogenic antibodies, and reservoirs for viruses that trigger demyelination. To interrogate these roles, single-cell RNA sequencing (scRNA-Seq) was performed on paired cerebrospinal fluid (CSF) and blood from subjects with relapsing-remitting MS (RRMS; = 12), other neurologic diseases (ONDs; = 1), and healthy controls (HCs; = 3). Single-cell immunoglobulin sequencing (scIg-Seq) was performed on a subset of these subjects and additional RRMS ( = 4), clinically isolated syndrome ( = 2), and OND ( = 2) subjects. Further, paired CSF and blood B cell subsets (RRMS; = 7) were isolated using fluorescence activated cell sorting for bulk RNA sequencing (RNA-Seq). Independent analyses across technologies demonstrated that nuclear factor kappa B (NF-κB) and cholesterol biosynthesis pathways were activated, and specific cytokine and chemokine receptors were up-regulated in CSF memory B cells. Further, SMAD/TGF-β1 signaling was down-regulated in CSF plasmablasts/plasma cells. Clonally expanded, somatically hypermutated IgM+ and IgG1+ CSF B cells were associated with inflammation, blood-brain barrier breakdown, and intrathecal Ig synthesis. While we identified memory B cells and plasmablast/plasma cells with highly similar Ig heavy-chain sequences across MS subjects, similarities were also identified with ONDs and HCs. No viral transcripts, including from Epstein-Barr virus, were detected. Our findings support the hypothesis that in MS, CSF B cells are driven to an inflammatory and clonally expanded memory and plasmablast/plasma cell phenotype. |
Author | Bove, Riley M. Banerji, Debarko Hauser, Stephen L. Greenfield, Ariele L. Koelzer, Matthew T. Schubert, Ryan D. Dandekar, Ravi Ramesh, Akshaya Tran, Edwina B. Green, Ari J. Loudermilk, Rita Pröbstel, Anne-Katrin Koshal, Kanishka Sabatino, Joseph J. Guo, Chu-Yueh Zamvil, Scott S. Kim, Kicheol Cree, Bruce A. C. Gelfand, Jeffrey M. DeRisi, Joseph L. Baranzini, Sergio E. Wilson, Michael R. |
Author_xml | – sequence: 1 givenname: Akshaya surname: Ramesh fullname: Ramesh, Akshaya – sequence: 2 givenname: Ryan D. surname: Schubert fullname: Schubert, Ryan D. – sequence: 3 givenname: Ariele L. surname: Greenfield fullname: Greenfield, Ariele L. – sequence: 4 givenname: Ravi surname: Dandekar fullname: Dandekar, Ravi – sequence: 5 givenname: Rita surname: Loudermilk fullname: Loudermilk, Rita – sequence: 6 givenname: Joseph J. surname: Sabatino fullname: Sabatino, Joseph J. – sequence: 7 givenname: Matthew T. surname: Koelzer fullname: Koelzer, Matthew T. – sequence: 8 givenname: Edwina B. surname: Tran fullname: Tran, Edwina B. – sequence: 9 givenname: Kanishka surname: Koshal fullname: Koshal, Kanishka – sequence: 10 givenname: Kicheol surname: Kim fullname: Kim, Kicheol – sequence: 11 givenname: Anne-Katrin surname: Pröbstel fullname: Pröbstel, Anne-Katrin – sequence: 12 givenname: Debarko surname: Banerji fullname: Banerji, Debarko – sequence: 14 givenname: Chu-Yueh surname: Guo fullname: Guo, Chu-Yueh – sequence: 15 givenname: Ari J. surname: Green fullname: Green, Ari J. – sequence: 16 givenname: Riley M. surname: Bove fullname: Bove, Riley M. – sequence: 17 givenname: Joseph L. surname: DeRisi fullname: DeRisi, Joseph L. – sequence: 18 givenname: Jeffrey M. surname: Gelfand fullname: Gelfand, Jeffrey M. – sequence: 19 givenname: Bruce A. C. surname: Cree fullname: Cree, Bruce A. C. – sequence: 20 givenname: Scott S. surname: Zamvil fullname: Zamvil, Scott S. – sequence: 21 givenname: Sergio E. surname: Baranzini fullname: Baranzini, Sergio E. – sequence: 22 givenname: Stephen L. surname: Hauser fullname: Hauser, Stephen L. – sequence: 23 givenname: Michael R. surname: Wilson fullname: Wilson, Michael R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32859762$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFPHSEUhUljU5-2667akHTjZvTCwDCzaWJNrU1M3Ng1QeY-5YWB6cAY_fdl8vS1deGKEL5zOPfcA7IXYkBCPjI4ZqDqkzGYdMwBWslrxtQbsmLQsaoRHeyRFQBXVSu42CcHKW0AoJMtvCP7NW9lpxq-ItendDT5Lt5icJaa0FPrYzDeP1J8GMsde_qNWvSe5smEZCc35jggdYEam9090mH22Y0eabIep5hcek_ero1P-OHpPCS_zr9fn11Ul1c_fp6dXlZWQpcrwQwXFiQqw-rGtgbQ9EyseduL_kahrZkURjbcdK2SEqEMyhgqq4TsQfT1Ifm69R3nmwF7i6Fk9Hqc3GCmRx2N0_-_BHenb-O9VrI0I1QxOHoymOLvGVPWg0vLsCZgnJPmom4b1SrRFfTLC3QT56k0tVDFCjhXUKjP_ybaRXkuvAAnW8CWptKE6x3CQC8r1ctK9d-VFoV8obAum-ziMpLzr-g-bXWblOO0-4Y3XdNxXtd_AOZcr4Y |
CitedBy_id | crossref_primary_10_1007_s11055_023_01368_x crossref_primary_10_1038_s41581_023_00732_x crossref_primary_10_3389_fneur_2023_1158487 crossref_primary_10_1093_nargab_lqac049 crossref_primary_10_1111_imcb_12552 crossref_primary_10_3389_fncel_2021_716947 crossref_primary_10_2139_ssrn_3934614 crossref_primary_10_1038_s41467_024_48195_3 crossref_primary_10_1073_pnas_2111920118 crossref_primary_10_3389_fimmu_2021_662807 crossref_primary_10_3389_fimmu_2022_869447 crossref_primary_10_1007_s10753_024_02195_z crossref_primary_10_1007_s00401_023_02537_5 crossref_primary_10_1016_j_xcrm_2024_101733 crossref_primary_10_1016_S1474_4422_22_00040_0 crossref_primary_10_1093_brain_awad321 crossref_primary_10_1016_j_xcrm_2025_102027 crossref_primary_10_1016_j_msard_2024_105898 crossref_primary_10_1016_j_xcrm_2023_101351 crossref_primary_10_1093_braincomms_fcac171 crossref_primary_10_3389_fimmu_2024_1494842 crossref_primary_10_1002_cti2_1418 crossref_primary_10_1126_sciimmunol_abk0391 crossref_primary_10_1016_j_clim_2024_110398 crossref_primary_10_1212_NXI_0000000000200033 crossref_primary_10_1016_j_bbi_2024_10_007 crossref_primary_10_1073_pnas_2315857121 crossref_primary_10_1126_scitranslmed_adh8846 crossref_primary_10_1093_brain_awae006 crossref_primary_10_1080_08923973_2024_2330642 crossref_primary_10_1016_j_jaut_2022_102957 crossref_primary_10_1016_j_retram_2024_103439 crossref_primary_10_1186_s13073_022_01097_9 crossref_primary_10_1371_journal_ppat_1009618 crossref_primary_10_1007_s11033_024_09575_6 crossref_primary_10_3389_fneur_2021_796378 crossref_primary_10_1016_j_immuni_2020_12_011 crossref_primary_10_1212_NXI_0000000000200322 crossref_primary_10_1007_s12016_020_08813_6 crossref_primary_10_1007_s00401_023_02552_6 crossref_primary_10_1016_j_msard_2022_104143 crossref_primary_10_3389_fneur_2020_607766 crossref_primary_10_3390_diagnostics11101871 crossref_primary_10_1096_fj_202300694R crossref_primary_10_1186_s12974_024_03016_8 crossref_primary_10_1097_MS9_0000000000001177 crossref_primary_10_3389_fimmu_2022_1001145 crossref_primary_10_1016_j_isci_2021_103247 crossref_primary_10_1016_j_patter_2022_100513 crossref_primary_10_1186_s12967_021_02804_7 crossref_primary_10_3390_ijms24087407 crossref_primary_10_1002_ana_27034 crossref_primary_10_1172_jci_insight_160267 crossref_primary_10_1172_JCI177793 crossref_primary_10_3390_brainsci12070812 crossref_primary_10_3390_microorganisms9112191 crossref_primary_10_1007_s00281_021_00907_3 crossref_primary_10_1039_D3LC00749A crossref_primary_10_1016_j_jneuroim_2022_577860 crossref_primary_10_1038_s41582_023_00775_5 crossref_primary_10_1111_jcmm_18396 crossref_primary_10_1186_s12974_022_02667_9 crossref_primary_10_1038_s41591_024_02938_3 crossref_primary_10_1002_eji_202149216 crossref_primary_10_1002_eji_202149576 crossref_primary_10_3389_fimmu_2022_979060 crossref_primary_10_3389_fimmu_2023_1111366 crossref_primary_10_3389_fneur_2021_807646 crossref_primary_10_3389_fimmu_2021_665718 crossref_primary_10_1126_sciimmunol_abc7191 crossref_primary_10_3390_cells11192950 crossref_primary_10_1016_j_xgen_2023_100473 crossref_primary_10_3390_biom13081204 crossref_primary_10_3390_ijms24021448 crossref_primary_10_1080_08830185_2021_1964498 crossref_primary_10_1007_s12013_023_01207_3 crossref_primary_10_1212_NXI_0000000000200226 crossref_primary_10_3389_fimmu_2021_676686 crossref_primary_10_3390_ijms23115877 crossref_primary_10_1126_sciadv_adn2831 crossref_primary_10_1016_j_biopha_2024_116371 crossref_primary_10_1002_ana_26913 crossref_primary_10_17116_jnevro202212205157 crossref_primary_10_1038_s41582_021_00498_5 crossref_primary_10_1126_sciimmunol_adl3604 crossref_primary_10_1016_j_crmeth_2023_100533 crossref_primary_10_1038_s41598_023_32427_5 crossref_primary_10_1007_s11904_021_00586_7 crossref_primary_10_1038_s41586_022_04432_7 crossref_primary_10_1128_mmbr_00119_23 crossref_primary_10_1007_s40291_021_00513_x crossref_primary_10_1016_j_lpm_2021_104072 crossref_primary_10_3390_biom12060800 crossref_primary_10_1073_pnas_2311049121 crossref_primary_10_1186_s13059_022_02677_z crossref_primary_10_1016_j_tig_2023_10_003 crossref_primary_10_1038_s41586_022_05371_z crossref_primary_10_3389_fnins_2024_1467562 crossref_primary_10_1002_eji_202250033 crossref_primary_10_1038_s41576_023_00613_w crossref_primary_10_1111_pcn_13627 crossref_primary_10_3389_fimmu_2022_872832 crossref_primary_10_1128_CMR_00143_20 crossref_primary_10_1038_s42003_023_04713_5 crossref_primary_10_3390_ijms232012142 crossref_primary_10_1001_jamaneurol_2024_4763 crossref_primary_10_3389_fimmu_2023_1103690 crossref_primary_10_1007_s12035_023_03305_y crossref_primary_10_3390_ijms22052428 crossref_primary_10_1016_j_coi_2022_102180 crossref_primary_10_1016_j_celrep_2022_111286 crossref_primary_10_3389_fimmu_2022_755900 crossref_primary_10_3389_fneur_2020_591894 crossref_primary_10_3389_fnmol_2023_1143498 crossref_primary_10_1016_j_conb_2022_102643 crossref_primary_10_1126_scitranslmed_adc9778 crossref_primary_10_3389_fimmu_2023_1004795 crossref_primary_10_3389_fmed_2023_1183535 crossref_primary_10_1016_j_jim_2022_113344 crossref_primary_10_1212_NXI_0000000000200134 crossref_primary_10_1093_nar_gkae480 crossref_primary_10_1038_s41577_021_00652_6 |
Cites_doi | 10.1093/nar/gkv1160 10.3389/fimmu.2018.01687 10.1080/03007995.2018.1433141 10.1016/0165-5728(95)00126-3 10.1002/ana.24747 10.1186/s13059-019-1874-1 10.1016/j.cyto.2017.01.005 10.1172/jci.insight.121718 10.1084/jem.20071030 10.1038/s41467-018-05083-x 10.1016/j.cels.2016.10.021 10.1016/S0140-6736(11)61649-8 10.1212/WNL.0b013e3181d865a1 10.1002/ana.25463 10.1093/bioinformatics/bts635 10.1002/ana.24982 10.1093/brain/awp200 10.1093/bioinformatics/btv359 10.4049/jimmunol.152.12.6003 10.1101/cshperspect.a001651 10.1016/j.nbd.2010.12.003 10.1093/gigascience/giaa111 10.1016/S1474-4422(11)70144-2 10.1093/brain/awu205 10.1016/j.pharmthera.2017.02.043 10.1084/jem.20121611 10.1084/jem.188.9.1679 10.1534/g3.113.005967 10.1002/ana.21117 10.1056/NEJMoa0706383 10.1089/omi.2011.0118 10.1126/scitranslmed.3008930 10.1371/journal.pone.0086643 10.1093/database/baw087 10.1177/1352458513500553 10.1177/1352458515611222 10.1038/nmeth.4380 10.1016/S0140-6736(13)62242-4 10.1073/pnas.082114899 10.1212/WNL.28.10.996 10.1038/nri1839 10.1128/mBio.02877-19 10.1016/S1474-4422(17)30470-2 10.1038/srep31603 10.1093/bioinformatics/btu138 10.1093/hmg/ddt267 10.1038/s41590-018-0276-y 10.1182/blood-2004-01-0346 10.1038/s41586-019-0934-8 10.1093/brain/awq223 10.1126/scitranslmed.aaa9223 10.1212/NXI.0000000000000732 10.1073/pnas.0805065105 10.1126/scitranslmed.3004186 10.1038/gene.2016.23 10.1002/ana.25119 10.1002/ana.25508 10.1002/ana.24499 10.1172/jci.insight.92724 10.1002/ana.21978 10.1038/nbt.4314 10.1016/j.clim.2009.05.020 10.1093/brain/awr197 10.1002/cyto.b.20542 10.1038/nmeth.3364 10.4049/jimmunol.165.11.6576 10.1038/s41467-017-02554-5 10.1186/s13059-014-0550-8 10.1007/s00415-012-6513-7 10.1038/nm1714 10.1016/j.smim.2007.12.006 10.1126/scitranslmed.3008879 10.1101/gad.13.16.2059 10.4049/jimmunol.1600624 10.1212/WNL.0b013e31824f7fdd 10.1212/NXI.0000000000000679 10.1056/NEJMoa1606468 10.2217/imt.10.111 10.1056/NEJMoa1601277 10.1016/j.cels.2019.03.003 10.1186/1742-2094-8-2 10.1016/j.cyto.2015.01.005 10.1111/j.1600-0404.1990.tb01578.x 10.1038/nature01158 10.1093/bioinformatics/btt703 10.1038/s41467-019-14118-w 10.1001/jamaneurol.2018.0463 10.1093/bioinformatics/btp352 10.1371/journal.pone.0218318 |
ContentType | Journal Article |
Copyright | Copyright © 2020 the Author(s). Published by PNAS. Copyright National Academy of Sciences Sep 15, 2020 Copyright © 2020 the Author(s). Published by PNAS. 2020 |
Copyright_xml | – notice: Copyright © 2020 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Sep 15, 2020 – notice: Copyright © 2020 the Author(s). Published by PNAS. 2020 |
CorporateAuthor | University of California, San Francisco MS-EPIC Team |
CorporateAuthor_xml | – name: University of California, San Francisco MS-EPIC Team |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2008523117 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 22943 |
ExternalDocumentID | PMC7502747 32859762 10_1073_pnas_2008523117 26969223 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R35 NS111644 – fundername: NIAID NIH HHS grantid: R01 AI131624 – fundername: NIAID NIH HHS grantid: R21 AI142186 – fundername: NINDS NIH HHS grantid: R01 NS092835 – fundername: NINDS NIH HHS grantid: K08 NS107619 – fundername: National Multiple Sclerosis Society (National MS Society) grantid: FAN-1507-05479 – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: R21AI142186 – fundername: National Multiple Sclerosis Society (National MS Society) grantid: FG-1708-28871 – fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS) grantid: R01NS092835 – fundername: National Multiple Sclerosis Society (National MS Society) grantid: TA-1903-33713 – fundername: National Multiple Sclerosis Society (National MS Society) grantid: FAN-1608-25607 – fundername: Race to Erase MS grantid: Young Investigator Award – fundername: Swiss National Science Foundation grantid: P2SKP3_164938/1 – fundername: Swiss National Science Foundation grantid: P300PB_177927/1 – fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS) grantid: K08NS107619 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-41a24c05e7a136c8a0ead14f28d4db7ec3154a562a98755e020011e7c745d04d3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:05:42 EDT 2025 Thu Jul 10 23:07:03 EDT 2025 Mon Jun 30 08:18:38 EDT 2025 Thu Apr 03 07:08:29 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 Tue Jul 01 03:40:30 EDT 2025 Thu May 29 09:15:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Keywords | B cell immune repertoire neuroimmunology multiple sclerosis |
Language | English |
License | Copyright © 2020 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-41a24c05e7a136c8a0ead14f28d4db7ec3154a562a98755e020011e7c745d04d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 1A.R. and R.D.S. contributed equally to this work. 2A.L.G. and R.D. contributed equally to this work. Edited by Lawrence Steinman, Stanford University School of Medicine, Stanford, CA, and approved August 3, 2020 (received for review May 6, 2020) Author contributions: A.R., R.D.S., A.L.G., S.L.H., and M.R.W. designed research; A.R., R.D.S., A.L.G., R.L., J.J.S., M.T.K., E.B.T., K. Koshal, K. Kim, A.-K.P., D.B., U.o.C.S.F.M.E.T., C.-Y.G., A.J.G., R.M.B., J.M.G., and B.A.C.C. performed research; R.D. contributed new reagents/analytic tools; A.R., R.D.S., A.L.G., R.D., R.L., J.J.S., M.T.K., A.-K.P., J.L.D., B.A.C.C., S.S.Z., S.E.B., S.L.H., and M.R.W. analyzed data; and A.R., R.D.S., S.L.H., and M.R.W. wrote the paper. |
ORCID | 0000-0001-9970-5112 0000-0003-2720-9915 0000-0002-8705-5084 0000-0002-3132-5831 0000-0003-0067-194X 0000-0002-2034-8800 0000-0002-4932-4001 0000-0002-6804-7441 0000-0002-0612-0738 0000-0003-3667-9900 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7502747 |
PMID | 32859762 |
PQID | 2447302270 |
PQPubID | 42026 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7502747 proquest_miscellaneous_2438678749 proquest_journals_2447302270 pubmed_primary_32859762 crossref_primary_10_1073_pnas_2008523117 crossref_citationtrail_10_1073_pnas_2008523117 jstor_primary_26969223 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-15 |
PublicationDateYYYYMMDD | 2020-09-15 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 Greenfield A. L. (e_1_3_4_31_2) 2019; 4 e_1_3_4_61_2 e_1_3_4_82_2 e_1_3_4_63_2 e_1_3_4_84_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_86_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_88_2 e_1_3_4_29_2 e_1_3_4_72_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_91_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_62_2 e_1_3_4_85_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 Mokhtarian F. (e_1_3_4_74_2) 1994; 152 e_1_3_4_81_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_87_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_89_2 e_1_3_4_28_2 Mostafavi S. (e_1_3_4_9_2) 2006; 2006 e_1_3_4_71_2 e_1_3_4_73_2 e_1_3_4_52_2 e_1_3_4_90_2 e_1_3_4_50_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_75_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_77_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 Levin L. I. (e_1_3_4_83_2) 2010; 67 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_24_2 doi: 10.1093/nar/gkv1160 – ident: e_1_3_4_28_2 doi: 10.3389/fimmu.2018.01687 – ident: e_1_3_4_1_2 doi: 10.1080/03007995.2018.1433141 – ident: e_1_3_4_53_2 doi: 10.1016/0165-5728(95)00126-3 – ident: e_1_3_4_14_2 doi: 10.1002/ana.24747 – ident: e_1_3_4_19_2 doi: 10.1186/s13059-019-1874-1 – ident: e_1_3_4_60_2 doi: 10.1016/j.cyto.2017.01.005 – ident: e_1_3_4_46_2 doi: 10.1172/jci.insight.121718 – ident: e_1_3_4_85_2 doi: 10.1084/jem.20071030 – ident: e_1_3_4_18_2 doi: 10.1038/s41467-018-05083-x – ident: e_1_3_4_23_2 doi: 10.1016/j.cels.2016.10.021 – ident: e_1_3_4_2_2 doi: 10.1016/S0140-6736(11)61649-8 – ident: e_1_3_4_88_2 doi: 10.1212/WNL.0b013e3181d865a1 – ident: e_1_3_4_15_2 doi: 10.1002/ana.25463 – ident: e_1_3_4_37_2 doi: 10.1093/bioinformatics/bts635 – ident: e_1_3_4_89_2 doi: 10.1002/ana.24982 – ident: e_1_3_4_87_2 doi: 10.1093/brain/awp200 – ident: e_1_3_4_30_2 doi: 10.1093/bioinformatics/btv359 – volume: 152 start-page: 6003 year: 1994 ident: e_1_3_4_74_2 article-title: Defective production of anti-inflammatory cytokine, TGF-beta by T cell lines of patients with active multiple sclerosis publication-title: J. Immunol. doi: 10.4049/jimmunol.152.12.6003 – ident: e_1_3_4_58_2 doi: 10.1101/cshperspect.a001651 – ident: e_1_3_4_11_2 doi: 10.1016/j.nbd.2010.12.003 – ident: e_1_3_4_43_2 doi: 10.1093/gigascience/giaa111 – ident: e_1_3_4_66_2 doi: 10.1016/S1474-4422(11)70144-2 – ident: e_1_3_4_50_2 doi: 10.1093/brain/awu205 – ident: e_1_3_4_59_2 doi: 10.1016/j.pharmthera.2017.02.043 – ident: e_1_3_4_77_2 doi: 10.1084/jem.20121611 – ident: e_1_3_4_33_2 doi: 10.1084/jem.188.9.1679 – ident: e_1_3_4_35_2 doi: 10.1534/g3.113.005967 – ident: e_1_3_4_82_2 doi: 10.1002/ana.21117 – ident: e_1_3_4_3_2 doi: 10.1056/NEJMoa0706383 – ident: e_1_3_4_27_2 doi: 10.1089/omi.2011.0118 – ident: e_1_3_4_41_2 doi: 10.1126/scitranslmed.3008930 – ident: e_1_3_4_12_2 doi: 10.1371/journal.pone.0086643 – ident: e_1_3_4_36_2 doi: 10.1093/database/baw087 – ident: e_1_3_4_10_2 doi: 10.1177/1352458513500553 – ident: e_1_3_4_65_2 doi: 10.1177/1352458515611222 – ident: e_1_3_4_91_2 doi: 10.1038/nmeth.4380 – ident: e_1_3_4_68_2 doi: 10.1016/S0140-6736(13)62242-4 – ident: e_1_3_4_71_2 doi: 10.1073/pnas.082114899 – ident: e_1_3_4_48_2 doi: 10.1212/WNL.28.10.996 – ident: e_1_3_4_63_2 doi: 10.1038/nri1839 – ident: e_1_3_4_44_2 doi: 10.1128/mBio.02877-19 – ident: e_1_3_4_16_2 doi: 10.1016/S1474-4422(17)30470-2 – ident: e_1_3_4_75_2 doi: 10.1038/srep31603 – ident: e_1_3_4_29_2 doi: 10.1093/bioinformatics/btu138 – ident: e_1_3_4_6_2 doi: 10.1093/hmg/ddt267 – ident: e_1_3_4_22_2 doi: 10.1038/s41590-018-0276-y – ident: e_1_3_4_51_2 doi: 10.1182/blood-2004-01-0346 – ident: e_1_3_4_79_2 doi: 10.1038/s41586-019-0934-8 – ident: e_1_3_4_84_2 doi: 10.1093/brain/awq223 – ident: e_1_3_4_57_2 doi: 10.1126/scitranslmed.aaa9223 – ident: e_1_3_4_47_2 doi: 10.1212/NXI.0000000000000732 – ident: e_1_3_4_76_2 doi: 10.1073/pnas.0805065105 – ident: e_1_3_4_7_2 doi: 10.1126/scitranslmed.3004186 – ident: e_1_3_4_56_2 doi: 10.1038/gene.2016.23 – ident: e_1_3_4_52_2 doi: 10.1002/ana.25119 – ident: e_1_3_4_73_2 doi: 10.1002/ana.25508 – ident: e_1_3_4_90_2 doi: 10.1002/ana.24499 – ident: e_1_3_4_17_2 doi: 10.1172/jci.insight.92724 – volume: 67 start-page: 824 year: 2010 ident: e_1_3_4_83_2 article-title: Primary infection with the Epstein-Barr virus and risk of multiple sclerosis publication-title: Ann. Neurol. doi: 10.1002/ana.21978 – ident: e_1_3_4_20_2 doi: 10.1038/nbt.4314 – ident: e_1_3_4_32_2 doi: 10.1016/j.clim.2009.05.020 – ident: e_1_3_4_86_2 doi: 10.1093/brain/awr197 – ident: e_1_3_4_54_2 doi: 10.1002/cyto.b.20542 – ident: e_1_3_4_40_2 doi: 10.1038/nmeth.3364 – ident: e_1_3_4_8_2 doi: 10.4049/jimmunol.165.11.6576 – ident: e_1_3_4_25_2 doi: 10.1038/s41467-017-02554-5 – ident: e_1_3_4_39_2 doi: 10.1186/s13059-014-0550-8 – ident: e_1_3_4_64_2 doi: 10.1007/s00415-012-6513-7 – ident: e_1_3_4_80_2 doi: 10.1038/nm1714 – ident: e_1_3_4_34_2 doi: 10.1016/j.smim.2007.12.006 – ident: e_1_3_4_78_2 doi: 10.1126/scitranslmed.3008879 – ident: e_1_3_4_61_2 doi: 10.1101/gad.13.16.2059 – volume: 4 start-page: 126599 year: 2019 ident: e_1_3_4_31_2 article-title: Longitudinally persistent cerebrospinal fluid B cells can resist treatment in multiple sclerosis publication-title: JCI Insight – ident: e_1_3_4_70_2 doi: 10.4049/jimmunol.1600624 – ident: e_1_3_4_67_2 doi: 10.1212/WNL.0b013e31824f7fdd – ident: e_1_3_4_81_2 doi: 10.1212/NXI.0000000000000679 – ident: e_1_3_4_5_2 doi: 10.1056/NEJMoa1606468 – ident: e_1_3_4_72_2 doi: 10.2217/imt.10.111 – ident: e_1_3_4_4_2 doi: 10.1056/NEJMoa1601277 – ident: e_1_3_4_21_2 doi: 10.1016/j.cels.2019.03.003 – ident: e_1_3_4_55_2 doi: 10.1186/1742-2094-8-2 – ident: e_1_3_4_69_2 doi: 10.1016/j.cyto.2015.01.005 – volume: 2006 start-page: 5519 year: 2006 ident: e_1_3_4_9_2 article-title: Predictive modeling of therapy response in multiple sclerosis using gene expression data publication-title: IEEE – ident: e_1_3_4_49_2 doi: 10.1111/j.1600-0404.1990.tb01578.x – ident: e_1_3_4_62_2 doi: 10.1038/nature01158 – ident: e_1_3_4_26_2 doi: 10.1093/bioinformatics/btt703 – ident: e_1_3_4_13_2 doi: 10.1038/s41467-019-14118-w – ident: e_1_3_4_45_2 doi: 10.1001/jamaneurol.2018.0463 – ident: e_1_3_4_38_2 doi: 10.1093/bioinformatics/btp352 – ident: e_1_3_4_42_2 doi: 10.1371/journal.pone.0218318 |
SSID | ssj0009580 |
Score | 2.626579 |
Snippet | Central nervous system B cells have several potential roles in multiple sclerosis (MS): secretors of proinflammatory cytokines and chemokines, presenters of... B cells serve as a key weapon against infectious diseases. They also contribute to multiple autoimmune diseases, including multiple sclerosis (MS) where... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 22932 |
SubjectTerms | Adult Antibodies Autoantigens Autoimmune diseases B-Lymphocytes - immunology B-Lymphocytes - metabolism Biological Sciences Biosynthesis Blood-brain barrier Central nervous system Central Nervous System - immunology Cerebrospinal fluid Chemokine receptors Chemokines - metabolism Cholesterol Cytokines Cytokines - metabolism Demyelination Epstein-Barr virus Female Flow Cytometry Fluorescence Gene expression Gene sequencing Humans Immunoglobulin G Immunoglobulin G - metabolism Immunoglobulin Heavy Chains - metabolism Immunoglobulin M Immunological memory Inflammation Inflammation - pathology Lymphocytes Lymphocytes B Lymphocytes T Male Memory cells Middle Aged Multiple sclerosis Multiple Sclerosis - genetics Multiple Sclerosis - immunology Multiple Sclerosis - pathology Neurological diseases NF-κB protein Phenotypes Plasma cells Ribonucleic acid RNA Smad protein Transcriptome Transforming growth factor-b1 Viruses |
Title | A pathogenic and clonally expanded B cell transcriptome in active multiple sclerosis |
URI | https://www.jstor.org/stable/26969223 https://www.ncbi.nlm.nih.gov/pubmed/32859762 https://www.proquest.com/docview/2447302270 https://www.proquest.com/docview/2438678749 https://pubmed.ncbi.nlm.nih.gov/PMC7502747 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWAQGMhIPAxVGfnhxMljBpsmNMo0WqlvkWOnarWSorVFKn8Ofyl3seOkU5mAl6hKHMvxXc_fne6-I-RtkUqJx4g7KQrhspBHbhFw343KUKgoltwTGO_4PIjPR-zTOBr3er86WUvrVXEsf-6sK_kfqcI9kCtWyf6DZO2kcAN-g3zhChKG61_JOENa1OkCnhvWVTlHYD3fIHE_RodV_6SPoXnsBFFpA7H4VtOEiNrOtfmES5gaDszZsotWL-3ptmxyCQZN8DBrS1GMfVj23f7loG1sfIUJuHXUJrteTsXGHgBf5XRdmFqhqw0YGJt1XGcB2a7Z2Q1Wv_dtePojftK1yQgXP2bdiAW4p9hxIWoTOu5YaNdUB3B8Ml1gfVxq6wzgxo2Z7i9qzbeu_TR6qhlkGmsMShjsPCfAsGFz40rUjO0JeOPNNFuM3IMv-dno4iIfno6H98j9AFyRoDb-XWLnRJc5meU29FE8fH9r-i3ko5Nfd7k1t7NzO3Bn-Ig8NH4KzbTS7ZNeWT0m-80G0iNDV_7uCRlmtNVCCiKijRbSRgvpCUUtpFtaSGcV1VpIGy2kVgufktHZ6fDDuWt6dbgSIOfKZb4ImPSikgs_jGUiPDBRPpsEiWLI4C1DwOoCwLZIwUOOSg9z-fySS84i5TEVHpC9alGVzwn1VKx46kcKnAfGeFIUiUxUEcWhUskkVg45bvYxl4bIHvupzPM6oYKHOW583m68Q47sC981h8ufhx7UgrHjgjiNU4DQDjlsJJUbCwDvwfJC5OD0HPLGPgb7jHsqqnKxxjFhAoCQs9Qhz7Rg7eQhskcCGnEI3xK5HYDc79tPqtm05oAHoI_xpBd3L-sledD-AQ_J3upmXb4CEL0qXtda_Bu6scoQ |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pathogenic+and+clonally+expanded+B+cell+transcriptome+in+active+multiple+sclerosis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ramesh%2C+Akshaya&rft.au=Schubert%2C+Ryan+D&rft.au=Greenfield%2C+Ariele+L&rft.au=Dandekar%2C+Ravi&rft.date=2020-09-15&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=37&rft.spage=22932&rft_id=info:doi/10.1073%2Fpnas.2008523117&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |