SecureVision: Advanced Cybersecurity Deepfake Detection with Big Data Analytics
SecureVision is an advanced and trustworthy deepfake detection system created to tackle the growing threat of ‘deepfake’ movies that tamper with media, undermine public trust, and jeopardize cybersecurity. We present a novel approach that combines big data analytics with state-of-the-art deep learni...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 19; p. 6300 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
29.09.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SecureVision is an advanced and trustworthy deepfake detection system created to tackle the growing threat of ‘deepfake’ movies that tamper with media, undermine public trust, and jeopardize cybersecurity. We present a novel approach that combines big data analytics with state-of-the-art deep learning algorithms to detect altered information in both audio and visual domains. One of SecureVision’s primary innovations is the use of multi-modal analysis, which improves detection capabilities by concurrently analyzing many media forms and strengthening resistance against advanced deepfake techniques. The system’s efficacy is further enhanced by its capacity to manage large datasets and integrate self-supervised learning, which guarantees its flexibility in the ever-changing field of digital deception. In the end, this study helps to protect digital integrity by providing a proactive, scalable, and efficient defense against the ubiquitous threat of deepfakes, thereby establishing a new benchmark for privacy and security measures in the digital era. |
---|---|
AbstractList | SecureVision is an advanced and trustworthy deepfake detection system created to tackle the growing threat of ‘deepfake’ movies that tamper with media, undermine public trust, and jeopardize cybersecurity. We present a novel approach that combines big data analytics with state-of-the-art deep learning algorithms to detect altered information in both audio and visual domains. One of SecureVision’s primary innovations is the use of multi-modal analysis, which improves detection capabilities by concurrently analyzing many media forms and strengthening resistance against advanced deepfake techniques. The system’s efficacy is further enhanced by its capacity to manage large datasets and integrate self-supervised learning, which guarantees its flexibility in the ever-changing field of digital deception. In the end, this study helps to protect digital integrity by providing a proactive, scalable, and efficient defense against the ubiquitous threat of deepfakes, thereby establishing a new benchmark for privacy and security measures in the digital era. SecureVision is an advanced and trustworthy deepfake detection system created to tackle the growing threat of 'deepfake' movies that tamper with media, undermine public trust, and jeopardize cybersecurity. We present a novel approach that combines big data analytics with state-of-the-art deep learning algorithms to detect altered information in both audio and visual domains. One of SecureVision's primary innovations is the use of multi-modal analysis, which improves detection capabilities by concurrently analyzing many media forms and strengthening resistance against advanced deepfake techniques. The system's efficacy is further enhanced by its capacity to manage large datasets and integrate self-supervised learning, which guarantees its flexibility in the ever-changing field of digital deception. In the end, this study helps to protect digital integrity by providing a proactive, scalable, and efficient defense against the ubiquitous threat of deepfakes, thereby establishing a new benchmark for privacy and security measures in the digital era.SecureVision is an advanced and trustworthy deepfake detection system created to tackle the growing threat of 'deepfake' movies that tamper with media, undermine public trust, and jeopardize cybersecurity. We present a novel approach that combines big data analytics with state-of-the-art deep learning algorithms to detect altered information in both audio and visual domains. One of SecureVision's primary innovations is the use of multi-modal analysis, which improves detection capabilities by concurrently analyzing many media forms and strengthening resistance against advanced deepfake techniques. The system's efficacy is further enhanced by its capacity to manage large datasets and integrate self-supervised learning, which guarantees its flexibility in the ever-changing field of digital deception. In the end, this study helps to protect digital integrity by providing a proactive, scalable, and efficient defense against the ubiquitous threat of deepfakes, thereby establishing a new benchmark for privacy and security measures in the digital era. |
Audience | Academic |
Author | Kumar, Naresh Kundu, Ankit |
AuthorAffiliation | 1 Maharaja Surajmal Institute of Technology, New Delhi 110058, India; nareshkumar@msit.in 2 New York Institute of Technology, Vancouver, BC V5M 4X5, Canada |
AuthorAffiliation_xml | – name: 2 New York Institute of Technology, Vancouver, BC V5M 4X5, Canada – name: 1 Maharaja Surajmal Institute of Technology, New Delhi 110058, India; nareshkumar@msit.in |
Author_xml | – sequence: 1 givenname: Naresh orcidid: 0000-0001-9984-506X surname: Kumar fullname: Kumar, Naresh – sequence: 2 givenname: Ankit orcidid: 0009-0000-2417-1275 surname: Kundu fullname: Kundu, Ankit |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39409343$$D View this record in MEDLINE/PubMed |
BookMark | eNplkktvGyEQx1GVqkncHvoFqpV6aQ9OYGF59FK5Th-RIuXQxxVhGBzc9eICm8rfvjhOoiQVB0Yzv_nPDMMxOhjiAAi9JviEUoVPc8uI4hTjZ-iIsJZNZdvigwf2ITrOeYVxSymVL9AhVQwryugRuvwOdkzwK-QQhw_NzF2bwYJr5tsFpLyLhbJtzgA23vyGahSwpaLN31Cumk9h2ZyZYprZYPptCTa_RM-96TO8ur0n6OeXzz_m36YXl1_P57OLqe2wKlPqhceEKmNZx5njBqi3XAgslBOdax1R4JwgRHQKBPXcE6UwdZIo6TvD6QSd73VdNCu9SWFt0lZHE_SNI6alNqk21IMmvHML49hCtoyJhZDgbUulrTUFx0RUrY97rc24WIOzMJRk-keijyNDuNLLeK0JYUIyuevm3a1Cin9GyEWvQ7bQ92aAOGZN6yBYdFKqir59gq7imOrz3VCcq1bUxUzQyZ5amjpBGHyshW09DtbB1u37UP0zSRgjjOOuJrx5OMN983ebrsDpHrAp5pzAaxuK2a2yKodeE6x3f0nf_6Wa8f5Jxp3o_-w_eJXGfQ |
CitedBy_id | crossref_primary_10_3390_s24237605 crossref_primary_10_1109_ACCESS_2025_3530696 |
Cites_doi | 10.55549/epstem.1371792 10.1007/s11042-023-15525-4 10.1007/s10489-022-03766-z 10.1109/TrustCom56396.2022.00111 10.1155/2021/9983652 10.1108/JFC-04-2022-0090 10.1155/2022/7797548 10.1109/ICTACS59847.2023.10390356 10.1109/IJCNN60899.2024.10650962 10.3390/jimaging9010018 10.1109/ICASSP39728.2021.9414234 10.1007/978-3-030-58523-5_13 10.1109/BigComp51126.2021.00067 10.21437/Odyssey.2022-14 10.1007/978-3-030-58604-1_28 10.21437/ASVSPOOF.2021-8 10.1016/j.procs.2023.01.209 10.1109/TASLP.2020.3009494 10.1109/ACCESS.2023.3311461 10.1145/3552466.3556530 10.1007/s42979-024-03105-8 10.4018/978-1-6684-6060-3.ch009 10.1007/s00500-022-07047-2 10.3390/electronics13010095 10.18280/ts.390548 10.1016/j.patter.2022.100616 10.1109/ICASSP40776.2020.9053426 10.1109/ICCCA49541.2020.9250803 10.1007/s11042-020-10420-8 10.1002/widm.1520 10.18653/v1/K18-1025 10.1109/IJCNN52387.2021.9534474 10.1186/s13640-024-00621-8 10.1109/ICASSP43922.2022.9747766 10.1109/TPAMI.2020.3009287 10.1109/ICSCSS57650.2023.10169246 10.1109/ICASSP40776.2020.9052942 10.1109/ACCESS.2020.3028241 10.1080/03772063.2021.1885312 10.1109/TPAMI.2023.3292075 10.21437/Interspeech.2022-10940 10.4236/jcc.2021.95003 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s24196300 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_165dbad4b82447b78efc238cae376017 PMC11478486 A814414605 39409343 10_3390_s24196300 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PJZUB PPXIY PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c509t-3f7f0139ac4564d6ae3fc677079d75d2d19edd711759e73f6f19903d8198f5a63 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:40 EDT 2025 Thu Aug 21 18:31:26 EDT 2025 Sun Aug 24 04:08:23 EDT 2025 Sat Jul 26 00:42:19 EDT 2025 Tue Jun 10 21:04:43 EDT 2025 Mon Jul 21 06:04:31 EDT 2025 Tue Jul 01 03:51:15 EDT 2025 Thu Apr 24 22:52:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | deep learning digital deception audio analysis big data analytics deepfake detection multi-modal analysis manipulated content multimedia analysis cybersecurity media integrity |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-3f7f0139ac4564d6ae3fc677079d75d2d19edd711759e73f6f19903d8198f5a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0000-2417-1275 0000-0001-9984-506X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24196300 |
PMID | 39409343 |
PQID | 3116692734 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_165dbad4b82447b78efc238cae376017 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11478486 proquest_miscellaneous_3117075889 proquest_journals_3116692734 gale_infotracacademiconefile_A814414605 pubmed_primary_39409343 crossref_citationtrail_10_3390_s24196300 crossref_primary_10_3390_s24196300 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240929 |
PublicationDateYYYYMMDD | 2024-09-29 |
PublicationDate_xml | – month: 9 year: 2024 text: 20240929 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Kolagati (ref_50) 2022; 2 Gupta (ref_53) 2022; 26 Steiner (ref_38) 2022; 2 Kumar (ref_54) 2023; 82 ref_51 ref_16 Kodepogu (ref_6) 2022; 39 Uparkar (ref_22) 2023; 218 Lu (ref_13) 2024; 2024 Wang (ref_15) 2022; 9 Kinnunen (ref_36) 2020; 28 ref_25 ref_24 ref_23 ref_21 Vinitha (ref_12) 2023; Volume 12 ref_29 Heidari (ref_17) 2022; 14 ref_26 Masood (ref_10) 2022; 53 Monteiro (ref_27) 2021; 8 Czempin (ref_14) 2022; 1 Wang (ref_18) 2023; 19 ref_35 ref_34 ref_33 ref_31 Kumar (ref_7) 2021; 2021 Chang (ref_20) 2023; 11 ref_30 Gupta (ref_56) 2021; 8 ref_39 Liu (ref_46) 2022; 3 Saleh (ref_2) 2023; 23 ref_37 Smaili (ref_11) 2023; 30 Kohli (ref_52) 2021; 80 Kumar (ref_55) 2022; 2022 Kumar (ref_5) 2023; 69 Zhu (ref_32) 2023; 45 Baevski (ref_19) 2020; 33 ref_47 Oyetoro (ref_28) 2023; 9 Das (ref_42) 2020; 8 Kumar (ref_8) 2024; 5 ref_45 ref_44 ref_43 ref_41 ref_40 ref_3 ref_49 ref_48 ref_9 Almars (ref_1) 2021; 9 ref_4 |
References_xml | – volume: 23 start-page: 429 year: 2023 ident: ref_2 article-title: Impact of Deepfake Technology on Social Media: Detection, Misinformation and Societal Implications publication-title: Eurasia Proc. Sci. Technol. Eng. Math. doi: 10.55549/epstem.1371792 – volume: 82 start-page: 46789 year: 2023 ident: ref_54 article-title: Underwater image enhancement using deep learning publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-15525-4 – volume: 53 start-page: 3974 year: 2022 ident: ref_10 article-title: Deepfakes generation and detection: State-of-the-art, open challenges, countermeasures, and way forward publication-title: Appl. Intell. doi: 10.1007/s10489-022-03766-z – ident: ref_26 – ident: ref_23 doi: 10.1109/TrustCom56396.2022.00111 – volume: 2021 start-page: 9983652 year: 2021 ident: ref_7 article-title: Efficient automated disease diagnosis using machine learning models publication-title: J. Healthc. Eng. doi: 10.1155/2021/9983652 – volume: 30 start-page: 1066 year: 2023 ident: ref_11 article-title: The unethical use of deepfakes publication-title: J. Financ. Crime doi: 10.1108/JFC-04-2022-0090 – ident: ref_16 – volume: 8 start-page: 63 year: 2021 ident: ref_27 article-title: An overview of deep learning in big data, image, and signal processing in the modern digital age publication-title: Trends Deep. Learn. Methodol. – volume: 2022 start-page: 7797548 year: 2022 ident: ref_55 article-title: Technical job recommendation system using APIs and web crawling publication-title: Comput. Intell. Neurosci. doi: 10.1155/2022/7797548 – ident: ref_4 doi: 10.1109/ICTACS59847.2023.10390356 – ident: ref_31 doi: 10.1109/IJCNN60899.2024.10650962 – ident: ref_9 doi: 10.3390/jimaging9010018 – volume: 19 start-page: 1 year: 2023 ident: ref_18 article-title: Deep convolutional pooling transformer for deepfake detection publication-title: ACM Trans. Multimed. Comput. Commun. Appl. – ident: ref_35 doi: 10.1109/ICASSP39728.2021.9414234 – volume: 8 start-page: 9935862 year: 2021 ident: ref_56 article-title: NSGA-III-Based deep learning model for biomedical search engine publication-title: Math. Probl. Eng. – ident: ref_48 doi: 10.1007/978-3-030-58523-5_13 – ident: ref_30 doi: 10.1109/BigComp51126.2021.00067 – volume: 9 start-page: 100 year: 2022 ident: ref_15 article-title: Investigating Self-Supervised Front Ends for Speech Spoofing Countermeasures publication-title: Speak. Lang. Recognit. Workshop Odyssey doi: 10.21437/Odyssey.2022-14 – ident: ref_44 doi: 10.1007/978-3-030-58604-1_28 – ident: ref_25 doi: 10.21437/ASVSPOOF.2021-8 – volume: 218 start-page: 2338 year: 2023 ident: ref_22 article-title: Vision Transformer Outperforms Deep Convolutional Neural Network-based Model in Classifying X-ray Images publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2023.01.209 – volume: 9 start-page: 1 year: 2023 ident: ref_28 article-title: Image Classification of Human Action Recognition Using Transfer Learning in Pytorch publication-title: Int. J. Adv. Res. Ideas Innov. Technol. – volume: 28 start-page: 2195 year: 2020 ident: ref_36 article-title: Tandem assessment of spoofing countermeasures and automatic speaker verification: Fundamentals IEEE/ACM publication-title: Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2020.3009494 – volume: 11 start-page: 105027 year: 2023 ident: ref_20 article-title: Cyber Vaccine for Deepfake Immunity publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3311461 – ident: ref_37 doi: 10.1145/3552466.3556530 – volume: 5 start-page: 752 year: 2024 ident: ref_8 article-title: Cyber Security Focused Deepfake Detection System Using Big Data publication-title: SN Comput. Sci. doi: 10.1007/s42979-024-03105-8 – volume: Volume 12 start-page: 106 year: 2023 ident: ref_12 article-title: Data Storage, Data Forwarding, Data Retrieval with Big Data Deepfakes in Secure Cloud Storage publication-title: Handbook of Research on Advanced Practical Approaches to Deepfake Detection and Applications doi: 10.4018/978-1-6684-6060-3.ch009 – ident: ref_24 – volume: 26 start-page: 8025 year: 2022 ident: ref_53 article-title: Fusion of multi-modality biomedical images using deep neural networks publication-title: Soft Comput. doi: 10.1007/s00500-022-07047-2 – ident: ref_47 – ident: ref_3 doi: 10.3390/electronics13010095 – volume: 39 start-page: 1873 year: 2022 ident: ref_6 article-title: A novel deep convolutional neural network for diagnosis of skin disease publication-title: Trait. Signal doi: 10.18280/ts.390548 – volume: 3 start-page: 12 year: 2022 ident: ref_46 article-title: Audio self-supervised learning: A survey publication-title: Patterns doi: 10.1016/j.patter.2022.100616 – ident: ref_39 doi: 10.1109/ICASSP40776.2020.9053426 – ident: ref_33 doi: 10.1109/ICCCA49541.2020.9250803 – volume: 80 start-page: 18461 year: 2021 ident: ref_52 article-title: Detecting deepfake, faceswap and face2face facial forgeries using frequency cnn publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-10420-8 – volume: 14 start-page: e1520 year: 2022 ident: ref_17 article-title: Deepfake detection using deep learning methods: A systematic and comprehensive review publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1520 – ident: ref_29 – ident: ref_40 doi: 10.18653/v1/K18-1025 – ident: ref_49 doi: 10.1109/IJCNN52387.2021.9534474 – volume: 2024 start-page: 6 year: 2024 ident: ref_13 article-title: Assessment framework for deepfake detection in real-world situations publication-title: EURASIP J. Image Video Process. doi: 10.1186/s13640-024-00621-8 – ident: ref_34 doi: 10.1109/ICASSP43922.2022.9747766 – ident: ref_51 doi: 10.1109/TPAMI.2020.3009287 – volume: 33 start-page: 12449 year: 2020 ident: ref_19 article-title: wav2vec 2.0: A framework for self-supervised learning of speech representations publication-title: Adv. Neural Inf. Process. Syst. – volume: 1 start-page: 1 year: 2022 ident: ref_14 article-title: Does audio deepfake detection generalize? publication-title: J. Tech. Univ. Munich – ident: ref_21 doi: 10.1109/ICSCSS57650.2023.10169246 – ident: ref_41 doi: 10.1109/ICASSP40776.2020.9052942 – volume: 8 start-page: 181432 year: 2020 ident: ref_42 article-title: A hybrid meta-heuristic feature selection method for identification of Indian spoken languages from audio signals publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3028241 – volume: 2 start-page: 1 year: 2022 ident: ref_38 article-title: How to train your ViT? Data, augmentation, and regularization in vision transformers publication-title: Trans. Mach. Learn. Res. – volume: 69 start-page: 2037 year: 2023 ident: ref_5 article-title: LEARNING-based focused WEB crawler publication-title: IETE J. Res. doi: 10.1080/03772063.2021.1885312 – ident: ref_43 – volume: 45 start-page: 13344 year: 2023 ident: ref_32 article-title: Transfer learning in deep reinforcement learning: A survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2023.3292075 – ident: ref_45 doi: 10.21437/Interspeech.2022-10940 – volume: 2 start-page: 100054 year: 2022 ident: ref_50 article-title: Exposing deepfakes using a deep multilayer perceptron–convolutional neural network model publication-title: Int. J. Inf. Manag. Data Insights – volume: 9 start-page: 20 year: 2021 ident: ref_1 article-title: Deepfakes Detection Techniques Using Deep Learning: A Survey publication-title: J. Comput. Commun. doi: 10.4236/jcc.2021.95003 |
SSID | ssj0023338 |
Score | 2.4462156 |
Snippet | SecureVision is an advanced and trustworthy deepfake detection system created to tackle the growing threat of ‘deepfake’ movies that tamper with media,... SecureVision is an advanced and trustworthy deepfake detection system created to tackle the growing threat of 'deepfake' movies that tamper with media,... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6300 |
SubjectTerms | Accuracy audio analysis Big Data Comparative analysis Cybercrime Cybersecurity Cyberterrorism Data analysis Data mining Data security Datasets Deep learning Deepfake deepfake detection Detectors digital deception Evaluation Human performance Innovations Internet Literature reviews Machine learning multimedia analysis Neural networks Privacy Safety and security measures Security management Speech Vegetation mapping Voice recognition |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI_QTnBAjM-ygQJCgku11ybNB7e3jWlCAi4M7RaliQMTqJtYd-C_x07zqleBxIVb1URVYjv92YnzM2OvvE8i-RXUfY9qkCsQtZdJ1l1Sq9RJHVpLF5w_fFSnZ_L9eXe-VeqLcsImeuBJcAeN6mLvo-wNApHutYEUEGaCh5zOke-RI-ZtgqkSagmMvCYeIYFB_cE14pQlcqkF-mSS_j9_xVtYtMyT3AKek3vsbvEY-Xoa6S67BcN9dmeLR_AB-5R3zeFLvif-lq_LuT4_-tWjd1cq1PFjgKvkvwM-jDkBa-C0C8sPL77yYz96nglKiLb5ITs7eff56LQulRLqgIA_1iLpRL6cD8QOExUKJwWlif0u6i62sbEQoyZaTgtaJJUaRCER0R0wqfNKPGI7w-UATxhvTQ-6FRFs8LKV0YTQgo0qog4Ufq9ibzYSdKHQiFM1ix8OwwkStpuFXbGXc9eriTvjb50OSQ1zB6K7zi_QCFwxAvcvI6jYa1Kio0WJgwm-3C3AKRG9lVsbihvpCLhi-xs9u7Jar51oGqUsEf1U7MXcjOuMDk_8AJc3uQ-KszMGJfB4Mot5zFRd3gopKmYWBrOY1LJluPiWubwxHNVGGvX0f4hhj91u0eeidJbW7rOd8ecNPEOfaeyf5-XxG-YGFTE priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8W6gVAYhwSXqJnb84IK2LVWFBFwo2pvl-NFWrbJLNz3w75nxetONqLhFiRXZMx7P098Q8t7ayKKdhLJtgQ18ElhpeeRlE8UkNly6WuMF52_fxckp_zprZjngtsxlleszMR3Ufu4wRr7PqkoIjWAsnxe_S-wahdnV3ELjPnmA0GVY0iVntw4XA_9rhSbEwLXfX4K20ggxNdJBCar_3wN5QyONqyU31M_xY7Kd7UY6XTH6CbkXuqfk0Qaa4DPyI8XOw690W_wTnebsPj3804KNl_vU0aMQFtFeBnjoUxlWRzEWSw8uzuiR7S1NMCUI3vycnB5_-Xl4UuZ-CaUDtd-XLMqIFp11iBHjhQ0sOiERA8_Lxte-0sF7ieCcOkgWRaxAFzEPRoGKjRXsBdnq5l3YIbRWbZA180E7y2vulXN10F5467mA_xXk45qCxmUwcexpcWXAqUBim4HYBXk3DF2sEDTuGnSAbBgGIOh1ejG_PjNZhkwlGt_CBFoFNolspQrRgcXhYJ1Y2SML8gGZaFA0YTLO5hsGsCQEuTJThd4jJoILsrvms8kyuzS3O6wgb4fPIG2YQrFdmN-kMUDORimgwMvVthjmjD3mNeOsIGq0YUaLGn_pLs4Tojc4pVJxJV79f16vycMabCosV6n1Ltnqr2_CG7CJ-nYvbfy_aykMmg priority: 102 providerName: ProQuest |
Title | SecureVision: Advanced Cybersecurity Deepfake Detection with Big Data Analytics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39409343 https://www.proquest.com/docview/3116692734 https://www.proquest.com/docview/3117075889 https://pubmed.ncbi.nlm.nih.gov/PMC11478486 https://doaj.org/article/165dbad4b82447b78efc238cae376017 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3ra9RAEB_6AKkfxLfRekQR9Ev0kt3sbgSRu7ZnEVpFPLlvYbOPtrTk6jUF-987s5cLF6xfwpIdwu48MjP7-A3AG60983rokqpCMfChY4nmnie5F0Ofc2mygi44Hx2Lwyn_OstnG7Cqsdky8OrW1I7qSU0XF-___L75jAb_iTJOTNk_XKEXKgg6ahO2sSnJPo94t5mQMUzDlqBCffIduEN1wQvGWc8rBfD-f3_Raz6qf35yzSFN7sO9NpKMR0vRP4ANVz-Eu2v4go_gW1hNd7_C_fGP8ajd74_3biqM-trKdfG-c5denztsNOFgVh3T6mw8PjuJ93Wj4wBcQnDOj2E6Ofi5d5i0FRQSg4FAkzAvPcV42hBqjBXaMW-EJFQ8K3Ob2bRw1kqC6yycZF74FL0TsxgmKJ9rwZ7AVj2v3TOIM1U5mTHrCqN5xq0yJnOFFVZbLvB7EbxbcbA0Lbw4Vbm4KDHNIL6XHd8jeN2RXi4xNW4jGpMYOgKCwQ4v5ouTsrWqMhW5rXAAlcIoRVZSOW8wBjE4TzrrIyN4S0IsSX1wMEa3dw5wSgR7VY4U5ZO0NRzB7krO5UoJS5amQhQEABTBq64b7Y82VXTt5teBBtmZK4UceLpUi27MK-2KQPUUpjepfk99dhowvjFNlYor8fy_H30BOxkGWHR2JSt2YatZXLuXGCA11QA25UziU02-DGB7fHD8_ccgLDYMgmH8BfJZEjE |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgGB4BI1iRPbQUJo26Xa0geXFu0tdfwoVavs0k2F-qf4jczk1Y1A3HqLEiuy5z32-BuAt0o55lRog6JANiShZYFKXBKkjocuTYSOM7rgvLfPJ4fJ12k6XYHf3V0YKqvsbGJtqM1M0x75OosizjMCY_k8_xlQ1yg6Xe1aaDRisWMvf2HKtvi0PUb-vovjrS8Hm5Og7SoQaHSOVcCccBT3KE1IKoYry5zmgpDijEhNbKLMGiMIwjKzgjnuIrTYzKDrlC5VnOF_b8BNdLwhaZSYXiV4DPO9Br2IsSxcX6B3zAjSauDz6tYAfzuAJQ84rM5ccndb9-BuG6f6o0aw7sOKLR_AnSX0wofwrd6rt9_r2-kf_VFbTeBvXhYYU7Z98fyxtXOnTi0-VHXZV-nT3q-_cXLsj1Wl_BoWhcCiH8HhtVDyMayWs9I-BT-WhRUxMzbTKokTI7WObWa4USbh-D8PPnQUzHULXk49NM5yTGKI2HlPbA_e9EPnDWLHvwZtEBv6AQSyXb-YnR_nrc7mEU9NgRMoJMZAohDSOo0RjsZ1UiWR8OA9MTEnU4CT0aq90YBLIlCtfCQpW6WDZw_WOj7nrY1Y5FcS7cHr_jNqNx3ZqNLOLuoxSM5USqTAk0Ys-jlTT_uMJcwDORCYwaKGX8qTHzWCOCbBQiaSP_v_vF7BrcnB3m6-u72_8xxuxxjPUalMnK3BanV-YV9gPFYVL2sl8OHourXuDzzXSHM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4ECgQEgku0SZzYDhJC2y6rlkLhQKu9BcePtirKLt1UqH-NX8dMXt0IxK23KLEie95jj78BeKmUY06FNigKZEMSWhaoxCVB6njo0kToOKMLzp_3-PZ-8nGWztbgd3cXhsoqO5tYG2oz17RHPmJRxHlGYCwj15ZFfJ1M3y9-BtRBik5au3YajYjs2vNfmL4t3-1MkNev4nj64dvWdtB2GAg0OsoqYE44ioGUJlQVw5VlTnNBqHFGpCY2UWaNEQRnmVnBHHcRWm9m0I1KlyrO8L9X4KpgaUQ6JmYXyR7D3K9BMmIsC0dL9JQZwVsN_F_dJuBvZ7DiDYeVmiuub3oLbrYxqz9uhOw2rNnyDtxYQTK8C1_qfXt7UN9Uf-uP28oCf-u8wPiy7ZHnT6xdOHVi8aGqS8BKn_aB_c3jQ3-iKuXXECkEHH0P9i-FkvdhvZyX9iH4sSysiJmxmVZJnBipdWwzw40yCcf_efCmo2CuWyBz6qfxI8eEhoid98T24EU_dNGgd_xr0CaxoR9AgNv1i_npYd7qbx7x1BQ4gUJiPCQKIa3TGO1oXCdVFQkPXhMTczILOBmt2tsNuCQC2MrHkjJXOoT2YKPjc97ai2V-Id0ePO8_o6bT8Y0q7fysHoPkTKVECjxoxKKfM_W3z1jCPJADgRksavilPD6q0cQxIRYykfzR_-f1DK6hvuWfdvZ2H8N1TCNCqpqJsw1Yr07P7BMMzariaa0DPny_bKX7A3pyTKc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SecureVision%3A+Advanced+Cybersecurity+Deepfake+Detection+with+Big+Data+Analytics&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kumar%2C+Naresh&rft.au=Kundu%2C+Ankit&rft.date=2024-09-29&rft.eissn=1424-8220&rft.volume=24&rft.issue=19&rft_id=info:doi/10.3390%2Fs24196300&rft_id=info%3Apmid%2F39409343&rft.externalDocID=39409343 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |