Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis
Recent findings have revealed that the protein gasdermin D (GSDMD) plays key roles in cell pyroptosis. GSDMD binds lipids and forms pore structures to induce pyroptosis upon microbial infection and associated danger signals. However, detailed structural information for GSDMD remains unknown. Here, w...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 40; pp. 10642 - 10647 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
03.10.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1708194114 |
Cover
Loading…
Abstract | Recent findings have revealed that the protein gasdermin D (GSDMD) plays key roles in cell pyroptosis. GSDMD binds lipids and forms pore structures to induce pyroptosis upon microbial infection and associated danger signals. However, detailed structural information for GSDMD remains unknown. Here, we report the crystal structure of the C-terminal domain of human GSDMD (GSDMD-C) at 2.64-Å resolution. The first loop on GSDMD-C inserts into the N-terminal domain (GSDMD-N), which helps stabilize the conformation of the full-length GSDMD. Substitution of this region by a short linker sequence increased levels of cell death. Mutants F283A and F283R can increase protein heterogeneity in vitro and are capable of undergoing cell pyroptosis in 293T cells. The small-angle X-ray–scattering envelope of human GSDMD is consistent with the modeled GSDMD structure and mouse GSDMA3 structure, which suggests that GSDMD adopts an autoinhibited conformation in solution. The positive potential surface of GSDMD-N covered by GSDMD-C is exposed after being released from the autoinhibition state and can form high-order oligomers via a charge–charge interaction. Furthermore, by mapping different regions of GSDMD, we determined that one short segment is sufficient to kill bacteria in vitro and can efficiently inhibit cell growth in Escherichia coli and Mycobacterium Smegmatis. These findings reveal that GSDMD-C acts as an auto-inhibition executor and GSDMD-N could form pore structures via a charge–charge interaction upon cleavage by caspases during cell pyroptosis. |
---|---|
AbstractList | The protein gasdermin D (GSDMD) is the physiological substrate of inflammatory caspases and plays key roles in cell pyroptosis upon microbial infection and associated danger signals. GSDMD, as well as other gasdermin members, can bind lipid and form pore structures to induce pyroptosis. However, detailed structural information for GSDMD remains unknown. We have determined the crystal structure of the C-terminal domain of human GSDMD. The structure reveals that the first loop inserts into the N-terminal domain to help stabilize the full-length GSDMD conformation. Furthermore, we identify that one short segment is sufficient to kill bacteria and can act as a potential antimicrobial peptide. Thus, these findings offer a perspective for understanding the mechanism of GSDMD in innate immune defense.
Recent findings have revealed that the protein gasdermin D (GSDMD) plays key roles in cell pyroptosis. GSDMD binds lipids and forms pore structures to induce pyroptosis upon microbial infection and associated danger signals. However, detailed structural information for GSDMD remains unknown. Here, we report the crystal structure of the C-terminal domain of human GSDMD (GSDMD-C) at 2.64-Å resolution. The first loop on GSDMD-C inserts into the N-terminal domain (GSDMD-N), which helps stabilize the conformation of the full-length GSDMD. Substitution of this region by a short linker sequence increased levels of cell death. Mutants F283A and F283R can increase protein heterogeneity in vitro and are capable of undergoing cell pyroptosis in 293T cells. The small-angle X-ray–scattering envelope of human GSDMD is consistent with the modeled GSDMD structure and mouse GSDMA3 structure, which suggests that GSDMD adopts an autoinhibited conformation in solution. The positive potential surface of GSDMD-N covered by GSDMD-C is exposed after being released from the autoinhibition state and can form high-order oligomers via a charge–charge interaction. Furthermore, by mapping different regions of GSDMD, we determined that one short segment is sufficient to kill bacteria in vitro and can efficiently inhibit cell growth in
Escherichia coli
and
Mycobacterium Smegmatis
. These findings reveal that GSDMD-C acts as an auto-inhibition executor and GSDMD-N could form pore structures via a charge–charge interaction upon cleavage by caspases during cell pyroptosis. Recent findings have revealed that the protein gasdermin D (GSDMD) plays key roles in cell pyroptosis. GSDMD binds lipids and forms pore structures to induce pyroptosis upon microbial infection and associated danger signals. However, detailed structural information for GSDMD remains unknown. Here, we report the crystal structure of the C-terminal domain of human GSDMD (GSDMD-C) at 2.64-Å resolution. The first loop on GSDMD-C inserts into the N-terminal domain (GSDMD-N), which helps stabilize the conformation of the full-length GSDMD. Substitution of this region by a short linker sequence increased levels of cell death. Mutants F283A and F283R can increase protein heterogeneity in vitro and are capable of undergoing cell pyroptosis in 293T cells. The small-angle X-ray-scattering envelope of human GSDMD is consistent with the modeled GSDMD structure and mouse GSDMA3 structure, which suggests that GSDMD adopts an autoinhibited conformation in solution. The positive potential surface of GSDMD-N covered by GSDMD-C is exposed after being released from the autoinhibition state and can form high-order oligomers via a charge-charge interaction. Furthermore, by mapping different regions of GSDMD, we determined that one short segment is sufficient to kill bacteria in vitro and can efficiently inhibit cell growth in and These findings reveal that GSDMD-C acts as an auto-inhibition executor and GSDMD-N could form pore structures via a charge-charge interaction upon cleavage by caspases during cell pyroptosis. Recent findings have revealed that the protein gasdermin D (GSDMD) plays key roles in cell pyroptosis. GSDMD binds lipids and forms pore structures to induce pyroptosis upon microbial infection and associated danger signals. However, detailed structural information for GSDMD remains unknown. Here, we report the crystal structure of the C-terminal domain of human GSDMD (GSDMD-C) at 2.64-a resolution. The first loop on GSDMD-C inserts into the N-terminal domain (GSDMD-N), which helps stabilize the conformation of the full-length GSDMD. Substitution of this region by a short linker sequence increased levels of cell death. Mutants F283A and F283R can increase protein heterogeneity in vitro and are capable of undergoing cell pyroptosis in 293T cells. The small-angle X-ray-scattering envelope of human GSDMD is consistent with the modeled GSDMD structure and mouse GSDMA3 structure, which suggests that GSDMD adopts an autoinhibited conformation in solution. The positive potential surface of GSDMD-N covered by GSDMD-C is exposed after being released from the autoinhibition state and can form high-order oligomers via a charge-charge interaction. Furthermore, by mapping different regions of GSDMD, we determined that one short segment is sufficient to kill bacteria in vitro and can efficiently inhibit cell growth in Escherichia coli and Mycobacterium Smegmatis. These findings reveal that GSDMD-C acts as an auto-inhibition executor and GSDMD-N could form pore structures via a charge-charge interaction upon cleavage by caspases during cell pyroptosis. Recent findings have revealed that the protein gasdermin D (GSDMD) plays key roles in cell pyroptosis. GSDMD binds lipids and forms pore structures to induce pyroptosis upon microbial infection and associated danger signals. However, detailed structural information for GSDMD remains unknown. Here, we report the crystal structure of the C-terminal domain of human GSDMD (GSDMD-C) at 2.64-Å resolution. The first loop on GSDMD-C inserts into the N-terminal domain (GSDMD-N), which helps stabilize the conformation of the full-length GSDMD. Substitution of this region by a short linker sequence increased levels of cell death. Mutants F283A and F283R can increase protein heterogeneity in vitro and are capable of undergoing cell pyroptosis in 293T cells. The small-angle X-ray–scattering envelope of human GSDMD is consistent with the modeled GSDMD structure and mouse GSDMA3 structure, which suggests that GSDMD adopts an autoinhibited conformation in solution. The positive potential surface of GSDMD-N covered by GSDMD-C is exposed after being released from the autoinhibition state and can form high-order oligomers via a charge–charge interaction. Furthermore, by mapping different regions of GSDMD, we determined that one short segment is sufficient to kill bacteria in vitro and can efficiently inhibit cell growth in Escherichia coli and Mycobacterium Smegmatis. These findings reveal that GSDMD-C acts as an auto-inhibition executor and GSDMD-N could form pore structures via a charge–charge interaction upon cleavage by caspases during cell pyroptosis. Recent findings have revealed that the protein gasdermin D (GSDMD) plays key roles in cell pyroptosis. GSDMD binds lipids and forms pore structures to induce pyroptosis upon microbial infection and associated danger signals. However, detailed structural information for GSDMD remains unknown. Here, we report the crystal structure of the C-terminal domain of human GSDMD (GSDMD-C) at 2.64-Å resolution. The first loop on GSDMD-C inserts into the N-terminal domain (GSDMD-N), which helps stabilize the conformation of the full-length GSDMD. Substitution of this region by a short linker sequence increased levels of cell death. Mutants F283A and F283R can increase protein heterogeneity in vitro and are capable of undergoing cell pyroptosis in 293T cells. The small-angle X-ray-scattering envelope of human GSDMD is consistent with the modeled GSDMD structure and mouse GSDMA3 structure, which suggests that GSDMD adopts an autoinhibited conformation in solution. The positive potential surface of GSDMD-N covered by GSDMD-C is exposed after being released from the autoinhibition state and can form high-order oligomers via a charge-charge interaction. Furthermore, by mapping different regions of GSDMD, we determined that one short segment is sufficient to kill bacteria in vitro and can efficiently inhibit cell growth in Escherichia coli and Mycobacterium Smegmatis These findings reveal that GSDMD-C acts as an auto-inhibition executor and GSDMD-N could form pore structures via a charge-charge interaction upon cleavage by caspases during cell pyroptosis.Recent findings have revealed that the protein gasdermin D (GSDMD) plays key roles in cell pyroptosis. GSDMD binds lipids and forms pore structures to induce pyroptosis upon microbial infection and associated danger signals. However, detailed structural information for GSDMD remains unknown. Here, we report the crystal structure of the C-terminal domain of human GSDMD (GSDMD-C) at 2.64-Å resolution. The first loop on GSDMD-C inserts into the N-terminal domain (GSDMD-N), which helps stabilize the conformation of the full-length GSDMD. Substitution of this region by a short linker sequence increased levels of cell death. Mutants F283A and F283R can increase protein heterogeneity in vitro and are capable of undergoing cell pyroptosis in 293T cells. The small-angle X-ray-scattering envelope of human GSDMD is consistent with the modeled GSDMD structure and mouse GSDMA3 structure, which suggests that GSDMD adopts an autoinhibited conformation in solution. The positive potential surface of GSDMD-N covered by GSDMD-C is exposed after being released from the autoinhibition state and can form high-order oligomers via a charge-charge interaction. Furthermore, by mapping different regions of GSDMD, we determined that one short segment is sufficient to kill bacteria in vitro and can efficiently inhibit cell growth in Escherichia coli and Mycobacterium Smegmatis These findings reveal that GSDMD-C acts as an auto-inhibition executor and GSDMD-N could form pore structures via a charge-charge interaction upon cleavage by caspases during cell pyroptosis. |
Author | Xu, Xue-Wei Li, Jixi Li, Suhua Duan, Shuyan Ji, Chaoneng Gan, Jianhua Kuang, Siyun Zheng, Jun Shen, Yanfang Yang, Hui |
Author_xml | – sequence: 1 givenname: Siyun surname: Kuang fullname: Kuang, Siyun organization: State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China – sequence: 2 givenname: Jun surname: Zheng fullname: Zheng, Jun organization: State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China – sequence: 3 givenname: Hui surname: Yang fullname: Yang, Hui organization: State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China – sequence: 4 givenname: Suhua surname: Li fullname: Li, Suhua organization: State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China – sequence: 5 givenname: Shuyan surname: Duan fullname: Duan, Shuyan organization: State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China – sequence: 6 givenname: Yanfang surname: Shen fullname: Shen, Yanfang organization: State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China – sequence: 7 givenname: Chaoneng surname: Ji fullname: Ji, Chaoneng organization: State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China – sequence: 8 givenname: Jianhua surname: Gan fullname: Gan, Jianhua organization: State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China – sequence: 9 givenname: Xue-Wei surname: Xu fullname: Xu, Xue-Wei organization: Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China – sequence: 10 givenname: Jixi surname: Li fullname: Li, Jixi organization: State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28928145$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kcFLHDEUxoMoulrPnloGevEy-jJJJsmlULRqwdKDLT2GbCbjZplNpklG8L9v1tVuFXoK5P2-j-977xDt-uAtQicYzjBwcj56nc4wB4ElxZjuoBkGieuWSthFM4CG14I29AAdprQEAMkE7KODRshGYMpm6NddjpPJU7SV88ndL3IV-ur67vLbZRXtg9VDqvLCVnOdXNqO9JSD8ws3d9kFX6SVscNQjY8xjDkU9B3a64vWHj-_R-jn1ZcfFzf17ffrrxefb2vDQOaaCGo6TojhrZw3GiShRkBrmKYE-g4LoQFsR7hoTNMCLU15x_vy08kWrCZH6NPGd5zmK9sZ63PUgxqjW-n4qIJ26vXEu4W6Dw-KtYQJ2RaD02eDGH5PNmW1cmldRnsbpqSeFgtYYlzQj2_QZZiiL_UKxaWkgjEo1Id_E_2N8rLzArANYGJIKdpeGZf1eo8loBsUBrW-rVrfVm1vW3Tnb3Qv1v9XvN8olimHuE3SUiFKKfIHyqyvww |
CitedBy_id | crossref_primary_10_1038_s41556_024_01474_z crossref_primary_10_1038_s41392_021_00507_5 crossref_primary_10_1002_advs_202000532 crossref_primary_10_1016_j_chemphyslip_2020_105026 crossref_primary_10_1016_j_smim_2023_101803 crossref_primary_10_1186_s13046_021_02065_8 crossref_primary_10_15252_embj_2020106700 crossref_primary_10_1016_j_canlet_2019_02_014 crossref_primary_10_1038_s41467_023_38045_z crossref_primary_10_1126_sciadv_adi9284 crossref_primary_10_1016_j_bbr_2022_114223 crossref_primary_10_1039_D0AN01420F crossref_primary_10_1186_s12887_024_04731_0 crossref_primary_10_3389_fgene_2022_926796 crossref_primary_10_3390_biom12111625 crossref_primary_10_1186_s12964_024_01932_z crossref_primary_10_1080_14397595_2021_1899569 crossref_primary_10_1155_2021_9963534 crossref_primary_10_1038_s41419_020_2476_2 crossref_primary_10_1007_s00018_019_03060_1 crossref_primary_10_1042_BST20210672 crossref_primary_10_1146_annurev_immunol_073119_095439 crossref_primary_10_1007_s12975_018_0666_3 crossref_primary_10_3389_fphar_2023_1122104 crossref_primary_10_1016_j_exer_2023_109537 crossref_primary_10_1002_tox_24266 crossref_primary_10_1016_j_jmb_2021_167297 crossref_primary_10_1007_s00395_023_01010_4 crossref_primary_10_1007_s10787_023_01148_6 crossref_primary_10_1039_D3TB01973J crossref_primary_10_3748_wjg_v25_i44_6527 crossref_primary_10_3389_fcell_2022_798826 crossref_primary_10_1016_j_omto_2022_12_008 crossref_primary_10_1186_s43556_025_00249_8 crossref_primary_10_3389_fonc_2023_1164214 crossref_primary_10_3389_fphar_2024_1430469 crossref_primary_10_1016_j_cell_2020_02_002 crossref_primary_10_1038_s41598_020_67396_6 crossref_primary_10_3389_fphar_2024_1450211 crossref_primary_10_1186_s13068_020_01742_8 crossref_primary_10_3390_biom12121804 crossref_primary_10_1016_j_trsl_2022_05_001 crossref_primary_10_1016_j_cyto_2022_155925 crossref_primary_10_3389_fnagi_2021_717644 crossref_primary_10_1016_j_heliyon_2022_e11035 crossref_primary_10_1186_s12964_024_01890_6 crossref_primary_10_1186_s40164_023_00464_5 crossref_primary_10_3389_fimmu_2023_1155606 crossref_primary_10_3389_fmed_2021_802063 crossref_primary_10_1016_j_phymed_2024_155516 crossref_primary_10_1002_art_41963 crossref_primary_10_1002_cam4_6803 crossref_primary_10_1155_2020_4510628 crossref_primary_10_1016_j_bbagen_2023_130497 crossref_primary_10_1016_j_jmb_2018_07_002 crossref_primary_10_3389_fmicb_2019_02922 crossref_primary_10_1016_j_phrs_2024_107182 crossref_primary_10_1016_j_tcb_2021_03_004 crossref_primary_10_3389_fcvm_2023_1217985 crossref_primary_10_1186_s12974_020_02018_6 crossref_primary_10_1016_j_semcdb_2018_01_001 crossref_primary_10_1167_iovs_61_8_31 crossref_primary_10_1021_jacsau_3c00236 crossref_primary_10_1016_j_bbamcr_2025_119917 crossref_primary_10_3390_ijms241713065 crossref_primary_10_1128_mbio_03600_21 crossref_primary_10_1097_MD_0000000000036605 crossref_primary_10_1016_j_biopha_2024_117367 crossref_primary_10_1038_s41418_021_00867_z crossref_primary_10_3390_cancers14010237 crossref_primary_10_1016_j_intimp_2024_113821 crossref_primary_10_1111_nyas_14976 crossref_primary_10_1002_jcp_29268 crossref_primary_10_2147_CMAR_S244374 crossref_primary_10_1016_j_apsb_2021_02_006 crossref_primary_10_15252_embj_2020105753 crossref_primary_10_1002_eji_202048937 crossref_primary_10_1111_imr_12833 crossref_primary_10_3390_biom14070874 crossref_primary_10_1038_s43018_023_00650_8 crossref_primary_10_1128_msystems_01106_24 crossref_primary_10_3390_ijms21134658 crossref_primary_10_1038_s41467_022_35725_0 crossref_primary_10_1038_s41586_023_05872_5 crossref_primary_10_1080_13880209_2023_2224403 crossref_primary_10_1158_1078_0432_CCR_18_2381 crossref_primary_10_1016_j_neuroscience_2020_09_036 crossref_primary_10_1016_j_bbrc_2021_09_051 crossref_primary_10_1016_j_tcb_2021_06_010 crossref_primary_10_1186_s40001_024_01742_6 crossref_primary_10_3389_fimmu_2022_893914 crossref_primary_10_1038_s41419_024_06712_8 crossref_primary_10_1016_j_jorganchem_2025_123571 crossref_primary_10_1155_2022_2501279 crossref_primary_10_3389_fimmu_2022_893912 crossref_primary_10_4103_1673_5374_327348 crossref_primary_10_1038_s41392_024_01958_2 crossref_primary_10_4049_jimmunol_1900228 crossref_primary_10_1101_cshperspect_a036392 crossref_primary_10_1016_j_drup_2024_101097 crossref_primary_10_1111_jcmm_15439 crossref_primary_10_7554_eLife_89974_3 crossref_primary_10_1016_j_immuni_2019_04_017 crossref_primary_10_1016_j_cell_2021_04_036 crossref_primary_10_1016_j_jff_2020_104274 crossref_primary_10_1016_j_it_2024_01_001 crossref_primary_10_1002_jcp_30627 crossref_primary_10_1016_j_intimp_2024_112041 crossref_primary_10_1016_j_matt_2022_08_026 crossref_primary_10_3389_fncel_2023_1073511 crossref_primary_10_1039_D2FO02284B crossref_primary_10_1093_abbs_gmaa016 crossref_primary_10_1042_BCJ20240416 crossref_primary_10_1002_advs_202410336 crossref_primary_10_1038_s41590_023_01526_w crossref_primary_10_1007_s10495_020_01632_2 crossref_primary_10_1016_j_intimp_2019_03_054 crossref_primary_10_1016_j_snb_2023_134799 crossref_primary_10_1016_j_phrs_2025_107605 crossref_primary_10_1039_C9MD00059C crossref_primary_10_1016_j_fct_2024_114520 crossref_primary_10_1016_j_bbcan_2021_188635 crossref_primary_10_1002_mnfr_202300602 crossref_primary_10_3389_fcell_2021_638710 crossref_primary_10_1002_smll_202207433 crossref_primary_10_1016_j_pep_2021_105945 crossref_primary_10_3390_ijms25169068 crossref_primary_10_1016_j_intimp_2024_112311 crossref_primary_10_1038_s41590_019_0368_3 crossref_primary_10_1038_s42003_022_04019_y crossref_primary_10_3389_fcell_2020_00817 crossref_primary_10_1038_s41419_020_2437_9 crossref_primary_10_1002_advs_202306457 crossref_primary_10_1016_j_bbrc_2019_03_166 crossref_primary_10_4049_jimmunol_2001030 crossref_primary_10_1002_cti2_1186 crossref_primary_10_1016_j_abb_2019_02_008 crossref_primary_10_1186_s12935_022_02483_4 crossref_primary_10_1016_j_intimp_2018_12_028 crossref_primary_10_7554_eLife_89974 crossref_primary_10_1007_s10529_019_02707_0 crossref_primary_10_1016_j_brainresbull_2022_09_007 crossref_primary_10_1021_acschembio_1c00456 crossref_primary_10_1111_jfbc_14305 crossref_primary_10_3389_fendo_2022_950798 crossref_primary_10_1007_s11010_024_05147_1 crossref_primary_10_1016_j_trim_2023_101888 crossref_primary_10_1073_pnas_1800562115 crossref_primary_10_3892_mmr_2021_12557 crossref_primary_10_1007_s10495_024_02038_0 crossref_primary_10_1016_j_metabol_2024_155911 crossref_primary_10_3390_cells11182812 crossref_primary_10_1126_sciimmunol_aat2738 crossref_primary_10_5051_jpis_2101380069 crossref_primary_10_1007_s00018_021_03914_7 crossref_primary_10_3389_fcell_2022_862493 crossref_primary_10_1016_j_jaut_2019_102336 crossref_primary_10_3389_fonc_2019_00971 crossref_primary_10_1002_mco2_249 crossref_primary_10_1016_j_str_2018_03_002 crossref_primary_10_3389_fimmu_2021_750841 crossref_primary_10_1016_j_pharmthera_2024_108756 crossref_primary_10_1155_2022_8593176 crossref_primary_10_1111_imr_13294 crossref_primary_10_1016_j_molimm_2018_12_024 crossref_primary_10_3389_fimmu_2023_1074606 crossref_primary_10_1016_j_ecoenv_2024_115930 crossref_primary_10_1016_j_jmb_2021_167274 crossref_primary_10_1016_j_tibs_2024_05_007 crossref_primary_10_1042_BCJ20210711 crossref_primary_10_3390_vetsci11110555 crossref_primary_10_1016_j_immuni_2024_02_011 crossref_primary_10_1016_j_micres_2023_127383 crossref_primary_10_3389_fmicb_2021_784009 crossref_primary_10_1016_j_lfs_2020_117761 crossref_primary_10_1084_jem_20190545 crossref_primary_10_2139_ssrn_3527420 crossref_primary_10_3390_biom13111664 crossref_primary_10_1002_med_22071 crossref_primary_10_1016_j_bbadva_2023_100109 crossref_primary_10_1038_s41419_024_06455_6 crossref_primary_10_4049_jimmunol_2200342 crossref_primary_10_1186_s13567_024_01282_1 crossref_primary_10_1016_j_fsi_2024_110002 crossref_primary_10_1016_j_yjmcc_2022_07_005 crossref_primary_10_1016_j_bbi_2024_02_001 crossref_primary_10_1016_j_intimp_2023_110846 crossref_primary_10_1515_reveh_2023_0064 crossref_primary_10_1101_cshperspect_a036400 crossref_primary_10_1186_s12974_023_02927_2 crossref_primary_10_1172_jci_insight_146852 |
Cites_doi | 10.1016/j.tibs.2016.10.004 10.1073/pnas.1610433113 10.1016/j.imlet.2004.09.012 10.1016/j.cell.2013.03.013 10.1073/pnas.0705069104 10.1038/cr.2015.139 10.1371/journal.pbio.1001451 10.1038/ncomms14128 10.1038/cr.2016.100 10.1021/bi020314u 10.1038/nature18590 10.1038/nature15368 10.1038/nature15514 10.1073/pnas.0915166107 10.1016/j.cell.2016.05.004 10.1107/S0907444909047337 10.1073/pnas.1607769113 10.1038/2503 10.1038/nature22393 10.1038/nature15541 10.1146/annurev-immunol-032414-112258 10.1038/nature09121 10.15252/embj.201694696 10.1016/j.cell.2012.06.019 10.1038/nature05695 10.1126/scitranslmed.aaf1059 10.1016/j.cell.2012.11.048 10.1016/j.cell.2012.02.022 10.1107/S0907444910045749 10.1038/nature18629 10.1073/pnas.1118048109 10.1073/pnas.1302418110 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Oct 3, 2017 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Oct 3, 2017 |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1708194114 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Structural basis of GSDMD autoinhibition |
EISSN | 1091-6490 |
EndPage | 10647 |
ExternalDocumentID | PMC5635896 28928145 10_1073_pnas_1708194114 26488110 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology of the People's Republic of China (MOST) grantid: 2016YFA0500600 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-384cd733c769b2a0934c806c5a430fd188a00ed3782c26047087d7fed3d960ea3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:01:13 EDT 2025 Fri Jul 11 03:49:01 EDT 2025 Mon Jun 30 08:29:58 EDT 2025 Thu Apr 03 07:05:53 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 Tue Jul 01 03:19:41 EDT 2025 Fri May 30 11:46:58 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Keywords | antibacterial activity crystal structure gasdermin D autoinhibition |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-384cd733c769b2a0934c806c5a430fd188a00ed3782c26047087d7fed3d960ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: J.L. designed research; S.K., J.Z., H.Y., S.L., S.D., Y.S., C.J., and X.-W.X. performed research; S.K., J.Z., S.L., C.J., J.G., X.-W.X., and J.L. analyzed data; and J.L. wrote the paper. 1S.K. and J.Z. contributed equally to the work. Edited by Hao Wu, Harvard Medical School, Boston, MA, and approved August 18, 2017 (received for review May 18, 2017) |
OpenAccessLink | https://www.pnas.org/content/pnas/114/40/10642.full.pdf |
PMID | 28928145 |
PQID | 1979948550 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5635896 proquest_miscellaneous_1941101911 proquest_journals_1979948550 pubmed_primary_28928145 crossref_citationtrail_10_1073_pnas_1708194114 crossref_primary_10_1073_pnas_1708194114 jstor_primary_26488110 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-03 |
PublicationDateYYYYMMDD | 2017-10-03 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2017 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Winn MD (e_1_3_4_32_2) 2011; 67 Seuring C (e_1_3_4_28_2) 2012; 10 Shi J (e_1_3_4_3_2) 2017; 42 Anguiano M (e_1_3_4_29_2) 2002; 41 Rodriguez JA (e_1_3_4_25_2) 2015; 525 Rogers C (e_1_3_4_10_2) 2017; 8 Tidow H (e_1_3_4_18_2) 2007; 104 Sborgi L (e_1_3_4_22_2) 2016; 35 Wang Y (e_1_3_4_7_2) 2017; 547 Ding J (e_1_3_4_5_2) 2016; 535 Lee JH (e_1_3_4_30_2) 2013; 110 Goldschmidt L (e_1_3_4_19_2) 2010; 107 Sawaya MR (e_1_3_4_21_2) 2007; 447 Liu X (e_1_3_4_6_2) 2016; 535 Wu B (e_1_3_4_14_2) 2013; 152 Das S (e_1_3_4_23_2) 2016; 113 He WT (e_1_3_4_4_2) 2015; 25 Eisenberg D (e_1_3_4_27_2) 2012; 148 Yin Q (e_1_3_4_15_2) 2015; 33 Liu Z (e_1_3_4_12_2) 2005; 97 Lin SC (e_1_3_4_17_2) 2010; 465 Kumar DK (e_1_3_4_24_2) 2016; 8 Aglietti RA (e_1_3_4_8_2) 2016; 113 Chen X (e_1_3_4_11_2) 2016; 26 Van Laer L (e_1_3_4_9_2) 1998; 20 Wu H (e_1_3_4_13_2) 2013; 153 Li J (e_1_3_4_20_2) 2012; 150 Wu H (e_1_3_4_16_2) 2016; 165 Kayagaki N (e_1_3_4_2_2) 2015; 526 Kabsch W (e_1_3_4_31_2) 2010; 66 Shi J (e_1_3_4_1_2) 2015; 526 De Simone A (e_1_3_4_26_2) 2012; 109 15626474 - Immunol Lett. 2005 Feb 15;97(1):41-5 27383986 - Nature. 2016 Jul 06;535(7610):153-8 26611636 - Cell Res. 2015 Dec;25(12):1285-98 23818606 - Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11845-50 28459430 - Nature. 2017 Jul 6;547(7661):99-103 26352473 - Nature. 2015 Sep 24;525(7570):486-90 27418190 - EMBO J. 2016 Aug 15;35(16):1766-78 27799535 - Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13132-13137 23582320 - Cell. 2013 Apr 11;153(2):287-92 27281216 - Nature. 2016 Jul 7;535(7610):111-6 27203110 - Cell. 2016 May 19;165(5):1055-1066 27225182 - Sci Transl Med. 2016 May 25;8(340):340ra72 23273991 - Cell. 2013 Jan 17;152(1-2):276-89 17468747 - Nature. 2007 May 24;447(7143):453-7 12234175 - Biochemistry. 2002 Sep 24;41(38):11338-43 22509003 - Proc Natl Acad Sci U S A. 2012 May 1;109(18):6951-6 26375003 - Nature. 2015 Oct 29;526(7575):660-5 9771715 - Nat Genet. 1998 Oct;20(2):194-7 20485341 - Nature. 2010 Jun 17;465(7300):885-90 20124692 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 27932073 - Trends Biochem Sci. 2017 Apr;42(4):245-254 23300377 - PLoS Biol. 2012;10(12):e1001451 22817896 - Cell. 2012 Jul 20;150(2):339-50 17620598 - Proc Natl Acad Sci U S A. 2007 Jul 24;104(30):12324-9 25622194 - Annu Rev Immunol. 2015;33:393-416 21460441 - Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42 28045099 - Nat Commun. 2017 Jan 03;8:14128 27573174 - Cell Res. 2016 Sep;26(9):1007-20 27339137 - Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7858-63 22424229 - Cell. 2012 Mar 16;148(6):1188-203 20133726 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3487-92 26375259 - Nature. 2015 Oct 29;526(7575):666-71 |
References_xml | – volume: 42 start-page: 245 year: 2017 ident: e_1_3_4_3_2 article-title: Pyroptosis: Gasdermin-mediated programmed necrotic cell death publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2016.10.004 – volume: 113 start-page: 13132 year: 2016 ident: e_1_3_4_23_2 article-title: GSDMB induces an asthma phenotype characterized by increased airway responsiveness and remodeling without lung inflammation publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1610433113 – volume: 97 start-page: 41 year: 2005 ident: e_1_3_4_12_2 article-title: Predefined spacers between epitopes on a recombinant epitope-peptide impacted epitope-specific antibody response publication-title: Immunol Lett doi: 10.1016/j.imlet.2004.09.012 – volume: 153 start-page: 287 year: 2013 ident: e_1_3_4_13_2 article-title: Higher-order assemblies in a new paradigm of signal transduction publication-title: Cell doi: 10.1016/j.cell.2013.03.013 – volume: 104 start-page: 12324 year: 2007 ident: e_1_3_4_18_2 article-title: Quaternary structures of tumor suppressor p53 and a specific p53 DNA complex publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0705069104 – volume: 25 start-page: 1285 year: 2015 ident: e_1_3_4_4_2 article-title: Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion publication-title: Cell Res doi: 10.1038/cr.2015.139 – volume: 10 start-page: e1001451 year: 2012 ident: e_1_3_4_28_2 article-title: The mechanism of toxicity in HET-S/HET-s prion incompatibility publication-title: PLoS Biol doi: 10.1371/journal.pbio.1001451 – volume: 8 start-page: 14128 year: 2017 ident: e_1_3_4_10_2 article-title: Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death publication-title: Nat Commun doi: 10.1038/ncomms14128 – volume: 26 start-page: 1007 year: 2016 ident: e_1_3_4_11_2 article-title: Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis publication-title: Cell Res doi: 10.1038/cr.2016.100 – volume: 41 start-page: 11338 year: 2002 ident: e_1_3_4_29_2 article-title: Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes publication-title: Biochemistry doi: 10.1021/bi020314u – volume: 535 start-page: 111 year: 2016 ident: e_1_3_4_5_2 article-title: Pore-forming activity and structural autoinhibition of the gasdermin family publication-title: Nature doi: 10.1038/nature18590 – volume: 525 start-page: 486 year: 2015 ident: e_1_3_4_25_2 article-title: Structure of the toxic core of alpha-synuclein from invisible crystals publication-title: Nature doi: 10.1038/nature15368 – volume: 526 start-page: 660 year: 2015 ident: e_1_3_4_1_2 article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death publication-title: Nature doi: 10.1038/nature15514 – volume: 107 start-page: 3487 year: 2010 ident: e_1_3_4_19_2 article-title: Identifying the amylome, proteins capable of forming amyloid-like fibrils publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0915166107 – volume: 165 start-page: 1055 year: 2016 ident: e_1_3_4_16_2 article-title: The structure and dynamics of higher-order assemblies: Amyloids, signalosomes, and granules publication-title: Cell doi: 10.1016/j.cell.2016.05.004 – volume: 66 start-page: 125 year: 2010 ident: e_1_3_4_31_2 article-title: Xds publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444909047337 – volume: 113 start-page: 7858 year: 2016 ident: e_1_3_4_8_2 article-title: GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1607769113 – volume: 20 start-page: 194 year: 1998 ident: e_1_3_4_9_2 article-title: Nonsyndromic hearing impairment is associated with a mutation in DFNA5 publication-title: Nat Genet doi: 10.1038/2503 – volume: 547 start-page: 99 year: 2017 ident: e_1_3_4_7_2 article-title: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a Gasdermin publication-title: Nature doi: 10.1038/nature22393 – volume: 526 start-page: 666 year: 2015 ident: e_1_3_4_2_2 article-title: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling publication-title: Nature doi: 10.1038/nature15541 – volume: 33 start-page: 393 year: 2015 ident: e_1_3_4_15_2 article-title: Structural biology of innate immunity publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-032414-112258 – volume: 465 start-page: 885 year: 2010 ident: e_1_3_4_17_2 article-title: Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling publication-title: Nature doi: 10.1038/nature09121 – volume: 35 start-page: 1766 year: 2016 ident: e_1_3_4_22_2 article-title: GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death publication-title: EMBO J doi: 10.15252/embj.201694696 – volume: 150 start-page: 339 year: 2012 ident: e_1_3_4_20_2 article-title: The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis publication-title: Cell doi: 10.1016/j.cell.2012.06.019 – volume: 447 start-page: 453 year: 2007 ident: e_1_3_4_21_2 article-title: Atomic structures of amyloid cross-beta spines reveal varied steric zippers publication-title: Nature doi: 10.1038/nature05695 – volume: 8 start-page: 340ra72 year: 2016 ident: e_1_3_4_24_2 article-title: Amyloid-beta peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aaf1059 – volume: 152 start-page: 276 year: 2013 ident: e_1_3_4_14_2 article-title: Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5 publication-title: Cell doi: 10.1016/j.cell.2012.11.048 – volume: 148 start-page: 1188 year: 2012 ident: e_1_3_4_27_2 article-title: The amyloid state of proteins in human diseases publication-title: Cell doi: 10.1016/j.cell.2012.02.022 – volume: 67 start-page: 235 year: 2011 ident: e_1_3_4_32_2 article-title: Overview of the CCP4 suite and current developments publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444910045749 – volume: 535 start-page: 153 year: 2016 ident: e_1_3_4_6_2 article-title: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores publication-title: Nature doi: 10.1038/nature18629 – volume: 109 start-page: 6951 year: 2012 ident: e_1_3_4_26_2 article-title: Intrinsic disorder modulates protein self-assembly and aggregation publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1118048109 – volume: 110 start-page: 11845 year: 2013 ident: e_1_3_4_30_2 article-title: Crystal structure and versatile functional roles of the COP9 signalosome subunit 1 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1302418110 – reference: 27799535 - Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13132-13137 – reference: 23300377 - PLoS Biol. 2012;10(12):e1001451 – reference: 22424229 - Cell. 2012 Mar 16;148(6):1188-203 – reference: 20485341 - Nature. 2010 Jun 17;465(7300):885-90 – reference: 27573174 - Cell Res. 2016 Sep;26(9):1007-20 – reference: 22817896 - Cell. 2012 Jul 20;150(2):339-50 – reference: 23818606 - Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11845-50 – reference: 27383986 - Nature. 2016 Jul 06;535(7610):153-8 – reference: 26611636 - Cell Res. 2015 Dec;25(12):1285-98 – reference: 26375259 - Nature. 2015 Oct 29;526(7575):666-71 – reference: 9771715 - Nat Genet. 1998 Oct;20(2):194-7 – reference: 17620598 - Proc Natl Acad Sci U S A. 2007 Jul 24;104(30):12324-9 – reference: 12234175 - Biochemistry. 2002 Sep 24;41(38):11338-43 – reference: 21460441 - Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42 – reference: 26375003 - Nature. 2015 Oct 29;526(7575):660-5 – reference: 23582320 - Cell. 2013 Apr 11;153(2):287-92 – reference: 20124692 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 – reference: 25622194 - Annu Rev Immunol. 2015;33:393-416 – reference: 27339137 - Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7858-63 – reference: 27418190 - EMBO J. 2016 Aug 15;35(16):1766-78 – reference: 27281216 - Nature. 2016 Jul 7;535(7610):111-6 – reference: 22509003 - Proc Natl Acad Sci U S A. 2012 May 1;109(18):6951-6 – reference: 28045099 - Nat Commun. 2017 Jan 03;8:14128 – reference: 27932073 - Trends Biochem Sci. 2017 Apr;42(4):245-254 – reference: 23273991 - Cell. 2013 Jan 17;152(1-2):276-89 – reference: 28459430 - Nature. 2017 Jul 6;547(7661):99-103 – reference: 27203110 - Cell. 2016 May 19;165(5):1055-1066 – reference: 20133726 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3487-92 – reference: 27225182 - Sci Transl Med. 2016 May 25;8(340):340ra72 – reference: 26352473 - Nature. 2015 Sep 24;525(7570):486-90 – reference: 17468747 - Nature. 2007 May 24;447(7143):453-7 – reference: 15626474 - Immunol Lett. 2005 Feb 15;97(1):41-5 |
SSID | ssj0009580 |
Score | 2.6177948 |
Snippet | Recent findings have revealed that the protein gasdermin D (GSDMD) plays key roles in cell pyroptosis. GSDMD binds lipids and forms pore structures to induce... The protein gasdermin D (GSDMD) is the physiological substrate of inflammatory caspases and plays key roles in cell pyroptosis upon microbial infection and... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10642 |
SubjectTerms | Apoptosis Bacteria Biological Sciences Cell death Cells Crystal structure E coli Hazards Heterogeneity Inserts Lipids Microorganisms Mutation Oligomers Protein structure Pyroptosis Scattering |
Title | Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis |
URI | https://www.jstor.org/stable/26488110 https://www.ncbi.nlm.nih.gov/pubmed/28928145 https://www.proquest.com/docview/1979948550 https://www.proquest.com/docview/1941101911 https://pubmed.ncbi.nlm.nih.gov/PMC5635896 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWAQNpCReBiqUpLaiZPHicEqYNWkbaLwUjmOq0ZCSUWah-1P4a_lLnZ-tOqkwUvU2I7V-L6cv7PvzoS8i7VYAPEO3ThMlctjL3BlBLcLJoVOZDQWAcY7n0_DyTX_Mgtmg8GfntdStU5G6nZnXMn_SBXKQK4YJfsPkm07hQL4DfKFK0gYrveS8WWd_BW3ALK8RCsbqd_Z5en5KYakaMyMjLwSZiqTdcRUyWpdZPkyS7LG0RFX74erm9_Fal2UWdknrBftBFc27gTTZv3wpItGsSqiHLrDi2l3tvHXqlmOzm6qFoY_l9r6AXdlP2zDSZU1Rd8y4za0rGR_bQLmO9xZZ319O4Y5kJso6ZE2KhYYihtyc0hoq4NNJKkFm0ngZFWqjyZSb37Ge7FT-YO2whOLc1mOfIFUhzfdbqTZ3pr-WqfEejtesDl2MO86eEAejsEEQaV_NvN7CZ0jE95k37BJGyXYh61_sMF4jNPrLnNm2yu3R3OunpDH1j6hJwZs-2Sg86dkvxEvPbZpyt8_I99b9FGLPlosaA0xatFHAS60Rl9XtYk-eJQi-miHvufk-vOnq48T1x7T4Spgm2uXRVylgjElwjgZSy9mXEVeqALJmbdI_SiSnqdTBlxUgfXMYWBEKhZQkoL5rCU7IHt5keuXhIYiDZRIGLB8yZXAoG6mvCQA2qzS1IsdMmqGcq5sDns8SuXX_A7hOeS4fWBl0rfc3fSglk3bDn0_I2DHDjlqhDW3Hz88h9vhdTZAh7xtq0E145jJXBcVtoF-wYTyfYe8MLLtOo_iceTzwCFiQ-ptA0z7vlmTZ8s6_XsANgKo01f3f7VD8qj7Oo_IHsBDvwYuvU7e1KD-C3KUxhE |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+insight+of+GSDMD+reveals+the+basis+of+GSDMD+autoinhibition+in+cell+pyroptosis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kuang%2C+Siyun&rft.au=Zheng%2C+Jun&rft.au=Yang%2C+Hui&rft.au=Li%2C+Suhua&rft.date=2017-10-03&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=40&rft.spage=10642&rft.epage=10647&rft_id=info:doi/10.1073%2Fpnas.1708194114&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1708194114 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |