Divergent drivers of leaf trait variation within species, among species, and among functional groups

Understanding variation in leaf functional traits—including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus—is a fundamental challenge in plant ecophysiology. When expressed per unit leaf area, these traits typically increase with leaf mass per area (LMA) within...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 21; pp. 5480 - 5485
Main Authors Osnas, Jeanne L. D., Katabuchi, Masatoshi, Kitajima, Kaoru, Wright, S. Joseph, Reich, Peter B., Van Bael, Sunshine A., Kraft, Nathan J. B., Samaniego, Mirna J., Pacala, Stephen W., Lichstein, Jeremy W.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 22.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding variation in leaf functional traits—including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus—is a fundamental challenge in plant ecophysiology. When expressed per unit leaf area, these traits typically increase with leaf mass per area (LMA) within species but are roughly independent of LMA across the global flora. LMA is determined by mass components with different biological functions, including photosynthetic mass that largely determines metabolic rates and contains most nitrogen and phosphorus, and structural mass that affects toughness and leaf lifespan (LL). A possible explanation for the contrasting trait relationships is that most LMA variation within species is associated with variation in photosynthetic mass, whereas most LMA variation across the global flora is associated with variation in structural mass. This hypothesis leads to the predictions that (i) gas exchange rates and nutrient concentrations per unit leaf area should increase strongly with LMA across species assemblages with low LL variance but should increase weakly with LMA across species assemblages with high LL variance and that (ii) controlling for LL variation should increase the strength of the above LMA relationships. We present analyses of intra- and interspecific trait variation from three tropical forest sites and interspecific analyses within functional groups in a global dataset that are consistent with the above predictions. Our analysis suggests that the qualitatively different trait relationships exhibited by different leaf assemblages can be understood by considering the degree to which photosynthetic and structural mass components contribute to LMA variation in a given assemblage.
AbstractList Understanding variation in leaf functional traits-including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus-is a fundamental challenge in plant ecophysiology. When expressed per unit leaf area, these traits typically increase with leaf mass per area (LMA) within species but are roughly independent of LMA across the global flora. LMA is determined by mass components with different biological functions, including photosynthetic mass that largely determines metabolic rates and contains most nitrogen and phosphorus, and structural mass that affects toughness and leaf lifespan (LL). A possible explanation for the contrasting trait relationships is that most LMA variation within species is associated with variation in photosynthetic mass, whereas most LMA variation across the global flora is associated with variation in structural mass. This hypothesis leads to the predictions that (i) gas exchange rates and nutrient concentrations per unit leaf area should increase strongly with LMA across species assemblages with low LL variance but should increase weakly with LMA across species assemblages with high LL variance and that (ii) controlling for LL variation should increase the strength of the above LMA relationships. We present analyses of intra- and interspecific trait variation from three tropical forest sites and interspecific analyses within functional groups in a global dataset that are consistent with the above predictions. Our analysis suggests that the qualitatively different trait relationships exhibited by different leaf assemblages can be understood by considering the degree to which photosynthetic and structural mass components contribute to LMA variation in a given assemblage.
Understanding variation in leaf functional traits-including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus-is a fundamental challenge in plant ecophysiology. When expressed per unit leaf area, these traits typically increase with leaf mass per area (LMA) within species but are roughly independent of LMA across the global flora. LMA is determined by mass components with different biological functions, including photosynthetic mass that largely determines metabolic rates and contains most nitrogen and phosphorus, and structural mass that affects toughness and leaf lifespan (LL). A possible explanation for the contrasting trait relationships is that most LMA variation within species is associated with variation in photosynthetic mass, whereas most LMA variation across the global flora is associated with variation in structural mass. This hypothesis leads to the predictions that (i) gas exchange rates and nutrient concentrations per unit leaf area should increase strongly with LMA across species assemblages with low LL variance but should increase weakly with LMA across species assemblages with high LL variance and that (ii) controlling for LL variation should increase the strength of the above LMA relationships. We present analyses of intra- and interspecific trait variation from three tropical forest sites and interspecific analyses within functional groups in a global dataset that are consistent with the above predictions. Our analysis suggests that the qualitatively different trait relationships exhibited by different leaf assemblages can be understood by considering the degree to which photosynthetic and structural mass components contribute to LMA variation in a given assemblage.Understanding variation in leaf functional traits-including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus-is a fundamental challenge in plant ecophysiology. When expressed per unit leaf area, these traits typically increase with leaf mass per area (LMA) within species but are roughly independent of LMA across the global flora. LMA is determined by mass components with different biological functions, including photosynthetic mass that largely determines metabolic rates and contains most nitrogen and phosphorus, and structural mass that affects toughness and leaf lifespan (LL). A possible explanation for the contrasting trait relationships is that most LMA variation within species is associated with variation in photosynthetic mass, whereas most LMA variation across the global flora is associated with variation in structural mass. This hypothesis leads to the predictions that (i) gas exchange rates and nutrient concentrations per unit leaf area should increase strongly with LMA across species assemblages with low LL variance but should increase weakly with LMA across species assemblages with high LL variance and that (ii) controlling for LL variation should increase the strength of the above LMA relationships. We present analyses of intra- and interspecific trait variation from three tropical forest sites and interspecific analyses within functional groups in a global dataset that are consistent with the above predictions. Our analysis suggests that the qualitatively different trait relationships exhibited by different leaf assemblages can be understood by considering the degree to which photosynthetic and structural mass components contribute to LMA variation in a given assemblage.
Understanding variation in leaf functional traits-including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus-is a fundamental challenge in plant ecophysiology. When expressed per unit leaf area, these traits typically increase with leaf mass per area ( ) within species but are roughly independent of across the global flora. is determined by mass components with different biological functions, including photosynthetic mass that largely determines metabolic rates and contains most nitrogen and phosphorus, and structural mass that affects toughness and leaf lifespan ( ). A possible explanation for the contrasting trait relationships is that most variation within species is associated with variation in photosynthetic mass, whereas most variation across the global flora is associated with variation in structural mass. This hypothesis leads to the predictions that ( ) gas exchange rates and nutrient concentrations per unit leaf area should increase strongly with across species assemblages with low variance but should increase weakly with across species assemblages with high variance and that ( ) controlling for variation should increase the strength of the above relationships. We present analyses of intra- and interspecific trait variation from three tropical forest sites and interspecific analyses within functional groups in a global dataset that are consistent with the above predictions. Our analysis suggests that the qualitatively different trait relationships exhibited by different leaf assemblages can be understood by considering the degree to which photosynthetic and structural mass components contribute to variation in a given assemblage.
Leaf traits, such as photosynthetic capacity, nitrogen concentration, and leaf mass per area, strongly affect plant growth and nutrient cycles. Understanding relationships among leaf traits is, therefore, a fundamental challenge in plant biology, crop science, and ecology. Different groups of leaves exhibit distinct relationships among pairs of traits. For example, photosynthetic capacity per unit leaf area increases strongly with leaf mass per area from sun to shade within species, but these same traits are only weakly related across global species. Our analysis suggests that divergent trait relationships can be understood by partitioning leaf mass into photosynthetic and structural support components. Our paper clarifies the causes of relationships among traits and why those relationships differ among different groups of plants. Understanding variation in leaf functional traits—including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus—is a fundamental challenge in plant ecophysiology. When expressed per unit leaf area, these traits typically increase with leaf mass per area ( LMA ) within species but are roughly independent of LMA across the global flora. LMA is determined by mass components with different biological functions, including photosynthetic mass that largely determines metabolic rates and contains most nitrogen and phosphorus, and structural mass that affects toughness and leaf lifespan ( LL ). A possible explanation for the contrasting trait relationships is that most LMA variation within species is associated with variation in photosynthetic mass, whereas most LMA variation across the global flora is associated with variation in structural mass. This hypothesis leads to the predictions that ( i ) gas exchange rates and nutrient concentrations per unit leaf area should increase strongly with LMA across species assemblages with low LL variance but should increase weakly with LMA across species assemblages with high LL variance and that ( ii ) controlling for LL variation should increase the strength of the above LMA relationships. We present analyses of intra- and interspecific trait variation from three tropical forest sites and interspecific analyses within functional groups in a global dataset that are consistent with the above predictions. Our analysis suggests that the qualitatively different trait relationships exhibited by different leaf assemblages can be understood by considering the degree to which photosynthetic and structural mass components contribute to LMA variation in a given assemblage.
Author Lichstein, Jeremy W.
Osnas, Jeanne L. D.
Samaniego, Mirna J.
Reich, Peter B.
Kitajima, Kaoru
Pacala, Stephen W.
Katabuchi, Masatoshi
Wright, S. Joseph
Van Bael, Sunshine A.
Kraft, Nathan J. B.
Author_xml – sequence: 1
  givenname: Jeanne L. D.
  surname: Osnas
  fullname: Osnas, Jeanne L. D.
  organization: Department of Biology, University of Florida, Gainesville, FL 32611
– sequence: 2
  givenname: Masatoshi
  surname: Katabuchi
  fullname: Katabuchi, Masatoshi
  organization: W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060
– sequence: 3
  givenname: Kaoru
  surname: Kitajima
  fullname: Kitajima, Kaoru
  organization: Smithsonian Tropical Research Institute, 0843–03092 Apartado, Balboa, Republic of Panama
– sequence: 4
  givenname: S. Joseph
  surname: Wright
  fullname: Wright, S. Joseph
  organization: Smithsonian Tropical Research Institute, 0843–03092 Apartado, Balboa, Republic of Panama
– sequence: 5
  givenname: Peter B.
  surname: Reich
  fullname: Reich, Peter B.
  organization: Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
– sequence: 6
  givenname: Sunshine A.
  surname: Van Bael
  fullname: Van Bael, Sunshine A.
  organization: Smithsonian Tropical Research Institute, 0843–03092 Apartado, Balboa, Republic of Panama
– sequence: 7
  givenname: Nathan J. B.
  surname: Kraft
  fullname: Kraft, Nathan J. B.
  organization: Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
– sequence: 8
  givenname: Mirna J.
  surname: Samaniego
  fullname: Samaniego, Mirna J.
  organization: Smithsonian Tropical Research Institute, 0843–03092 Apartado, Balboa, Republic of Panama
– sequence: 9
  givenname: Stephen W.
  surname: Pacala
  fullname: Pacala, Stephen W.
  organization: Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08542
– sequence: 10
  givenname: Jeremy W.
  surname: Lichstein
  fullname: Lichstein, Jeremy W.
  organization: Department of Biology, University of Florida, Gainesville, FL 32611
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29724857$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1v1DAQxS1URLeFMydQJC4cSDtjx7F9QULlU6rEBc6W17G3XmXtYCeL-O9J2C0tlTjZHv_e08y8M3ISU3SEPEe4QBDscoimXKAEpqRC5I_ICkFh3TYKTsgKgIpaNrQ5JWelbAFAcQlPyClVgjaSixXp3oe9yxsXx6rLy7VUyVe9M74aswljtTc5mDGkWP0M402IVRmcDa68qcwuxc29Z-yOJT9FuyhMX21ymobylDz2pi_u2fE8J98_fvh29bm-_vrpy9W769pyUGPdIEKLkrUWlRceDfOmda7ja7UGKwRHpoRh7Vop17bcCEZNw5wSovPSSMrOyduD7zCtd66z81TZ9HrIYWfyL51M0P_-xHCjN2mvWwDGKcwGr48GOf2YXBn1LhTr-t5El6ai6YI1CA3O6KsH6DZNeZ55phBASqRUztTL-x39beU2gBngB8DmVEp2Xtsw_tn3sv5eI-glaL0Ere-CnnWXD3S31v9XvDgotmVM-a6Tdt69bAT7DSuStZI
CitedBy_id crossref_primary_10_1111_nph_17464
crossref_primary_10_1093_jxb_ery322
crossref_primary_10_1111_aec_13044
crossref_primary_10_1111_nph_15563
crossref_primary_10_1111_gcb_14929
crossref_primary_10_1111_plb_13395
crossref_primary_10_1016_j_jplph_2022_153671
crossref_primary_10_1038_s41477_020_00760_6
crossref_primary_10_1093_treephys_tpad043
crossref_primary_10_3389_fpls_2024_1375958
crossref_primary_10_1016_j_tplants_2020_05_013
crossref_primary_10_1016_j_tree_2020_06_003
crossref_primary_10_1007_s10533_018_0483_5
crossref_primary_10_1111_pce_15169
crossref_primary_10_1111_pce_15444
crossref_primary_10_1016_j_rse_2020_112170
crossref_primary_10_1111_1365_2745_14194
crossref_primary_10_1111_1442_1984_12293
crossref_primary_10_1111_nph_16579
crossref_primary_10_1016_j_ecolind_2020_107099
crossref_primary_10_1111_nph_17626
crossref_primary_10_1111_gcb_16103
crossref_primary_10_1093_jpe_rtae082
crossref_primary_10_3390_f15061007
crossref_primary_10_5194_bg_17_3017_2020
crossref_primary_10_1007_s00468_022_02328_7
crossref_primary_10_1111_nph_18189
crossref_primary_10_1126_sciadv_add5667
crossref_primary_10_1016_j_rse_2018_09_006
crossref_primary_10_1016_j_pld_2024_08_001
crossref_primary_10_1111_geb_13624
crossref_primary_10_1111_nph_16123
crossref_primary_10_1016_j_rse_2021_112406
crossref_primary_10_1139_cjfr_2023_0280
crossref_primary_10_3389_ffgc_2021_720813
crossref_primary_10_3389_fpls_2020_533341
crossref_primary_10_3390_d12100397
crossref_primary_10_1186_s13007_021_00816_4
crossref_primary_10_3390_ecologies4040046
crossref_primary_10_1002_ecy_2766
crossref_primary_10_1016_j_rse_2019_05_014
crossref_primary_10_1111_jbi_14148
crossref_primary_10_1071_FP21119
crossref_primary_10_1111_1365_2745_13972
crossref_primary_10_1371_journal_pone_0229047
crossref_primary_10_3389_fpls_2023_1261240
crossref_primary_10_3389_fpls_2022_996313
crossref_primary_10_1086_715453
crossref_primary_10_1111_nph_18901
crossref_primary_10_1007_s11368_022_03136_9
crossref_primary_10_1111_geb_13382
crossref_primary_10_1093_jpe_rtaa093
crossref_primary_10_1038_s41598_021_03235_6
crossref_primary_10_1093_jxb_erz439
crossref_primary_10_1016_j_foreco_2018_12_008
crossref_primary_10_1016_j_catena_2022_106857
crossref_primary_10_1021_acs_est_4c11071
crossref_primary_10_1111_nph_18213
crossref_primary_10_1002_ece3_6395
crossref_primary_10_1186_s12862_024_02241_2
crossref_primary_10_1111_1365_2745_13967
crossref_primary_10_1111_pce_13516
crossref_primary_10_1186_s12870_023_04410_9
crossref_primary_10_1111_nph_16393
crossref_primary_10_1002_ecy_2858
crossref_primary_10_1111_1365_2745_13644
crossref_primary_10_3389_fmicb_2022_927780
crossref_primary_10_3390_f13020219
crossref_primary_10_1111_ppl_14105
crossref_primary_10_1007_s10452_024_10122_5
crossref_primary_10_1126_sciadv_aav1332
crossref_primary_10_1111_nph_18539
crossref_primary_10_3390_plants13131771
crossref_primary_10_3390_plants12112109
crossref_primary_10_1111_nph_18684
crossref_primary_10_1016_j_jes_2024_08_009
crossref_primary_10_1007_s00468_021_02200_0
crossref_primary_10_1016_j_rse_2024_114507
crossref_primary_10_1111_nph_15576
crossref_primary_10_1002_ecy_2745
crossref_primary_10_1016_j_jhydrol_2020_125088
crossref_primary_10_1038_s43247_022_00564_w
crossref_primary_10_1111_1365_2745_13637
crossref_primary_10_1038_s41467_020_16839_9
crossref_primary_10_1098_rspb_2023_1732
crossref_primary_10_1111_1365_2745_13710
crossref_primary_10_1016_j_ecolind_2020_107267
crossref_primary_10_3389_fpls_2020_00212
crossref_primary_10_1002_ecs2_3992
crossref_primary_10_1016_j_envexpbot_2024_105897
crossref_primary_10_1002_ecy_3472
crossref_primary_10_1007_s10682_024_10298_0
crossref_primary_10_1111_1365_2435_13675
crossref_primary_10_1111_nph_16109
crossref_primary_10_1186_s12870_022_03818_z
crossref_primary_10_1007_s00468_025_02611_3
Cites_doi 10.1016/S0169-5347(01)02283-2
10.1111/nph.12210
10.1111/nph.12345
10.1111/j.1469-8137.2009.02830.x
10.1111/nph.12281
10.1007/978-3-319-27422-5_17
10.3732/ajb.93.6.829
10.1175/JCLI4222.1
10.1104/pp.110.165472
10.1111/nph.14496
10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2
10.3732/ajb.1200562
10.1104/pp.16.01940
10.1007/BF00328814
10.1086/659963
10.1086/303346
10.1111/ele.12739
10.1038/nature02403
10.1126/science.1231574
10.1038/nclimate3109
10.1007/BF00317910
10.1093/jxb/erp117
10.1111/nph.12547
10.1126/science.1160662
10.1111/1365-2745.12211
10.1007/PL00013972
10.1890/05-1051
10.1007/BF00317729
10.1111/nph.12253
10.2307/2445906
10.1073/pnas.94.25.13730
10.1098/rsfs.2015.0100
10.1111/nph.13096
10.1016/j.tree.2008.02.006
10.1890/09-2335.1
10.1111/j.1469-8137.2012.04203.x
10.1111/j.1469-8137.2012.04263.x
10.1890/09-1672.1
10.1111/j.1442-1984.1988.tb00173.x
10.1146/annurev.ecolsys.33.010802.150452
10.1086/285281
10.1093/jxb/erw124
10.2307/1932686
10.1046/j.1365-3040.2001.00724.x
10.1111/j.1365-2435.2006.01221.x
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright © 2018 the Author(s). Published by PNAS.
Copyright National Academy of Sciences May 22, 2018
Copyright © 2018 the Author(s). Published by PNAS. 2018
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright © 2018 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences May 22, 2018
– notice: Copyright © 2018 the Author(s). Published by PNAS. 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1803989115
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE - Academic
MEDLINE
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 5485
ExternalDocumentID PMC6003520
29724857
10_1073_pnas_1803989115
26509847
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Andrew W. Mellon Foundation
  grantid: N/A
– fundername: Smithosonain Tropical Research Institute
  grantid: N/A
– fundername: University of Florida (UF)
  grantid: Department of Biology
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-411061836c19f7f1a3fa6eed5b9b0c7751397a36b99e665a732a43e977df8a823
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:35:15 EDT 2025
Fri Jul 11 09:04:05 EDT 2025
Mon Jun 30 08:18:00 EDT 2025
Thu Apr 03 07:06:42 EDT 2025
Thu Apr 24 23:08:56 EDT 2025
Tue Jul 01 03:19:49 EDT 2025
Fri May 30 11:17:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords plant functional types
leaf mass per area
functional traits
leaf longevity
tropical forests
Language English
License Copyright © 2018 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-411061836c19f7f1a3fa6eed5b9b0c7751397a36b99e665a732a43e977df8a823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: J.L.D.O., S.W.P., and J.W.L. designed research; K.K., S.J.W., P.B.R., S.A.V.B., N.J.B.K., and M.J.S. collected data; J.L.D.O. and M.K. analyzed data; K.K. designed Fig. 1; J.L.D.O. and J.W.L. led the writing of the paper; and all authors edited the paper.
Contributed by Stephen W. Pacala, March 22, 2018 (sent for review February 12, 2014; reviewed by Graham D. Farquhar and Lawren Sack)
Reviewers: G.D.F., Australian National University; and L.S., University of California, Los Angeles.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6003520
PMID 29724857
PQID 2100881228
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6003520
proquest_miscellaneous_2035241041
proquest_journals_2100881228
pubmed_primary_29724857
crossref_citationtrail_10_1073_pnas_1803989115
crossref_primary_10_1073_pnas_1803989115
jstor_primary_26509847
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-22
PublicationDateYYYYMMDD 2018-05-22
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
Wright SJ (e_1_3_3_43_2) 2003
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
Valencia R (e_1_3_3_46_2) 2004
Field C (e_1_3_3_10_2) 1986
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
Niinemets U (e_1_3_3_23_2) 2006; 67
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_3_2
  doi: 10.1016/S0169-5347(01)02283-2
– ident: e_1_3_3_9_2
  doi: 10.1111/nph.12210
– ident: e_1_3_3_14_2
  doi: 10.1111/nph.12345
– ident: e_1_3_3_20_2
  doi: 10.1111/j.1469-8137.2009.02830.x
– ident: e_1_3_3_12_2
  doi: 10.1111/nph.12281
– ident: e_1_3_3_34_2
  doi: 10.1007/978-3-319-27422-5_17
– ident: e_1_3_3_24_2
  doi: 10.3732/ajb.93.6.829
– ident: e_1_3_3_18_2
  doi: 10.1175/JCLI4222.1
– ident: e_1_3_3_27_2
  doi: 10.1104/pp.110.165472
– ident: e_1_3_3_26_2
  doi: 10.1111/nph.14496
– volume: 67
  start-page: 383
  year: 2006
  ident: e_1_3_3_23_2
  article-title: Structural determinants of leaf light-harvesting capacity and photosynthetic potentials
  publication-title: Prog Bot
– ident: e_1_3_3_30_2
  doi: 10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2
– ident: e_1_3_3_32_2
  doi: 10.3732/ajb.1200562
– ident: e_1_3_3_7_2
  doi: 10.1104/pp.16.01940
– ident: e_1_3_3_42_2
  doi: 10.1007/BF00328814
– ident: e_1_3_3_48_2
  doi: 10.1086/659963
– start-page: 609
  volume-title: Tropical Forest Diversity and Dynamism: Findings from a Large-Scale Plot Network
  year: 2004
  ident: e_1_3_3_46_2
– ident: e_1_3_3_25_2
  doi: 10.1086/303346
– ident: e_1_3_3_41_2
  doi: 10.1111/ele.12739
– ident: e_1_3_3_2_2
  doi: 10.1038/nature02403
– ident: e_1_3_3_11_2
  doi: 10.1126/science.1231574
– ident: e_1_3_3_8_2
  doi: 10.1038/nclimate3109
– ident: e_1_3_3_51_2
– ident: e_1_3_3_16_2
  doi: 10.1007/BF00317910
– ident: e_1_3_3_28_2
  doi: 10.1093/jxb/erp117
– ident: e_1_3_3_13_2
  doi: 10.1111/nph.12547
– ident: e_1_3_3_44_2
  doi: 10.1126/science.1160662
– ident: e_1_3_3_5_2
  doi: 10.1111/1365-2745.12211
– ident: e_1_3_3_37_2
  doi: 10.1007/PL00013972
– ident: e_1_3_3_50_2
– ident: e_1_3_3_29_2
  doi: 10.1890/05-1051
– ident: e_1_3_3_19_2
  doi: 10.1007/BF00317729
– ident: e_1_3_3_39_2
  doi: 10.1111/nph.12253
– ident: e_1_3_3_49_2
  doi: 10.2307/2445906
– start-page: 137
  volume-title: Studying Forest Canopies from Above: The International Canopy Crane Network
  year: 2003
  ident: e_1_3_3_43_2
– ident: e_1_3_3_1_2
  doi: 10.1073/pnas.94.25.13730
– ident: e_1_3_3_22_2
  doi: 10.1098/rsfs.2015.0100
– ident: e_1_3_3_17_2
  doi: 10.1111/nph.13096
– ident: e_1_3_3_33_2
  doi: 10.1016/j.tree.2008.02.006
– ident: e_1_3_3_47_2
  doi: 10.1890/09-2335.1
– start-page: 25
  volume-title: On the Economy of Plant Form and Function: Proceedings of the Sixth Maria Moors Cabot Symposium, Evolutionary Constraints on Primary Productivity, Adaptive Patterns of Energy Capture in Plants, Harvard Forest, August 1983
  year: 1986
  ident: e_1_3_3_10_2
– ident: e_1_3_3_21_2
  doi: 10.1111/j.1469-8137.2012.04203.x
– ident: e_1_3_3_31_2
  doi: 10.1111/j.1469-8137.2012.04263.x
– ident: e_1_3_3_45_2
  doi: 10.1890/09-1672.1
– ident: e_1_3_3_52_2
– ident: e_1_3_3_38_2
  doi: 10.1111/j.1442-1984.1988.tb00173.x
– ident: e_1_3_3_4_2
  doi: 10.1146/annurev.ecolsys.33.010802.150452
– ident: e_1_3_3_35_2
  doi: 10.1086/285281
– ident: e_1_3_3_6_2
  doi: 10.1093/jxb/erw124
– ident: e_1_3_3_36_2
  doi: 10.2307/1932686
– ident: e_1_3_3_15_2
  doi: 10.1046/j.1365-3040.2001.00724.x
– ident: e_1_3_3_40_2
  doi: 10.1111/j.1365-2435.2006.01221.x
SSID ssj0009580
Score 2.56444
Snippet Understanding variation in leaf functional traits—including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus—is a...
Leaf traits, such as photosynthetic capacity, nitrogen concentration, and leaf mass per area, strongly affect plant growth and nutrient cycles. Understanding...
Understanding variation in leaf functional traits-including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus-is a...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5480
SubjectTerms Banach spaces
Biological Sciences
Chloroplasts
Ecophysiology
Flora
Flowers & plants
Forests
Functional groups
Gas exchange
Interspecific
Leaf area
Leaves
Life span
Mathematical functions
Nitrogen
Nutrient concentrations
Phosphorus
Photosynthesis
Plant Leaves - chemistry
Plant Leaves - genetics
Plant Leaves - metabolism
Plants - chemistry
Plants - classification
Plants - genetics
Plants - metabolism
Quantitative Trait Loci
Species
Species Specificity
Tropical forests
Variation
Title Divergent drivers of leaf trait variation within species, among species, and among functional groups
URI https://www.jstor.org/stable/26509847
https://www.ncbi.nlm.nih.gov/pubmed/29724857
https://www.proquest.com/docview/2100881228
https://www.proquest.com/docview/2035241041
https://pubmed.ncbi.nlm.nih.gov/PMC6003520
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuGCKFAIFGQkDkUhS962jxUPVTyWSrRSb5HjJGpQm602WQ78Ff4sM7bz2LKVgEu0azteeefzeGzPfEPIS16pksdB6QGcEi-OWOxxVSkvDphKfBkkpcLY4S-L9Og0_niWnM1mvyZeS-sun6ufW-NK_keqUAZyxSjZf5Ds0CkUwGeQLzxBwvD8Kxm_Q6cKjI1yi5X2r0DT76KUlc780Lk_YCNsBIzHrXXjYlxlbRSDyTI0LUDWVl2Ia509ItRBH-3Ugj0eVry29y9Y9AeKh2N4itUZreu5x4sx2fHXtukjyCRoePfz6HH8SXYyx9QsJoSold2yPa9HH4FOfq8vbQDbcrX-83jhW3-dMTnICDjewZuY5HlplC_YLl4am_Shg3Y20Z4Whiaa2ipbpKrbugqA2sLUxTCgecD9SHBhe5lg4upSgyIUDEnd2LgcDk6KfdUtcjuEPUiotf6U0Zn7PVcUi95c-zUkmbbvb1g8xul123bmulfuxMw5uUfu2v0JPTRg2yWzsrlPdntp0gNLU_7qASkG9FGLPrqsKKKPavTRAX3UoI9asL2mGmaTr01hi0bkUYO8h-T0w_uTt0eezdnhwdQWHcxxPGPgUaoCUbEqkFElU0BlkovcV4wluOOQUZoLUaZpIlkUyjgqYRdSVFzyMNojO82yKR8TygqoycMcmvigTapcwcs85kJKUQglHDLv_9dMWUJ7HN9Fph0rWJShTLJRJg45GF64MlwuNzfd04Ia2oXINAmWnEP2e8llVhO0WYgMWWAph9whL4Zq0NN4-SabcrmGNkg8HAcwEoc8MoIeO7dIcQjbgMDQADngN2ua-lxzwaea0Nh_cmOfT8mdcbLtk51utS6fgR3d5c81nn8DC1vKXg
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Divergent+drivers+of+leaf+trait+variation+within+species%2C+among+species%2C+and+among+functional+groups&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Osnas%2C+Jeanne+L+D&rft.au=Katabuchi%2C+Masatoshi&rft.au=Kitajima%2C+Kaoru&rft.au=Wright%2C+S+Joseph&rft.date=2018-05-22&rft.eissn=1091-6490&rft.volume=115&rft.issue=21&rft.spage=5480&rft_id=info:doi/10.1073%2Fpnas.1803989115&rft_id=info%3Apmid%2F29724857&rft.externalDocID=29724857
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon