K isotopes as a tracer for continental weathering and geological K cycling

The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable potassium (K) isotopes can potentially overcome the limitations of existing isotopic proxies. Here we report on a systematic investigation of...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 18; pp. 8740 - 8745
Main Authors Li, Weiqiang, Beard, Brian L., Raymo, Maureen E., Chen, Jun
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 30.04.2019
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1811282116

Cover

Loading…
Abstract The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable potassium (K) isotopes can potentially overcome the limitations of existing isotopic proxies. Here we report on a systematic investigation of K isotopes in dissolved load and sediments from major rivers and their tributaries in China, which have drainage basins with varied climate, lithology, and topography. Our results show that during silicate weathering, heavy K isotopes are preferentially partitioned into aqueous solutions. Moreover, δ 41K values of riverine dissolved load vary remarkably and correlate negatively with the chemical weathering intensity of the drainage basin. This correlation allows an estimate of the average K isotope composition of global riverine runoff (δ 41K = −0.22‰), as well as modeling of the global K cycle based on mass balance calculations. Modeling incorporating K isotope mass balance better constrains estimated K fluxes for modern global K cycling, and the results show that the δ 41K value of seawater is sensitive to continental weathering intensity changes. Thus, it is possible to use the δ 41K record of paleo-seawater to infer continental weathering intensity through Earth’s history.
AbstractList The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable potassium (K) isotopes can potentially overcome the limitations of existing isotopic proxies. Here we report on a systematic investigation of K isotopes in dissolved load and sediments from major rivers and their tributaries in China, which have drainage basins with varied climate, lithology, and topography. Our results show that during silicate weathering, heavy K isotopes are preferentially partitioned into aqueous solutions. Moreover, δ K values of riverine dissolved load vary remarkably and correlate negatively with the chemical weathering intensity of the drainage basin. This correlation allows an estimate of the average K isotope composition of global riverine runoff (δ K = -0.22‰), as well as modeling of the global K cycle based on mass balance calculations. Modeling incorporating K isotope mass balance better constrains estimated K fluxes for modern global K cycling, and the results show that the δ K value of seawater is sensitive to continental weathering intensity changes. Thus, it is possible to use the δ K record of paleo-seawater to infer continental weathering intensity through Earth's history.
The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable potassium (K) isotopes can potentially overcome the limitations of existing isotopic proxies. Here we report on a systematic investigation of K isotopes in dissolved load and sediments from major rivers and their tributaries in China, which have drainage basins with varied climate, lithology, and topography. Our results show that during silicate weathering, heavy K isotopes are preferentially partitioned into aqueous solutions. Moreover, δ41K values of riverine dissolved load vary remarkably and correlate negatively with the chemical weathering intensity of the drainage basin. This correlation allows an estimate of the average K isotope composition of global riverine runoff (δ41K = -0.22‰), as well as modeling of the global K cycle based on mass balance calculations. Modeling incorporating K isotope mass balance better constrains estimated K fluxes for modern global K cycling, and the results show that the δ41K value of seawater is sensitive to continental weathering intensity changes. Thus, it is possible to use the δ41K record of paleo-seawater to infer continental weathering intensity through Earth's history.The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable potassium (K) isotopes can potentially overcome the limitations of existing isotopic proxies. Here we report on a systematic investigation of K isotopes in dissolved load and sediments from major rivers and their tributaries in China, which have drainage basins with varied climate, lithology, and topography. Our results show that during silicate weathering, heavy K isotopes are preferentially partitioned into aqueous solutions. Moreover, δ41K values of riverine dissolved load vary remarkably and correlate negatively with the chemical weathering intensity of the drainage basin. This correlation allows an estimate of the average K isotope composition of global riverine runoff (δ41K = -0.22‰), as well as modeling of the global K cycle based on mass balance calculations. Modeling incorporating K isotope mass balance better constrains estimated K fluxes for modern global K cycling, and the results show that the δ41K value of seawater is sensitive to continental weathering intensity changes. Thus, it is possible to use the δ41K record of paleo-seawater to infer continental weathering intensity through Earth's history.
The potassium stable isotope system is a powerful new geochemical tool for understanding continental weathering linked to Earth’s climate. Potassium isotopes fractionate strongly during silicate weathering, and δ 41 K values in riverine dissolved loads correlate with the silicate weathering intensity of drainage basins. We provide an estimate of the δ 41 K value for the global riverine input into the oceans and demonstrate the sensitivity of δ 41 K in seawater to the continental silicate weathering process. The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable potassium (K) isotopes can potentially overcome the limitations of existing isotopic proxies. Here we report on a systematic investigation of K isotopes in dissolved load and sediments from major rivers and their tributaries in China, which have drainage basins with varied climate, lithology, and topography. Our results show that during silicate weathering, heavy K isotopes are preferentially partitioned into aqueous solutions. Moreover, δ 41 K values of riverine dissolved load vary remarkably and correlate negatively with the chemical weathering intensity of the drainage basin. This correlation allows an estimate of the average K isotope composition of global riverine runoff (δ 41 K = −0.22‰), as well as modeling of the global K cycle based on mass balance calculations. Modeling incorporating K isotope mass balance better constrains estimated K fluxes for modern global K cycling, and the results show that the δ 41 K value of seawater is sensitive to continental weathering intensity changes. Thus, it is possible to use the δ 41 K record of paleo-seawater to infer continental weathering intensity through Earth’s history.
The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable potassium (K) isotopes can potentially overcome the limitations of existing isotopic proxies. Here we report on a systematic investigation of K isotopes in dissolved load and sediments from major rivers and their tributaries in China, which have drainage basins with varied climate, lithology, and topography. Our results show that during silicate weathering, heavy K isotopes are preferentially partitioned into aqueous solutions. Moreover, δ41K values of riverine dissolved load vary remarkably and correlate negatively with the chemical weathering intensity of the drainage basin. This correlation allows an estimate of the average K isotope composition of global riverine runoff (δ41K = −0.22‰), as well as modeling of the global K cycle based on mass balance calculations. Modeling incorporating K isotope mass balance better constrains estimated K fluxes for modern global K cycling, and the results show that the δ41K value of seawater is sensitive to continental weathering intensity changes. Thus, it is possible to use the δ41K record of paleo-seawater to infer continental weathering intensity through Earth’s history.
The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable potassium (K) isotopes can potentially overcome the limitations of existing isotopic proxies. Here we report on a systematic investigation of K isotopes in dissolved load and sediments from major rivers and their tributaries in China, which have drainage basins with varied climate, lithology, and topography. Our results show that during silicate weathering, heavy K isotopes are preferentially partitioned into aqueous solutions. Moreover, δ 41K values of riverine dissolved load vary remarkably and correlate negatively with the chemical weathering intensity of the drainage basin. This correlation allows an estimate of the average K isotope composition of global riverine runoff (δ 41K = −0.22‰), as well as modeling of the global K cycle based on mass balance calculations. Modeling incorporating K isotope mass balance better constrains estimated K fluxes for modern global K cycling, and the results show that the δ 41K value of seawater is sensitive to continental weathering intensity changes. Thus, it is possible to use the δ 41K record of paleo-seawater to infer continental weathering intensity through Earth’s history.
Author Beard, Brian L.
Chen, Jun
Li, Weiqiang
Raymo, Maureen E.
Author_xml – sequence: 2
  givenname: Weiqiang
  surname: Li
  fullname: Li, Weiqiang
– sequence: 3
  givenname: Brian L.
  surname: Beard
  fullname: Beard, Brian L.
– sequence: 4
  givenname: Maureen E.
  surname: Raymo
  fullname: Raymo, Maureen E.
– sequence: 7
  givenname: Jun
  surname: Chen
  fullname: Chen, Jun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30988182$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9rFDEcxYNU7LZ69qQMePEy7TeZJJO5CKX4swUveg7fzXxnm2U2WZOs0v_eLNtWLQiBHN7nPV7yTthRiIEYe8nhjEPfnW8D5jNuOBdGcK6fsAWHgbdaDnDEFgCib40U8pid5LwGgEEZeMaOOxiM4UYs2JerxudY4pZyg_U0JaGj1EwxNS6G4gOFgnPzi7DcUPJh1WAYmxXFOa68q8pV427dXIXn7OmEc6YXd_cp-_7h_bfLT-3114-fLy-uW6dgKK0EJGXcKIUYe8HJ8W6a-kFLPY7a4VKqATlXSNOouUOQgqjr0BBqWI6D6E7Zu0Pudrfc0OhqwYSz3Sa_wXRrI3r7rxL8jV3Fn1YrAK50DXh7F5Dijx3lYjc-O5pnDBR32QrBQUhl9B598whdx10K9XmVEtCrATpZqdd_N3qocv_NFVAHwKWYc6LJOl-w-Lgv6GfLwe7ntPs57Z85q-_8ke8--v-OVwfHOpeYHnChe5BKiO43rSesSQ
CitedBy_id crossref_primary_10_1016_j_epsl_2023_118448
crossref_primary_10_14770_jgsk_2022_58_3_379
crossref_primary_10_1007_s11430_018_9387_2
crossref_primary_10_1073_pnas_2026456118
crossref_primary_10_1039_D4JA00133H
crossref_primary_10_1126_sciadv_abb2472
crossref_primary_10_1021_acsearthspacechem_1c00147
crossref_primary_10_1016_j_earscirev_2023_104574
crossref_primary_10_1016_j_gca_2021_07_022
crossref_primary_10_1039_D1JA00268F
crossref_primary_10_1016_j_oregeorev_2024_106322
crossref_primary_10_1016_j_gca_2020_02_029
crossref_primary_10_1021_acs_analchem_2c03989
crossref_primary_10_1360_N072022_0083
crossref_primary_10_1073_pnas_2101155118
crossref_primary_10_5194_gmd_17_3949_2024
crossref_primary_10_1002_rcm_10015
crossref_primary_10_1130_B35560_1
crossref_primary_10_1016_j_gca_2022_11_006
crossref_primary_10_1002_rcm_9289
crossref_primary_10_1016_j_gca_2022_07_001
crossref_primary_10_1016_j_gca_2023_07_025
crossref_primary_10_1029_2022GB007581
crossref_primary_10_1016_j_gca_2023_12_027
crossref_primary_10_1007_s11356_023_31207_y
crossref_primary_10_1007_s11430_022_9948_6
crossref_primary_10_1086_724747
crossref_primary_10_1016_j_scitotenv_2021_147235
crossref_primary_10_1016_j_gca_2021_06_033
crossref_primary_10_1016_j_icarus_2023_115884
crossref_primary_10_1111_maps_13588
crossref_primary_10_3799_dqkx_2024_100
crossref_primary_10_3389_feart_2022_825818
crossref_primary_10_1039_D0JA00467G
crossref_primary_10_1016_j_gca_2020_12_013
crossref_primary_10_1021_acsearthspacechem_0c00047
crossref_primary_10_1016_j_epsl_2022_117849
crossref_primary_10_1021_acsearthspacechem_9b00180
crossref_primary_10_1016_j_chemgeo_2021_120677
crossref_primary_10_1016_j_gca_2020_03_018
crossref_primary_10_1016_j_chemgeo_2024_122457
crossref_primary_10_1016_j_gca_2023_01_004
crossref_primary_10_1016_j_chemgeo_2021_120281
crossref_primary_10_2138_am_2021_7923
crossref_primary_10_1130_G49366_1
crossref_primary_10_1039_D2JA00078D
crossref_primary_10_1016_j_jcis_2021_09_134
crossref_primary_10_1039_D0JA00127A
crossref_primary_10_1016_j_sab_2021_106348
crossref_primary_10_1016_j_epsl_2023_118526
crossref_primary_10_1016_j_epsl_2024_118642
crossref_primary_10_1016_j_epsl_2023_118402
crossref_primary_10_1021_acsearthspacechem_0c00263
crossref_primary_10_1016_j_chemer_2021_125786
crossref_primary_10_1016_j_epsl_2022_117393
crossref_primary_10_1016_j_plaphy_2021_06_017
crossref_primary_10_1007_s10311_022_01516_8
crossref_primary_10_1007_s11430_023_1199_2
crossref_primary_10_1016_j_gca_2021_08_010
crossref_primary_10_1126_sciadv_adj5474
crossref_primary_10_1016_j_gca_2023_06_020
crossref_primary_10_1007_s10533_020_00704_4
crossref_primary_10_1016_j_epsl_2020_116290
crossref_primary_10_1016_j_eve_2024_100054
crossref_primary_10_1016_j_chemgeo_2023_121350
crossref_primary_10_1016_j_chemgeo_2021_120142
crossref_primary_10_1016_j_gca_2019_06_003
crossref_primary_10_1360_N072023_0058
crossref_primary_10_1016_j_gca_2019_05_022
crossref_primary_10_1016_j_gca_2022_08_007
crossref_primary_10_1016_j_geoderma_2021_115219
crossref_primary_10_1016_j_gca_2020_03_025
crossref_primary_10_1016_j_lithos_2021_106202
crossref_primary_10_1016_j_gca_2022_10_013
crossref_primary_10_1111_ggr_12351
crossref_primary_10_1016_j_gca_2023_03_020
crossref_primary_10_1016_j_gca_2019_05_013
crossref_primary_10_1016_j_gca_2020_07_030
crossref_primary_10_1016_j_fmre_2023_12_005
crossref_primary_10_1016_j_gca_2020_11_012
crossref_primary_10_1016_j_gca_2021_04_027
crossref_primary_10_1016_j_gloplacha_2025_104807
crossref_primary_10_1002_nadc_20224123794
crossref_primary_10_1002_rcm_9692
crossref_primary_10_1016_j_gca_2024_07_035
crossref_primary_10_1016_j_gsf_2024_101882
crossref_primary_10_1029_2018GC008157
crossref_primary_10_1016_j_epsl_2023_118235
crossref_primary_10_1016_j_scib_2019_09_024
crossref_primary_10_3724_j_issn_1007_2802_20240039
crossref_primary_10_1016_j_chemgeo_2023_121770
crossref_primary_10_1016_j_epsl_2020_116192
crossref_primary_10_1016_j_gca_2021_10_009
crossref_primary_10_1016_j_gca_2022_06_025
crossref_primary_10_1016_j_jclepro_2024_140574
crossref_primary_10_1016_j_gca_2021_04_018
crossref_primary_10_1093_petrology_egad024
crossref_primary_10_1016_j_gca_2021_08_001
crossref_primary_10_1016_j_agwat_2024_108738
crossref_primary_10_1039_D2JA00170E
crossref_primary_10_1007_s11631_019_00345_x
crossref_primary_10_1016_j_chemgeo_2024_122009
crossref_primary_10_1016_j_apgeochem_2025_106343
crossref_primary_10_1007_s11430_023_1220_1
Cites_doi 10.1016/j.gca.2008.06.013
10.1016/S0012-821X(96)00204-X
10.1016/j.scitotenv.2010.06.007
10.2475/ajs.305.3.220
10.1016/S0016-7037(98)00121-5
10.1016/0012-821X(92)90132-F
10.1016/j.chemgeo.2018.05.033
10.1130/G38671.1
10.1016/j.gca.2017.07.037
10.1038/35073504
10.1126/science.270.5236.586
10.1046/j.1365-3121.2000.00295.x
10.1073/pnas.1609228114
10.1146/annurev.earth.24.1.191
10.1130/0091-7613(1988)016<0649:IOLCMB>2.3.CO;2
10.1016/S0016-7037(01)00884-5
10.2475/ajs.287.5.401
10.1038/359117a0
10.1021/acsearthspacechem.8b00035
10.1016/j.gca.2015.12.039
10.1017/CBO9780511781247
10.1016/j.epsl.2013.11.004
10.2475/ajs.283.7.641
10.1016/S0009-2541(99)00031-5
10.1130/0091-7613(1979)7<193:TEOLAO>2.0.CO;2
10.1016/B978-0-08-095975-7.00318-1
10.1038/nature13030
10.1007/s11631-017-0167-1
10.1029/2002GC000392
10.1016/j.gca.2018.02.035
10.1039/C7JA00257B
10.1016/0009-2541(93)90186-M
10.1016/B978-0-08-095975-7.00718-X
10.1007/BF00000881
10.1016/j.apgeochem.2008.09.005
10.1016/j.gca.2009.01.005
10.1016/j.chemgeo.2008.01.025
10.1130/0091-7613(1998)026<0411:CVSWIT>2.3.CO;2
10.1039/C5JA00487J
10.1126/science.1214697
10.1130/0091-7613(2000)28<463:SASGOD>2.0.CO;2
10.1016/j.proeps.2014.08.063
10.1016/j.epsl.2014.05.061
10.1016/j.epsl.2005.03.020
10.1016/j.gca.2015.04.042
10.1016/j.gca.2007.03.021
10.1016/j.gca.2014.09.015
10.1016/0031-9201(85)90027-5
10.1029/JC088iC14p09671
ContentType Journal Article
Copyright Copyright National Academy of Sciences Apr 30, 2019
2019
Copyright_xml – notice: Copyright National Academy of Sciences Apr 30, 2019
– notice: 2019
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1811282116
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef

Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 8745
ExternalDocumentID PMC6500156
30988182
10_1073_pnas_1811282116
26704522
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: 41622301
– fundername: National Science Foundation (NSF)
  grantid: 1741048-EAR
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
DOOOF
JSODD
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-40ae58cd422d721ec13ff79646dd6cab459a115aefd61ca042ee33a8ea60bd923
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:29:03 EDT 2025
Fri Jul 11 04:23:34 EDT 2025
Mon Jun 30 08:19:24 EDT 2025
Wed Feb 19 02:13:16 EST 2025
Tue Jul 01 03:40:03 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Thu May 29 13:25:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords rivers
fractionation
K isotopes
K cycling
continental weathering
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-40ae58cd422d721ec13ff79646dd6cab459a115aefd61ca042ee33a8ea60bd923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Mark H. Thiemens, University of California at San Diego, La Jolla, CA, and approved March 22, 2019 (received for review June 30, 2018)
Author contributions: S.L., W.L., Y.C., and J.C. designed research; S.L., W.L., and X.W. performed research; W.L. and B.L.B. contributed new reagents/analytic tools; S.L., W.L., B.L.B., and M.E.R. analyzed data; and S.L. and W.L. wrote the paper.
ORCID 0000-0003-2648-7630
OpenAccessLink https://www.pnas.org/content/pnas/116/18/8740.full.pdf
PMID 30988182
PQID 2220759034
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6500156
proquest_miscellaneous_2210245866
proquest_journals_2220759034
pubmed_primary_30988182
crossref_citationtrail_10_1073_pnas_1811282116
crossref_primary_10_1073_pnas_1811282116
jstor_primary_26704522
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-30
PublicationDateYYYYMMDD 2019-04-30
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_18_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
Berner EK (e_1_3_3_16_2) 2012
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
Garrels R (e_1_3_3_50_2) 1971
e_1_3_3_51_2
Swanson-Hysell NL (e_1_3_3_5_2) 2017; 45
Fite RC (e_1_3_3_38_2) 1951
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
Eggleton R (e_1_3_3_39_2) 2001
e_1_3_3_41_2
References_xml – ident: e_1_3_3_31_2
  doi: 10.1016/j.gca.2008.06.013
– ident: e_1_3_3_9_2
  doi: 10.1016/S0012-821X(96)00204-X
– ident: e_1_3_3_34_2
  doi: 10.1016/j.scitotenv.2010.06.007
– ident: e_1_3_3_47_2
  doi: 10.2475/ajs.305.3.220
– ident: e_1_3_3_42_2
  doi: 10.1016/S0016-7037(98)00121-5
– ident: e_1_3_3_8_2
  doi: 10.1016/0012-821X(92)90132-F
– ident: e_1_3_3_21_2
  doi: 10.1016/j.chemgeo.2018.05.033
– volume-title: The regolith glossary—Surficial geology, soils and landscapes
  year: 2001
  ident: e_1_3_3_39_2
– ident: e_1_3_3_14_2
  doi: 10.1130/G38671.1
– ident: e_1_3_3_23_2
  doi: 10.1016/j.gca.2017.07.037
– ident: e_1_3_3_15_2
  doi: 10.1038/35073504
– volume-title: Global Environment: Water, Air, and Geochemical Cycles
  year: 2012
  ident: e_1_3_3_16_2
– start-page: 123
  volume-title: Proceedings of the Oklahoma Academy of Science
  year: 1951
  ident: e_1_3_3_38_2
– ident: e_1_3_3_55_2
  doi: 10.1126/science.270.5236.586
– ident: e_1_3_3_11_2
  doi: 10.1046/j.1365-3121.2000.00295.x
– ident: e_1_3_3_22_2
  doi: 10.1073/pnas.1609228114
– ident: e_1_3_3_49_2
  doi: 10.1146/annurev.earth.24.1.191
– ident: e_1_3_3_2_2
  doi: 10.1130/0091-7613(1988)016<0649:IOLCMB>2.3.CO;2
– ident: e_1_3_3_53_2
  doi: 10.1016/S0016-7037(01)00884-5
– ident: e_1_3_3_17_2
  doi: 10.2475/ajs.287.5.401
– ident: e_1_3_3_1_2
  doi: 10.1038/359117a0
– ident: e_1_3_3_26_2
  doi: 10.1021/acsearthspacechem.8b00035
– ident: e_1_3_3_24_2
– ident: e_1_3_3_20_2
  doi: 10.1016/j.gca.2015.12.039
– ident: e_1_3_3_44_2
  doi: 10.1017/CBO9780511781247
– ident: e_1_3_3_45_2
  doi: 10.1016/j.epsl.2013.11.004
– ident: e_1_3_3_3_2
  doi: 10.2475/ajs.283.7.641
– ident: e_1_3_3_43_2
  doi: 10.1016/S0009-2541(99)00031-5
– ident: e_1_3_3_48_2
  doi: 10.1130/0091-7613(1979)7<193:TEOLAO>2.0.CO;2
– ident: e_1_3_3_52_2
  doi: 10.1016/B978-0-08-095975-7.00318-1
– ident: e_1_3_3_12_2
  doi: 10.1038/nature13030
– ident: e_1_3_3_25_2
  doi: 10.1007/s11631-017-0167-1
– ident: e_1_3_3_46_2
  doi: 10.1029/2002GC000392
– ident: e_1_3_3_54_2
  doi: 10.1016/j.gca.2018.02.035
– volume: 45
  start-page: 719
  year: 2017
  ident: e_1_3_3_5_2
  article-title: Tropical weathering of the Taconic orogeny as a driver for Ordovician cooling
  publication-title: Geology
– ident: e_1_3_3_18_2
  doi: 10.1039/C7JA00257B
– ident: e_1_3_3_10_2
  doi: 10.1016/0009-2541(93)90186-M
– ident: e_1_3_3_37_2
  doi: 10.1016/B978-0-08-095975-7.00718-X
– ident: e_1_3_3_27_2
  doi: 10.1007/BF00000881
– ident: e_1_3_3_35_2
  doi: 10.1016/j.apgeochem.2008.09.005
– ident: e_1_3_3_33_2
  doi: 10.1016/j.gca.2009.01.005
– ident: e_1_3_3_36_2
  doi: 10.1016/j.chemgeo.2008.01.025
– ident: e_1_3_3_6_2
  doi: 10.1130/0091-7613(1998)026<0411:CVSWIT>2.3.CO;2
– ident: e_1_3_3_19_2
  doi: 10.1039/C5JA00487J
– ident: e_1_3_3_4_2
  doi: 10.1126/science.1214697
– ident: e_1_3_3_7_2
  doi: 10.1130/0091-7613(2000)28<463:SASGOD>2.0.CO;2
– ident: e_1_3_3_30_2
  doi: 10.1016/j.proeps.2014.08.063
– ident: e_1_3_3_29_2
  doi: 10.1016/j.epsl.2014.05.061
– ident: e_1_3_3_40_2
  doi: 10.1016/j.epsl.2005.03.020
– ident: e_1_3_3_13_2
  doi: 10.1016/j.gca.2015.04.042
– volume-title: Evolution of Sedimentary Rocks
  year: 1971
  ident: e_1_3_3_50_2
– ident: e_1_3_3_32_2
  doi: 10.1016/j.gca.2007.03.021
– ident: e_1_3_3_28_2
  doi: 10.1016/j.gca.2014.09.015
– ident: e_1_3_3_51_2
  doi: 10.1016/0031-9201(85)90027-5
– ident: e_1_3_3_41_2
  doi: 10.1029/JC088iC14p09671
SSID ssj0009580
Score 2.5908518
Snippet The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable...
The potassium stable isotope system is a powerful new geochemical tool for understanding continental weathering linked to Earth’s climate. Potassium isotopes...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8740
SubjectTerms Aqueous solutions
Basins
Cycles
Drainage
Drainage basins
Fluxes
Isotope composition
Isotopes
Lithology
Mass balance
Modelling
Organic chemistry
Physical Sciences
Rivers
Runoff
Seawater
Sediment load
Sediments
Tributaries
Uplift
Weathering
Title K isotopes as a tracer for continental weathering and geological K cycling
URI https://www.jstor.org/stable/26704522
https://www.ncbi.nlm.nih.gov/pubmed/30988182
https://www.proquest.com/docview/2220759034
https://www.proquest.com/docview/2210245866
https://pubmed.ncbi.nlm.nih.gov/PMC6500156
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKkNBeEAPGAgMZiYehKqGJ8_NxmgbTOqpKbKJvkeM4XSWWlqYVGn8Zfx53sZO4o0iwqoqixLFb35e7c3LfHSHvBI_DmPHEdosgsP0si-wswbC_jMH9xcMCPhhtMQrPrvzzSTDp9X4ZUUvrVeaIn1t5JfeRKhwDuSJL9j8k23YKB2Af5AtbkDBs_0nGw_6smq_mC1lhuRiO9R6EXNaRgxiCDg5kzXX8ITXNT9ERp7JVeMO-uEVu5NT0UcetTauaCIJR88jwuCOgaK1Q9e3-eNSVM76owwO-XIO2mW0e-ypn3wGM0_YJgORLjS_UMhdO987p9mauiERrDAvqnzrmwwnXfM9i5Pbe-utMreyBpfQVl9qRShGDH2OHviol2mpqRctsIBkbihcrC24YcZWk8g8DARoNqxqXvHLAtwHj7OlODbgsbmq8sEESgzvjdZayjV8cfz4BzxZZ6A_IQw8WKGgSPk1cI91zrMhP-p81SaUi9uHO2LvkUTPQhmukomO3rXvuhu8a_tDlE_JYL2TosULlHunJ8inZa6adHul85u-fkfMhbWBKOXypgikFmFIDprSDKQWY0g6mdEg1TJ-Tq4-nlydnti7hYQvwRFe2P-AywPpYnpfDLEnhsqJA9nOY56HgmR8kHNYkXBZ56AoOFkRKxngseTjIclh87JOdcl7KA0IZdyUTEQuSAhNIybiAKUsELHj8PIJRLOI0s5cKnd8ey6x8S-s4i4ilOPNpN_MWOWovWKjULn9vul-Lo23nhVFdi8Aih418Uq0YqhRcbnDEkwHzLfK2PQ1qG9_F8VLO19jGxaCHOIS-Xyhxtp03eLBItCHotgGmhN88U86u69TwGpUv733lK7Lb3ceHZGe1XMvX4Havsjc1wn8DOAXXdw
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=K+isotopes+as+a+tracer+for+continental+weathering+and+geological+K+cycling&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Li%2C+Shilei&rft.au=Li%2C+Weiqiang&rft.au=Beard%2C+Brian+L.&rft.au=Raymo%2C+Maureen+E.&rft.date=2019-04-30&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=18&rft.spage=8740&rft.epage=8745&rft_id=info:doi/10.1073%2Fpnas.1811282116&rft_id=info%3Apmid%2F30988182&rft.externalDocID=PMC6500156
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon