Divergent drivers of leaf trait variation within species, among species, and among functional groups
Understanding variation in leaf functional traits—including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus—is a fundamental challenge in plant ecophysiology. When expressed per unit leaf area, these traits typically increase with leaf mass per area (LMA) within...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 21; pp. 5480 - 5485 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
22.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding variation in leaf functional traits—including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus—is a fundamental challenge in plant ecophysiology. When expressed per unit leaf area, these traits typically increase with leaf mass per area (LMA) within species but are roughly independent of LMA across the global flora. LMA is determined by mass components with different biological functions, including photosynthetic mass that largely determines metabolic rates and contains most nitrogen and phosphorus, and structural mass that affects toughness and leaf lifespan (LL). A possible explanation for the contrasting trait relationships is that most LMA variation within species is associated with variation in photosynthetic mass, whereas most LMA variation across the global flora is associated with variation in structural mass. This hypothesis leads to the predictions that (i) gas exchange rates and nutrient concentrations per unit leaf area should increase strongly with LMA across species assemblages with low LL variance but should increase weakly with LMA across species assemblages with high LL variance and that (ii) controlling for LL variation should increase the strength of the above LMA relationships. We present analyses of intra- and interspecific trait variation from three tropical forest sites and interspecific analyses within functional groups in a global dataset that are consistent with the above predictions. Our analysis suggests that the qualitatively different trait relationships exhibited by different leaf assemblages can be understood by considering the degree to which photosynthetic and structural mass components contribute to LMA variation in a given assemblage. |
---|---|
AbstractList | Understanding variation in leaf functional traits-including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus-is a fundamental challenge in plant ecophysiology. When expressed per unit leaf area, these traits typically increase with leaf mass per area (LMA) within species but are roughly independent of LMA across the global flora. LMA is determined by mass components with different biological functions, including photosynthetic mass that largely determines metabolic rates and contains most nitrogen and phosphorus, and structural mass that affects toughness and leaf lifespan (LL). A possible explanation for the contrasting trait relationships is that most LMA variation within species is associated with variation in photosynthetic mass, whereas most LMA variation across the global flora is associated with variation in structural mass. This hypothesis leads to the predictions that (i) gas exchange rates and nutrient concentrations per unit leaf area should increase strongly with LMA across species assemblages with low LL variance but should increase weakly with LMA across species assemblages with high LL variance and that (ii) controlling for LL variation should increase the strength of the above LMA relationships. We present analyses of intra- and interspecific trait variation from three tropical forest sites and interspecific analyses within functional groups in a global dataset that are consistent with the above predictions. Our analysis suggests that the qualitatively different trait relationships exhibited by different leaf assemblages can be understood by considering the degree to which photosynthetic and structural mass components contribute to LMA variation in a given assemblage. Understanding variation in leaf functional traits-including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus-is a fundamental challenge in plant ecophysiology. When expressed per unit leaf area, these traits typically increase with leaf mass per area (LMA) within species but are roughly independent of LMA across the global flora. LMA is determined by mass components with different biological functions, including photosynthetic mass that largely determines metabolic rates and contains most nitrogen and phosphorus, and structural mass that affects toughness and leaf lifespan (LL). A possible explanation for the contrasting trait relationships is that most LMA variation within species is associated with variation in photosynthetic mass, whereas most LMA variation across the global flora is associated with variation in structural mass. This hypothesis leads to the predictions that (i) gas exchange rates and nutrient concentrations per unit leaf area should increase strongly with LMA across species assemblages with low LL variance but should increase weakly with LMA across species assemblages with high LL variance and that (ii) controlling for LL variation should increase the strength of the above LMA relationships. We present analyses of intra- and interspecific trait variation from three tropical forest sites and interspecific analyses within functional groups in a global dataset that are consistent with the above predictions. Our analysis suggests that the qualitatively different trait relationships exhibited by different leaf assemblages can be understood by considering the degree to which photosynthetic and structural mass components contribute to LMA variation in a given assemblage.Understanding variation in leaf functional traits-including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus-is a fundamental challenge in plant ecophysiology. When expressed per unit leaf area, these traits typically increase with leaf mass per area (LMA) within species but are roughly independent of LMA across the global flora. LMA is determined by mass components with different biological functions, including photosynthetic mass that largely determines metabolic rates and contains most nitrogen and phosphorus, and structural mass that affects toughness and leaf lifespan (LL). A possible explanation for the contrasting trait relationships is that most LMA variation within species is associated with variation in photosynthetic mass, whereas most LMA variation across the global flora is associated with variation in structural mass. This hypothesis leads to the predictions that (i) gas exchange rates and nutrient concentrations per unit leaf area should increase strongly with LMA across species assemblages with low LL variance but should increase weakly with LMA across species assemblages with high LL variance and that (ii) controlling for LL variation should increase the strength of the above LMA relationships. We present analyses of intra- and interspecific trait variation from three tropical forest sites and interspecific analyses within functional groups in a global dataset that are consistent with the above predictions. Our analysis suggests that the qualitatively different trait relationships exhibited by different leaf assemblages can be understood by considering the degree to which photosynthetic and structural mass components contribute to LMA variation in a given assemblage. Understanding variation in leaf functional traits-including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus-is a fundamental challenge in plant ecophysiology. When expressed per unit leaf area, these traits typically increase with leaf mass per area ( ) within species but are roughly independent of across the global flora. is determined by mass components with different biological functions, including photosynthetic mass that largely determines metabolic rates and contains most nitrogen and phosphorus, and structural mass that affects toughness and leaf lifespan ( ). A possible explanation for the contrasting trait relationships is that most variation within species is associated with variation in photosynthetic mass, whereas most variation across the global flora is associated with variation in structural mass. This hypothesis leads to the predictions that ( ) gas exchange rates and nutrient concentrations per unit leaf area should increase strongly with across species assemblages with low variance but should increase weakly with across species assemblages with high variance and that ( ) controlling for variation should increase the strength of the above relationships. We present analyses of intra- and interspecific trait variation from three tropical forest sites and interspecific analyses within functional groups in a global dataset that are consistent with the above predictions. Our analysis suggests that the qualitatively different trait relationships exhibited by different leaf assemblages can be understood by considering the degree to which photosynthetic and structural mass components contribute to variation in a given assemblage. Leaf traits, such as photosynthetic capacity, nitrogen concentration, and leaf mass per area, strongly affect plant growth and nutrient cycles. Understanding relationships among leaf traits is, therefore, a fundamental challenge in plant biology, crop science, and ecology. Different groups of leaves exhibit distinct relationships among pairs of traits. For example, photosynthetic capacity per unit leaf area increases strongly with leaf mass per area from sun to shade within species, but these same traits are only weakly related across global species. Our analysis suggests that divergent trait relationships can be understood by partitioning leaf mass into photosynthetic and structural support components. Our paper clarifies the causes of relationships among traits and why those relationships differ among different groups of plants. Understanding variation in leaf functional traits—including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus—is a fundamental challenge in plant ecophysiology. When expressed per unit leaf area, these traits typically increase with leaf mass per area ( LMA ) within species but are roughly independent of LMA across the global flora. LMA is determined by mass components with different biological functions, including photosynthetic mass that largely determines metabolic rates and contains most nitrogen and phosphorus, and structural mass that affects toughness and leaf lifespan ( LL ). A possible explanation for the contrasting trait relationships is that most LMA variation within species is associated with variation in photosynthetic mass, whereas most LMA variation across the global flora is associated with variation in structural mass. This hypothesis leads to the predictions that ( i ) gas exchange rates and nutrient concentrations per unit leaf area should increase strongly with LMA across species assemblages with low LL variance but should increase weakly with LMA across species assemblages with high LL variance and that ( ii ) controlling for LL variation should increase the strength of the above LMA relationships. We present analyses of intra- and interspecific trait variation from three tropical forest sites and interspecific analyses within functional groups in a global dataset that are consistent with the above predictions. Our analysis suggests that the qualitatively different trait relationships exhibited by different leaf assemblages can be understood by considering the degree to which photosynthetic and structural mass components contribute to LMA variation in a given assemblage. |
Author | Lichstein, Jeremy W. Osnas, Jeanne L. D. Samaniego, Mirna J. Reich, Peter B. Kitajima, Kaoru Pacala, Stephen W. Katabuchi, Masatoshi Wright, S. Joseph Van Bael, Sunshine A. Kraft, Nathan J. B. |
Author_xml | – sequence: 1 givenname: Jeanne L. D. surname: Osnas fullname: Osnas, Jeanne L. D. organization: Department of Biology, University of Florida, Gainesville, FL 32611 – sequence: 2 givenname: Masatoshi surname: Katabuchi fullname: Katabuchi, Masatoshi organization: W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060 – sequence: 3 givenname: Kaoru surname: Kitajima fullname: Kitajima, Kaoru organization: Smithsonian Tropical Research Institute, 0843–03092 Apartado, Balboa, Republic of Panama – sequence: 4 givenname: S. Joseph surname: Wright fullname: Wright, S. Joseph organization: Smithsonian Tropical Research Institute, 0843–03092 Apartado, Balboa, Republic of Panama – sequence: 5 givenname: Peter B. surname: Reich fullname: Reich, Peter B. organization: Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia – sequence: 6 givenname: Sunshine A. surname: Van Bael fullname: Van Bael, Sunshine A. organization: Smithsonian Tropical Research Institute, 0843–03092 Apartado, Balboa, Republic of Panama – sequence: 7 givenname: Nathan J. B. surname: Kraft fullname: Kraft, Nathan J. B. organization: Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095 – sequence: 8 givenname: Mirna J. surname: Samaniego fullname: Samaniego, Mirna J. organization: Smithsonian Tropical Research Institute, 0843–03092 Apartado, Balboa, Republic of Panama – sequence: 9 givenname: Stephen W. surname: Pacala fullname: Pacala, Stephen W. organization: Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08542 – sequence: 10 givenname: Jeremy W. surname: Lichstein fullname: Lichstein, Jeremy W. organization: Department of Biology, University of Florida, Gainesville, FL 32611 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29724857$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1v1DAQxS1URLeFMydQJC4cSDtjx7F9QULlU6rEBc6W17G3XmXtYCeL-O9J2C0tlTjZHv_e08y8M3ISU3SEPEe4QBDscoimXKAEpqRC5I_ICkFh3TYKTsgKgIpaNrQ5JWelbAFAcQlPyClVgjaSixXp3oe9yxsXx6rLy7VUyVe9M74aswljtTc5mDGkWP0M402IVRmcDa68qcwuxc29Z-yOJT9FuyhMX21ymobylDz2pi_u2fE8J98_fvh29bm-_vrpy9W769pyUGPdIEKLkrUWlRceDfOmda7ja7UGKwRHpoRh7Vop17bcCEZNw5wSovPSSMrOyduD7zCtd66z81TZ9HrIYWfyL51M0P_-xHCjN2mvWwDGKcwGr48GOf2YXBn1LhTr-t5El6ai6YI1CA3O6KsH6DZNeZ55phBASqRUztTL-x39beU2gBngB8DmVEp2Xtsw_tn3sv5eI-glaL0Ere-CnnWXD3S31v9XvDgotmVM-a6Tdt69bAT7DSuStZI |
CitedBy_id | crossref_primary_10_1111_nph_17464 crossref_primary_10_1093_jxb_ery322 crossref_primary_10_1111_aec_13044 crossref_primary_10_1111_nph_15563 crossref_primary_10_1111_gcb_14929 crossref_primary_10_1111_plb_13395 crossref_primary_10_1016_j_jplph_2022_153671 crossref_primary_10_1038_s41477_020_00760_6 crossref_primary_10_1093_treephys_tpad043 crossref_primary_10_3389_fpls_2024_1375958 crossref_primary_10_1016_j_tplants_2020_05_013 crossref_primary_10_1016_j_tree_2020_06_003 crossref_primary_10_1007_s10533_018_0483_5 crossref_primary_10_1111_pce_15169 crossref_primary_10_1111_pce_15444 crossref_primary_10_1016_j_rse_2020_112170 crossref_primary_10_1111_1365_2745_14194 crossref_primary_10_1111_1442_1984_12293 crossref_primary_10_1111_nph_16579 crossref_primary_10_1016_j_ecolind_2020_107099 crossref_primary_10_1111_nph_17626 crossref_primary_10_1111_gcb_16103 crossref_primary_10_1093_jpe_rtae082 crossref_primary_10_3390_f15061007 crossref_primary_10_5194_bg_17_3017_2020 crossref_primary_10_1007_s00468_022_02328_7 crossref_primary_10_1111_nph_18189 crossref_primary_10_1126_sciadv_add5667 crossref_primary_10_1016_j_rse_2018_09_006 crossref_primary_10_1016_j_pld_2024_08_001 crossref_primary_10_1111_geb_13624 crossref_primary_10_1111_nph_16123 crossref_primary_10_1016_j_rse_2021_112406 crossref_primary_10_1139_cjfr_2023_0280 crossref_primary_10_3389_ffgc_2021_720813 crossref_primary_10_3389_fpls_2020_533341 crossref_primary_10_3390_d12100397 crossref_primary_10_1186_s13007_021_00816_4 crossref_primary_10_3390_ecologies4040046 crossref_primary_10_1002_ecy_2766 crossref_primary_10_1016_j_rse_2019_05_014 crossref_primary_10_1111_jbi_14148 crossref_primary_10_1071_FP21119 crossref_primary_10_1111_1365_2745_13972 crossref_primary_10_1371_journal_pone_0229047 crossref_primary_10_3389_fpls_2023_1261240 crossref_primary_10_3389_fpls_2022_996313 crossref_primary_10_1086_715453 crossref_primary_10_1111_nph_18901 crossref_primary_10_1007_s11368_022_03136_9 crossref_primary_10_1111_geb_13382 crossref_primary_10_1093_jpe_rtaa093 crossref_primary_10_1038_s41598_021_03235_6 crossref_primary_10_1093_jxb_erz439 crossref_primary_10_1016_j_foreco_2018_12_008 crossref_primary_10_1016_j_catena_2022_106857 crossref_primary_10_1021_acs_est_4c11071 crossref_primary_10_1111_nph_18213 crossref_primary_10_1002_ece3_6395 crossref_primary_10_1186_s12862_024_02241_2 crossref_primary_10_1111_1365_2745_13967 crossref_primary_10_1111_pce_13516 crossref_primary_10_1186_s12870_023_04410_9 crossref_primary_10_1111_nph_16393 crossref_primary_10_1002_ecy_2858 crossref_primary_10_1111_1365_2745_13644 crossref_primary_10_3389_fmicb_2022_927780 crossref_primary_10_3390_f13020219 crossref_primary_10_1111_ppl_14105 crossref_primary_10_1007_s10452_024_10122_5 crossref_primary_10_1126_sciadv_aav1332 crossref_primary_10_1111_nph_18539 crossref_primary_10_3390_plants13131771 crossref_primary_10_3390_plants12112109 crossref_primary_10_1111_nph_18684 crossref_primary_10_1016_j_jes_2024_08_009 crossref_primary_10_1007_s00468_021_02200_0 crossref_primary_10_1016_j_rse_2024_114507 crossref_primary_10_1111_nph_15576 crossref_primary_10_1002_ecy_2745 crossref_primary_10_1016_j_jhydrol_2020_125088 crossref_primary_10_1038_s43247_022_00564_w crossref_primary_10_1111_1365_2745_13637 crossref_primary_10_1038_s41467_020_16839_9 crossref_primary_10_1098_rspb_2023_1732 crossref_primary_10_1111_1365_2745_13710 crossref_primary_10_1016_j_ecolind_2020_107267 crossref_primary_10_3389_fpls_2020_00212 crossref_primary_10_1002_ecs2_3992 crossref_primary_10_1016_j_envexpbot_2024_105897 crossref_primary_10_1002_ecy_3472 crossref_primary_10_1007_s10682_024_10298_0 crossref_primary_10_1111_1365_2435_13675 crossref_primary_10_1111_nph_16109 crossref_primary_10_1186_s12870_022_03818_z crossref_primary_10_1007_s00468_025_02611_3 |
Cites_doi | 10.1016/S0169-5347(01)02283-2 10.1111/nph.12210 10.1111/nph.12345 10.1111/j.1469-8137.2009.02830.x 10.1111/nph.12281 10.1007/978-3-319-27422-5_17 10.3732/ajb.93.6.829 10.1175/JCLI4222.1 10.1104/pp.110.165472 10.1111/nph.14496 10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2 10.3732/ajb.1200562 10.1104/pp.16.01940 10.1007/BF00328814 10.1086/659963 10.1086/303346 10.1111/ele.12739 10.1038/nature02403 10.1126/science.1231574 10.1038/nclimate3109 10.1007/BF00317910 10.1093/jxb/erp117 10.1111/nph.12547 10.1126/science.1160662 10.1111/1365-2745.12211 10.1007/PL00013972 10.1890/05-1051 10.1007/BF00317729 10.1111/nph.12253 10.2307/2445906 10.1073/pnas.94.25.13730 10.1098/rsfs.2015.0100 10.1111/nph.13096 10.1016/j.tree.2008.02.006 10.1890/09-2335.1 10.1111/j.1469-8137.2012.04203.x 10.1111/j.1469-8137.2012.04263.x 10.1890/09-1672.1 10.1111/j.1442-1984.1988.tb00173.x 10.1146/annurev.ecolsys.33.010802.150452 10.1086/285281 10.1093/jxb/erw124 10.2307/1932686 10.1046/j.1365-3040.2001.00724.x 10.1111/j.1365-2435.2006.01221.x |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright © 2018 the Author(s). Published by PNAS. Copyright National Academy of Sciences May 22, 2018 Copyright © 2018 the Author(s). Published by PNAS. 2018 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright © 2018 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences May 22, 2018 – notice: Copyright © 2018 the Author(s). Published by PNAS. 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1803989115 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 5485 |
ExternalDocumentID | PMC6003520 29724857 10_1073_pnas_1803989115 26509847 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Andrew W. Mellon Foundation grantid: N/A – fundername: Smithosonain Tropical Research Institute grantid: N/A – fundername: University of Florida (UF) grantid: Department of Biology |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-411061836c19f7f1a3fa6eed5b9b0c7751397a36b99e665a732a43e977df8a823 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:35:15 EDT 2025 Fri Jul 11 09:04:05 EDT 2025 Mon Jun 30 08:18:00 EDT 2025 Thu Apr 03 07:06:42 EDT 2025 Thu Apr 24 23:08:56 EDT 2025 Tue Jul 01 03:19:49 EDT 2025 Fri May 30 11:17:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | plant functional types leaf mass per area functional traits leaf longevity tropical forests |
Language | English |
License | Copyright © 2018 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-411061836c19f7f1a3fa6eed5b9b0c7751397a36b99e665a732a43e977df8a823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: J.L.D.O., S.W.P., and J.W.L. designed research; K.K., S.J.W., P.B.R., S.A.V.B., N.J.B.K., and M.J.S. collected data; J.L.D.O. and M.K. analyzed data; K.K. designed Fig. 1; J.L.D.O. and J.W.L. led the writing of the paper; and all authors edited the paper. Contributed by Stephen W. Pacala, March 22, 2018 (sent for review February 12, 2014; reviewed by Graham D. Farquhar and Lawren Sack) Reviewers: G.D.F., Australian National University; and L.S., University of California, Los Angeles. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6003520 |
PMID | 29724857 |
PQID | 2100881228 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6003520 proquest_miscellaneous_2035241041 proquest_journals_2100881228 pubmed_primary_29724857 crossref_citationtrail_10_1073_pnas_1803989115 crossref_primary_10_1073_pnas_1803989115 jstor_primary_26509847 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-22 |
PublicationDateYYYYMMDD | 2018-05-22 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2018 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 Wright SJ (e_1_3_3_43_2) 2003 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 Valencia R (e_1_3_3_46_2) 2004 Field C (e_1_3_3_10_2) 1986 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 Niinemets U (e_1_3_3_23_2) 2006; 67 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_3_2 doi: 10.1016/S0169-5347(01)02283-2 – ident: e_1_3_3_9_2 doi: 10.1111/nph.12210 – ident: e_1_3_3_14_2 doi: 10.1111/nph.12345 – ident: e_1_3_3_20_2 doi: 10.1111/j.1469-8137.2009.02830.x – ident: e_1_3_3_12_2 doi: 10.1111/nph.12281 – ident: e_1_3_3_34_2 doi: 10.1007/978-3-319-27422-5_17 – ident: e_1_3_3_24_2 doi: 10.3732/ajb.93.6.829 – ident: e_1_3_3_18_2 doi: 10.1175/JCLI4222.1 – ident: e_1_3_3_27_2 doi: 10.1104/pp.110.165472 – ident: e_1_3_3_26_2 doi: 10.1111/nph.14496 – volume: 67 start-page: 383 year: 2006 ident: e_1_3_3_23_2 article-title: Structural determinants of leaf light-harvesting capacity and photosynthetic potentials publication-title: Prog Bot – ident: e_1_3_3_30_2 doi: 10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2 – ident: e_1_3_3_32_2 doi: 10.3732/ajb.1200562 – ident: e_1_3_3_7_2 doi: 10.1104/pp.16.01940 – ident: e_1_3_3_42_2 doi: 10.1007/BF00328814 – ident: e_1_3_3_48_2 doi: 10.1086/659963 – start-page: 609 volume-title: Tropical Forest Diversity and Dynamism: Findings from a Large-Scale Plot Network year: 2004 ident: e_1_3_3_46_2 – ident: e_1_3_3_25_2 doi: 10.1086/303346 – ident: e_1_3_3_41_2 doi: 10.1111/ele.12739 – ident: e_1_3_3_2_2 doi: 10.1038/nature02403 – ident: e_1_3_3_11_2 doi: 10.1126/science.1231574 – ident: e_1_3_3_8_2 doi: 10.1038/nclimate3109 – ident: e_1_3_3_51_2 – ident: e_1_3_3_16_2 doi: 10.1007/BF00317910 – ident: e_1_3_3_28_2 doi: 10.1093/jxb/erp117 – ident: e_1_3_3_13_2 doi: 10.1111/nph.12547 – ident: e_1_3_3_44_2 doi: 10.1126/science.1160662 – ident: e_1_3_3_5_2 doi: 10.1111/1365-2745.12211 – ident: e_1_3_3_37_2 doi: 10.1007/PL00013972 – ident: e_1_3_3_50_2 – ident: e_1_3_3_29_2 doi: 10.1890/05-1051 – ident: e_1_3_3_19_2 doi: 10.1007/BF00317729 – ident: e_1_3_3_39_2 doi: 10.1111/nph.12253 – ident: e_1_3_3_49_2 doi: 10.2307/2445906 – start-page: 137 volume-title: Studying Forest Canopies from Above: The International Canopy Crane Network year: 2003 ident: e_1_3_3_43_2 – ident: e_1_3_3_1_2 doi: 10.1073/pnas.94.25.13730 – ident: e_1_3_3_22_2 doi: 10.1098/rsfs.2015.0100 – ident: e_1_3_3_17_2 doi: 10.1111/nph.13096 – ident: e_1_3_3_33_2 doi: 10.1016/j.tree.2008.02.006 – ident: e_1_3_3_47_2 doi: 10.1890/09-2335.1 – start-page: 25 volume-title: On the Economy of Plant Form and Function: Proceedings of the Sixth Maria Moors Cabot Symposium, Evolutionary Constraints on Primary Productivity, Adaptive Patterns of Energy Capture in Plants, Harvard Forest, August 1983 year: 1986 ident: e_1_3_3_10_2 – ident: e_1_3_3_21_2 doi: 10.1111/j.1469-8137.2012.04203.x – ident: e_1_3_3_31_2 doi: 10.1111/j.1469-8137.2012.04263.x – ident: e_1_3_3_45_2 doi: 10.1890/09-1672.1 – ident: e_1_3_3_52_2 – ident: e_1_3_3_38_2 doi: 10.1111/j.1442-1984.1988.tb00173.x – ident: e_1_3_3_4_2 doi: 10.1146/annurev.ecolsys.33.010802.150452 – ident: e_1_3_3_35_2 doi: 10.1086/285281 – ident: e_1_3_3_6_2 doi: 10.1093/jxb/erw124 – ident: e_1_3_3_36_2 doi: 10.2307/1932686 – ident: e_1_3_3_15_2 doi: 10.1046/j.1365-3040.2001.00724.x – ident: e_1_3_3_40_2 doi: 10.1111/j.1365-2435.2006.01221.x |
SSID | ssj0009580 |
Score | 2.56444 |
Snippet | Understanding variation in leaf functional traits—including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus—is a... Leaf traits, such as photosynthetic capacity, nitrogen concentration, and leaf mass per area, strongly affect plant growth and nutrient cycles. Understanding... Understanding variation in leaf functional traits-including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus-is a... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5480 |
SubjectTerms | Banach spaces Biological Sciences Chloroplasts Ecophysiology Flora Flowers & plants Forests Functional groups Gas exchange Interspecific Leaf area Leaves Life span Mathematical functions Nitrogen Nutrient concentrations Phosphorus Photosynthesis Plant Leaves - chemistry Plant Leaves - genetics Plant Leaves - metabolism Plants - chemistry Plants - classification Plants - genetics Plants - metabolism Quantitative Trait Loci Species Species Specificity Tropical forests Variation |
Title | Divergent drivers of leaf trait variation within species, among species, and among functional groups |
URI | https://www.jstor.org/stable/26509847 https://www.ncbi.nlm.nih.gov/pubmed/29724857 https://www.proquest.com/docview/2100881228 https://www.proquest.com/docview/2035241041 https://pubmed.ncbi.nlm.nih.gov/PMC6003520 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuGCKFAIFGQkDkUhS962jxUPVTyWSrRSb5HjJGpQm602WQ78Ff4sM7bz2LKVgEu0azteeefzeGzPfEPIS16pksdB6QGcEi-OWOxxVSkvDphKfBkkpcLY4S-L9Og0_niWnM1mvyZeS-sun6ufW-NK_keqUAZyxSjZf5Ds0CkUwGeQLzxBwvD8Kxm_Q6cKjI1yi5X2r0DT76KUlc780Lk_YCNsBIzHrXXjYlxlbRSDyTI0LUDWVl2Ia509ItRBH-3Ugj0eVry29y9Y9AeKh2N4itUZreu5x4sx2fHXtukjyCRoePfz6HH8SXYyx9QsJoSold2yPa9HH4FOfq8vbQDbcrX-83jhW3-dMTnICDjewZuY5HlplC_YLl4am_Shg3Y20Z4Whiaa2ipbpKrbugqA2sLUxTCgecD9SHBhe5lg4upSgyIUDEnd2LgcDk6KfdUtcjuEPUiotf6U0Zn7PVcUi95c-zUkmbbvb1g8xul123bmulfuxMw5uUfu2v0JPTRg2yWzsrlPdntp0gNLU_7qASkG9FGLPrqsKKKPavTRAX3UoI9asL2mGmaTr01hi0bkUYO8h-T0w_uTt0eezdnhwdQWHcxxPGPgUaoCUbEqkFElU0BlkovcV4wluOOQUZoLUaZpIlkUyjgqYRdSVFzyMNojO82yKR8TygqoycMcmvigTapcwcs85kJKUQglHDLv_9dMWUJ7HN9Fph0rWJShTLJRJg45GF64MlwuNzfd04Ia2oXINAmWnEP2e8llVhO0WYgMWWAph9whL4Zq0NN4-SabcrmGNkg8HAcwEoc8MoIeO7dIcQjbgMDQADngN2ua-lxzwaea0Nh_cmOfT8mdcbLtk51utS6fgR3d5c81nn8DC1vKXg |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Divergent+drivers+of+leaf+trait+variation+within+species%2C+among+species%2C+and+among+functional+groups&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Osnas%2C+Jeanne+L+D&rft.au=Katabuchi%2C+Masatoshi&rft.au=Kitajima%2C+Kaoru&rft.au=Wright%2C+S+Joseph&rft.date=2018-05-22&rft.eissn=1091-6490&rft.volume=115&rft.issue=21&rft.spage=5480&rft_id=info:doi/10.1073%2Fpnas.1803989115&rft_id=info%3Apmid%2F29724857&rft.externalDocID=29724857 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |