Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis

Recent findings have revealed that the protein gasdermin D (GSDMD) plays key roles in cell pyroptosis. GSDMD binds lipids and forms pore structures to induce pyroptosis upon microbial infection and associated danger signals. However, detailed structural information for GSDMD remains unknown. Here, w...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 40; pp. 10642 - 10647
Main Authors Kuang, Siyun, Zheng, Jun, Yang, Hui, Li, Suhua, Duan, Shuyan, Shen, Yanfang, Ji, Chaoneng, Gan, Jianhua, Xu, Xue-Wei, Li, Jixi
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 03.10.2017
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1708194114

Cover

Loading…
Abstract Recent findings have revealed that the protein gasdermin D (GSDMD) plays key roles in cell pyroptosis. GSDMD binds lipids and forms pore structures to induce pyroptosis upon microbial infection and associated danger signals. However, detailed structural information for GSDMD remains unknown. Here, we report the crystal structure of the C-terminal domain of human GSDMD (GSDMD-C) at 2.64-Å resolution. The first loop on GSDMD-C inserts into the N-terminal domain (GSDMD-N), which helps stabilize the conformation of the full-length GSDMD. Substitution of this region by a short linker sequence increased levels of cell death. Mutants F283A and F283R can increase protein heterogeneity in vitro and are capable of undergoing cell pyroptosis in 293T cells. The small-angle X-ray–scattering envelope of human GSDMD is consistent with the modeled GSDMD structure and mouse GSDMA3 structure, which suggests that GSDMD adopts an autoinhibited conformation in solution. The positive potential surface of GSDMD-N covered by GSDMD-C is exposed after being released from the autoinhibition state and can form high-order oligomers via a charge–charge interaction. Furthermore, by mapping different regions of GSDMD, we determined that one short segment is sufficient to kill bacteria in vitro and can efficiently inhibit cell growth in Escherichia coli and Mycobacterium Smegmatis. These findings reveal that GSDMD-C acts as an auto-inhibition executor and GSDMD-N could form pore structures via a charge–charge interaction upon cleavage by caspases during cell pyroptosis.
AbstractList The protein gasdermin D (GSDMD) is the physiological substrate of inflammatory caspases and plays key roles in cell pyroptosis upon microbial infection and associated danger signals. GSDMD, as well as other gasdermin members, can bind lipid and form pore structures to induce pyroptosis. However, detailed structural information for GSDMD remains unknown. We have determined the crystal structure of the C-terminal domain of human GSDMD. The structure reveals that the first loop inserts into the N-terminal domain to help stabilize the full-length GSDMD conformation. Furthermore, we identify that one short segment is sufficient to kill bacteria and can act as a potential antimicrobial peptide. Thus, these findings offer a perspective for understanding the mechanism of GSDMD in innate immune defense. Recent findings have revealed that the protein gasdermin D (GSDMD) plays key roles in cell pyroptosis. GSDMD binds lipids and forms pore structures to induce pyroptosis upon microbial infection and associated danger signals. However, detailed structural information for GSDMD remains unknown. Here, we report the crystal structure of the C-terminal domain of human GSDMD (GSDMD-C) at 2.64-Å resolution. The first loop on GSDMD-C inserts into the N-terminal domain (GSDMD-N), which helps stabilize the conformation of the full-length GSDMD. Substitution of this region by a short linker sequence increased levels of cell death. Mutants F283A and F283R can increase protein heterogeneity in vitro and are capable of undergoing cell pyroptosis in 293T cells. The small-angle X-ray–scattering envelope of human GSDMD is consistent with the modeled GSDMD structure and mouse GSDMA3 structure, which suggests that GSDMD adopts an autoinhibited conformation in solution. The positive potential surface of GSDMD-N covered by GSDMD-C is exposed after being released from the autoinhibition state and can form high-order oligomers via a charge–charge interaction. Furthermore, by mapping different regions of GSDMD, we determined that one short segment is sufficient to kill bacteria in vitro and can efficiently inhibit cell growth in Escherichia coli and Mycobacterium Smegmatis . These findings reveal that GSDMD-C acts as an auto-inhibition executor and GSDMD-N could form pore structures via a charge–charge interaction upon cleavage by caspases during cell pyroptosis.
Recent findings have revealed that the protein gasdermin D (GSDMD) plays key roles in cell pyroptosis. GSDMD binds lipids and forms pore structures to induce pyroptosis upon microbial infection and associated danger signals. However, detailed structural information for GSDMD remains unknown. Here, we report the crystal structure of the C-terminal domain of human GSDMD (GSDMD-C) at 2.64-Å resolution. The first loop on GSDMD-C inserts into the N-terminal domain (GSDMD-N), which helps stabilize the conformation of the full-length GSDMD. Substitution of this region by a short linker sequence increased levels of cell death. Mutants F283A and F283R can increase protein heterogeneity in vitro and are capable of undergoing cell pyroptosis in 293T cells. The small-angle X-ray-scattering envelope of human GSDMD is consistent with the modeled GSDMD structure and mouse GSDMA3 structure, which suggests that GSDMD adopts an autoinhibited conformation in solution. The positive potential surface of GSDMD-N covered by GSDMD-C is exposed after being released from the autoinhibition state and can form high-order oligomers via a charge-charge interaction. Furthermore, by mapping different regions of GSDMD, we determined that one short segment is sufficient to kill bacteria in vitro and can efficiently inhibit cell growth in and These findings reveal that GSDMD-C acts as an auto-inhibition executor and GSDMD-N could form pore structures via a charge-charge interaction upon cleavage by caspases during cell pyroptosis.
Recent findings have revealed that the protein gasdermin D (GSDMD) plays key roles in cell pyroptosis. GSDMD binds lipids and forms pore structures to induce pyroptosis upon microbial infection and associated danger signals. However, detailed structural information for GSDMD remains unknown. Here, we report the crystal structure of the C-terminal domain of human GSDMD (GSDMD-C) at 2.64-a resolution. The first loop on GSDMD-C inserts into the N-terminal domain (GSDMD-N), which helps stabilize the conformation of the full-length GSDMD. Substitution of this region by a short linker sequence increased levels of cell death. Mutants F283A and F283R can increase protein heterogeneity in vitro and are capable of undergoing cell pyroptosis in 293T cells. The small-angle X-ray-scattering envelope of human GSDMD is consistent with the modeled GSDMD structure and mouse GSDMA3 structure, which suggests that GSDMD adopts an autoinhibited conformation in solution. The positive potential surface of GSDMD-N covered by GSDMD-C is exposed after being released from the autoinhibition state and can form high-order oligomers via a charge-charge interaction. Furthermore, by mapping different regions of GSDMD, we determined that one short segment is sufficient to kill bacteria in vitro and can efficiently inhibit cell growth in Escherichia coli and Mycobacterium Smegmatis. These findings reveal that GSDMD-C acts as an auto-inhibition executor and GSDMD-N could form pore structures via a charge-charge interaction upon cleavage by caspases during cell pyroptosis.
Recent findings have revealed that the protein gasdermin D (GSDMD) plays key roles in cell pyroptosis. GSDMD binds lipids and forms pore structures to induce pyroptosis upon microbial infection and associated danger signals. However, detailed structural information for GSDMD remains unknown. Here, we report the crystal structure of the C-terminal domain of human GSDMD (GSDMD-C) at 2.64-Å resolution. The first loop on GSDMD-C inserts into the N-terminal domain (GSDMD-N), which helps stabilize the conformation of the full-length GSDMD. Substitution of this region by a short linker sequence increased levels of cell death. Mutants F283A and F283R can increase protein heterogeneity in vitro and are capable of undergoing cell pyroptosis in 293T cells. The small-angle X-ray–scattering envelope of human GSDMD is consistent with the modeled GSDMD structure and mouse GSDMA3 structure, which suggests that GSDMD adopts an autoinhibited conformation in solution. The positive potential surface of GSDMD-N covered by GSDMD-C is exposed after being released from the autoinhibition state and can form high-order oligomers via a charge–charge interaction. Furthermore, by mapping different regions of GSDMD, we determined that one short segment is sufficient to kill bacteria in vitro and can efficiently inhibit cell growth in Escherichia coli and Mycobacterium Smegmatis. These findings reveal that GSDMD-C acts as an auto-inhibition executor and GSDMD-N could form pore structures via a charge–charge interaction upon cleavage by caspases during cell pyroptosis.
Recent findings have revealed that the protein gasdermin D (GSDMD) plays key roles in cell pyroptosis. GSDMD binds lipids and forms pore structures to induce pyroptosis upon microbial infection and associated danger signals. However, detailed structural information for GSDMD remains unknown. Here, we report the crystal structure of the C-terminal domain of human GSDMD (GSDMD-C) at 2.64-Å resolution. The first loop on GSDMD-C inserts into the N-terminal domain (GSDMD-N), which helps stabilize the conformation of the full-length GSDMD. Substitution of this region by a short linker sequence increased levels of cell death. Mutants F283A and F283R can increase protein heterogeneity in vitro and are capable of undergoing cell pyroptosis in 293T cells. The small-angle X-ray-scattering envelope of human GSDMD is consistent with the modeled GSDMD structure and mouse GSDMA3 structure, which suggests that GSDMD adopts an autoinhibited conformation in solution. The positive potential surface of GSDMD-N covered by GSDMD-C is exposed after being released from the autoinhibition state and can form high-order oligomers via a charge-charge interaction. Furthermore, by mapping different regions of GSDMD, we determined that one short segment is sufficient to kill bacteria in vitro and can efficiently inhibit cell growth in Escherichia coli and Mycobacterium Smegmatis These findings reveal that GSDMD-C acts as an auto-inhibition executor and GSDMD-N could form pore structures via a charge-charge interaction upon cleavage by caspases during cell pyroptosis.Recent findings have revealed that the protein gasdermin D (GSDMD) plays key roles in cell pyroptosis. GSDMD binds lipids and forms pore structures to induce pyroptosis upon microbial infection and associated danger signals. However, detailed structural information for GSDMD remains unknown. Here, we report the crystal structure of the C-terminal domain of human GSDMD (GSDMD-C) at 2.64-Å resolution. The first loop on GSDMD-C inserts into the N-terminal domain (GSDMD-N), which helps stabilize the conformation of the full-length GSDMD. Substitution of this region by a short linker sequence increased levels of cell death. Mutants F283A and F283R can increase protein heterogeneity in vitro and are capable of undergoing cell pyroptosis in 293T cells. The small-angle X-ray-scattering envelope of human GSDMD is consistent with the modeled GSDMD structure and mouse GSDMA3 structure, which suggests that GSDMD adopts an autoinhibited conformation in solution. The positive potential surface of GSDMD-N covered by GSDMD-C is exposed after being released from the autoinhibition state and can form high-order oligomers via a charge-charge interaction. Furthermore, by mapping different regions of GSDMD, we determined that one short segment is sufficient to kill bacteria in vitro and can efficiently inhibit cell growth in Escherichia coli and Mycobacterium Smegmatis These findings reveal that GSDMD-C acts as an auto-inhibition executor and GSDMD-N could form pore structures via a charge-charge interaction upon cleavage by caspases during cell pyroptosis.
Author Xu, Xue-Wei
Li, Jixi
Li, Suhua
Duan, Shuyan
Ji, Chaoneng
Gan, Jianhua
Kuang, Siyun
Zheng, Jun
Shen, Yanfang
Yang, Hui
Author_xml – sequence: 1
  givenname: Siyun
  surname: Kuang
  fullname: Kuang, Siyun
  organization: State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China
– sequence: 2
  givenname: Jun
  surname: Zheng
  fullname: Zheng, Jun
  organization: State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China
– sequence: 3
  givenname: Hui
  surname: Yang
  fullname: Yang, Hui
  organization: State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China
– sequence: 4
  givenname: Suhua
  surname: Li
  fullname: Li, Suhua
  organization: State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China
– sequence: 5
  givenname: Shuyan
  surname: Duan
  fullname: Duan, Shuyan
  organization: State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China
– sequence: 6
  givenname: Yanfang
  surname: Shen
  fullname: Shen, Yanfang
  organization: State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China
– sequence: 7
  givenname: Chaoneng
  surname: Ji
  fullname: Ji, Chaoneng
  organization: State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China
– sequence: 8
  givenname: Jianhua
  surname: Gan
  fullname: Gan, Jianhua
  organization: State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China
– sequence: 9
  givenname: Xue-Wei
  surname: Xu
  fullname: Xu, Xue-Wei
  organization: Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
– sequence: 10
  givenname: Jixi
  surname: Li
  fullname: Li, Jixi
  organization: State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28928145$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFLHDEUxoMoulrPnloGevEy-jJJJsmlULRqwdKDLT2GbCbjZplNpklG8L9v1tVuFXoK5P2-j-977xDt-uAtQicYzjBwcj56nc4wB4ElxZjuoBkGieuWSthFM4CG14I29AAdprQEAMkE7KODRshGYMpm6NddjpPJU7SV88ndL3IV-ur67vLbZRXtg9VDqvLCVnOdXNqO9JSD8ws3d9kFX6SVscNQjY8xjDkU9B3a64vWHj-_R-jn1ZcfFzf17ffrrxefb2vDQOaaCGo6TojhrZw3GiShRkBrmKYE-g4LoQFsR7hoTNMCLU15x_vy08kWrCZH6NPGd5zmK9sZ63PUgxqjW-n4qIJ26vXEu4W6Dw-KtYQJ2RaD02eDGH5PNmW1cmldRnsbpqSeFgtYYlzQj2_QZZiiL_UKxaWkgjEo1Id_E_2N8rLzArANYGJIKdpeGZf1eo8loBsUBrW-rVrfVm1vW3Tnb3Qv1v9XvN8olimHuE3SUiFKKfIHyqyvww
CitedBy_id crossref_primary_10_1038_s41556_024_01474_z
crossref_primary_10_1038_s41392_021_00507_5
crossref_primary_10_1002_advs_202000532
crossref_primary_10_1016_j_chemphyslip_2020_105026
crossref_primary_10_1016_j_smim_2023_101803
crossref_primary_10_1186_s13046_021_02065_8
crossref_primary_10_15252_embj_2020106700
crossref_primary_10_1016_j_canlet_2019_02_014
crossref_primary_10_1038_s41467_023_38045_z
crossref_primary_10_1126_sciadv_adi9284
crossref_primary_10_1016_j_bbr_2022_114223
crossref_primary_10_1039_D0AN01420F
crossref_primary_10_1186_s12887_024_04731_0
crossref_primary_10_3389_fgene_2022_926796
crossref_primary_10_3390_biom12111625
crossref_primary_10_1186_s12964_024_01932_z
crossref_primary_10_1080_14397595_2021_1899569
crossref_primary_10_1155_2021_9963534
crossref_primary_10_1038_s41419_020_2476_2
crossref_primary_10_1007_s00018_019_03060_1
crossref_primary_10_1042_BST20210672
crossref_primary_10_1146_annurev_immunol_073119_095439
crossref_primary_10_1007_s12975_018_0666_3
crossref_primary_10_3389_fphar_2023_1122104
crossref_primary_10_1016_j_exer_2023_109537
crossref_primary_10_1002_tox_24266
crossref_primary_10_1016_j_jmb_2021_167297
crossref_primary_10_1007_s00395_023_01010_4
crossref_primary_10_1007_s10787_023_01148_6
crossref_primary_10_1039_D3TB01973J
crossref_primary_10_3748_wjg_v25_i44_6527
crossref_primary_10_3389_fcell_2022_798826
crossref_primary_10_1016_j_omto_2022_12_008
crossref_primary_10_1186_s43556_025_00249_8
crossref_primary_10_3389_fonc_2023_1164214
crossref_primary_10_3389_fphar_2024_1430469
crossref_primary_10_1016_j_cell_2020_02_002
crossref_primary_10_1038_s41598_020_67396_6
crossref_primary_10_3389_fphar_2024_1450211
crossref_primary_10_1186_s13068_020_01742_8
crossref_primary_10_3390_biom12121804
crossref_primary_10_1016_j_trsl_2022_05_001
crossref_primary_10_1016_j_cyto_2022_155925
crossref_primary_10_3389_fnagi_2021_717644
crossref_primary_10_1016_j_heliyon_2022_e11035
crossref_primary_10_1186_s12964_024_01890_6
crossref_primary_10_1186_s40164_023_00464_5
crossref_primary_10_3389_fimmu_2023_1155606
crossref_primary_10_3389_fmed_2021_802063
crossref_primary_10_1016_j_phymed_2024_155516
crossref_primary_10_1002_art_41963
crossref_primary_10_1002_cam4_6803
crossref_primary_10_1155_2020_4510628
crossref_primary_10_1016_j_bbagen_2023_130497
crossref_primary_10_1016_j_jmb_2018_07_002
crossref_primary_10_3389_fmicb_2019_02922
crossref_primary_10_1016_j_phrs_2024_107182
crossref_primary_10_1016_j_tcb_2021_03_004
crossref_primary_10_3389_fcvm_2023_1217985
crossref_primary_10_1186_s12974_020_02018_6
crossref_primary_10_1016_j_semcdb_2018_01_001
crossref_primary_10_1167_iovs_61_8_31
crossref_primary_10_1021_jacsau_3c00236
crossref_primary_10_1016_j_bbamcr_2025_119917
crossref_primary_10_3390_ijms241713065
crossref_primary_10_1128_mbio_03600_21
crossref_primary_10_1097_MD_0000000000036605
crossref_primary_10_1016_j_biopha_2024_117367
crossref_primary_10_1038_s41418_021_00867_z
crossref_primary_10_3390_cancers14010237
crossref_primary_10_1016_j_intimp_2024_113821
crossref_primary_10_1111_nyas_14976
crossref_primary_10_1002_jcp_29268
crossref_primary_10_2147_CMAR_S244374
crossref_primary_10_1016_j_apsb_2021_02_006
crossref_primary_10_15252_embj_2020105753
crossref_primary_10_1002_eji_202048937
crossref_primary_10_1111_imr_12833
crossref_primary_10_3390_biom14070874
crossref_primary_10_1038_s43018_023_00650_8
crossref_primary_10_1128_msystems_01106_24
crossref_primary_10_3390_ijms21134658
crossref_primary_10_1038_s41467_022_35725_0
crossref_primary_10_1038_s41586_023_05872_5
crossref_primary_10_1080_13880209_2023_2224403
crossref_primary_10_1158_1078_0432_CCR_18_2381
crossref_primary_10_1016_j_neuroscience_2020_09_036
crossref_primary_10_1016_j_bbrc_2021_09_051
crossref_primary_10_1016_j_tcb_2021_06_010
crossref_primary_10_1186_s40001_024_01742_6
crossref_primary_10_3389_fimmu_2022_893914
crossref_primary_10_1038_s41419_024_06712_8
crossref_primary_10_1016_j_jorganchem_2025_123571
crossref_primary_10_1155_2022_2501279
crossref_primary_10_3389_fimmu_2022_893912
crossref_primary_10_4103_1673_5374_327348
crossref_primary_10_1038_s41392_024_01958_2
crossref_primary_10_4049_jimmunol_1900228
crossref_primary_10_1101_cshperspect_a036392
crossref_primary_10_1016_j_drup_2024_101097
crossref_primary_10_1111_jcmm_15439
crossref_primary_10_7554_eLife_89974_3
crossref_primary_10_1016_j_immuni_2019_04_017
crossref_primary_10_1016_j_cell_2021_04_036
crossref_primary_10_1016_j_jff_2020_104274
crossref_primary_10_1016_j_it_2024_01_001
crossref_primary_10_1002_jcp_30627
crossref_primary_10_1016_j_intimp_2024_112041
crossref_primary_10_1016_j_matt_2022_08_026
crossref_primary_10_3389_fncel_2023_1073511
crossref_primary_10_1039_D2FO02284B
crossref_primary_10_1093_abbs_gmaa016
crossref_primary_10_1042_BCJ20240416
crossref_primary_10_1002_advs_202410336
crossref_primary_10_1038_s41590_023_01526_w
crossref_primary_10_1007_s10495_020_01632_2
crossref_primary_10_1016_j_intimp_2019_03_054
crossref_primary_10_1016_j_snb_2023_134799
crossref_primary_10_1016_j_phrs_2025_107605
crossref_primary_10_1039_C9MD00059C
crossref_primary_10_1016_j_fct_2024_114520
crossref_primary_10_1016_j_bbcan_2021_188635
crossref_primary_10_1002_mnfr_202300602
crossref_primary_10_3389_fcell_2021_638710
crossref_primary_10_1002_smll_202207433
crossref_primary_10_1016_j_pep_2021_105945
crossref_primary_10_3390_ijms25169068
crossref_primary_10_1016_j_intimp_2024_112311
crossref_primary_10_1038_s41590_019_0368_3
crossref_primary_10_1038_s42003_022_04019_y
crossref_primary_10_3389_fcell_2020_00817
crossref_primary_10_1038_s41419_020_2437_9
crossref_primary_10_1002_advs_202306457
crossref_primary_10_1016_j_bbrc_2019_03_166
crossref_primary_10_4049_jimmunol_2001030
crossref_primary_10_1002_cti2_1186
crossref_primary_10_1016_j_abb_2019_02_008
crossref_primary_10_1186_s12935_022_02483_4
crossref_primary_10_1016_j_intimp_2018_12_028
crossref_primary_10_7554_eLife_89974
crossref_primary_10_1007_s10529_019_02707_0
crossref_primary_10_1016_j_brainresbull_2022_09_007
crossref_primary_10_1021_acschembio_1c00456
crossref_primary_10_1111_jfbc_14305
crossref_primary_10_3389_fendo_2022_950798
crossref_primary_10_1007_s11010_024_05147_1
crossref_primary_10_1016_j_trim_2023_101888
crossref_primary_10_1073_pnas_1800562115
crossref_primary_10_3892_mmr_2021_12557
crossref_primary_10_1007_s10495_024_02038_0
crossref_primary_10_1016_j_metabol_2024_155911
crossref_primary_10_3390_cells11182812
crossref_primary_10_1126_sciimmunol_aat2738
crossref_primary_10_5051_jpis_2101380069
crossref_primary_10_1007_s00018_021_03914_7
crossref_primary_10_3389_fcell_2022_862493
crossref_primary_10_1016_j_jaut_2019_102336
crossref_primary_10_3389_fonc_2019_00971
crossref_primary_10_1002_mco2_249
crossref_primary_10_1016_j_str_2018_03_002
crossref_primary_10_3389_fimmu_2021_750841
crossref_primary_10_1016_j_pharmthera_2024_108756
crossref_primary_10_1155_2022_8593176
crossref_primary_10_1111_imr_13294
crossref_primary_10_1016_j_molimm_2018_12_024
crossref_primary_10_3389_fimmu_2023_1074606
crossref_primary_10_1016_j_ecoenv_2024_115930
crossref_primary_10_1016_j_jmb_2021_167274
crossref_primary_10_1016_j_tibs_2024_05_007
crossref_primary_10_1042_BCJ20210711
crossref_primary_10_3390_vetsci11110555
crossref_primary_10_1016_j_immuni_2024_02_011
crossref_primary_10_1016_j_micres_2023_127383
crossref_primary_10_3389_fmicb_2021_784009
crossref_primary_10_1016_j_lfs_2020_117761
crossref_primary_10_1084_jem_20190545
crossref_primary_10_2139_ssrn_3527420
crossref_primary_10_3390_biom13111664
crossref_primary_10_1002_med_22071
crossref_primary_10_1016_j_bbadva_2023_100109
crossref_primary_10_1038_s41419_024_06455_6
crossref_primary_10_4049_jimmunol_2200342
crossref_primary_10_1186_s13567_024_01282_1
crossref_primary_10_1016_j_fsi_2024_110002
crossref_primary_10_1016_j_yjmcc_2022_07_005
crossref_primary_10_1016_j_bbi_2024_02_001
crossref_primary_10_1016_j_intimp_2023_110846
crossref_primary_10_1515_reveh_2023_0064
crossref_primary_10_1101_cshperspect_a036400
crossref_primary_10_1186_s12974_023_02927_2
crossref_primary_10_1172_jci_insight_146852
Cites_doi 10.1016/j.tibs.2016.10.004
10.1073/pnas.1610433113
10.1016/j.imlet.2004.09.012
10.1016/j.cell.2013.03.013
10.1073/pnas.0705069104
10.1038/cr.2015.139
10.1371/journal.pbio.1001451
10.1038/ncomms14128
10.1038/cr.2016.100
10.1021/bi020314u
10.1038/nature18590
10.1038/nature15368
10.1038/nature15514
10.1073/pnas.0915166107
10.1016/j.cell.2016.05.004
10.1107/S0907444909047337
10.1073/pnas.1607769113
10.1038/2503
10.1038/nature22393
10.1038/nature15541
10.1146/annurev-immunol-032414-112258
10.1038/nature09121
10.15252/embj.201694696
10.1016/j.cell.2012.06.019
10.1038/nature05695
10.1126/scitranslmed.aaf1059
10.1016/j.cell.2012.11.048
10.1016/j.cell.2012.02.022
10.1107/S0907444910045749
10.1038/nature18629
10.1073/pnas.1118048109
10.1073/pnas.1302418110
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Oct 3, 2017
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Oct 3, 2017
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1708194114
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

Virology and AIDS Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Structural basis of GSDMD autoinhibition
EISSN 1091-6490
EndPage 10647
ExternalDocumentID PMC5635896
28928145
10_1073_pnas_1708194114
26488110
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology of the People's Republic of China (MOST)
  grantid: 2016YFA0500600
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-384cd733c769b2a0934c806c5a430fd188a00ed3782c26047087d7fed3d960ea3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:01:13 EDT 2025
Fri Jul 11 03:49:01 EDT 2025
Mon Jun 30 08:29:58 EDT 2025
Thu Apr 03 07:05:53 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Tue Jul 01 03:19:41 EDT 2025
Fri May 30 11:46:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 40
Keywords antibacterial activity
crystal structure
gasdermin D
autoinhibition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-384cd733c769b2a0934c806c5a430fd188a00ed3782c26047087d7fed3d960ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: J.L. designed research; S.K., J.Z., H.Y., S.L., S.D., Y.S., C.J., and X.-W.X. performed research; S.K., J.Z., S.L., C.J., J.G., X.-W.X., and J.L. analyzed data; and J.L. wrote the paper.
1S.K. and J.Z. contributed equally to the work.
Edited by Hao Wu, Harvard Medical School, Boston, MA, and approved August 18, 2017 (received for review May 18, 2017)
OpenAccessLink https://www.pnas.org/content/pnas/114/40/10642.full.pdf
PMID 28928145
PQID 1979948550
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5635896
proquest_miscellaneous_1941101911
proquest_journals_1979948550
pubmed_primary_28928145
crossref_citationtrail_10_1073_pnas_1708194114
crossref_primary_10_1073_pnas_1708194114
jstor_primary_26488110
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-03
PublicationDateYYYYMMDD 2017-10-03
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Winn MD (e_1_3_4_32_2) 2011; 67
Seuring C (e_1_3_4_28_2) 2012; 10
Shi J (e_1_3_4_3_2) 2017; 42
Anguiano M (e_1_3_4_29_2) 2002; 41
Rodriguez JA (e_1_3_4_25_2) 2015; 525
Rogers C (e_1_3_4_10_2) 2017; 8
Tidow H (e_1_3_4_18_2) 2007; 104
Sborgi L (e_1_3_4_22_2) 2016; 35
Wang Y (e_1_3_4_7_2) 2017; 547
Ding J (e_1_3_4_5_2) 2016; 535
Lee JH (e_1_3_4_30_2) 2013; 110
Goldschmidt L (e_1_3_4_19_2) 2010; 107
Sawaya MR (e_1_3_4_21_2) 2007; 447
Liu X (e_1_3_4_6_2) 2016; 535
Wu B (e_1_3_4_14_2) 2013; 152
Das S (e_1_3_4_23_2) 2016; 113
He WT (e_1_3_4_4_2) 2015; 25
Eisenberg D (e_1_3_4_27_2) 2012; 148
Yin Q (e_1_3_4_15_2) 2015; 33
Liu Z (e_1_3_4_12_2) 2005; 97
Lin SC (e_1_3_4_17_2) 2010; 465
Kumar DK (e_1_3_4_24_2) 2016; 8
Aglietti RA (e_1_3_4_8_2) 2016; 113
Chen X (e_1_3_4_11_2) 2016; 26
Van Laer L (e_1_3_4_9_2) 1998; 20
Wu H (e_1_3_4_13_2) 2013; 153
Li J (e_1_3_4_20_2) 2012; 150
Wu H (e_1_3_4_16_2) 2016; 165
Kayagaki N (e_1_3_4_2_2) 2015; 526
Kabsch W (e_1_3_4_31_2) 2010; 66
Shi J (e_1_3_4_1_2) 2015; 526
De Simone A (e_1_3_4_26_2) 2012; 109
15626474 - Immunol Lett. 2005 Feb 15;97(1):41-5
27383986 - Nature. 2016 Jul 06;535(7610):153-8
26611636 - Cell Res. 2015 Dec;25(12):1285-98
23818606 - Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11845-50
28459430 - Nature. 2017 Jul 6;547(7661):99-103
26352473 - Nature. 2015 Sep 24;525(7570):486-90
27418190 - EMBO J. 2016 Aug 15;35(16):1766-78
27799535 - Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13132-13137
23582320 - Cell. 2013 Apr 11;153(2):287-92
27281216 - Nature. 2016 Jul 7;535(7610):111-6
27203110 - Cell. 2016 May 19;165(5):1055-1066
27225182 - Sci Transl Med. 2016 May 25;8(340):340ra72
23273991 - Cell. 2013 Jan 17;152(1-2):276-89
17468747 - Nature. 2007 May 24;447(7143):453-7
12234175 - Biochemistry. 2002 Sep 24;41(38):11338-43
22509003 - Proc Natl Acad Sci U S A. 2012 May 1;109(18):6951-6
26375003 - Nature. 2015 Oct 29;526(7575):660-5
9771715 - Nat Genet. 1998 Oct;20(2):194-7
20485341 - Nature. 2010 Jun 17;465(7300):885-90
20124692 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32
27932073 - Trends Biochem Sci. 2017 Apr;42(4):245-254
23300377 - PLoS Biol. 2012;10(12):e1001451
22817896 - Cell. 2012 Jul 20;150(2):339-50
17620598 - Proc Natl Acad Sci U S A. 2007 Jul 24;104(30):12324-9
25622194 - Annu Rev Immunol. 2015;33:393-416
21460441 - Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42
28045099 - Nat Commun. 2017 Jan 03;8:14128
27573174 - Cell Res. 2016 Sep;26(9):1007-20
27339137 - Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7858-63
22424229 - Cell. 2012 Mar 16;148(6):1188-203
20133726 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3487-92
26375259 - Nature. 2015 Oct 29;526(7575):666-71
References_xml – volume: 42
  start-page: 245
  year: 2017
  ident: e_1_3_4_3_2
  article-title: Pyroptosis: Gasdermin-mediated programmed necrotic cell death
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2016.10.004
– volume: 113
  start-page: 13132
  year: 2016
  ident: e_1_3_4_23_2
  article-title: GSDMB induces an asthma phenotype characterized by increased airway responsiveness and remodeling without lung inflammation
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1610433113
– volume: 97
  start-page: 41
  year: 2005
  ident: e_1_3_4_12_2
  article-title: Predefined spacers between epitopes on a recombinant epitope-peptide impacted epitope-specific antibody response
  publication-title: Immunol Lett
  doi: 10.1016/j.imlet.2004.09.012
– volume: 153
  start-page: 287
  year: 2013
  ident: e_1_3_4_13_2
  article-title: Higher-order assemblies in a new paradigm of signal transduction
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.013
– volume: 104
  start-page: 12324
  year: 2007
  ident: e_1_3_4_18_2
  article-title: Quaternary structures of tumor suppressor p53 and a specific p53 DNA complex
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0705069104
– volume: 25
  start-page: 1285
  year: 2015
  ident: e_1_3_4_4_2
  article-title: Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion
  publication-title: Cell Res
  doi: 10.1038/cr.2015.139
– volume: 10
  start-page: e1001451
  year: 2012
  ident: e_1_3_4_28_2
  article-title: The mechanism of toxicity in HET-S/HET-s prion incompatibility
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1001451
– volume: 8
  start-page: 14128
  year: 2017
  ident: e_1_3_4_10_2
  article-title: Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death
  publication-title: Nat Commun
  doi: 10.1038/ncomms14128
– volume: 26
  start-page: 1007
  year: 2016
  ident: e_1_3_4_11_2
  article-title: Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis
  publication-title: Cell Res
  doi: 10.1038/cr.2016.100
– volume: 41
  start-page: 11338
  year: 2002
  ident: e_1_3_4_29_2
  article-title: Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes
  publication-title: Biochemistry
  doi: 10.1021/bi020314u
– volume: 535
  start-page: 111
  year: 2016
  ident: e_1_3_4_5_2
  article-title: Pore-forming activity and structural autoinhibition of the gasdermin family
  publication-title: Nature
  doi: 10.1038/nature18590
– volume: 525
  start-page: 486
  year: 2015
  ident: e_1_3_4_25_2
  article-title: Structure of the toxic core of alpha-synuclein from invisible crystals
  publication-title: Nature
  doi: 10.1038/nature15368
– volume: 526
  start-page: 660
  year: 2015
  ident: e_1_3_4_1_2
  article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
  publication-title: Nature
  doi: 10.1038/nature15514
– volume: 107
  start-page: 3487
  year: 2010
  ident: e_1_3_4_19_2
  article-title: Identifying the amylome, proteins capable of forming amyloid-like fibrils
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0915166107
– volume: 165
  start-page: 1055
  year: 2016
  ident: e_1_3_4_16_2
  article-title: The structure and dynamics of higher-order assemblies: Amyloids, signalosomes, and granules
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.004
– volume: 66
  start-page: 125
  year: 2010
  ident: e_1_3_4_31_2
  article-title: Xds
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444909047337
– volume: 113
  start-page: 7858
  year: 2016
  ident: e_1_3_4_8_2
  article-title: GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1607769113
– volume: 20
  start-page: 194
  year: 1998
  ident: e_1_3_4_9_2
  article-title: Nonsyndromic hearing impairment is associated with a mutation in DFNA5
  publication-title: Nat Genet
  doi: 10.1038/2503
– volume: 547
  start-page: 99
  year: 2017
  ident: e_1_3_4_7_2
  article-title: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a Gasdermin
  publication-title: Nature
  doi: 10.1038/nature22393
– volume: 526
  start-page: 666
  year: 2015
  ident: e_1_3_4_2_2
  article-title: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling
  publication-title: Nature
  doi: 10.1038/nature15541
– volume: 33
  start-page: 393
  year: 2015
  ident: e_1_3_4_15_2
  article-title: Structural biology of innate immunity
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-032414-112258
– volume: 465
  start-page: 885
  year: 2010
  ident: e_1_3_4_17_2
  article-title: Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling
  publication-title: Nature
  doi: 10.1038/nature09121
– volume: 35
  start-page: 1766
  year: 2016
  ident: e_1_3_4_22_2
  article-title: GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death
  publication-title: EMBO J
  doi: 10.15252/embj.201694696
– volume: 150
  start-page: 339
  year: 2012
  ident: e_1_3_4_20_2
  article-title: The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis
  publication-title: Cell
  doi: 10.1016/j.cell.2012.06.019
– volume: 447
  start-page: 453
  year: 2007
  ident: e_1_3_4_21_2
  article-title: Atomic structures of amyloid cross-beta spines reveal varied steric zippers
  publication-title: Nature
  doi: 10.1038/nature05695
– volume: 8
  start-page: 340ra72
  year: 2016
  ident: e_1_3_4_24_2
  article-title: Amyloid-beta peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaf1059
– volume: 152
  start-page: 276
  year: 2013
  ident: e_1_3_4_14_2
  article-title: Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.048
– volume: 148
  start-page: 1188
  year: 2012
  ident: e_1_3_4_27_2
  article-title: The amyloid state of proteins in human diseases
  publication-title: Cell
  doi: 10.1016/j.cell.2012.02.022
– volume: 67
  start-page: 235
  year: 2011
  ident: e_1_3_4_32_2
  article-title: Overview of the CCP4 suite and current developments
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444910045749
– volume: 535
  start-page: 153
  year: 2016
  ident: e_1_3_4_6_2
  article-title: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores
  publication-title: Nature
  doi: 10.1038/nature18629
– volume: 109
  start-page: 6951
  year: 2012
  ident: e_1_3_4_26_2
  article-title: Intrinsic disorder modulates protein self-assembly and aggregation
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1118048109
– volume: 110
  start-page: 11845
  year: 2013
  ident: e_1_3_4_30_2
  article-title: Crystal structure and versatile functional roles of the COP9 signalosome subunit 1
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1302418110
– reference: 27799535 - Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13132-13137
– reference: 23300377 - PLoS Biol. 2012;10(12):e1001451
– reference: 22424229 - Cell. 2012 Mar 16;148(6):1188-203
– reference: 20485341 - Nature. 2010 Jun 17;465(7300):885-90
– reference: 27573174 - Cell Res. 2016 Sep;26(9):1007-20
– reference: 22817896 - Cell. 2012 Jul 20;150(2):339-50
– reference: 23818606 - Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11845-50
– reference: 27383986 - Nature. 2016 Jul 06;535(7610):153-8
– reference: 26611636 - Cell Res. 2015 Dec;25(12):1285-98
– reference: 26375259 - Nature. 2015 Oct 29;526(7575):666-71
– reference: 9771715 - Nat Genet. 1998 Oct;20(2):194-7
– reference: 17620598 - Proc Natl Acad Sci U S A. 2007 Jul 24;104(30):12324-9
– reference: 12234175 - Biochemistry. 2002 Sep 24;41(38):11338-43
– reference: 21460441 - Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42
– reference: 26375003 - Nature. 2015 Oct 29;526(7575):660-5
– reference: 23582320 - Cell. 2013 Apr 11;153(2):287-92
– reference: 20124692 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32
– reference: 25622194 - Annu Rev Immunol. 2015;33:393-416
– reference: 27339137 - Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7858-63
– reference: 27418190 - EMBO J. 2016 Aug 15;35(16):1766-78
– reference: 27281216 - Nature. 2016 Jul 7;535(7610):111-6
– reference: 22509003 - Proc Natl Acad Sci U S A. 2012 May 1;109(18):6951-6
– reference: 28045099 - Nat Commun. 2017 Jan 03;8:14128
– reference: 27932073 - Trends Biochem Sci. 2017 Apr;42(4):245-254
– reference: 23273991 - Cell. 2013 Jan 17;152(1-2):276-89
– reference: 28459430 - Nature. 2017 Jul 6;547(7661):99-103
– reference: 27203110 - Cell. 2016 May 19;165(5):1055-1066
– reference: 20133726 - Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3487-92
– reference: 27225182 - Sci Transl Med. 2016 May 25;8(340):340ra72
– reference: 26352473 - Nature. 2015 Sep 24;525(7570):486-90
– reference: 17468747 - Nature. 2007 May 24;447(7143):453-7
– reference: 15626474 - Immunol Lett. 2005 Feb 15;97(1):41-5
SSID ssj0009580
Score 2.6177948
Snippet Recent findings have revealed that the protein gasdermin D (GSDMD) plays key roles in cell pyroptosis. GSDMD binds lipids and forms pore structures to induce...
The protein gasdermin D (GSDMD) is the physiological substrate of inflammatory caspases and plays key roles in cell pyroptosis upon microbial infection and...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10642
SubjectTerms Apoptosis
Bacteria
Biological Sciences
Cell death
Cells
Crystal structure
E coli
Hazards
Heterogeneity
Inserts
Lipids
Microorganisms
Mutation
Oligomers
Protein structure
Pyroptosis
Scattering
Title Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis
URI https://www.jstor.org/stable/26488110
https://www.ncbi.nlm.nih.gov/pubmed/28928145
https://www.proquest.com/docview/1979948550
https://www.proquest.com/docview/1941101911
https://pubmed.ncbi.nlm.nih.gov/PMC5635896
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWAQNpCReBiqUpLaiZPHicEqYNWkbaLwUjmOq0ZCSUWah-1P4a_lLnZ-tOqkwUvU2I7V-L6cv7PvzoS8i7VYAPEO3ThMlctjL3BlBLcLJoVOZDQWAcY7n0_DyTX_Mgtmg8GfntdStU5G6nZnXMn_SBXKQK4YJfsPkm07hQL4DfKFK0gYrveS8WWd_BW3ALK8RCsbqd_Z5en5KYakaMyMjLwSZiqTdcRUyWpdZPkyS7LG0RFX74erm9_Fal2UWdknrBftBFc27gTTZv3wpItGsSqiHLrDi2l3tvHXqlmOzm6qFoY_l9r6AXdlP2zDSZU1Rd8y4za0rGR_bQLmO9xZZ319O4Y5kJso6ZE2KhYYihtyc0hoq4NNJKkFm0ngZFWqjyZSb37Ge7FT-YO2whOLc1mOfIFUhzfdbqTZ3pr-WqfEejtesDl2MO86eEAejsEEQaV_NvN7CZ0jE95k37BJGyXYh61_sMF4jNPrLnNm2yu3R3OunpDH1j6hJwZs-2Sg86dkvxEvPbZpyt8_I99b9FGLPlosaA0xatFHAS60Rl9XtYk-eJQi-miHvufk-vOnq48T1x7T4Spgm2uXRVylgjElwjgZSy9mXEVeqALJmbdI_SiSnqdTBlxUgfXMYWBEKhZQkoL5rCU7IHt5keuXhIYiDZRIGLB8yZXAoG6mvCQA2qzS1IsdMmqGcq5sDns8SuXX_A7hOeS4fWBl0rfc3fSglk3bDn0_I2DHDjlqhDW3Hz88h9vhdTZAh7xtq0E145jJXBcVtoF-wYTyfYe8MLLtOo_iceTzwCFiQ-ptA0z7vlmTZ8s6_XsANgKo01f3f7VD8qj7Oo_IHsBDvwYuvU7e1KD-C3KUxhE
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+insight+of+GSDMD+reveals+the+basis+of+GSDMD+autoinhibition+in+cell+pyroptosis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kuang%2C+Siyun&rft.au=Zheng%2C+Jun&rft.au=Yang%2C+Hui&rft.au=Li%2C+Suhua&rft.date=2017-10-03&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=40&rft.spage=10642&rft.epage=10647&rft_id=info:doi/10.1073%2Fpnas.1708194114&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1708194114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon