SecureVision: Advanced Cybersecurity Deepfake Detection with Big Data Analytics

SecureVision is an advanced and trustworthy deepfake detection system created to tackle the growing threat of ‘deepfake’ movies that tamper with media, undermine public trust, and jeopardize cybersecurity. We present a novel approach that combines big data analytics with state-of-the-art deep learni...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 19; p. 6300
Main Authors Kumar, Naresh, Kundu, Ankit
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.09.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SecureVision is an advanced and trustworthy deepfake detection system created to tackle the growing threat of ‘deepfake’ movies that tamper with media, undermine public trust, and jeopardize cybersecurity. We present a novel approach that combines big data analytics with state-of-the-art deep learning algorithms to detect altered information in both audio and visual domains. One of SecureVision’s primary innovations is the use of multi-modal analysis, which improves detection capabilities by concurrently analyzing many media forms and strengthening resistance against advanced deepfake techniques. The system’s efficacy is further enhanced by its capacity to manage large datasets and integrate self-supervised learning, which guarantees its flexibility in the ever-changing field of digital deception. In the end, this study helps to protect digital integrity by providing a proactive, scalable, and efficient defense against the ubiquitous threat of deepfakes, thereby establishing a new benchmark for privacy and security measures in the digital era.
AbstractList SecureVision is an advanced and trustworthy deepfake detection system created to tackle the growing threat of ‘deepfake’ movies that tamper with media, undermine public trust, and jeopardize cybersecurity. We present a novel approach that combines big data analytics with state-of-the-art deep learning algorithms to detect altered information in both audio and visual domains. One of SecureVision’s primary innovations is the use of multi-modal analysis, which improves detection capabilities by concurrently analyzing many media forms and strengthening resistance against advanced deepfake techniques. The system’s efficacy is further enhanced by its capacity to manage large datasets and integrate self-supervised learning, which guarantees its flexibility in the ever-changing field of digital deception. In the end, this study helps to protect digital integrity by providing a proactive, scalable, and efficient defense against the ubiquitous threat of deepfakes, thereby establishing a new benchmark for privacy and security measures in the digital era.
SecureVision is an advanced and trustworthy deepfake detection system created to tackle the growing threat of 'deepfake' movies that tamper with media, undermine public trust, and jeopardize cybersecurity. We present a novel approach that combines big data analytics with state-of-the-art deep learning algorithms to detect altered information in both audio and visual domains. One of SecureVision's primary innovations is the use of multi-modal analysis, which improves detection capabilities by concurrently analyzing many media forms and strengthening resistance against advanced deepfake techniques. The system's efficacy is further enhanced by its capacity to manage large datasets and integrate self-supervised learning, which guarantees its flexibility in the ever-changing field of digital deception. In the end, this study helps to protect digital integrity by providing a proactive, scalable, and efficient defense against the ubiquitous threat of deepfakes, thereby establishing a new benchmark for privacy and security measures in the digital era.SecureVision is an advanced and trustworthy deepfake detection system created to tackle the growing threat of 'deepfake' movies that tamper with media, undermine public trust, and jeopardize cybersecurity. We present a novel approach that combines big data analytics with state-of-the-art deep learning algorithms to detect altered information in both audio and visual domains. One of SecureVision's primary innovations is the use of multi-modal analysis, which improves detection capabilities by concurrently analyzing many media forms and strengthening resistance against advanced deepfake techniques. The system's efficacy is further enhanced by its capacity to manage large datasets and integrate self-supervised learning, which guarantees its flexibility in the ever-changing field of digital deception. In the end, this study helps to protect digital integrity by providing a proactive, scalable, and efficient defense against the ubiquitous threat of deepfakes, thereby establishing a new benchmark for privacy and security measures in the digital era.
Audience Academic
Author Kumar, Naresh
Kundu, Ankit
AuthorAffiliation 1 Maharaja Surajmal Institute of Technology, New Delhi 110058, India; nareshkumar@msit.in
2 New York Institute of Technology, Vancouver, BC V5M 4X5, Canada
AuthorAffiliation_xml – name: 2 New York Institute of Technology, Vancouver, BC V5M 4X5, Canada
– name: 1 Maharaja Surajmal Institute of Technology, New Delhi 110058, India; nareshkumar@msit.in
Author_xml – sequence: 1
  givenname: Naresh
  orcidid: 0000-0001-9984-506X
  surname: Kumar
  fullname: Kumar, Naresh
– sequence: 2
  givenname: Ankit
  orcidid: 0009-0000-2417-1275
  surname: Kundu
  fullname: Kundu, Ankit
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39409343$$D View this record in MEDLINE/PubMed
BookMark eNplkktvGyEQx1GVqkncHvoFqpV6aQ9OYGF59FK5Th-RIuXQxxVhGBzc9eICm8rfvjhOoiQVB0Yzv_nPDMMxOhjiAAi9JviEUoVPc8uI4hTjZ-iIsJZNZdvigwf2ITrOeYVxSymVL9AhVQwryugRuvwOdkzwK-QQhw_NzF2bwYJr5tsFpLyLhbJtzgA23vyGahSwpaLN31Cumk9h2ZyZYprZYPptCTa_RM-96TO8ur0n6OeXzz_m36YXl1_P57OLqe2wKlPqhceEKmNZx5njBqi3XAgslBOdax1R4JwgRHQKBPXcE6UwdZIo6TvD6QSd73VdNCu9SWFt0lZHE_SNI6alNqk21IMmvHML49hCtoyJhZDgbUulrTUFx0RUrY97rc24WIOzMJRk-keijyNDuNLLeK0JYUIyuevm3a1Cin9GyEWvQ7bQ92aAOGZN6yBYdFKqir59gq7imOrz3VCcq1bUxUzQyZ5amjpBGHyshW09DtbB1u37UP0zSRgjjOOuJrx5OMN983ebrsDpHrAp5pzAaxuK2a2yKodeE6x3f0nf_6Wa8f5Jxp3o_-w_eJXGfQ
CitedBy_id crossref_primary_10_3390_s24237605
crossref_primary_10_1109_ACCESS_2025_3530696
Cites_doi 10.55549/epstem.1371792
10.1007/s11042-023-15525-4
10.1007/s10489-022-03766-z
10.1109/TrustCom56396.2022.00111
10.1155/2021/9983652
10.1108/JFC-04-2022-0090
10.1155/2022/7797548
10.1109/ICTACS59847.2023.10390356
10.1109/IJCNN60899.2024.10650962
10.3390/jimaging9010018
10.1109/ICASSP39728.2021.9414234
10.1007/978-3-030-58523-5_13
10.1109/BigComp51126.2021.00067
10.21437/Odyssey.2022-14
10.1007/978-3-030-58604-1_28
10.21437/ASVSPOOF.2021-8
10.1016/j.procs.2023.01.209
10.1109/TASLP.2020.3009494
10.1109/ACCESS.2023.3311461
10.1145/3552466.3556530
10.1007/s42979-024-03105-8
10.4018/978-1-6684-6060-3.ch009
10.1007/s00500-022-07047-2
10.3390/electronics13010095
10.18280/ts.390548
10.1016/j.patter.2022.100616
10.1109/ICASSP40776.2020.9053426
10.1109/ICCCA49541.2020.9250803
10.1007/s11042-020-10420-8
10.1002/widm.1520
10.18653/v1/K18-1025
10.1109/IJCNN52387.2021.9534474
10.1186/s13640-024-00621-8
10.1109/ICASSP43922.2022.9747766
10.1109/TPAMI.2020.3009287
10.1109/ICSCSS57650.2023.10169246
10.1109/ICASSP40776.2020.9052942
10.1109/ACCESS.2020.3028241
10.1080/03772063.2021.1885312
10.1109/TPAMI.2023.3292075
10.21437/Interspeech.2022-10940
10.4236/jcc.2021.95003
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24196300
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database ProQuest
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed
CrossRef

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_165dbad4b82447b78efc238cae376017
PMC11478486
A814414605
39409343
10_3390_s24196300
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c509t-3f7f0139ac4564d6ae3fc677079d75d2d19edd711759e73f6f19903d8198f5a63
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:40 EDT 2025
Thu Aug 21 18:31:26 EDT 2025
Sun Aug 24 04:08:23 EDT 2025
Sat Jul 26 00:42:19 EDT 2025
Tue Jun 10 21:04:43 EDT 2025
Mon Jul 21 06:04:31 EDT 2025
Tue Jul 01 03:51:15 EDT 2025
Thu Apr 24 22:52:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords deep learning
digital deception
audio analysis
big data analytics
deepfake detection
multi-modal analysis
manipulated content
multimedia analysis
cybersecurity
media integrity
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-3f7f0139ac4564d6ae3fc677079d75d2d19edd711759e73f6f19903d8198f5a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0000-2417-1275
0000-0001-9984-506X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24196300
PMID 39409343
PQID 3116692734
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_165dbad4b82447b78efc238cae376017
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11478486
proquest_miscellaneous_3117075889
proquest_journals_3116692734
gale_infotracacademiconefile_A814414605
pubmed_primary_39409343
crossref_citationtrail_10_3390_s24196300
crossref_primary_10_3390_s24196300
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240929
PublicationDateYYYYMMDD 2024-09-29
PublicationDate_xml – month: 9
  year: 2024
  text: 20240929
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Kolagati (ref_50) 2022; 2
Gupta (ref_53) 2022; 26
Steiner (ref_38) 2022; 2
Kumar (ref_54) 2023; 82
ref_51
ref_16
Kodepogu (ref_6) 2022; 39
Uparkar (ref_22) 2023; 218
Lu (ref_13) 2024; 2024
Wang (ref_15) 2022; 9
Kinnunen (ref_36) 2020; 28
ref_25
ref_24
ref_23
ref_21
Vinitha (ref_12) 2023; Volume 12
ref_29
Heidari (ref_17) 2022; 14
ref_26
Masood (ref_10) 2022; 53
Monteiro (ref_27) 2021; 8
Czempin (ref_14) 2022; 1
Wang (ref_18) 2023; 19
ref_35
ref_34
ref_33
ref_31
Kumar (ref_7) 2021; 2021
Chang (ref_20) 2023; 11
ref_30
Gupta (ref_56) 2021; 8
ref_39
Liu (ref_46) 2022; 3
Saleh (ref_2) 2023; 23
ref_37
Smaili (ref_11) 2023; 30
Kohli (ref_52) 2021; 80
Kumar (ref_55) 2022; 2022
Kumar (ref_5) 2023; 69
Zhu (ref_32) 2023; 45
Baevski (ref_19) 2020; 33
ref_47
Oyetoro (ref_28) 2023; 9
Das (ref_42) 2020; 8
Kumar (ref_8) 2024; 5
ref_45
ref_44
ref_43
ref_41
ref_40
ref_3
ref_49
ref_48
ref_9
Almars (ref_1) 2021; 9
ref_4
References_xml – volume: 23
  start-page: 429
  year: 2023
  ident: ref_2
  article-title: Impact of Deepfake Technology on Social Media: Detection, Misinformation and Societal Implications
  publication-title: Eurasia Proc. Sci. Technol. Eng. Math.
  doi: 10.55549/epstem.1371792
– volume: 82
  start-page: 46789
  year: 2023
  ident: ref_54
  article-title: Underwater image enhancement using deep learning
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-15525-4
– volume: 53
  start-page: 3974
  year: 2022
  ident: ref_10
  article-title: Deepfakes generation and detection: State-of-the-art, open challenges, countermeasures, and way forward
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-03766-z
– ident: ref_26
– ident: ref_23
  doi: 10.1109/TrustCom56396.2022.00111
– volume: 2021
  start-page: 9983652
  year: 2021
  ident: ref_7
  article-title: Efficient automated disease diagnosis using machine learning models
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2021/9983652
– volume: 30
  start-page: 1066
  year: 2023
  ident: ref_11
  article-title: The unethical use of deepfakes
  publication-title: J. Financ. Crime
  doi: 10.1108/JFC-04-2022-0090
– ident: ref_16
– volume: 8
  start-page: 63
  year: 2021
  ident: ref_27
  article-title: An overview of deep learning in big data, image, and signal processing in the modern digital age
  publication-title: Trends Deep. Learn. Methodol.
– volume: 2022
  start-page: 7797548
  year: 2022
  ident: ref_55
  article-title: Technical job recommendation system using APIs and web crawling
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/7797548
– ident: ref_4
  doi: 10.1109/ICTACS59847.2023.10390356
– ident: ref_31
  doi: 10.1109/IJCNN60899.2024.10650962
– ident: ref_9
  doi: 10.3390/jimaging9010018
– volume: 19
  start-page: 1
  year: 2023
  ident: ref_18
  article-title: Deep convolutional pooling transformer for deepfake detection
  publication-title: ACM Trans. Multimed. Comput. Commun. Appl.
– ident: ref_35
  doi: 10.1109/ICASSP39728.2021.9414234
– volume: 8
  start-page: 9935862
  year: 2021
  ident: ref_56
  article-title: NSGA-III-Based deep learning model for biomedical search engine
  publication-title: Math. Probl. Eng.
– ident: ref_48
  doi: 10.1007/978-3-030-58523-5_13
– ident: ref_30
  doi: 10.1109/BigComp51126.2021.00067
– volume: 9
  start-page: 100
  year: 2022
  ident: ref_15
  article-title: Investigating Self-Supervised Front Ends for Speech Spoofing Countermeasures
  publication-title: Speak. Lang. Recognit. Workshop Odyssey
  doi: 10.21437/Odyssey.2022-14
– ident: ref_44
  doi: 10.1007/978-3-030-58604-1_28
– ident: ref_25
  doi: 10.21437/ASVSPOOF.2021-8
– volume: 218
  start-page: 2338
  year: 2023
  ident: ref_22
  article-title: Vision Transformer Outperforms Deep Convolutional Neural Network-based Model in Classifying X-ray Images
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2023.01.209
– volume: 9
  start-page: 1
  year: 2023
  ident: ref_28
  article-title: Image Classification of Human Action Recognition Using Transfer Learning in Pytorch
  publication-title: Int. J. Adv. Res. Ideas Innov. Technol.
– volume: 28
  start-page: 2195
  year: 2020
  ident: ref_36
  article-title: Tandem assessment of spoofing countermeasures and automatic speaker verification: Fundamentals IEEE/ACM
  publication-title: Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2020.3009494
– volume: 11
  start-page: 105027
  year: 2023
  ident: ref_20
  article-title: Cyber Vaccine for Deepfake Immunity
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3311461
– ident: ref_37
  doi: 10.1145/3552466.3556530
– volume: 5
  start-page: 752
  year: 2024
  ident: ref_8
  article-title: Cyber Security Focused Deepfake Detection System Using Big Data
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-024-03105-8
– volume: Volume 12
  start-page: 106
  year: 2023
  ident: ref_12
  article-title: Data Storage, Data Forwarding, Data Retrieval with Big Data Deepfakes in Secure Cloud Storage
  publication-title: Handbook of Research on Advanced Practical Approaches to Deepfake Detection and Applications
  doi: 10.4018/978-1-6684-6060-3.ch009
– ident: ref_24
– volume: 26
  start-page: 8025
  year: 2022
  ident: ref_53
  article-title: Fusion of multi-modality biomedical images using deep neural networks
  publication-title: Soft Comput.
  doi: 10.1007/s00500-022-07047-2
– ident: ref_47
– ident: ref_3
  doi: 10.3390/electronics13010095
– volume: 39
  start-page: 1873
  year: 2022
  ident: ref_6
  article-title: A novel deep convolutional neural network for diagnosis of skin disease
  publication-title: Trait. Signal
  doi: 10.18280/ts.390548
– volume: 3
  start-page: 12
  year: 2022
  ident: ref_46
  article-title: Audio self-supervised learning: A survey
  publication-title: Patterns
  doi: 10.1016/j.patter.2022.100616
– ident: ref_39
  doi: 10.1109/ICASSP40776.2020.9053426
– ident: ref_33
  doi: 10.1109/ICCCA49541.2020.9250803
– volume: 80
  start-page: 18461
  year: 2021
  ident: ref_52
  article-title: Detecting deepfake, faceswap and face2face facial forgeries using frequency cnn
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-10420-8
– volume: 14
  start-page: e1520
  year: 2022
  ident: ref_17
  article-title: Deepfake detection using deep learning methods: A systematic and comprehensive review
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1520
– ident: ref_29
– ident: ref_40
  doi: 10.18653/v1/K18-1025
– ident: ref_49
  doi: 10.1109/IJCNN52387.2021.9534474
– volume: 2024
  start-page: 6
  year: 2024
  ident: ref_13
  article-title: Assessment framework for deepfake detection in real-world situations
  publication-title: EURASIP J. Image Video Process.
  doi: 10.1186/s13640-024-00621-8
– ident: ref_34
  doi: 10.1109/ICASSP43922.2022.9747766
– ident: ref_51
  doi: 10.1109/TPAMI.2020.3009287
– volume: 33
  start-page: 12449
  year: 2020
  ident: ref_19
  article-title: wav2vec 2.0: A framework for self-supervised learning of speech representations
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1
  start-page: 1
  year: 2022
  ident: ref_14
  article-title: Does audio deepfake detection generalize?
  publication-title: J. Tech. Univ. Munich
– ident: ref_21
  doi: 10.1109/ICSCSS57650.2023.10169246
– ident: ref_41
  doi: 10.1109/ICASSP40776.2020.9052942
– volume: 8
  start-page: 181432
  year: 2020
  ident: ref_42
  article-title: A hybrid meta-heuristic feature selection method for identification of Indian spoken languages from audio signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3028241
– volume: 2
  start-page: 1
  year: 2022
  ident: ref_38
  article-title: How to train your ViT? Data, augmentation, and regularization in vision transformers
  publication-title: Trans. Mach. Learn. Res.
– volume: 69
  start-page: 2037
  year: 2023
  ident: ref_5
  article-title: LEARNING-based focused WEB crawler
  publication-title: IETE J. Res.
  doi: 10.1080/03772063.2021.1885312
– ident: ref_43
– volume: 45
  start-page: 13344
  year: 2023
  ident: ref_32
  article-title: Transfer learning in deep reinforcement learning: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2023.3292075
– ident: ref_45
  doi: 10.21437/Interspeech.2022-10940
– volume: 2
  start-page: 100054
  year: 2022
  ident: ref_50
  article-title: Exposing deepfakes using a deep multilayer perceptron–convolutional neural network model
  publication-title: Int. J. Inf. Manag. Data Insights
– volume: 9
  start-page: 20
  year: 2021
  ident: ref_1
  article-title: Deepfakes Detection Techniques Using Deep Learning: A Survey
  publication-title: J. Comput. Commun.
  doi: 10.4236/jcc.2021.95003
SSID ssj0023338
Score 2.4462156
Snippet SecureVision is an advanced and trustworthy deepfake detection system created to tackle the growing threat of ‘deepfake’ movies that tamper with media,...
SecureVision is an advanced and trustworthy deepfake detection system created to tackle the growing threat of 'deepfake' movies that tamper with media,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6300
SubjectTerms Accuracy
audio analysis
Big Data
Comparative analysis
Cybercrime
Cybersecurity
Cyberterrorism
Data analysis
Data mining
Data security
Datasets
Deep learning
Deepfake
deepfake detection
Detectors
digital deception
Evaluation
Human performance
Innovations
Internet
Literature reviews
Machine learning
multimedia analysis
Neural networks
Privacy
Safety and security measures
Security management
Speech
Vegetation mapping
Voice recognition
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI_QTnBAjM-ygQJCgku11ybNB7e3jWlCAi4M7RaliQMTqJtYd-C_x07zqleBxIVb1URVYjv92YnzM2OvvE8i-RXUfY9qkCsQtZdJ1l1Sq9RJHVpLF5w_fFSnZ_L9eXe-VeqLcsImeuBJcAeN6mLvo-wNApHutYEUEGaCh5zOke-RI-ZtgqkSagmMvCYeIYFB_cE14pQlcqkF-mSS_j9_xVtYtMyT3AKek3vsbvEY-Xoa6S67BcN9dmeLR_AB-5R3zeFLvif-lq_LuT4_-tWjd1cq1PFjgKvkvwM-jDkBa-C0C8sPL77yYz96nglKiLb5ITs7eff56LQulRLqgIA_1iLpRL6cD8QOExUKJwWlif0u6i62sbEQoyZaTgtaJJUaRCER0R0wqfNKPGI7w-UATxhvTQ-6FRFs8LKV0YTQgo0qog4Ufq9ibzYSdKHQiFM1ix8OwwkStpuFXbGXc9eriTvjb50OSQ1zB6K7zi_QCFwxAvcvI6jYa1Kio0WJgwm-3C3AKRG9lVsbihvpCLhi-xs9u7Jar51oGqUsEf1U7MXcjOuMDk_8AJc3uQ-KszMGJfB4Mot5zFRd3gopKmYWBrOY1LJluPiWubwxHNVGGvX0f4hhj91u0eeidJbW7rOd8ecNPEOfaeyf5-XxG-YGFTE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8W6gVAYhwSXqJnb84IK2LVWFBFwo2pvl-NFWrbJLNz3w75nxetONqLhFiRXZMx7P098Q8t7ayKKdhLJtgQ18ElhpeeRlE8UkNly6WuMF52_fxckp_zprZjngtsxlleszMR3Ufu4wRr7PqkoIjWAsnxe_S-wahdnV3ELjPnmA0GVY0iVntw4XA_9rhSbEwLXfX4K20ggxNdJBCar_3wN5QyONqyU31M_xY7Kd7UY6XTH6CbkXuqfk0Qaa4DPyI8XOw690W_wTnebsPj3804KNl_vU0aMQFtFeBnjoUxlWRzEWSw8uzuiR7S1NMCUI3vycnB5_-Xl4UuZ-CaUDtd-XLMqIFp11iBHjhQ0sOiERA8_Lxte-0sF7ieCcOkgWRaxAFzEPRoGKjRXsBdnq5l3YIbRWbZA180E7y2vulXN10F5467mA_xXk45qCxmUwcexpcWXAqUBim4HYBXk3DF2sEDTuGnSAbBgGIOh1ejG_PjNZhkwlGt_CBFoFNolspQrRgcXhYJ1Y2SML8gGZaFA0YTLO5hsGsCQEuTJThd4jJoILsrvms8kyuzS3O6wgb4fPIG2YQrFdmN-kMUDORimgwMvVthjmjD3mNeOsIGq0YUaLGn_pLs4Tojc4pVJxJV79f16vycMabCosV6n1Ltnqr2_CG7CJ-nYvbfy_aykMmg
  priority: 102
  providerName: ProQuest
Title SecureVision: Advanced Cybersecurity Deepfake Detection with Big Data Analytics
URI https://www.ncbi.nlm.nih.gov/pubmed/39409343
https://www.proquest.com/docview/3116692734
https://www.proquest.com/docview/3117075889
https://pubmed.ncbi.nlm.nih.gov/PMC11478486
https://doaj.org/article/165dbad4b82447b78efc238cae376017
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3ra9RAEB_6AKkfxLfRekQR9Ev0kt3sbgSRu7ZnEVpFPLlvYbOPtrTk6jUF-987s5cLF6xfwpIdwu48MjP7-A3AG60983rokqpCMfChY4nmnie5F0Ofc2mygi44Hx2Lwyn_OstnG7Cqsdky8OrW1I7qSU0XF-___L75jAb_iTJOTNk_XKEXKgg6ahO2sSnJPo94t5mQMUzDlqBCffIduEN1wQvGWc8rBfD-f3_Raz6qf35yzSFN7sO9NpKMR0vRP4ANVz-Eu2v4go_gW1hNd7_C_fGP8ajd74_3biqM-trKdfG-c5denztsNOFgVh3T6mw8PjuJ93Wj4wBcQnDOj2E6Ofi5d5i0FRQSg4FAkzAvPcV42hBqjBXaMW-EJFQ8K3Ob2bRw1kqC6yycZF74FL0TsxgmKJ9rwZ7AVj2v3TOIM1U5mTHrCqN5xq0yJnOFFVZbLvB7EbxbcbA0Lbw4Vbm4KDHNIL6XHd8jeN2RXi4xNW4jGpMYOgKCwQ4v5ouTsrWqMhW5rXAAlcIoRVZSOW8wBjE4TzrrIyN4S0IsSX1wMEa3dw5wSgR7VY4U5ZO0NRzB7krO5UoJS5amQhQEABTBq64b7Y82VXTt5teBBtmZK4UceLpUi27MK-2KQPUUpjepfk99dhowvjFNlYor8fy_H30BOxkGWHR2JSt2YatZXLuXGCA11QA25UziU02-DGB7fHD8_ccgLDYMgmH8BfJZEjE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgGB4BI1iRPbQUJo26Xa0geXFu0tdfwoVavs0k2F-qf4jczk1Y1A3HqLEiuy5z32-BuAt0o55lRog6JANiShZYFKXBKkjocuTYSOM7rgvLfPJ4fJ12k6XYHf3V0YKqvsbGJtqM1M0x75OosizjMCY_k8_xlQ1yg6Xe1aaDRisWMvf2HKtvi0PUb-vovjrS8Hm5Og7SoQaHSOVcCccBT3KE1IKoYry5zmgpDijEhNbKLMGiMIwjKzgjnuIrTYzKDrlC5VnOF_b8BNdLwhaZSYXiV4DPO9Br2IsSxcX6B3zAjSauDz6tYAfzuAJQ84rM5ccndb9-BuG6f6o0aw7sOKLR_AnSX0wofwrd6rt9_r2-kf_VFbTeBvXhYYU7Z98fyxtXOnTi0-VHXZV-nT3q-_cXLsj1Wl_BoWhcCiH8HhtVDyMayWs9I-BT-WhRUxMzbTKokTI7WObWa4USbh-D8PPnQUzHULXk49NM5yTGKI2HlPbA_e9EPnDWLHvwZtEBv6AQSyXb-YnR_nrc7mEU9NgRMoJMZAohDSOo0RjsZ1UiWR8OA9MTEnU4CT0aq90YBLIlCtfCQpW6WDZw_WOj7nrY1Y5FcS7cHr_jNqNx3ZqNLOLuoxSM5USqTAk0Ys-jlTT_uMJcwDORCYwaKGX8qTHzWCOCbBQiaSP_v_vF7BrcnB3m6-u72_8xxuxxjPUalMnK3BanV-YV9gPFYVL2sl8OHourXuDzzXSHM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4ECgQEgku0SZzYDhJC2y6rlkLhQKu9BcePtirKLt1UqH-NX8dMXt0IxK23KLEie95jj78BeKmUY06FNigKZEMSWhaoxCVB6njo0kToOKMLzp_3-PZ-8nGWztbgd3cXhsoqO5tYG2oz17RHPmJRxHlGYCwj15ZFfJ1M3y9-BtRBik5au3YajYjs2vNfmL4t3-1MkNev4nj64dvWdtB2GAg0OsoqYE44ioGUJlQVw5VlTnNBqHFGpCY2UWaNEQRnmVnBHHcRWm9m0I1KlyrO8L9X4KpgaUQ6JmYXyR7D3K9BMmIsC0dL9JQZwVsN_F_dJuBvZ7DiDYeVmiuub3oLbrYxqz9uhOw2rNnyDtxYQTK8C1_qfXt7UN9Uf-uP28oCf-u8wPiy7ZHnT6xdOHVi8aGqS8BKn_aB_c3jQ3-iKuXXECkEHH0P9i-FkvdhvZyX9iH4sSysiJmxmVZJnBipdWwzw40yCcf_efCmo2CuWyBz6qfxI8eEhoid98T24EU_dNGgd_xr0CaxoR9AgNv1i_npYd7qbx7x1BQ4gUJiPCQKIa3TGO1oXCdVFQkPXhMTczILOBmt2tsNuCQC2MrHkjJXOoT2YKPjc97ai2V-Id0ePO8_o6bT8Y0q7fysHoPkTKVECjxoxKKfM_W3z1jCPJADgRksavilPD6q0cQxIRYykfzR_-f1DK6hvuWfdvZ2H8N1TCNCqpqJsw1Yr07P7BMMzariaa0DPny_bKX7A3pyTKc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SecureVision%3A+Advanced+Cybersecurity+Deepfake+Detection+with+Big+Data+Analytics&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kumar%2C+Naresh&rft.au=Kundu%2C+Ankit&rft.date=2024-09-29&rft.eissn=1424-8220&rft.volume=24&rft.issue=19&rft_id=info:doi/10.3390%2Fs24196300&rft_id=info%3Apmid%2F39409343&rft.externalDocID=39409343
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon