Stochastic Primal–Dual Hybrid Gradient Algorithm with Adaptive Step Sizes
In this work, we propose a new primal–dual algorithm with adaptive step sizes. The stochastic primal–dual hybrid gradient (SPDHG) algorithm with constant step sizes has become widely applied in large-scale convex optimization across many scientific fields due to its scalability. While the product of...
Saved in:
Published in | Journal of mathematical imaging and vision Vol. 66; no. 3; pp. 294 - 313 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2024
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we propose a new primal–dual algorithm with adaptive step sizes. The stochastic primal–dual hybrid gradient (SPDHG) algorithm with constant step sizes has become widely applied in large-scale convex optimization across many scientific fields due to its scalability. While the product of the primal and dual step sizes is subject to an upper-bound in order to ensure convergence, the selection of the ratio of the step sizes is critical in applications. Up-to-now there is no systematic and successful way of selecting the primal and dual step sizes for SPDHG. In this work, we propose a general class of adaptive SPDHG (A-SPDHG) algorithms and prove their convergence under weak assumptions. We also propose concrete parameters-updating strategies which satisfy the assumptions of our theory and thereby lead to convergent algorithms. Numerical examples on computed tomography demonstrate the effectiveness of the proposed schemes. |
---|---|
AbstractList | In this work, we propose a new primal–dual algorithm with adaptive step sizes. The stochastic primal–dual hybrid gradient (SPDHG) algorithm with constant step sizes has become widely applied in large-scale convex optimization across many scientific fields due to its scalability. While the product of the primal and dual step sizes is subject to an upper-bound in order to ensure convergence, the selection of the ratio of the step sizes is critical in applications. Up-to-now there is no systematic and successful way of selecting the primal and dual step sizes for SPDHG. In this work, we propose a general class of adaptive SPDHG (A-SPDHG) algorithms and prove their convergence under weak assumptions. We also propose concrete parameters-updating strategies which satisfy the assumptions of our theory and thereby lead to convergent algorithms. Numerical examples on computed tomography demonstrate the effectiveness of the proposed schemes. In this work, we propose a new primal-dual algorithm with adaptive step sizes. The stochastic primal-dual hybrid gradient (SPDHG) algorithm with constant step sizes has become widely applied in large-scale convex optimization across many scientific fields due to its scalability. While the product of the primal and dual step sizes is subject to an upper-bound in order to ensure convergence, the selection of the ratio of the step sizes is critical in applications. Up-to-now there is no systematic and successful way of selecting the primal and dual step sizes for SPDHG. In this work, we propose a general class of adaptive SPDHG (A-SPDHG) algorithms and prove their convergence under weak assumptions. We also propose concrete parameters-updating strategies which satisfy the assumptions of our theory and thereby lead to convergent algorithms. Numerical examples on computed tomography demonstrate the effectiveness of the proposed schemes.In this work, we propose a new primal-dual algorithm with adaptive step sizes. The stochastic primal-dual hybrid gradient (SPDHG) algorithm with constant step sizes has become widely applied in large-scale convex optimization across many scientific fields due to its scalability. While the product of the primal and dual step sizes is subject to an upper-bound in order to ensure convergence, the selection of the ratio of the step sizes is critical in applications. Up-to-now there is no systematic and successful way of selecting the primal and dual step sizes for SPDHG. In this work, we propose a general class of adaptive SPDHG (A-SPDHG) algorithms and prove their convergence under weak assumptions. We also propose concrete parameters-updating strategies which satisfy the assumptions of our theory and thereby lead to convergent algorithms. Numerical examples on computed tomography demonstrate the effectiveness of the proposed schemes. In this work we propose a new primal-dual algorithm with adaptive step-sizes. The stochastic primal-dual hybrid gradient (SPDHG) algorithm with constant step-sizes has become widely applied in large-scale convex optimization across many scientific fields due to its scalability. While the product of the primal and dual step-sizes is subject to an upper-bound in order to ensure convergence, the selection of the ratio of the step-sizes is critical in applications. Upto-now there is no systematic and successful way of selecting the primal and dual step-sizes for SPDHG. In this work, we propose a general class of adaptive SPDHG (A-SPDHG) algorithms, and prove their convergence under weak assumptions. We also propose concrete parametersupdating strategies which satisfy the assumptions of our theory and thereby lead to convergent algorithms. Numerical examples on computed tomography demonstrate the effectiveness of the proposed schemes. |
Author | Chambolle, Antonin Ehrhardt, Matthias J. Delplancke, Claire Tang, Junqi Schönlieb, Carola-Bibiane |
Author_xml | – sequence: 1 givenname: Antonin surname: Chambolle fullname: Chambolle, Antonin organization: CEREMADE, Université Paris-Dauphine, MOKAPLAN, INRIA Paris – sequence: 2 givenname: Claire surname: Delplancke fullname: Delplancke, Claire email: claire.delplancke@edf.fr organization: EDF Lab Paris-Saclay – sequence: 3 givenname: Matthias J. surname: Ehrhardt fullname: Ehrhardt, Matthias J. email: m.ehrhardt@bath.ac.uk organization: Department of Mathematical Sciences, University of Bath – sequence: 4 givenname: Carola-Bibiane surname: Schönlieb fullname: Schönlieb, Carola-Bibiane organization: Department of Applied Mathematics and Theoretical Physics, University of Cambridge – sequence: 5 givenname: Junqi surname: Tang fullname: Tang, Junqi organization: School of Mathematics, University of Birmingham |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39669719$$D View this record in MEDLINE/PubMed https://hal.science/hal-03927644$$DView record in HAL |
BookMark | eNp9kc1uEzEUhS1URNPCC7BAI7GBxYDveGyPVygq0CAigRRYW47tSVxNxsH2BJUV78Ab8iR4mJafLLqxJd_v3Huuzxk66X1vEXoM-AVgzF9GwA2FEld1iQF4XcI9NAPKSclZQ07QDItcEgLzU3QW4xXGuKmAP0CnRDAmOIgZer9KXm9VTE4XH4Pbqe7n9x-vB9UVi-t1cKa4DMo426di3m18cGm7K77ms5gbtU_uYItVsvti5b7Z-BDdb1UX7aOb-xx9fvvm08WiXH64fHcxX5aaYpFK0vI1o0q0DHTdCMGrthWibSquDbG2hVZRs8YNoYIZrkitreJgKkprsJYaco5eTX33w3pnjc7ugurkfrQfrqVXTv5f6d1WbvxBAjDCeAW5w_Opw_ZIt5gv5fiGiag4q-sDyeyzm2nBfxlsTHLnorZdp3rrhygJ1IwxKmBEnx6hV34Iff4LSTClomKY8Ew9-df-n_m3oWSgmQAdfIzBtlK7pJLz4zauk4DlmL-c8pc5f_k7fzkuVh1Jb7vfKSKTKGa439jw1_Ydql-B7cJD |
CitedBy_id | crossref_primary_10_3390_math12152393 crossref_primary_10_1007_s10589_024_00613_4 crossref_primary_10_1007_s10957_024_02560_w |
Cites_doi | 10.1137/17M116001X 10.1137/14097642X 10.1007/978-3-030-75549-2_21 10.1088/1361-6560/ac71f1 10.1007/978-1-4419-9467-7 10.1088/1361-6560/ac176c 10.1137/17M1134834 10.1137/16M1092015 10.1016/j.cam.2020.113192 10.1118/1.4957556 10.1137/19M1296252 10.1088/1361-6560/ab3d07 10.1007/s10851-011-0324-9 10.1007/s10589-018-0011-5 10.1007/s10851-010-0251-1 10.1016/B978-0-12-604550-5.50015-8 10.1098/rsta.2020.0193 10.1109/NSS/MIC42677.2020.9508013 10.1007/s10107-019-01416-w 10.1137/140971233 10.1016/j.na.2012.09.008 10.1109/APSIPA.2017.8282164 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. Copyright Springer Nature B.V. 2024 Distributed under a Creative Commons Attribution 4.0 International License The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. – notice: Copyright Springer Nature B.V. 2024 – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION NPM 7X8 1XC VOOES 5PM |
DOI | 10.1007/s10851-024-01174-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Computer Science |
EISSN | 1573-7683 |
EndPage | 313 |
ExternalDocumentID | PMC11636721 oai_HAL_hal_03927644v3 39669719 10_1007_s10851_024_01174_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Leverhulme Trust grantid: ECF-2019-478 funderid: http://dx.doi.org/10.13039/501100000275 – fundername: Philip Leverhulme Prize – fundername: Wellcome Trust grantid: 215733/Z/19/Z funderid: http://dx.doi.org/10.13039/100010269 – fundername: Horizon 2020 Framework Programme grantid: 777826 NoMADS funderid: http://dx.doi.org/10.13039/100010661 – fundername: Alan Turing Institute funderid: http://dx.doi.org/10.13039/100012338 – fundername: Royal Society Wolfson Fellowship – fundername: Engineering and Physical Sciences Research Council grantid: EP/S026045/1; EP/S026045/1; EP/V029428/1 funderid: http://dx.doi.org/10.13039/501100000266 – fundername: Wellcome Trust |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Y Z83 Z88 Z8M Z8N Z8R Z8S Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ NPM 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c509t-3f7b65a9f61c489972ff99f827cd3eef1fa5db083596d7a34cea71d25541ee5d3 |
IEDL.DBID | U2A |
ISSN | 0924-9907 |
IngestDate | Thu Aug 21 18:29:30 EDT 2025 Wed Jul 23 06:31:49 EDT 2025 Fri Jul 11 05:41:58 EDT 2025 Fri Jul 25 11:05:48 EDT 2025 Mon Jul 21 05:34:36 EDT 2025 Tue Jul 01 03:20:35 EDT 2025 Thu Apr 24 23:07:27 EDT 2025 Fri Feb 21 02:36:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | The Author(s) 2024. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-3f7b65a9f61c489972ff99f827cd3eef1fa5db083596d7a34cea71d25541ee5d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9465-4659 |
OpenAccessLink | https://link.springer.com/10.1007/s10851-024-01174-1 |
PMID | 39669719 |
PQID | 3055926037 |
PQPubID | 2043734 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11636721 hal_primary_oai_HAL_hal_03927644v3 proquest_miscellaneous_3146665913 proquest_journals_3055926037 pubmed_primary_39669719 crossref_citationtrail_10_1007_s10851_024_01174_1 crossref_primary_10_1007_s10851_024_01174_1 springer_journals_10_1007_s10851_024_01174_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Netherlands |
PublicationTitle | Journal of mathematical imaging and vision |
PublicationTitleAbbrev | J Math Imaging Vis |
PublicationTitleAlternate | J Math Imaging Vis |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
References | M-L Vladarean (1174_CR25) 2021; 34 S Bonettini (1174_CR3) 2016; 26 1174_CR26 1174_CR23 1174_CR21 L Zdun (1174_CR27) 2021; 66 B He (1174_CR17) 2010 MJ Ehrhardt (1174_CR13) 2019; 64 S Bonettini (1174_CR7) 2012; 44 G Schramm (1174_CR24) 2022 S Bonettini (1174_CR4) 2021; 385 A Chambolle (1174_CR8) 2018; 28 1174_CR19 1174_CR16 1174_CR15 1174_CR12 1174_CR11 1174_CR2 S Bonettini (1174_CR6) 2018; 40 A Chambolle (1174_CR9) 2011; 40 PL Combettes (1174_CR10) 2015; 25 E Papoutsellis (1174_CR22) 2021; 379 S Bonettini (1174_CR5) 2018; 71 Y Malitsky (1174_CR18) 2020; 184 T Goldstein (1174_CR14) 2015; 28 Y Malitsky (1174_CR20) 2018; 28 A Alacaoglu (1174_CR1) 2022; 32 |
References_xml | – ident: 1174_CR15 – volume: 40 start-page: A3180 issue: 5 year: 2018 ident: 1174_CR6 publication-title: SIAM J. Sci. Comput. doi: 10.1137/17M116001X – volume: 26 start-page: 1741 issue: 3 year: 2016 ident: 1174_CR3 publication-title: SIAM J. Optim. doi: 10.1137/14097642X – ident: 1174_CR16 doi: 10.1007/978-3-030-75549-2_21 – volume-title: Fast and memory-efficient reconstruction of sparse poisson data in listmode with non-smooth priors with application to time-of-flight PET year: 2022 ident: 1174_CR24 doi: 10.1088/1361-6560/ac71f1 – ident: 1174_CR2 doi: 10.1007/978-1-4419-9467-7 – volume: 66 issue: 17 year: 2021 ident: 1174_CR27 publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ac176c – volume: 28 start-page: 2783 issue: 4 year: 2018 ident: 1174_CR8 publication-title: SIAM J. Optim. doi: 10.1137/17M1134834 – volume: 28 start-page: 411 issue: 1 year: 2018 ident: 1174_CR20 publication-title: SIAM J. Optim. doi: 10.1137/16M1092015 – volume: 385 year: 2021 ident: 1174_CR4 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2020.113192 – volume: 34 start-page: 6171 year: 2021 ident: 1174_CR25 publication-title: Adv. Neural. Inf. Process. Syst. – ident: 1174_CR21 doi: 10.1118/1.4957556 – volume: 32 start-page: 1288 issue: 2 year: 2022 ident: 1174_CR1 publication-title: SIAM J. Optim. doi: 10.1137/19M1296252 – volume: 64 issue: 22 year: 2019 ident: 1174_CR13 publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab3d07 – volume: 44 start-page: 236 issue: 3 year: 2012 ident: 1174_CR7 publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-011-0324-9 – volume-title: Convergence Analysis of Primal-dual Algorithms for Total Variation Image Restoration year: 2010 ident: 1174_CR17 – volume: 71 start-page: 5 issue: 1 year: 2018 ident: 1174_CR5 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-018-0011-5 – volume: 40 start-page: 120 issue: 1 year: 2011 ident: 1174_CR9 publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-010-0251-1 – ident: 1174_CR23 doi: 10.1016/B978-0-12-604550-5.50015-8 – volume: 28 start-page: 2089 year: 2015 ident: 1174_CR14 publication-title: Adv. Neural. Inf. Process. Syst. – volume: 379 start-page: 20200193 issue: 2204 year: 2021 ident: 1174_CR22 publication-title: Philos. Trans. R. Soc. A doi: 10.1098/rsta.2020.0193 – ident: 1174_CR12 doi: 10.1109/NSS/MIC42677.2020.9508013 – volume: 184 start-page: 383 issue: 1 year: 2020 ident: 1174_CR18 publication-title: Math. Program. doi: 10.1007/s10107-019-01416-w – volume: 25 start-page: 1221 issue: 2 year: 2015 ident: 1174_CR10 publication-title: SIAM J. Optim. doi: 10.1137/140971233 – ident: 1174_CR11 doi: 10.1016/j.na.2012.09.008 – ident: 1174_CR19 – ident: 1174_CR26 doi: 10.1109/APSIPA.2017.8282164 |
SSID | ssj0008217 |
Score | 2.454198 |
Snippet | In this work, we propose a new primal–dual algorithm with adaptive step sizes. The stochastic primal–dual hybrid gradient (SPDHG) algorithm with constant step... In this work, we propose a new primal-dual algorithm with adaptive step sizes. The stochastic primal-dual hybrid gradient (SPDHG) algorithm with constant step... In this work we propose a new primal-dual algorithm with adaptive step-sizes. The stochastic primal-dual hybrid gradient (SPDHG) algorithm with constant... |
SourceID | pubmedcentral hal proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 294 |
SubjectTerms | Adaptive algorithms Applications of Mathematics Computed tomography Computer Science Convergence Convexity Image Processing and Computer Vision Mathematical Methods in Physics Mathematics Signal,Image and Speech Processing Upper bounds |
Title | Stochastic Primal–Dual Hybrid Gradient Algorithm with Adaptive Step Sizes |
URI | https://link.springer.com/article/10.1007/s10851-024-01174-1 https://www.ncbi.nlm.nih.gov/pubmed/39669719 https://www.proquest.com/docview/3055926037 https://www.proquest.com/docview/3146665913 https://hal.science/hal-03927644 https://pubmed.ncbi.nlm.nih.gov/PMC11636721 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELfY9gIP_Bn_MkZlEG9gqW4cO37MyrqKsQlpVBpPkRPba6WSTk06CZ74DnxDPgl3aZJRBkg8RXIcx8mdfb-z734m5FXmMtkXFpFb5BjYW88Mt5rlCvArh6d4vZhzcirHE_HuPDpvksLKNtq93ZKsZ-pfkt0AHTCwKQx5zAQDn2cnQt8dtHgySLr5Nx7U5-z2wbNgMNeqJlXmz21smKOtKQZD3kSaNwMmf9s1rY3R6D6526BImqzF_oDccsUuudcgStqM1xKK2kMb2rJdcuekI2otH5Ljs2qRTw2SNdMPSDwx__Ht-9sVtD3-grlc9GhZx4RVNJlfLJazavqZ4tItTay5xJmSYpgYPZt9deUjMhkdfhyOWXO-AssBJlQs9CqTkdFe8lzEmEHrvdY-Hqjchs557k1kM8RoWlplQpE7o7gFIQruXGTDx2S7WBTuKaFx5LMwlrkxuDPY9ya0_VgIq4X1QmUiILz9zWnekI_jGRjz9Jo2GUWTgmjSWjQpD8jr7pnLNfXGP2u_BOl1FZE1e5y8T7GsDxhQAe67CgOy3wo3bcZqmSLnmQa3LlQBedHdhlGGWyemcIsV1AGDImWkOTTxZK0L3atC8Bi14jog8YaWbPRl804xm9ZM3hzQsAQfPCBvWoW67tffv3Xv_6o_I7cHtcrj2tE-2a6WK_ccoFSV9chOMjo4OMXr0afjwx7ZGsphrx5PPwEAixey |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgOQAHHssrsIBB3MBSXDt2fKwKS2DbFdLuSnuLnNimlUq6alMkOPEf-If8EmbSJKvuAhJXv_IY2_ONZ-YzIa8KX6hYOkRuiWegbwOz3BlWasCvHHrx5jBncqiyE_nxNDltaXIwF-aC_x5T3AATMNAkDNnLJANL55oESxnD90Zq1O-66aC5XTcGe4LBDqvbBJk_j7GlhK5OMQTyMr68HCZ5wVfaqKD9O-RWix3pcCPsu-SKr3bJ7RZH0naVrqCou6qhK9slNyc9PevqHjk4qhfl1CJFM_2EdBPzXz9-vl3D2Nk3zOCi75dNJFhNh_PPi-Wsnn6heGBLh86e4f5IMTiMHs2--9V9crL_7niUsfZWBVYCOKiZCLpQiTVB8VKmmDcbgjEhHejSCe8DDzZxBSIzo5y2Qpbeau5AdJJ7nzjxgOxUi8o_IjRNQiFSVVqL_sA4WOHiVEpnpAtSFzIivPvNedlSjuPNF_P8nCwZRZODaPJGNDmPyOu-z9mGcOOfrV-C9PqGyJWdDcc5lsWA_DSgva8iInudcPN2ha5yZDozYMwJHZEXfTWsLXSY2Mov1tAG1IhSieEwxMPNXOgfJcBONJqbiKRbs2TrXbZrqtm04e_mgIEVWN4RedNNqPP3-vu3Pv6_5s_J9ex4Ms7HHw4PnpAbg2b64-nRHtmpl2v_FMBUXTxrVtFvex8Slw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgkRAceCyvwAIGcQNr48ax42PVpRT2oZWWlfYWObFNK5W0alMkOPEf-If8EmbcJLtlAYmr4ziPGXu-8cx8JuRV4QoZC4vILXUM7K1nhlvNSgX4lcNdPGzmHB7J0an4cJaeXajiD9nubUhyXdOALE1VvTu3fvdC4RsgBQb2hSGnmWDg_1wDTyUEagdy0K3FWS-cuRuDl8Fg3VVN2cyfx9gwTVfHmBh5GXVeTp78LYIaDNPwDrnVIEraX6vAXXLFVdvkdoMuaTN3l9DUHuDQtm2Tm4cdaevyHtk_qWfl2CBxMz1GEorpz-8_9lYw9ugr1nXRd4uQH1bT_vTTbDGpx58pbuPSvjVzXDUppozRk8k3t7xPTodvPw5GrDlrgZUAGWqWeFXI1GgveSkyrKb1Xmuf9VRpE-c89ya1BeI1La0yiSidUdyCQAV3LrXJA7JVzSr3iNAs9UWSydIYjBLG3iQ2zoSwWlgvVCEiwtvfnJcNETmehzHNzymUUTQ5iCYPosl5RF5398zXNBz_7P0SpNd1RAbtUf8gx7YY8KACDPglichOK9y8mbfLHPnPNLh4iYrIi-4yzDgMo5jKzVbQB4yLlKnmMMTDtS50j0rAe9SK64hkG1qy8S6bV6rJOLB6c0DGEvzxiLxpFer8vf7-rY__r_tzcv14b5gfvD_af0Ju9IL245bSDtmqFyv3FBBWXTwLk-gX-qwa3g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Primal-Dual+Hybrid+Gradient+Algorithm+with+Adaptive+Step+Sizes&rft.jtitle=Journal+of+mathematical+imaging+and+vision&rft.au=Chambolle%2C+Antonin&rft.au=Delplancke%2C+Claire&rft.au=Ehrhardt%2C+Matthias+J&rft.au=Sch%C3%B6nlieb%2C+Carola-Bibiane&rft.date=2024-06-01&rft.issn=0924-9907&rft.volume=66&rft.issue=3&rft.spage=294&rft_id=info:doi/10.1007%2Fs10851-024-01174-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-9907&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-9907&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-9907&client=summon |