K isotopes as a tracer for continental weathering and geological K cycling
The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable potassium (K) isotopes can potentially overcome the limitations of existing isotopic proxies. Here we report on a systematic investigation of...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 18; pp. 8740 - 8745 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
30.04.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1811282116 |
Cover
Loading…
Abstract | The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable potassium (K) isotopes can potentially overcome the limitations of existing isotopic proxies. Here we report on a systematic investigation of K isotopes in dissolved load and sediments from major rivers and their tributaries in China, which have drainage basins with varied climate, lithology, and topography. Our results show that during silicate weathering, heavy K isotopes are preferentially partitioned into aqueous solutions. Moreover, δ
41K values of riverine dissolved load vary remarkably and correlate negatively with the chemical weathering intensity of the drainage basin. This correlation allows an estimate of the average K isotope composition of global riverine runoff (δ
41K = −0.22‰), as well as modeling of the global K cycle based on mass balance calculations. Modeling incorporating K isotope mass balance better constrains estimated K fluxes for modern global K cycling, and the results show that the δ
41K value of seawater is sensitive to continental weathering intensity changes. Thus, it is possible to use the δ
41K record of paleo-seawater to infer continental weathering intensity through Earth’s history. |
---|---|
AbstractList | The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable potassium (K) isotopes can potentially overcome the limitations of existing isotopic proxies. Here we report on a systematic investigation of K isotopes in dissolved load and sediments from major rivers and their tributaries in China, which have drainage basins with varied climate, lithology, and topography. Our results show that during silicate weathering, heavy K isotopes are preferentially partitioned into aqueous solutions. Moreover, δ
K values of riverine dissolved load vary remarkably and correlate negatively with the chemical weathering intensity of the drainage basin. This correlation allows an estimate of the average K isotope composition of global riverine runoff (δ
K = -0.22‰), as well as modeling of the global K cycle based on mass balance calculations. Modeling incorporating K isotope mass balance better constrains estimated K fluxes for modern global K cycling, and the results show that the δ
K value of seawater is sensitive to continental weathering intensity changes. Thus, it is possible to use the δ
K record of paleo-seawater to infer continental weathering intensity through Earth's history. The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable potassium (K) isotopes can potentially overcome the limitations of existing isotopic proxies. Here we report on a systematic investigation of K isotopes in dissolved load and sediments from major rivers and their tributaries in China, which have drainage basins with varied climate, lithology, and topography. Our results show that during silicate weathering, heavy K isotopes are preferentially partitioned into aqueous solutions. Moreover, δ41K values of riverine dissolved load vary remarkably and correlate negatively with the chemical weathering intensity of the drainage basin. This correlation allows an estimate of the average K isotope composition of global riverine runoff (δ41K = -0.22‰), as well as modeling of the global K cycle based on mass balance calculations. Modeling incorporating K isotope mass balance better constrains estimated K fluxes for modern global K cycling, and the results show that the δ41K value of seawater is sensitive to continental weathering intensity changes. Thus, it is possible to use the δ41K record of paleo-seawater to infer continental weathering intensity through Earth's history.The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable potassium (K) isotopes can potentially overcome the limitations of existing isotopic proxies. Here we report on a systematic investigation of K isotopes in dissolved load and sediments from major rivers and their tributaries in China, which have drainage basins with varied climate, lithology, and topography. Our results show that during silicate weathering, heavy K isotopes are preferentially partitioned into aqueous solutions. Moreover, δ41K values of riverine dissolved load vary remarkably and correlate negatively with the chemical weathering intensity of the drainage basin. This correlation allows an estimate of the average K isotope composition of global riverine runoff (δ41K = -0.22‰), as well as modeling of the global K cycle based on mass balance calculations. Modeling incorporating K isotope mass balance better constrains estimated K fluxes for modern global K cycling, and the results show that the δ41K value of seawater is sensitive to continental weathering intensity changes. Thus, it is possible to use the δ41K record of paleo-seawater to infer continental weathering intensity through Earth's history. The potassium stable isotope system is a powerful new geochemical tool for understanding continental weathering linked to Earth’s climate. Potassium isotopes fractionate strongly during silicate weathering, and δ 41 K values in riverine dissolved loads correlate with the silicate weathering intensity of drainage basins. We provide an estimate of the δ 41 K value for the global riverine input into the oceans and demonstrate the sensitivity of δ 41 K in seawater to the continental silicate weathering process. The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable potassium (K) isotopes can potentially overcome the limitations of existing isotopic proxies. Here we report on a systematic investigation of K isotopes in dissolved load and sediments from major rivers and their tributaries in China, which have drainage basins with varied climate, lithology, and topography. Our results show that during silicate weathering, heavy K isotopes are preferentially partitioned into aqueous solutions. Moreover, δ 41 K values of riverine dissolved load vary remarkably and correlate negatively with the chemical weathering intensity of the drainage basin. This correlation allows an estimate of the average K isotope composition of global riverine runoff (δ 41 K = −0.22‰), as well as modeling of the global K cycle based on mass balance calculations. Modeling incorporating K isotope mass balance better constrains estimated K fluxes for modern global K cycling, and the results show that the δ 41 K value of seawater is sensitive to continental weathering intensity changes. Thus, it is possible to use the δ 41 K record of paleo-seawater to infer continental weathering intensity through Earth’s history. The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable potassium (K) isotopes can potentially overcome the limitations of existing isotopic proxies. Here we report on a systematic investigation of K isotopes in dissolved load and sediments from major rivers and their tributaries in China, which have drainage basins with varied climate, lithology, and topography. Our results show that during silicate weathering, heavy K isotopes are preferentially partitioned into aqueous solutions. Moreover, δ41K values of riverine dissolved load vary remarkably and correlate negatively with the chemical weathering intensity of the drainage basin. This correlation allows an estimate of the average K isotope composition of global riverine runoff (δ41K = −0.22‰), as well as modeling of the global K cycle based on mass balance calculations. Modeling incorporating K isotope mass balance better constrains estimated K fluxes for modern global K cycling, and the results show that the δ41K value of seawater is sensitive to continental weathering intensity changes. Thus, it is possible to use the δ41K record of paleo-seawater to infer continental weathering intensity through Earth’s history. The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable potassium (K) isotopes can potentially overcome the limitations of existing isotopic proxies. Here we report on a systematic investigation of K isotopes in dissolved load and sediments from major rivers and their tributaries in China, which have drainage basins with varied climate, lithology, and topography. Our results show that during silicate weathering, heavy K isotopes are preferentially partitioned into aqueous solutions. Moreover, δ 41K values of riverine dissolved load vary remarkably and correlate negatively with the chemical weathering intensity of the drainage basin. This correlation allows an estimate of the average K isotope composition of global riverine runoff (δ 41K = −0.22‰), as well as modeling of the global K cycle based on mass balance calculations. Modeling incorporating K isotope mass balance better constrains estimated K fluxes for modern global K cycling, and the results show that the δ 41K value of seawater is sensitive to continental weathering intensity changes. Thus, it is possible to use the δ 41K record of paleo-seawater to infer continental weathering intensity through Earth’s history. |
Author | Beard, Brian L. Chen, Jun Li, Weiqiang Raymo, Maureen E. |
Author_xml | – sequence: 2 givenname: Weiqiang surname: Li fullname: Li, Weiqiang – sequence: 3 givenname: Brian L. surname: Beard fullname: Beard, Brian L. – sequence: 4 givenname: Maureen E. surname: Raymo fullname: Raymo, Maureen E. – sequence: 7 givenname: Jun surname: Chen fullname: Chen, Jun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30988182$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9rFDEcxYNU7LZ69qQMePEy7TeZJJO5CKX4swUveg7fzXxnm2U2WZOs0v_eLNtWLQiBHN7nPV7yTthRiIEYe8nhjEPfnW8D5jNuOBdGcK6fsAWHgbdaDnDEFgCib40U8pid5LwGgEEZeMaOOxiM4UYs2JerxudY4pZyg_U0JaGj1EwxNS6G4gOFgnPzi7DcUPJh1WAYmxXFOa68q8pV427dXIXn7OmEc6YXd_cp-_7h_bfLT-3114-fLy-uW6dgKK0EJGXcKIUYe8HJ8W6a-kFLPY7a4VKqATlXSNOouUOQgqjr0BBqWI6D6E7Zu0Pudrfc0OhqwYSz3Sa_wXRrI3r7rxL8jV3Fn1YrAK50DXh7F5Dijx3lYjc-O5pnDBR32QrBQUhl9B598whdx10K9XmVEtCrATpZqdd_N3qocv_NFVAHwKWYc6LJOl-w-Lgv6GfLwe7ntPs57Z85q-_8ke8--v-OVwfHOpeYHnChe5BKiO43rSesSQ |
CitedBy_id | crossref_primary_10_1016_j_epsl_2023_118448 crossref_primary_10_14770_jgsk_2022_58_3_379 crossref_primary_10_1007_s11430_018_9387_2 crossref_primary_10_1073_pnas_2026456118 crossref_primary_10_1039_D4JA00133H crossref_primary_10_1126_sciadv_abb2472 crossref_primary_10_1021_acsearthspacechem_1c00147 crossref_primary_10_1016_j_earscirev_2023_104574 crossref_primary_10_1016_j_gca_2021_07_022 crossref_primary_10_1039_D1JA00268F crossref_primary_10_1016_j_oregeorev_2024_106322 crossref_primary_10_1016_j_gca_2020_02_029 crossref_primary_10_1021_acs_analchem_2c03989 crossref_primary_10_1360_N072022_0083 crossref_primary_10_1073_pnas_2101155118 crossref_primary_10_5194_gmd_17_3949_2024 crossref_primary_10_1002_rcm_10015 crossref_primary_10_1130_B35560_1 crossref_primary_10_1016_j_gca_2022_11_006 crossref_primary_10_1002_rcm_9289 crossref_primary_10_1016_j_gca_2022_07_001 crossref_primary_10_1016_j_gca_2023_07_025 crossref_primary_10_1029_2022GB007581 crossref_primary_10_1016_j_gca_2023_12_027 crossref_primary_10_1007_s11356_023_31207_y crossref_primary_10_1007_s11430_022_9948_6 crossref_primary_10_1086_724747 crossref_primary_10_1016_j_scitotenv_2021_147235 crossref_primary_10_1016_j_gca_2021_06_033 crossref_primary_10_1016_j_icarus_2023_115884 crossref_primary_10_1111_maps_13588 crossref_primary_10_3799_dqkx_2024_100 crossref_primary_10_3389_feart_2022_825818 crossref_primary_10_1039_D0JA00467G crossref_primary_10_1016_j_gca_2020_12_013 crossref_primary_10_1021_acsearthspacechem_0c00047 crossref_primary_10_1016_j_epsl_2022_117849 crossref_primary_10_1021_acsearthspacechem_9b00180 crossref_primary_10_1016_j_chemgeo_2021_120677 crossref_primary_10_1016_j_gca_2020_03_018 crossref_primary_10_1016_j_chemgeo_2024_122457 crossref_primary_10_1016_j_gca_2023_01_004 crossref_primary_10_1016_j_chemgeo_2021_120281 crossref_primary_10_2138_am_2021_7923 crossref_primary_10_1130_G49366_1 crossref_primary_10_1039_D2JA00078D crossref_primary_10_1016_j_jcis_2021_09_134 crossref_primary_10_1039_D0JA00127A crossref_primary_10_1016_j_sab_2021_106348 crossref_primary_10_1016_j_epsl_2023_118526 crossref_primary_10_1016_j_epsl_2024_118642 crossref_primary_10_1016_j_epsl_2023_118402 crossref_primary_10_1021_acsearthspacechem_0c00263 crossref_primary_10_1016_j_chemer_2021_125786 crossref_primary_10_1016_j_epsl_2022_117393 crossref_primary_10_1016_j_plaphy_2021_06_017 crossref_primary_10_1007_s10311_022_01516_8 crossref_primary_10_1007_s11430_023_1199_2 crossref_primary_10_1016_j_gca_2021_08_010 crossref_primary_10_1126_sciadv_adj5474 crossref_primary_10_1016_j_gca_2023_06_020 crossref_primary_10_1007_s10533_020_00704_4 crossref_primary_10_1016_j_epsl_2020_116290 crossref_primary_10_1016_j_eve_2024_100054 crossref_primary_10_1016_j_chemgeo_2023_121350 crossref_primary_10_1016_j_chemgeo_2021_120142 crossref_primary_10_1016_j_gca_2019_06_003 crossref_primary_10_1360_N072023_0058 crossref_primary_10_1016_j_gca_2019_05_022 crossref_primary_10_1016_j_gca_2022_08_007 crossref_primary_10_1016_j_geoderma_2021_115219 crossref_primary_10_1016_j_gca_2020_03_025 crossref_primary_10_1016_j_lithos_2021_106202 crossref_primary_10_1016_j_gca_2022_10_013 crossref_primary_10_1111_ggr_12351 crossref_primary_10_1016_j_gca_2023_03_020 crossref_primary_10_1016_j_gca_2019_05_013 crossref_primary_10_1016_j_gca_2020_07_030 crossref_primary_10_1016_j_fmre_2023_12_005 crossref_primary_10_1016_j_gca_2020_11_012 crossref_primary_10_1016_j_gca_2021_04_027 crossref_primary_10_1016_j_gloplacha_2025_104807 crossref_primary_10_1002_nadc_20224123794 crossref_primary_10_1002_rcm_9692 crossref_primary_10_1016_j_gca_2024_07_035 crossref_primary_10_1016_j_gsf_2024_101882 crossref_primary_10_1029_2018GC008157 crossref_primary_10_1016_j_epsl_2023_118235 crossref_primary_10_1016_j_scib_2019_09_024 crossref_primary_10_3724_j_issn_1007_2802_20240039 crossref_primary_10_1016_j_chemgeo_2023_121770 crossref_primary_10_1016_j_epsl_2020_116192 crossref_primary_10_1016_j_gca_2021_10_009 crossref_primary_10_1016_j_gca_2022_06_025 crossref_primary_10_1016_j_jclepro_2024_140574 crossref_primary_10_1016_j_gca_2021_04_018 crossref_primary_10_1093_petrology_egad024 crossref_primary_10_1016_j_gca_2021_08_001 crossref_primary_10_1016_j_agwat_2024_108738 crossref_primary_10_1039_D2JA00170E crossref_primary_10_1007_s11631_019_00345_x crossref_primary_10_1016_j_chemgeo_2024_122009 crossref_primary_10_1016_j_apgeochem_2025_106343 crossref_primary_10_1007_s11430_023_1220_1 |
Cites_doi | 10.1016/j.gca.2008.06.013 10.1016/S0012-821X(96)00204-X 10.1016/j.scitotenv.2010.06.007 10.2475/ajs.305.3.220 10.1016/S0016-7037(98)00121-5 10.1016/0012-821X(92)90132-F 10.1016/j.chemgeo.2018.05.033 10.1130/G38671.1 10.1016/j.gca.2017.07.037 10.1038/35073504 10.1126/science.270.5236.586 10.1046/j.1365-3121.2000.00295.x 10.1073/pnas.1609228114 10.1146/annurev.earth.24.1.191 10.1130/0091-7613(1988)016<0649:IOLCMB>2.3.CO;2 10.1016/S0016-7037(01)00884-5 10.2475/ajs.287.5.401 10.1038/359117a0 10.1021/acsearthspacechem.8b00035 10.1016/j.gca.2015.12.039 10.1017/CBO9780511781247 10.1016/j.epsl.2013.11.004 10.2475/ajs.283.7.641 10.1016/S0009-2541(99)00031-5 10.1130/0091-7613(1979)7<193:TEOLAO>2.0.CO;2 10.1016/B978-0-08-095975-7.00318-1 10.1038/nature13030 10.1007/s11631-017-0167-1 10.1029/2002GC000392 10.1016/j.gca.2018.02.035 10.1039/C7JA00257B 10.1016/0009-2541(93)90186-M 10.1016/B978-0-08-095975-7.00718-X 10.1007/BF00000881 10.1016/j.apgeochem.2008.09.005 10.1016/j.gca.2009.01.005 10.1016/j.chemgeo.2008.01.025 10.1130/0091-7613(1998)026<0411:CVSWIT>2.3.CO;2 10.1039/C5JA00487J 10.1126/science.1214697 10.1130/0091-7613(2000)28<463:SASGOD>2.0.CO;2 10.1016/j.proeps.2014.08.063 10.1016/j.epsl.2014.05.061 10.1016/j.epsl.2005.03.020 10.1016/j.gca.2015.04.042 10.1016/j.gca.2007.03.021 10.1016/j.gca.2014.09.015 10.1016/0031-9201(85)90027-5 10.1029/JC088iC14p09671 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Apr 30, 2019 2019 |
Copyright_xml | – notice: Copyright National Academy of Sciences Apr 30, 2019 – notice: 2019 |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1811282116 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 8745 |
ExternalDocumentID | PMC6500156 30988182 10_1073_pnas_1811282116 26704522 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: 41622301 – fundername: National Science Foundation (NSF) grantid: 1741048-EAR |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION DOOOF JSODD NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-40ae58cd422d721ec13ff79646dd6cab459a115aefd61ca042ee33a8ea60bd923 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:29:03 EDT 2025 Fri Jul 11 04:23:34 EDT 2025 Mon Jun 30 08:19:24 EDT 2025 Wed Feb 19 02:13:16 EST 2025 Tue Jul 01 03:40:03 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Thu May 29 13:25:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | rivers fractionation K isotopes K cycling continental weathering |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-40ae58cd422d721ec13ff79646dd6cab459a115aefd61ca042ee33a8ea60bd923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Mark H. Thiemens, University of California at San Diego, La Jolla, CA, and approved March 22, 2019 (received for review June 30, 2018) Author contributions: S.L., W.L., Y.C., and J.C. designed research; S.L., W.L., and X.W. performed research; W.L. and B.L.B. contributed new reagents/analytic tools; S.L., W.L., B.L.B., and M.E.R. analyzed data; and S.L. and W.L. wrote the paper. |
ORCID | 0000-0003-2648-7630 |
OpenAccessLink | https://www.pnas.org/content/pnas/116/18/8740.full.pdf |
PMID | 30988182 |
PQID | 2220759034 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6500156 proquest_miscellaneous_2210245866 proquest_journals_2220759034 pubmed_primary_30988182 crossref_citationtrail_10_1073_pnas_1811282116 crossref_primary_10_1073_pnas_1811282116 jstor_primary_26704522 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-30 |
PublicationDateYYYYMMDD | 2019-04-30 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2019 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_18_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 Berner EK (e_1_3_3_16_2) 2012 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 Garrels R (e_1_3_3_50_2) 1971 e_1_3_3_51_2 Swanson-Hysell NL (e_1_3_3_5_2) 2017; 45 Fite RC (e_1_3_3_38_2) 1951 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 Eggleton R (e_1_3_3_39_2) 2001 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_31_2 doi: 10.1016/j.gca.2008.06.013 – ident: e_1_3_3_9_2 doi: 10.1016/S0012-821X(96)00204-X – ident: e_1_3_3_34_2 doi: 10.1016/j.scitotenv.2010.06.007 – ident: e_1_3_3_47_2 doi: 10.2475/ajs.305.3.220 – ident: e_1_3_3_42_2 doi: 10.1016/S0016-7037(98)00121-5 – ident: e_1_3_3_8_2 doi: 10.1016/0012-821X(92)90132-F – ident: e_1_3_3_21_2 doi: 10.1016/j.chemgeo.2018.05.033 – volume-title: The regolith glossary—Surficial geology, soils and landscapes year: 2001 ident: e_1_3_3_39_2 – ident: e_1_3_3_14_2 doi: 10.1130/G38671.1 – ident: e_1_3_3_23_2 doi: 10.1016/j.gca.2017.07.037 – ident: e_1_3_3_15_2 doi: 10.1038/35073504 – volume-title: Global Environment: Water, Air, and Geochemical Cycles year: 2012 ident: e_1_3_3_16_2 – start-page: 123 volume-title: Proceedings of the Oklahoma Academy of Science year: 1951 ident: e_1_3_3_38_2 – ident: e_1_3_3_55_2 doi: 10.1126/science.270.5236.586 – ident: e_1_3_3_11_2 doi: 10.1046/j.1365-3121.2000.00295.x – ident: e_1_3_3_22_2 doi: 10.1073/pnas.1609228114 – ident: e_1_3_3_49_2 doi: 10.1146/annurev.earth.24.1.191 – ident: e_1_3_3_2_2 doi: 10.1130/0091-7613(1988)016<0649:IOLCMB>2.3.CO;2 – ident: e_1_3_3_53_2 doi: 10.1016/S0016-7037(01)00884-5 – ident: e_1_3_3_17_2 doi: 10.2475/ajs.287.5.401 – ident: e_1_3_3_1_2 doi: 10.1038/359117a0 – ident: e_1_3_3_26_2 doi: 10.1021/acsearthspacechem.8b00035 – ident: e_1_3_3_24_2 – ident: e_1_3_3_20_2 doi: 10.1016/j.gca.2015.12.039 – ident: e_1_3_3_44_2 doi: 10.1017/CBO9780511781247 – ident: e_1_3_3_45_2 doi: 10.1016/j.epsl.2013.11.004 – ident: e_1_3_3_3_2 doi: 10.2475/ajs.283.7.641 – ident: e_1_3_3_43_2 doi: 10.1016/S0009-2541(99)00031-5 – ident: e_1_3_3_48_2 doi: 10.1130/0091-7613(1979)7<193:TEOLAO>2.0.CO;2 – ident: e_1_3_3_52_2 doi: 10.1016/B978-0-08-095975-7.00318-1 – ident: e_1_3_3_12_2 doi: 10.1038/nature13030 – ident: e_1_3_3_25_2 doi: 10.1007/s11631-017-0167-1 – ident: e_1_3_3_46_2 doi: 10.1029/2002GC000392 – ident: e_1_3_3_54_2 doi: 10.1016/j.gca.2018.02.035 – volume: 45 start-page: 719 year: 2017 ident: e_1_3_3_5_2 article-title: Tropical weathering of the Taconic orogeny as a driver for Ordovician cooling publication-title: Geology – ident: e_1_3_3_18_2 doi: 10.1039/C7JA00257B – ident: e_1_3_3_10_2 doi: 10.1016/0009-2541(93)90186-M – ident: e_1_3_3_37_2 doi: 10.1016/B978-0-08-095975-7.00718-X – ident: e_1_3_3_27_2 doi: 10.1007/BF00000881 – ident: e_1_3_3_35_2 doi: 10.1016/j.apgeochem.2008.09.005 – ident: e_1_3_3_33_2 doi: 10.1016/j.gca.2009.01.005 – ident: e_1_3_3_36_2 doi: 10.1016/j.chemgeo.2008.01.025 – ident: e_1_3_3_6_2 doi: 10.1130/0091-7613(1998)026<0411:CVSWIT>2.3.CO;2 – ident: e_1_3_3_19_2 doi: 10.1039/C5JA00487J – ident: e_1_3_3_4_2 doi: 10.1126/science.1214697 – ident: e_1_3_3_7_2 doi: 10.1130/0091-7613(2000)28<463:SASGOD>2.0.CO;2 – ident: e_1_3_3_30_2 doi: 10.1016/j.proeps.2014.08.063 – ident: e_1_3_3_29_2 doi: 10.1016/j.epsl.2014.05.061 – ident: e_1_3_3_40_2 doi: 10.1016/j.epsl.2005.03.020 – ident: e_1_3_3_13_2 doi: 10.1016/j.gca.2015.04.042 – volume-title: Evolution of Sedimentary Rocks year: 1971 ident: e_1_3_3_50_2 – ident: e_1_3_3_32_2 doi: 10.1016/j.gca.2007.03.021 – ident: e_1_3_3_28_2 doi: 10.1016/j.gca.2014.09.015 – ident: e_1_3_3_51_2 doi: 10.1016/0031-9201(85)90027-5 – ident: e_1_3_3_41_2 doi: 10.1029/JC088iC14p09671 |
SSID | ssj0009580 |
Score | 2.5908518 |
Snippet | The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable... The potassium stable isotope system is a powerful new geochemical tool for understanding continental weathering linked to Earth’s climate. Potassium isotopes... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8740 |
SubjectTerms | Aqueous solutions Basins Cycles Drainage Drainage basins Fluxes Isotope composition Isotopes Lithology Mass balance Modelling Organic chemistry Physical Sciences Rivers Runoff Seawater Sediment load Sediments Tributaries Uplift Weathering |
Title | K isotopes as a tracer for continental weathering and geological K cycling |
URI | https://www.jstor.org/stable/26704522 https://www.ncbi.nlm.nih.gov/pubmed/30988182 https://www.proquest.com/docview/2220759034 https://www.proquest.com/docview/2210245866 https://pubmed.ncbi.nlm.nih.gov/PMC6500156 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKkNBeEAPGAgMZiYehKqGJ8_NxmgbTOqpKbKJvkeM4XSWWlqYVGn8Zfx53sZO4o0iwqoqixLFb35e7c3LfHSHvBI_DmPHEdosgsP0si-wswbC_jMH9xcMCPhhtMQrPrvzzSTDp9X4ZUUvrVeaIn1t5JfeRKhwDuSJL9j8k23YKB2Af5AtbkDBs_0nGw_6smq_mC1lhuRiO9R6EXNaRgxiCDg5kzXX8ITXNT9ERp7JVeMO-uEVu5NT0UcetTauaCIJR88jwuCOgaK1Q9e3-eNSVM76owwO-XIO2mW0e-ypn3wGM0_YJgORLjS_UMhdO987p9mauiERrDAvqnzrmwwnXfM9i5Pbe-utMreyBpfQVl9qRShGDH2OHviol2mpqRctsIBkbihcrC24YcZWk8g8DARoNqxqXvHLAtwHj7OlODbgsbmq8sEESgzvjdZayjV8cfz4BzxZZ6A_IQw8WKGgSPk1cI91zrMhP-p81SaUi9uHO2LvkUTPQhmukomO3rXvuhu8a_tDlE_JYL2TosULlHunJ8inZa6adHul85u-fkfMhbWBKOXypgikFmFIDprSDKQWY0g6mdEg1TJ-Tq4-nlydnti7hYQvwRFe2P-AywPpYnpfDLEnhsqJA9nOY56HgmR8kHNYkXBZ56AoOFkRKxngseTjIclh87JOdcl7KA0IZdyUTEQuSAhNIybiAKUsELHj8PIJRLOI0s5cKnd8ey6x8S-s4i4ilOPNpN_MWOWovWKjULn9vul-Lo23nhVFdi8Aih418Uq0YqhRcbnDEkwHzLfK2PQ1qG9_F8VLO19jGxaCHOIS-Xyhxtp03eLBItCHotgGmhN88U86u69TwGpUv733lK7Lb3ceHZGe1XMvX4Havsjc1wn8DOAXXdw |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=K+isotopes+as+a+tracer+for+continental+weathering+and+geological+K+cycling&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Li%2C+Shilei&rft.au=Li%2C+Weiqiang&rft.au=Beard%2C+Brian+L.&rft.au=Raymo%2C+Maureen+E.&rft.date=2019-04-30&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=18&rft.spage=8740&rft.epage=8745&rft_id=info:doi/10.1073%2Fpnas.1811282116&rft_id=info%3Apmid%2F30988182&rft.externalDocID=PMC6500156 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |