Stochastic Primal–Dual Hybrid Gradient Algorithm with Adaptive Step Sizes

In this work, we propose a new primal–dual algorithm with adaptive step sizes. The stochastic primal–dual hybrid gradient (SPDHG) algorithm with constant step sizes has become widely applied in large-scale convex optimization across many scientific fields due to its scalability. While the product of...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical imaging and vision Vol. 66; no. 3; pp. 294 - 313
Main Authors Chambolle, Antonin, Delplancke, Claire, Ehrhardt, Matthias J., Schönlieb, Carola-Bibiane, Tang, Junqi
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2024
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we propose a new primal–dual algorithm with adaptive step sizes. The stochastic primal–dual hybrid gradient (SPDHG) algorithm with constant step sizes has become widely applied in large-scale convex optimization across many scientific fields due to its scalability. While the product of the primal and dual step sizes is subject to an upper-bound in order to ensure convergence, the selection of the ratio of the step sizes is critical in applications. Up-to-now there is no systematic and successful way of selecting the primal and dual step sizes for SPDHG. In this work, we propose a general class of adaptive SPDHG (A-SPDHG) algorithms and prove their convergence under weak assumptions. We also propose concrete parameters-updating strategies which satisfy the assumptions of our theory and thereby lead to convergent algorithms. Numerical examples on computed tomography demonstrate the effectiveness of the proposed schemes.
AbstractList In this work, we propose a new primal–dual algorithm with adaptive step sizes. The stochastic primal–dual hybrid gradient (SPDHG) algorithm with constant step sizes has become widely applied in large-scale convex optimization across many scientific fields due to its scalability. While the product of the primal and dual step sizes is subject to an upper-bound in order to ensure convergence, the selection of the ratio of the step sizes is critical in applications. Up-to-now there is no systematic and successful way of selecting the primal and dual step sizes for SPDHG. In this work, we propose a general class of adaptive SPDHG (A-SPDHG) algorithms and prove their convergence under weak assumptions. We also propose concrete parameters-updating strategies which satisfy the assumptions of our theory and thereby lead to convergent algorithms. Numerical examples on computed tomography demonstrate the effectiveness of the proposed schemes.
In this work, we propose a new primal-dual algorithm with adaptive step sizes. The stochastic primal-dual hybrid gradient (SPDHG) algorithm with constant step sizes has become widely applied in large-scale convex optimization across many scientific fields due to its scalability. While the product of the primal and dual step sizes is subject to an upper-bound in order to ensure convergence, the selection of the ratio of the step sizes is critical in applications. Up-to-now there is no systematic and successful way of selecting the primal and dual step sizes for SPDHG. In this work, we propose a general class of adaptive SPDHG (A-SPDHG) algorithms and prove their convergence under weak assumptions. We also propose concrete parameters-updating strategies which satisfy the assumptions of our theory and thereby lead to convergent algorithms. Numerical examples on computed tomography demonstrate the effectiveness of the proposed schemes.In this work, we propose a new primal-dual algorithm with adaptive step sizes. The stochastic primal-dual hybrid gradient (SPDHG) algorithm with constant step sizes has become widely applied in large-scale convex optimization across many scientific fields due to its scalability. While the product of the primal and dual step sizes is subject to an upper-bound in order to ensure convergence, the selection of the ratio of the step sizes is critical in applications. Up-to-now there is no systematic and successful way of selecting the primal and dual step sizes for SPDHG. In this work, we propose a general class of adaptive SPDHG (A-SPDHG) algorithms and prove their convergence under weak assumptions. We also propose concrete parameters-updating strategies which satisfy the assumptions of our theory and thereby lead to convergent algorithms. Numerical examples on computed tomography demonstrate the effectiveness of the proposed schemes.
In this work we propose a new primal-dual algorithm with adaptive step-sizes. The stochastic primal-dual hybrid gradient (SPDHG) algorithm with constant step-sizes has become widely applied in large-scale convex optimization across many scientific fields due to its scalability. While the product of the primal and dual step-sizes is subject to an upper-bound in order to ensure convergence, the selection of the ratio of the step-sizes is critical in applications. Upto-now there is no systematic and successful way of selecting the primal and dual step-sizes for SPDHG. In this work, we propose a general class of adaptive SPDHG (A-SPDHG) algorithms, and prove their convergence under weak assumptions. We also propose concrete parametersupdating strategies which satisfy the assumptions of our theory and thereby lead to convergent algorithms. Numerical examples on computed tomography demonstrate the effectiveness of the proposed schemes.
Author Chambolle, Antonin
Ehrhardt, Matthias J.
Delplancke, Claire
Tang, Junqi
Schönlieb, Carola-Bibiane
Author_xml – sequence: 1
  givenname: Antonin
  surname: Chambolle
  fullname: Chambolle, Antonin
  organization: CEREMADE, Université Paris-Dauphine, MOKAPLAN, INRIA Paris
– sequence: 2
  givenname: Claire
  surname: Delplancke
  fullname: Delplancke, Claire
  email: claire.delplancke@edf.fr
  organization: EDF Lab Paris-Saclay
– sequence: 3
  givenname: Matthias J.
  surname: Ehrhardt
  fullname: Ehrhardt, Matthias J.
  email: m.ehrhardt@bath.ac.uk
  organization: Department of Mathematical Sciences, University of Bath
– sequence: 4
  givenname: Carola-Bibiane
  surname: Schönlieb
  fullname: Schönlieb, Carola-Bibiane
  organization: Department of Applied Mathematics and Theoretical Physics, University of Cambridge
– sequence: 5
  givenname: Junqi
  surname: Tang
  fullname: Tang, Junqi
  organization: School of Mathematics, University of Birmingham
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39669719$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03927644$$DView record in HAL
BookMark eNp9kc1uEzEUhS1URNPCC7BAI7GBxYDveGyPVygq0CAigRRYW47tSVxNxsH2BJUV78Ab8iR4mJafLLqxJd_v3Huuzxk66X1vEXoM-AVgzF9GwA2FEld1iQF4XcI9NAPKSclZQ07QDItcEgLzU3QW4xXGuKmAP0CnRDAmOIgZer9KXm9VTE4XH4Pbqe7n9x-vB9UVi-t1cKa4DMo426di3m18cGm7K77ms5gbtU_uYItVsvti5b7Z-BDdb1UX7aOb-xx9fvvm08WiXH64fHcxX5aaYpFK0vI1o0q0DHTdCMGrthWibSquDbG2hVZRs8YNoYIZrkitreJgKkprsJYaco5eTX33w3pnjc7ugurkfrQfrqVXTv5f6d1WbvxBAjDCeAW5w_Opw_ZIt5gv5fiGiag4q-sDyeyzm2nBfxlsTHLnorZdp3rrhygJ1IwxKmBEnx6hV34Iff4LSTClomKY8Ew9-df-n_m3oWSgmQAdfIzBtlK7pJLz4zauk4DlmL-c8pc5f_k7fzkuVh1Jb7vfKSKTKGa439jw1_Ydql-B7cJD
CitedBy_id crossref_primary_10_3390_math12152393
crossref_primary_10_1007_s10589_024_00613_4
crossref_primary_10_1007_s10957_024_02560_w
Cites_doi 10.1137/17M116001X
10.1137/14097642X
10.1007/978-3-030-75549-2_21
10.1088/1361-6560/ac71f1
10.1007/978-1-4419-9467-7
10.1088/1361-6560/ac176c
10.1137/17M1134834
10.1137/16M1092015
10.1016/j.cam.2020.113192
10.1118/1.4957556
10.1137/19M1296252
10.1088/1361-6560/ab3d07
10.1007/s10851-011-0324-9
10.1007/s10589-018-0011-5
10.1007/s10851-010-0251-1
10.1016/B978-0-12-604550-5.50015-8
10.1098/rsta.2020.0193
10.1109/NSS/MIC42677.2020.9508013
10.1007/s10107-019-01416-w
10.1137/140971233
10.1016/j.na.2012.09.008
10.1109/APSIPA.2017.8282164
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024.
Copyright Springer Nature B.V. 2024
Distributed under a Creative Commons Attribution 4.0 International License
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024.
– notice: Copyright Springer Nature B.V. 2024
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
7X8
1XC
VOOES
5PM
DOI 10.1007/s10851-024-01174-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1573-7683
EndPage 313
ExternalDocumentID PMC11636721
oai_HAL_hal_03927644v3
39669719
10_1007_s10851_024_01174_1
Genre Journal Article
GrantInformation_xml – fundername: Leverhulme Trust
  grantid: ECF-2019-478
  funderid: http://dx.doi.org/10.13039/501100000275
– fundername: Philip Leverhulme Prize
– fundername: Wellcome Trust
  grantid: 215733/Z/19/Z
  funderid: http://dx.doi.org/10.13039/100010269
– fundername: Horizon 2020 Framework Programme
  grantid: 777826 NoMADS
  funderid: http://dx.doi.org/10.13039/100010661
– fundername: Alan Turing Institute
  funderid: http://dx.doi.org/10.13039/100012338
– fundername: Royal Society Wolfson Fellowship
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/S026045/1; EP/S026045/1; EP/V029428/1
  funderid: http://dx.doi.org/10.13039/501100000266
– fundername: Wellcome Trust
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Y
Z83
Z88
Z8M
Z8N
Z8R
Z8S
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
NPM
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c509t-3f7b65a9f61c489972ff99f827cd3eef1fa5db083596d7a34cea71d25541ee5d3
IEDL.DBID U2A
ISSN 0924-9907
IngestDate Thu Aug 21 18:29:30 EDT 2025
Wed Jul 23 06:31:49 EDT 2025
Fri Jul 11 05:41:58 EDT 2025
Fri Jul 25 11:05:48 EDT 2025
Mon Jul 21 05:34:36 EDT 2025
Tue Jul 01 03:20:35 EDT 2025
Thu Apr 24 23:07:27 EDT 2025
Fri Feb 21 02:36:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License The Author(s) 2024.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-3f7b65a9f61c489972ff99f827cd3eef1fa5db083596d7a34cea71d25541ee5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9465-4659
OpenAccessLink https://link.springer.com/10.1007/s10851-024-01174-1
PMID 39669719
PQID 3055926037
PQPubID 2043734
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11636721
hal_primary_oai_HAL_hal_03927644v3
proquest_miscellaneous_3146665913
proquest_journals_3055926037
pubmed_primary_39669719
crossref_citationtrail_10_1007_s10851_024_01174_1
crossref_primary_10_1007_s10851_024_01174_1
springer_journals_10_1007_s10851_024_01174_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Netherlands
PublicationTitle Journal of mathematical imaging and vision
PublicationTitleAbbrev J Math Imaging Vis
PublicationTitleAlternate J Math Imaging Vis
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References M-L Vladarean (1174_CR25) 2021; 34
S Bonettini (1174_CR3) 2016; 26
1174_CR26
1174_CR23
1174_CR21
L Zdun (1174_CR27) 2021; 66
B He (1174_CR17) 2010
MJ Ehrhardt (1174_CR13) 2019; 64
S Bonettini (1174_CR7) 2012; 44
G Schramm (1174_CR24) 2022
S Bonettini (1174_CR4) 2021; 385
A Chambolle (1174_CR8) 2018; 28
1174_CR19
1174_CR16
1174_CR15
1174_CR12
1174_CR11
1174_CR2
S Bonettini (1174_CR6) 2018; 40
A Chambolle (1174_CR9) 2011; 40
PL Combettes (1174_CR10) 2015; 25
E Papoutsellis (1174_CR22) 2021; 379
S Bonettini (1174_CR5) 2018; 71
Y Malitsky (1174_CR18) 2020; 184
T Goldstein (1174_CR14) 2015; 28
Y Malitsky (1174_CR20) 2018; 28
A Alacaoglu (1174_CR1) 2022; 32
References_xml – ident: 1174_CR15
– volume: 40
  start-page: A3180
  issue: 5
  year: 2018
  ident: 1174_CR6
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M116001X
– volume: 26
  start-page: 1741
  issue: 3
  year: 2016
  ident: 1174_CR3
  publication-title: SIAM J. Optim.
  doi: 10.1137/14097642X
– ident: 1174_CR16
  doi: 10.1007/978-3-030-75549-2_21
– volume-title: Fast and memory-efficient reconstruction of sparse poisson data in listmode with non-smooth priors with application to time-of-flight PET
  year: 2022
  ident: 1174_CR24
  doi: 10.1088/1361-6560/ac71f1
– ident: 1174_CR2
  doi: 10.1007/978-1-4419-9467-7
– volume: 66
  issue: 17
  year: 2021
  ident: 1174_CR27
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ac176c
– volume: 28
  start-page: 2783
  issue: 4
  year: 2018
  ident: 1174_CR8
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1134834
– volume: 28
  start-page: 411
  issue: 1
  year: 2018
  ident: 1174_CR20
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1092015
– volume: 385
  year: 2021
  ident: 1174_CR4
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2020.113192
– volume: 34
  start-page: 6171
  year: 2021
  ident: 1174_CR25
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 1174_CR21
  doi: 10.1118/1.4957556
– volume: 32
  start-page: 1288
  issue: 2
  year: 2022
  ident: 1174_CR1
  publication-title: SIAM J. Optim.
  doi: 10.1137/19M1296252
– volume: 64
  issue: 22
  year: 2019
  ident: 1174_CR13
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab3d07
– volume: 44
  start-page: 236
  issue: 3
  year: 2012
  ident: 1174_CR7
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-011-0324-9
– volume-title: Convergence Analysis of Primal-dual Algorithms for Total Variation Image Restoration
  year: 2010
  ident: 1174_CR17
– volume: 71
  start-page: 5
  issue: 1
  year: 2018
  ident: 1174_CR5
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-018-0011-5
– volume: 40
  start-page: 120
  issue: 1
  year: 2011
  ident: 1174_CR9
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-010-0251-1
– ident: 1174_CR23
  doi: 10.1016/B978-0-12-604550-5.50015-8
– volume: 28
  start-page: 2089
  year: 2015
  ident: 1174_CR14
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 379
  start-page: 20200193
  issue: 2204
  year: 2021
  ident: 1174_CR22
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2020.0193
– ident: 1174_CR12
  doi: 10.1109/NSS/MIC42677.2020.9508013
– volume: 184
  start-page: 383
  issue: 1
  year: 2020
  ident: 1174_CR18
  publication-title: Math. Program.
  doi: 10.1007/s10107-019-01416-w
– volume: 25
  start-page: 1221
  issue: 2
  year: 2015
  ident: 1174_CR10
  publication-title: SIAM J. Optim.
  doi: 10.1137/140971233
– ident: 1174_CR11
  doi: 10.1016/j.na.2012.09.008
– ident: 1174_CR19
– ident: 1174_CR26
  doi: 10.1109/APSIPA.2017.8282164
SSID ssj0008217
Score 2.454198
Snippet In this work, we propose a new primal–dual algorithm with adaptive step sizes. The stochastic primal–dual hybrid gradient (SPDHG) algorithm with constant step...
In this work, we propose a new primal-dual algorithm with adaptive step sizes. The stochastic primal-dual hybrid gradient (SPDHG) algorithm with constant step...
In this work we propose a new primal-dual algorithm with adaptive step-sizes. The stochastic primal-dual hybrid gradient (SPDHG) algorithm with constant...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 294
SubjectTerms Adaptive algorithms
Applications of Mathematics
Computed tomography
Computer Science
Convergence
Convexity
Image Processing and Computer Vision
Mathematical Methods in Physics
Mathematics
Signal,Image and Speech Processing
Upper bounds
Title Stochastic Primal–Dual Hybrid Gradient Algorithm with Adaptive Step Sizes
URI https://link.springer.com/article/10.1007/s10851-024-01174-1
https://www.ncbi.nlm.nih.gov/pubmed/39669719
https://www.proquest.com/docview/3055926037
https://www.proquest.com/docview/3146665913
https://hal.science/hal-03927644
https://pubmed.ncbi.nlm.nih.gov/PMC11636721
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELfY9gIP_Bn_MkZlEG9gqW4cO37MyrqKsQlpVBpPkRPba6WSTk06CZ74DnxDPgl3aZJRBkg8RXIcx8mdfb-z734m5FXmMtkXFpFb5BjYW88Mt5rlCvArh6d4vZhzcirHE_HuPDpvksLKNtq93ZKsZ-pfkt0AHTCwKQx5zAQDn2cnQt8dtHgySLr5Nx7U5-z2wbNgMNeqJlXmz21smKOtKQZD3kSaNwMmf9s1rY3R6D6526BImqzF_oDccsUuudcgStqM1xKK2kMb2rJdcuekI2otH5Ljs2qRTw2SNdMPSDwx__Ht-9sVtD3-grlc9GhZx4RVNJlfLJazavqZ4tItTay5xJmSYpgYPZt9deUjMhkdfhyOWXO-AssBJlQs9CqTkdFe8lzEmEHrvdY-Hqjchs557k1kM8RoWlplQpE7o7gFIQruXGTDx2S7WBTuKaFx5LMwlrkxuDPY9ya0_VgIq4X1QmUiILz9zWnekI_jGRjz9Jo2GUWTgmjSWjQpD8jr7pnLNfXGP2u_BOl1FZE1e5y8T7GsDxhQAe67CgOy3wo3bcZqmSLnmQa3LlQBedHdhlGGWyemcIsV1AGDImWkOTTxZK0L3atC8Bi14jog8YaWbPRl804xm9ZM3hzQsAQfPCBvWoW67tffv3Xv_6o_I7cHtcrj2tE-2a6WK_ccoFSV9chOMjo4OMXr0afjwx7ZGsphrx5PPwEAixey
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgOQAHHssrsIBB3MBSXDt2fKwKS2DbFdLuSnuLnNimlUq6alMkOPEf-If8EmbSJKvuAhJXv_IY2_ONZ-YzIa8KX6hYOkRuiWegbwOz3BlWasCvHHrx5jBncqiyE_nxNDltaXIwF-aC_x5T3AATMNAkDNnLJANL55oESxnD90Zq1O-66aC5XTcGe4LBDqvbBJk_j7GlhK5OMQTyMr68HCZ5wVfaqKD9O-RWix3pcCPsu-SKr3bJ7RZH0naVrqCou6qhK9slNyc9PevqHjk4qhfl1CJFM_2EdBPzXz9-vl3D2Nk3zOCi75dNJFhNh_PPi-Wsnn6heGBLh86e4f5IMTiMHs2--9V9crL_7niUsfZWBVYCOKiZCLpQiTVB8VKmmDcbgjEhHejSCe8DDzZxBSIzo5y2Qpbeau5AdJJ7nzjxgOxUi8o_IjRNQiFSVVqL_sA4WOHiVEpnpAtSFzIivPvNedlSjuPNF_P8nCwZRZODaPJGNDmPyOu-z9mGcOOfrV-C9PqGyJWdDcc5lsWA_DSgva8iInudcPN2ha5yZDozYMwJHZEXfTWsLXSY2Mov1tAG1IhSieEwxMPNXOgfJcBONJqbiKRbs2TrXbZrqtm04e_mgIEVWN4RedNNqPP3-vu3Pv6_5s_J9ex4Ms7HHw4PnpAbg2b64-nRHtmpl2v_FMBUXTxrVtFvex8Slw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgkRAceCyvwAIGcQNr48ax42PVpRT2oZWWlfYWObFNK5W0alMkOPEf-If8EmbcJLtlAYmr4ziPGXu-8cx8JuRV4QoZC4vILXUM7K1nhlvNSgX4lcNdPGzmHB7J0an4cJaeXajiD9nubUhyXdOALE1VvTu3fvdC4RsgBQb2hSGnmWDg_1wDTyUEagdy0K3FWS-cuRuDl8Fg3VVN2cyfx9gwTVfHmBh5GXVeTp78LYIaDNPwDrnVIEraX6vAXXLFVdvkdoMuaTN3l9DUHuDQtm2Tm4cdaevyHtk_qWfl2CBxMz1GEorpz-8_9lYw9ugr1nXRd4uQH1bT_vTTbDGpx58pbuPSvjVzXDUppozRk8k3t7xPTodvPw5GrDlrgZUAGWqWeFXI1GgveSkyrKb1Xmuf9VRpE-c89ya1BeI1La0yiSidUdyCQAV3LrXJA7JVzSr3iNAs9UWSydIYjBLG3iQ2zoSwWlgvVCEiwtvfnJcNETmehzHNzymUUTQ5iCYPosl5RF5398zXNBz_7P0SpNd1RAbtUf8gx7YY8KACDPglichOK9y8mbfLHPnPNLh4iYrIi-4yzDgMo5jKzVbQB4yLlKnmMMTDtS50j0rAe9SK64hkG1qy8S6bV6rJOLB6c0DGEvzxiLxpFer8vf7-rY__r_tzcv14b5gfvD_af0Ju9IL245bSDtmqFyv3FBBWXTwLk-gX-qwa3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Primal-Dual+Hybrid+Gradient+Algorithm+with+Adaptive+Step+Sizes&rft.jtitle=Journal+of+mathematical+imaging+and+vision&rft.au=Chambolle%2C+Antonin&rft.au=Delplancke%2C+Claire&rft.au=Ehrhardt%2C+Matthias+J&rft.au=Sch%C3%B6nlieb%2C+Carola-Bibiane&rft.date=2024-06-01&rft.issn=0924-9907&rft.volume=66&rft.issue=3&rft.spage=294&rft_id=info:doi/10.1007%2Fs10851-024-01174-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-9907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-9907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-9907&client=summon