Relation between blood pressure and pulse wave velocity for human arteries

Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose patients to risks of complications. Continuous, cuffless, and noninvasive blood pressure monitoring methods that correlate measured pulse wave v...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 44; pp. 11144 - 11149
Main Authors Ma, Yinji, Choi, Jungil, Hourlier-Fargette, Aurélie, Xue, Yeguang, Chung, Ha Uk, Lee, Jong Yoon, Wang, Xiufeng, Xie, Zhaoqian, Kang, Daeshik, Wang, Heling, Han, Seungyong, Kang, Seung-Kyun, Kang, Yisak, Yu, Xinge, Slepian, Marvin J., Raj, Milan S., Model, Jeffrey B., Feng, Xue, Ghaffari, Roozbeh, Rogers, John A., Huang, Yonggang
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 30.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose patients to risks of complications. Continuous, cuffless, and noninvasive blood pressure monitoring methods that correlate measured pulse wave velocity (PWV) to the blood pressure via the Moens–Korteweg (MK) and Hughes Equations, offer promising alternatives. The MK Equation, however, involves two assumptions that do not hold for human arteries, and the Hughes Equation is empirical, without any theoretical basis. The results presented here establish a relation between the blood pressure P and PWV that does not rely on the Hughes Equation nor on the assumptions used in the MK Equation. This relation degenerates to the MK Equation under extremely low blood pressures, and it accurately captures the results of in vitro experiments using artificial blood vessels at comparatively high pressures. For human arteries, which are well characterized by the Fung hyperelastic model, a simple formula between P and PWV is established within the range of human blood pressures. This formula is validated by literature data as well as by experiments on human subjects, with applicability in the determination of blood pressure from PWV in continuous, cuffless, and noninvasive blood pressure monitoring systems.
AbstractList Continuous, cuffless, and noninvasive blood pressure monitoring by measuring the pulse wave velocity is generally considered to be a promising technique for noninvasive measurements. Previously reported relations between blood pressure and pulse wave velocity relation involve unrealistic assumptions that do not hold for human arteries, and also rely on empirical expressions without any theoretical basis. Here, an analytical model without such assumptions or empirical expressions is established to yield a relation between blood pressure and pulse wave velocity that has general utility for future work in continuous, cuffless, and noninvasive blood pressure monitoring. Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose patients to risks of complications. Continuous, cuffless, and noninvasive blood pressure monitoring methods that correlate measured pulse wave velocity (PWV) to the blood pressure via the Moens−Korteweg (MK) and Hughes Equations, offer promising alternatives. The MK Equation, however, involves two assumptions that do not hold for human arteries, and the Hughes Equation is empirical, without any theoretical basis. The results presented here establish a relation between the blood pressure P and PWV that does not rely on the Hughes Equation nor on the assumptions used in the MK Equation. This relation degenerates to the MK Equation under extremely low blood pressures, and it accurately captures the results of in vitro experiments using artificial blood vessels at comparatively high pressures. For human arteries, which are well characterized by the Fung hyperelastic model, a simple formula between P and PWV is established within the range of human blood pressures. This formula is validated by literature data as well as by experiments on human subjects, with applicability in the determination of blood pressure from PWV in continuous, cuffless, and noninvasive blood pressure monitoring systems.
Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose patients to risks of complications. Continuous, cuffless, and noninvasive blood pressure monitoring methods that correlate measured pulse wave velocity (PWV) to the blood pressure via the Moens-Korteweg (MK) and Hughes Equations, offer promising alternatives. The MK Equation, however, involves two assumptions that do not hold for human arteries, and the Hughes Equation is empirical, without any theoretical basis. The results presented here establish a relation between the blood pressure and PWV that does not rely on the Hughes Equation nor on the assumptions used in the MK Equation. This relation degenerates to the MK Equation under extremely low blood pressures, and it accurately captures the results of in vitro experiments using artificial blood vessels at comparatively high pressures. For human arteries, which are well characterized by the Fung hyperelastic model, a simple formula between and PWV is established within the range of human blood pressures. This formula is validated by literature data as well as by experiments on human subjects, with applicability in the determination of blood pressure from PWV in continuous, cuffless, and noninvasive blood pressure monitoring systems.
Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose patients to risks of complications. Continuous, cuffless, and noninvasive blood pressure monitoring methods that correlate measured pulse wave velocity (PWV) to the blood pressure via the Moens–Korteweg (MK) and Hughes Equations, offer promising alternatives. The MK Equation, however, involves two assumptions that do not hold for human arteries, and the Hughes Equation is empirical, without any theoretical basis. The results presented here establish a relation between the blood pressure P and PWV that does not rely on the Hughes Equation nor on the assumptions used in the MK Equation. This relation degenerates to the MK Equation under extremely low blood pressures, and it accurately captures the results of in vitro experiments using artificial blood vessels at comparatively high pressures. For human arteries, which are well characterized by the Fung hyperelastic model, a simple formula between P and PWV is established within the range of human blood pressures. This formula is validated by literature data as well as by experiments on human subjects, with applicability in the determination of blood pressure from PWV in continuous, cuffless, and noninvasive blood pressure monitoring systems.
Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose patients to risks of complications. Continuous, cuffless, and noninvasive blood pressure monitoring methods that correlate measured pulse wave velocity (PWV) to the blood pressure via the Moens-Korteweg (MK) and Hughes Equations, offer promising alternatives. The MK Equation, however, involves two assumptions that do not hold for human arteries, and the Hughes Equation is empirical, without any theoretical basis. The results presented here establish a relation between the blood pressure P and PWV that does not rely on the Hughes Equation nor on the assumptions used in the MK Equation. This relation degenerates to the MK Equation under extremely low blood pressures, and it accurately captures the results of in vitro experiments using artificial blood vessels at comparatively high pressures. For human arteries, which are well characterized by the Fung hyperelastic model, a simple formula between P and PWV is established within the range of human blood pressures. This formula is validated by literature data as well as by experiments on human subjects, with applicability in the determination of blood pressure from PWV in continuous, cuffless, and noninvasive blood pressure monitoring systems.Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose patients to risks of complications. Continuous, cuffless, and noninvasive blood pressure monitoring methods that correlate measured pulse wave velocity (PWV) to the blood pressure via the Moens-Korteweg (MK) and Hughes Equations, offer promising alternatives. The MK Equation, however, involves two assumptions that do not hold for human arteries, and the Hughes Equation is empirical, without any theoretical basis. The results presented here establish a relation between the blood pressure P and PWV that does not rely on the Hughes Equation nor on the assumptions used in the MK Equation. This relation degenerates to the MK Equation under extremely low blood pressures, and it accurately captures the results of in vitro experiments using artificial blood vessels at comparatively high pressures. For human arteries, which are well characterized by the Fung hyperelastic model, a simple formula between P and PWV is established within the range of human blood pressures. This formula is validated by literature data as well as by experiments on human subjects, with applicability in the determination of blood pressure from PWV in continuous, cuffless, and noninvasive blood pressure monitoring systems.
Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose patients to risks of complications. Continuous, cuffless, and noninvasive blood pressure monitoring methods that correlate measured pulse wave velocity (PWV) to the blood pressure via the Moens−Korteweg (MK) and Hughes Equations, offer promising alternatives. The MK Equation, however, involves two assumptions that do not hold for human arteries, and the Hughes Equation is empirical, without any theoretical basis. The results presented here establish a relation between the blood pressure P and PWV that does not rely on the Hughes Equation nor on the assumptions used in the MK Equation. This relation degenerates to the MK Equation under extremely low blood pressures, and it accurately captures the results of in vitro experiments using artificial blood vessels at comparatively high pressures. For human arteries, which are well characterized by the Fung hyperelastic model, a simple formula between P and PWV is established within the range of human blood pressures. This formula is validated by literature data as well as by experiments on human subjects, with applicability in the determination of blood pressure from PWV in continuous, cuffless, and noninvasive blood pressure monitoring systems.
Author Yu, Xinge
Kang, Daeshik
Feng, Xue
Wang, Xiufeng
Chung, Ha Uk
Huang, Yonggang
Raj, Milan S.
Choi, Jungil
Model, Jeffrey B.
Wang, Heling
Kang, Seung-Kyun
Slepian, Marvin J.
Lee, Jong Yoon
Han, Seungyong
Kang, Yisak
Ghaffari, Roozbeh
Rogers, John A.
Hourlier-Fargette, Aurélie
Ma, Yinji
Xue, Yeguang
Xie, Zhaoqian
Author_xml – sequence: 1
  givenname: Yinji
  surname: Ma
  fullname: Ma, Yinji
  organization: Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, China
– sequence: 2
  givenname: Jungil
  surname: Choi
  fullname: Choi, Jungil
  organization: Simpson Querrey Institute for Bio-Nanotechnology, Northwestern University, Evanston, IL 60208
– sequence: 3
  givenname: Aurélie
  surname: Hourlier-Fargette
  fullname: Hourlier-Fargette, Aurélie
  organization: Simpson Querrey Institute for Bio-Nanotechnology, Northwestern University, Evanston, IL 60208
– sequence: 4
  givenname: Yeguang
  surname: Xue
  fullname: Xue, Yeguang
  organization: Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
– sequence: 5
  givenname: Ha Uk
  surname: Chung
  fullname: Chung, Ha Uk
  organization: Simpson Querrey Institute for Bio-Nanotechnology, Northwestern University, Evanston, IL 60208
– sequence: 6
  givenname: Jong Yoon
  surname: Lee
  fullname: Lee, Jong Yoon
  organization: Simpson Querrey Institute for Bio-Nanotechnology, Northwestern University, Evanston, IL 60208
– sequence: 7
  givenname: Xiufeng
  surname: Wang
  fullname: Wang, Xiufeng
  organization: School of Materials Science and Engineering, Xiangtan University, 411105 Hunan, China
– sequence: 8
  givenname: Zhaoqian
  surname: Xie
  fullname: Xie, Zhaoqian
  organization: Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
– sequence: 9
  givenname: Daeshik
  surname: Kang
  fullname: Kang, Daeshik
  organization: Department of Mechanical Engineering, Ajou University, 16499 Suwon-si, Republic of Korea
– sequence: 10
  givenname: Heling
  surname: Wang
  fullname: Wang, Heling
  organization: Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
– sequence: 11
  givenname: Seungyong
  surname: Han
  fullname: Han, Seungyong
  organization: Department of Mechanical Engineering, Ajou University, 16499 Suwon-si, Republic of Korea
– sequence: 12
  givenname: Seung-Kyun
  surname: Kang
  fullname: Kang, Seung-Kyun
  organization: Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
– sequence: 13
  givenname: Yisak
  surname: Kang
  fullname: Kang, Yisak
  organization: Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801
– sequence: 14
  givenname: Xinge
  surname: Yu
  fullname: Yu, Xinge
  organization: Department of Biomedical Engineering, City University of Hong Kong, 999077 Hong Kong, China
– sequence: 15
  givenname: Marvin J.
  surname: Slepian
  fullname: Slepian, Marvin J.
  organization: Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ 85724
– sequence: 16
  givenname: Milan S.
  surname: Raj
  fullname: Raj, Milan S.
  organization: Center for Flexible Electronics Technology, Tsinghua University, 100084 Beijing, China
– sequence: 17
  givenname: Jeffrey B.
  surname: Model
  fullname: Model, Jeffrey B.
– sequence: 18
  givenname: Xue
  surname: Feng
  fullname: Feng, Xue
  organization: Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, China
– sequence: 19
  givenname: Roozbeh
  surname: Ghaffari
  fullname: Ghaffari, Roozbeh
  organization: Simpson Querrey Institute for Bio-Nanotechnology, Northwestern University, Evanston, IL 60208
– sequence: 20
  givenname: John A.
  surname: Rogers
  fullname: Rogers, John A.
  organization: Simpson Querrey Institute for Bio-Nanotechnology, Northwestern University, Evanston, IL 60208
– sequence: 21
  givenname: Yonggang
  surname: Huang
  fullname: Huang, Yonggang
  organization: Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30322935$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFP3DAQha0KVBbaM6dWkbj0EpixnTi-VEKoLUVISFV7trzOBLLK2ls7WcS_x7CwLRw4jUb-3njevH2244Mnxg4RjhGUOFl5m46xQSk0R6zesRmCxrKWGnbYDICrspFc7rH9lBYAoKsG3rM9AYJzLaoZu_hFgx374Is5jbdEuQ4htMUqUkpTpML63ExDouLWrqlY0xBcP94VXYjFzbS0vrBxpNhT-sB2O5vBj0_1gP35_u332Xl5efXj59npZekq0GMpGgTi3GoAJZuaK5iTbh3IDkSnES2QcpZTqwhRaSta53g2pTtroVadOGBfN3NX03xJrSM_RjuYVeyXNt6ZYHvz8sX3N-Y6rE3NUUms84AvTwNi-DtRGs2yT46GwXoKUzIcOagKdSUyevQKXYQp-mwvUwKUkiCbTH3-f6PtKs9nzsDJBnAxpBSp2yII5iFI8xCk-RdkVlSvFPnqj0FlS_3whu7TRrdIY4jbb3hdCS5Ri3uINqwZ
CitedBy_id crossref_primary_10_1007_s13534_019_00096_x
crossref_primary_10_1016_j_cobme_2019_01_003
crossref_primary_10_2215_CJN_03680320
crossref_primary_10_1109_JBHI_2021_3125707
crossref_primary_10_1021_acsmaterialslett_0c00309
crossref_primary_10_3390_s23115005
crossref_primary_10_1016_j_bpa_2019_05_001
crossref_primary_10_1371_journal_pone_0311654
crossref_primary_10_33549_physiolres_935372
crossref_primary_10_1021_acssensors_3c00630
crossref_primary_10_3390_s23249680
crossref_primary_10_3390_s23125744
crossref_primary_10_5334_paah_214
crossref_primary_10_1016_j_eml_2021_101298
crossref_primary_10_1002_gch2_202000076
crossref_primary_10_1080_08037051_2024_2304190
crossref_primary_10_1021_acsami_2c22825
crossref_primary_10_1080_19475411_2022_2107112
crossref_primary_10_1016_j_cej_2025_161769
crossref_primary_10_1016_j_bios_2020_112569
crossref_primary_10_1016_j_eml_2019_01_009
crossref_primary_10_1109_TCYB_2022_3141380
crossref_primary_10_1111_psyp_14173
crossref_primary_10_1038_s41528_023_00247_2
crossref_primary_10_1167_iovs_63_3_28
crossref_primary_10_1021_acsami_4c05688
crossref_primary_10_1007_s10409_023_23093_x
crossref_primary_10_1038_s41551_023_01130_1
crossref_primary_10_1109_JBHI_2022_3227235
crossref_primary_10_1016_j_eml_2019_100453
crossref_primary_10_1016_j_rinp_2021_104395
crossref_primary_10_32604_cmc_2023_036466
crossref_primary_10_1007_s10773_024_05797_3
crossref_primary_10_3390_mi14061218
crossref_primary_10_1115_1_4046662
crossref_primary_10_3390_s20185425
crossref_primary_10_1016_j_mechmat_2023_104799
crossref_primary_10_1109_ACCESS_2019_2943736
crossref_primary_10_1371_journal_pone_0285849
crossref_primary_10_34133_2020_1085417
crossref_primary_10_5664_jcsm_10194
crossref_primary_10_1016_j_cma_2019_112623
crossref_primary_10_1155_2022_5019153
crossref_primary_10_1109_JBHI_2020_3021532
crossref_primary_10_1002_adma_201902062
crossref_primary_10_1111_2047_3095_12415
crossref_primary_10_1007_s42558_020_00022_7
crossref_primary_10_4018_IJISMD_300779
crossref_primary_10_1016_j_bspc_2023_104757
crossref_primary_10_1126_sciadv_aay2840
crossref_primary_10_1109_TBME_2021_3055154
crossref_primary_10_1016_j_sna_2022_113805
crossref_primary_10_1002_adma_202313612
crossref_primary_10_1002_adma_202411131
crossref_primary_10_1016_j_tibtech_2020_12_011
crossref_primary_10_1007_s10439_023_03275_1
crossref_primary_10_1016_j_ijmecsci_2021_106463
crossref_primary_10_1155_2021_8868083
crossref_primary_10_1021_acsnano_4c04291
crossref_primary_10_3390_s23146517
crossref_primary_10_1115_1_4042288
crossref_primary_10_1016_j_compeleceng_2024_109319
crossref_primary_10_1111_psyp_14480
crossref_primary_10_1016_j_jmbbm_2024_106765
crossref_primary_10_7498_aps_69_20200664
crossref_primary_10_3390_bios11110435
crossref_primary_10_3389_fcvm_2022_1052068
crossref_primary_10_1002_adhm_202100383
crossref_primary_10_3390_diagnostics11122255
crossref_primary_10_1038_s41598_021_01358_4
crossref_primary_10_1007_s10439_025_03681_7
crossref_primary_10_1038_s41528_020_0065_1
crossref_primary_10_3390_s19224942
crossref_primary_10_1016_j_sna_2024_115084
crossref_primary_10_1152_ajpendo_00300_2020
crossref_primary_10_1109_ACCESS_2021_3103763
crossref_primary_10_1039_D0MH00483A
crossref_primary_10_1016_j_jece_2025_115788
crossref_primary_10_1038_s41569_025_01127_0
crossref_primary_10_1016_j_esr_2023_101124
crossref_primary_10_1016_j_measurement_2022_111211
crossref_primary_10_1109_JSEN_2022_3155071
crossref_primary_10_3390_s23063304
crossref_primary_10_1002_aisy_202000108
crossref_primary_10_1109_JSEN_2020_3021923
crossref_primary_10_1186_s40001_023_01259_4
crossref_primary_10_1115_1_4068063
crossref_primary_10_1016_j_jmbbm_2019_103417
crossref_primary_10_1038_s44172_024_00326_w
crossref_primary_10_1002_adem_202200873
crossref_primary_10_1038_s41528_022_00161_z
crossref_primary_10_1002_adma_202406424
crossref_primary_10_1007_s10462_022_10353_8
crossref_primary_10_1007_s00380_023_02316_y
crossref_primary_10_1016_j_bspc_2022_103850
crossref_primary_10_1152_japplphysiol_00793_2021
crossref_primary_10_1016_j_cej_2022_139815
crossref_primary_10_2139_ssrn_3999278
crossref_primary_10_1021_acsami_4c04134
crossref_primary_10_3390_mi13050645
crossref_primary_10_3389_fphys_2023_1191272
crossref_primary_10_37188_lam_2021_004
crossref_primary_10_1073_pnas_2100466118
crossref_primary_10_1039_D2EE01590K
crossref_primary_10_1007_s12274_024_6969_7
crossref_primary_10_1016_j_bspc_2021_103188
crossref_primary_10_1126_sciadv_abg2507
crossref_primary_10_3390_s21248438
crossref_primary_10_1186_s12872_023_03135_9
crossref_primary_10_1007_s12265_022_10339_5
crossref_primary_10_1038_s41440_023_01196_z
crossref_primary_10_1063_5_0149276
crossref_primary_10_3389_fphys_2021_783457
crossref_primary_10_1038_s41928_021_00557_1
crossref_primary_10_1088_1361_6579_ad7fcc
crossref_primary_10_1109_ACCESS_2020_3041498
crossref_primary_10_1016_j_eml_2024_102166
crossref_primary_10_1109_JBHI_2022_3181328
crossref_primary_10_1109_JBHI_2023_3278168
crossref_primary_10_1115_1_4047003
crossref_primary_10_1115_1_4049423
crossref_primary_10_1016_j_compbiomed_2021_104861
crossref_primary_10_1016_j_compstruct_2022_116131
crossref_primary_10_1016_j_nanoen_2021_106704
crossref_primary_10_1039_D1CS00858G
crossref_primary_10_1115_1_4051183
crossref_primary_10_1002_adfm_202406022
crossref_primary_10_1097_MNH_0000000000000517
crossref_primary_10_1038_s41467_023_40763_3
crossref_primary_10_2139_ssrn_4094622
crossref_primary_10_17116_profmed20252802174
crossref_primary_10_1016_j_sleep_2022_09_026
crossref_primary_10_1109_TIM_2024_3480192
crossref_primary_10_1002_adfm_202422733
crossref_primary_10_1002_aelm_202201333
crossref_primary_10_1186_s12968_021_00739_y
crossref_primary_10_1093_ajh_hpab160
crossref_primary_10_1073_pnas_1917762116
crossref_primary_10_1109_LED_2019_2954878
crossref_primary_10_1002_adma_202110291
crossref_primary_10_1109_JSEN_2022_3222588
crossref_primary_10_1021_acssensors_3c02180
crossref_primary_10_1038_s41928_021_00556_2
crossref_primary_10_3389_fcvm_2023_1150214
crossref_primary_10_1109_ACCESS_2024_3524614
crossref_primary_10_1016_j_compbiomed_2024_108730
crossref_primary_10_1109_JTEHM_2022_3209754
crossref_primary_10_1063_5_0180437
crossref_primary_10_1016_j_bbe_2021_11_001
crossref_primary_10_1109_OJEMB_2024_3401105
crossref_primary_10_1038_s41467_021_22663_6
crossref_primary_10_1109_RBME_2019_2931587
crossref_primary_10_1145_3699781
crossref_primary_10_1016_j_jsv_2021_116476
crossref_primary_10_1002_advs_202104426
crossref_primary_10_3390_bios12020055
crossref_primary_10_1063_5_0039817
crossref_primary_10_1088_1361_6439_ac87ba
crossref_primary_10_1007_s12553_019_00406_4
crossref_primary_10_1021_acsami_2c16741
crossref_primary_10_1109_JSEN_2021_3134890
crossref_primary_10_1016_j_isci_2020_102027
crossref_primary_10_1016_j_jmbbm_2022_105432
crossref_primary_10_1088_1361_6560_ac9c3f
crossref_primary_10_1002_adfm_202411811
crossref_primary_10_3390_s20041052
crossref_primary_10_1016_j_nanoen_2023_108636
crossref_primary_10_1016_j_sna_2022_113858
crossref_primary_10_1109_TMC_2024_3452499
crossref_primary_10_1109_TMI_2022_3141613
crossref_primary_10_1016_j_ijmecsci_2024_109166
crossref_primary_10_1111_jgs_17673
crossref_primary_10_1007_s12559_021_09910_0
crossref_primary_10_1016_j_jmps_2021_104400
crossref_primary_10_1038_s41591_020_0792_9
crossref_primary_10_1002_adfm_202418318
crossref_primary_10_1007_s12551_021_00783_z
crossref_primary_10_1016_j_bios_2020_112483
crossref_primary_10_1109_JSEN_2023_3267146
crossref_primary_10_1109_RBME_2022_3141877
crossref_primary_10_1038_s41551_023_01098_y
crossref_primary_10_1364_BOE_448038
crossref_primary_10_1109_TUFFC_2023_3333318
crossref_primary_10_1152_ajpheart_00454_2023
crossref_primary_10_1002_nbm_5048
crossref_primary_10_3390_s20164484
crossref_primary_10_1016_j_cej_2021_133260
crossref_primary_10_1109_LSENS_2023_3308120
crossref_primary_10_1109_TBME_2020_3028186
crossref_primary_10_1038_s41598_020_58367_y
crossref_primary_10_1016_j_apacoust_2020_107534
crossref_primary_10_1364_BOE_403033
crossref_primary_10_1088_1361_6439_abfd0a
crossref_primary_10_3390_metrology2030022
crossref_primary_10_1097_HJH_0000000000002928
crossref_primary_10_1021_acsmacrolett_8b01011
crossref_primary_10_1038_s41528_020_00090_9
crossref_primary_10_1016_j_jacc_2020_03_018
crossref_primary_10_1016_j_mechmat_2019_03_015
crossref_primary_10_1038_s41598_024_68813_w
Cites_doi 10.1002/adhm.201601013
10.1016/j.irbm.2014.07.002
10.1109/BIOCAS.2017.8325551
10.1093/ajh/hpy050
10.1038/s41746-018-0023-7
10.1001/jamainternmed.2016.0190
10.1002/adma.201502535
10.1007/978-1-4757-2257-4
10.1038/ncomms5496
10.1007/s10439-011-0467-2
10.1177/016173467900100406
10.1007/s10877-017-0044-9
10.1002/adfm.201200498
10.1093/ajhp/55.suppl_3.S12
10.1126/science.67.1725.72
10.1016/S0140-6736(02)11911-8
10.1038/ncomms15894
10.1007/978-1-4757-2696-1
10.1098/rspa.2003.1156
10.1056/NEJMoa1511939
10.3390/technologies5020021
10.1093/eurheartj/ehl254
10.1007/s11517-012-0955-z
10.1161/01.CIR.0000154900.76284.F6
10.1126/scitranslmed.aap8674
10.1186/cc1489
10.1088/0031-8949/90/1/015202
10.1016/S0008-6363(97)00267-8
ContentType Journal Article
Copyright Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Oct 30, 2018
2018
Copyright_xml – notice: Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Oct 30, 2018
– notice: 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1814392115
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE

CrossRef
MEDLINE - Academic
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 11149
ExternalDocumentID PMC6217416
30322935
10_1073_pnas_1814392115
26532419
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: 11625207
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 11222220
– fundername: National Science Foundation (NSF)
  grantid: 1534120
– fundername: National Basic Research Program of China
  grantid: 2015CB351900
– fundername: National Science Foundation (NSF)
  grantid: 1400169
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 11402135
– fundername: National Science Foundation (NSF)
  grantid: 1635443
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 11320101001
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-3810e22a9007486270be9dc04f03f911a0e7ca2ed7e1179a3dcc20919faa067f3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:23:13 EDT 2025
Fri Jul 11 09:33:29 EDT 2025
Mon Jun 30 08:19:49 EDT 2025
Thu Apr 03 07:06:46 EDT 2025
Thu Apr 24 22:57:06 EDT 2025
Tue Jul 01 03:39:52 EDT 2025
Fri May 30 11:17:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 44
Keywords arterial stiffness
blood pressure
pulse wave velocity
artery hyperelastic model
hemodynamics
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-3810e22a9007486270be9dc04f03f911a0e7ca2ed7e1179a3dcc20919faa067f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: Y.M., Z.X., and J.A.R. designed research; Y.M., J.C., A.H.-F., and Z.X. performed research; Y.M. contributed new reagents/analytic tools; Y.M., J.C., A.H.-F., Y.X., H.U.C., J.Y.L., Z.X., D.K., H.W., S.H., S.-K.K., Y.K., X.Y., M.J.S., M.S.R., J.B.M., X.F., R.G., and Y.H. analyzed data; and Y.M., J.C., X.W., R.G., J.A.R., and Y.H. wrote the paper.
Reviewers: M.J.B., Massachusetts Institute of Technology; and P.S., University of Houston.
1Y.M. and J.C. contributed equally to this work.
Contributed by John A. Rogers, September 10, 2018 (sent for review August 21, 2018; reviewed by Markus J. Buehler and Pradeep Sharma)
ORCID 0000-0002-1968-5092
OpenAccessLink https://www.pnas.org/content/pnas/115/44/11144.full.pdf
PMID 30322935
PQID 2130774048
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6217416
proquest_miscellaneous_2120751953
proquest_journals_2130774048
pubmed_primary_30322935
crossref_primary_10_1073_pnas_1814392115
crossref_citationtrail_10_1073_pnas_1814392115
jstor_primary_26532419
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-30
PublicationDateYYYYMMDD 2018-10-30
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Bramwell JC (e_1_3_3_17_2) 1922; 93
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_31_2
Timoshenko S (e_1_3_3_20_2) 1940
Pickering TG (e_1_3_3_9_2) 2005; 111
e_1_3_3_6_2
e_1_3_3_5_2
Fuke S (e_1_3_3_10_2) 2013; 2013
e_1_3_3_8_2
e_1_3_3_7_2
Acton FS (e_1_3_3_28_2) 1970
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_32_2
  doi: 10.1002/adhm.201601013
– volume: 2013
  start-page: 6107
  year: 2013
  ident: e_1_3_3_10_2
  article-title: Blood pressure estimation from pulse wave velocity measured on the chest
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– ident: e_1_3_3_13_2
  doi: 10.1016/j.irbm.2014.07.002
– ident: e_1_3_3_16_2
  doi: 10.1109/BIOCAS.2017.8325551
– ident: e_1_3_3_2_2
  doi: 10.1093/ajh/hpy050
– ident: e_1_3_3_30_2
  doi: 10.1038/s41746-018-0023-7
– ident: e_1_3_3_4_2
  doi: 10.1001/jamainternmed.2016.0190
– ident: e_1_3_3_15_2
  doi: 10.1002/adma.201502535
– ident: e_1_3_3_21_2
  doi: 10.1007/978-1-4757-2257-4
– ident: e_1_3_3_23_2
  doi: 10.1038/ncomms5496
– ident: e_1_3_3_29_2
  doi: 10.1007/s10439-011-0467-2
– ident: e_1_3_3_18_2
  doi: 10.1177/016173467900100406
– volume-title: Theory of Plates and Shells
  year: 1940
  ident: e_1_3_3_20_2
– ident: e_1_3_3_11_2
  doi: 10.1007/s10877-017-0044-9
– ident: e_1_3_3_22_2
  doi: 10.1002/adfm.201200498
– ident: e_1_3_3_6_2
  doi: 10.1093/ajhp/55.suppl_3.S12
– ident: e_1_3_3_5_2
  doi: 10.1126/science.67.1725.72
– ident: e_1_3_3_1_2
  doi: 10.1016/S0140-6736(02)11911-8
– ident: e_1_3_3_31_2
  doi: 10.1038/ncomms15894
– ident: e_1_3_3_19_2
  doi: 10.1007/978-1-4757-2696-1
– ident: e_1_3_3_24_2
  doi: 10.1098/rspa.2003.1156
– ident: e_1_3_3_3_2
  doi: 10.1056/NEJMoa1511939
– ident: e_1_3_3_14_2
  doi: 10.3390/technologies5020021
– ident: e_1_3_3_27_2
  doi: 10.1093/eurheartj/ehl254
– volume: 93
  start-page: 298
  year: 1922
  ident: e_1_3_3_17_2
  article-title: The velocity of the pulse wave in man
  publication-title: Proc R Soc B
– ident: e_1_3_3_7_2
  doi: 10.1007/s11517-012-0955-z
– volume: 111
  start-page: 697
  year: 2005
  ident: e_1_3_3_9_2
  article-title: Recommendations for blood pressure measurement in humans and experimental animals: Part 1: Blood pressure measurement in humans: A statement for professionals from the subcommittee of professional and public education of the American Heart Association council on high blood pressure research
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000154900.76284.F6
– ident: e_1_3_3_8_2
  doi: 10.1126/scitranslmed.aap8674
– volume-title: Numerical Methods That Work
  year: 1970
  ident: e_1_3_3_28_2
– ident: e_1_3_3_12_2
  doi: 10.1186/cc1489
– ident: e_1_3_3_25_2
  doi: 10.1088/0031-8949/90/1/015202
– ident: e_1_3_3_26_2
  doi: 10.1016/S0008-6363(97)00267-8
SSID ssj0009580
Score 2.6533768
Snippet Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose...
Continuous, cuffless, and noninvasive blood pressure monitoring by measuring the pulse wave velocity is generally considered to be a promising technique for...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11144
SubjectTerms Arteries
Arteries - physiology
Blood Flow Velocity - physiology
Blood pressure
Blood Pressure - physiology
Blood Pressure Determination - methods
Blood vessels
Correlation analysis
Electrocardiography - methods
Empirical equations
Formulas (mathematics)
Heart rate
Humans
Measurement methods
Monitoring methods
Monitoring systems
Monitoring, Physiologic - methods
Physical Sciences
Pulsatile Flow - physiology
Pulse Wave Analysis - methods
Risk factors
Veins & arteries
Velocity
Wave velocity
Title Relation between blood pressure and pulse wave velocity for human arteries
URI https://www.jstor.org/stable/26532419
https://www.ncbi.nlm.nih.gov/pubmed/30322935
https://www.proquest.com/docview/2130774048
https://www.proquest.com/docview/2120751953
https://pubmed.ncbi.nlm.nih.gov/PMC6217416
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgvPCCGDAIDGQkHoYql9T5Io8VWlVNo-yhlcpT5CTOFjSl09oIiV_P8VfSjiINpCpqHMdpfU-uj-3ja0I-FLySpZCSgcxXLOS5YMKPBJORSAJ8ylxH2_86i6eL8GwZLfvpAr26ZJMPi19715X8j1WRBruqVbL_YNmuUCTgO-yLIyyM471s7JRsndpKy9AHWtvqJgZuWjR-g59qkyElDypqK9E0m_NpRafTEVqOetG1aWunIJi5IcNxvwDFeoX1gA0uZuOtoW3t1evmR91LB1a1WQHSXPaKjin-IQjwLZtoMbrZpm_c2qn767pD3LLVl77Ly1bYdtYOU4x0zFg742I8K4gJi0OzN-hQ7klz7tgs77S4C8Mt7wq_bM7_8PtwVGqz4kash6AsIFncFbMTYXv2LZsszs-z-ely_pA84uhaBG6EpwvU_NlEsLA_zYWDSoJPd4rfYTJGzLqvm3JXbbtFX-ZPyRPb76BjA6JD8kA2z8ihsyE9seHHPz4nZw5V1KKKalRRhyoKVFGNKqpQRR2qKFBFNaqoQ9ULspiczr9Mmd1xgxUgjhumwr1JzkWqmCX6uomfy7Qs_LDygwrNovBlUgguy0SqUIIiKIuCo6bSSgjQnio4IgfNqpGvCEVaKODsw6AqwygKRFrirlRKNaYQycAjQ1d7WWHD0atdUa4zLYtIgkxVd9ZXt0dOuhtuTCSWv2c90ubo8vE4QsdhlHrk2Nkns-_xOuOgcegEoSnzyPvuMrysmjoTjVy1Kg8Ht1ZTzh55aczZFQ4SyEGa8dRkx9BdBhXBffdKU1_pSO6xGhAYxa_v8dw35HH_Wh2Tg81tK9-CD2_ydxrAvwHlZrdu
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relation+between+blood+pressure+and+pulse+wave+velocity+for+human+arteries&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ma%2C+Yinji&rft.au=Choi%2C+Jungil&rft.au=Hourlier-Fargette%2C+Aur%C3%A9lie&rft.au=Xue%2C+Yeguang&rft.date=2018-10-30&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=115&rft.issue=44&rft.spage=11144&rft_id=info:doi/10.1073%2Fpnas.1814392115&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon