Relation between blood pressure and pulse wave velocity for human arteries
Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose patients to risks of complications. Continuous, cuffless, and noninvasive blood pressure monitoring methods that correlate measured pulse wave v...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 44; pp. 11144 - 11149 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
30.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose patients to risks of complications. Continuous, cuffless, and noninvasive blood pressure monitoring methods that correlate measured pulse wave velocity (PWV) to the blood pressure via the Moens–Korteweg (MK) and Hughes Equations, offer promising alternatives. The MK Equation, however, involves two assumptions that do not hold for human arteries, and the Hughes Equation is empirical, without any theoretical basis. The results presented here establish a relation between the blood pressure P and PWV that does not rely on the Hughes Equation nor on the assumptions used in the MK Equation. This relation degenerates to the MK Equation under extremely low blood pressures, and it accurately captures the results of in vitro experiments using artificial blood vessels at comparatively high pressures. For human arteries, which are well characterized by the Fung hyperelastic model, a simple formula between P and PWV is established within the range of human blood pressures. This formula is validated by literature data as well as by experiments on human subjects, with applicability in the determination of blood pressure from PWV in continuous, cuffless, and noninvasive blood pressure monitoring systems. |
---|---|
AbstractList | Continuous, cuffless, and noninvasive blood pressure monitoring by measuring the pulse wave velocity is generally considered to be a promising technique for noninvasive measurements. Previously reported relations between blood pressure and pulse wave velocity relation involve unrealistic assumptions that do not hold for human arteries, and also rely on empirical expressions without any theoretical basis. Here, an analytical model without such assumptions or empirical expressions is established to yield a relation between blood pressure and pulse wave velocity that has general utility for future work in continuous, cuffless, and noninvasive blood pressure monitoring.
Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose patients to risks of complications. Continuous, cuffless, and noninvasive blood pressure monitoring methods that correlate measured pulse wave velocity (PWV) to the blood pressure via the Moens−Korteweg (MK) and Hughes Equations, offer promising alternatives. The MK Equation, however, involves two assumptions that do not hold for human arteries, and the Hughes Equation is empirical, without any theoretical basis. The results presented here establish a relation between the blood pressure
P
and PWV that does not rely on the Hughes Equation nor on the assumptions used in the MK Equation. This relation degenerates to the MK Equation under extremely low blood pressures, and it accurately captures the results of in vitro experiments using artificial blood vessels at comparatively high pressures. For human arteries, which are well characterized by the Fung hyperelastic model, a simple formula between
P
and PWV is established within the range of human blood pressures. This formula is validated by literature data as well as by experiments on human subjects, with applicability in the determination of blood pressure from PWV in continuous, cuffless, and noninvasive blood pressure monitoring systems. Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose patients to risks of complications. Continuous, cuffless, and noninvasive blood pressure monitoring methods that correlate measured pulse wave velocity (PWV) to the blood pressure via the Moens-Korteweg (MK) and Hughes Equations, offer promising alternatives. The MK Equation, however, involves two assumptions that do not hold for human arteries, and the Hughes Equation is empirical, without any theoretical basis. The results presented here establish a relation between the blood pressure and PWV that does not rely on the Hughes Equation nor on the assumptions used in the MK Equation. This relation degenerates to the MK Equation under extremely low blood pressures, and it accurately captures the results of in vitro experiments using artificial blood vessels at comparatively high pressures. For human arteries, which are well characterized by the Fung hyperelastic model, a simple formula between and PWV is established within the range of human blood pressures. This formula is validated by literature data as well as by experiments on human subjects, with applicability in the determination of blood pressure from PWV in continuous, cuffless, and noninvasive blood pressure monitoring systems. Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose patients to risks of complications. Continuous, cuffless, and noninvasive blood pressure monitoring methods that correlate measured pulse wave velocity (PWV) to the blood pressure via the Moens–Korteweg (MK) and Hughes Equations, offer promising alternatives. The MK Equation, however, involves two assumptions that do not hold for human arteries, and the Hughes Equation is empirical, without any theoretical basis. The results presented here establish a relation between the blood pressure P and PWV that does not rely on the Hughes Equation nor on the assumptions used in the MK Equation. This relation degenerates to the MK Equation under extremely low blood pressures, and it accurately captures the results of in vitro experiments using artificial blood vessels at comparatively high pressures. For human arteries, which are well characterized by the Fung hyperelastic model, a simple formula between P and PWV is established within the range of human blood pressures. This formula is validated by literature data as well as by experiments on human subjects, with applicability in the determination of blood pressure from PWV in continuous, cuffless, and noninvasive blood pressure monitoring systems. Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose patients to risks of complications. Continuous, cuffless, and noninvasive blood pressure monitoring methods that correlate measured pulse wave velocity (PWV) to the blood pressure via the Moens-Korteweg (MK) and Hughes Equations, offer promising alternatives. The MK Equation, however, involves two assumptions that do not hold for human arteries, and the Hughes Equation is empirical, without any theoretical basis. The results presented here establish a relation between the blood pressure P and PWV that does not rely on the Hughes Equation nor on the assumptions used in the MK Equation. This relation degenerates to the MK Equation under extremely low blood pressures, and it accurately captures the results of in vitro experiments using artificial blood vessels at comparatively high pressures. For human arteries, which are well characterized by the Fung hyperelastic model, a simple formula between P and PWV is established within the range of human blood pressures. This formula is validated by literature data as well as by experiments on human subjects, with applicability in the determination of blood pressure from PWV in continuous, cuffless, and noninvasive blood pressure monitoring systems.Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose patients to risks of complications. Continuous, cuffless, and noninvasive blood pressure monitoring methods that correlate measured pulse wave velocity (PWV) to the blood pressure via the Moens-Korteweg (MK) and Hughes Equations, offer promising alternatives. The MK Equation, however, involves two assumptions that do not hold for human arteries, and the Hughes Equation is empirical, without any theoretical basis. The results presented here establish a relation between the blood pressure P and PWV that does not rely on the Hughes Equation nor on the assumptions used in the MK Equation. This relation degenerates to the MK Equation under extremely low blood pressures, and it accurately captures the results of in vitro experiments using artificial blood vessels at comparatively high pressures. For human arteries, which are well characterized by the Fung hyperelastic model, a simple formula between P and PWV is established within the range of human blood pressures. This formula is validated by literature data as well as by experiments on human subjects, with applicability in the determination of blood pressure from PWV in continuous, cuffless, and noninvasive blood pressure monitoring systems. Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose patients to risks of complications. Continuous, cuffless, and noninvasive blood pressure monitoring methods that correlate measured pulse wave velocity (PWV) to the blood pressure via the Moens−Korteweg (MK) and Hughes Equations, offer promising alternatives. The MK Equation, however, involves two assumptions that do not hold for human arteries, and the Hughes Equation is empirical, without any theoretical basis. The results presented here establish a relation between the blood pressure P and PWV that does not rely on the Hughes Equation nor on the assumptions used in the MK Equation. This relation degenerates to the MK Equation under extremely low blood pressures, and it accurately captures the results of in vitro experiments using artificial blood vessels at comparatively high pressures. For human arteries, which are well characterized by the Fung hyperelastic model, a simple formula between P and PWV is established within the range of human blood pressures. This formula is validated by literature data as well as by experiments on human subjects, with applicability in the determination of blood pressure from PWV in continuous, cuffless, and noninvasive blood pressure monitoring systems. |
Author | Yu, Xinge Kang, Daeshik Feng, Xue Wang, Xiufeng Chung, Ha Uk Huang, Yonggang Raj, Milan S. Choi, Jungil Model, Jeffrey B. Wang, Heling Kang, Seung-Kyun Slepian, Marvin J. Lee, Jong Yoon Han, Seungyong Kang, Yisak Ghaffari, Roozbeh Rogers, John A. Hourlier-Fargette, Aurélie Ma, Yinji Xue, Yeguang Xie, Zhaoqian |
Author_xml | – sequence: 1 givenname: Yinji surname: Ma fullname: Ma, Yinji organization: Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, China – sequence: 2 givenname: Jungil surname: Choi fullname: Choi, Jungil organization: Simpson Querrey Institute for Bio-Nanotechnology, Northwestern University, Evanston, IL 60208 – sequence: 3 givenname: Aurélie surname: Hourlier-Fargette fullname: Hourlier-Fargette, Aurélie organization: Simpson Querrey Institute for Bio-Nanotechnology, Northwestern University, Evanston, IL 60208 – sequence: 4 givenname: Yeguang surname: Xue fullname: Xue, Yeguang organization: Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208 – sequence: 5 givenname: Ha Uk surname: Chung fullname: Chung, Ha Uk organization: Simpson Querrey Institute for Bio-Nanotechnology, Northwestern University, Evanston, IL 60208 – sequence: 6 givenname: Jong Yoon surname: Lee fullname: Lee, Jong Yoon organization: Simpson Querrey Institute for Bio-Nanotechnology, Northwestern University, Evanston, IL 60208 – sequence: 7 givenname: Xiufeng surname: Wang fullname: Wang, Xiufeng organization: School of Materials Science and Engineering, Xiangtan University, 411105 Hunan, China – sequence: 8 givenname: Zhaoqian surname: Xie fullname: Xie, Zhaoqian organization: Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208 – sequence: 9 givenname: Daeshik surname: Kang fullname: Kang, Daeshik organization: Department of Mechanical Engineering, Ajou University, 16499 Suwon-si, Republic of Korea – sequence: 10 givenname: Heling surname: Wang fullname: Wang, Heling organization: Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208 – sequence: 11 givenname: Seungyong surname: Han fullname: Han, Seungyong organization: Department of Mechanical Engineering, Ajou University, 16499 Suwon-si, Republic of Korea – sequence: 12 givenname: Seung-Kyun surname: Kang fullname: Kang, Seung-Kyun organization: Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208 – sequence: 13 givenname: Yisak surname: Kang fullname: Kang, Yisak organization: Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801 – sequence: 14 givenname: Xinge surname: Yu fullname: Yu, Xinge organization: Department of Biomedical Engineering, City University of Hong Kong, 999077 Hong Kong, China – sequence: 15 givenname: Marvin J. surname: Slepian fullname: Slepian, Marvin J. organization: Department of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, AZ 85724 – sequence: 16 givenname: Milan S. surname: Raj fullname: Raj, Milan S. organization: Center for Flexible Electronics Technology, Tsinghua University, 100084 Beijing, China – sequence: 17 givenname: Jeffrey B. surname: Model fullname: Model, Jeffrey B. – sequence: 18 givenname: Xue surname: Feng fullname: Feng, Xue organization: Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, China – sequence: 19 givenname: Roozbeh surname: Ghaffari fullname: Ghaffari, Roozbeh organization: Simpson Querrey Institute for Bio-Nanotechnology, Northwestern University, Evanston, IL 60208 – sequence: 20 givenname: John A. surname: Rogers fullname: Rogers, John A. organization: Simpson Querrey Institute for Bio-Nanotechnology, Northwestern University, Evanston, IL 60208 – sequence: 21 givenname: Yonggang surname: Huang fullname: Huang, Yonggang organization: Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30322935$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFP3DAQha0KVBbaM6dWkbj0EpixnTi-VEKoLUVISFV7trzOBLLK2ls7WcS_x7CwLRw4jUb-3njevH2244Mnxg4RjhGUOFl5m46xQSk0R6zesRmCxrKWGnbYDICrspFc7rH9lBYAoKsG3rM9AYJzLaoZu_hFgx374Is5jbdEuQ4htMUqUkpTpML63ExDouLWrqlY0xBcP94VXYjFzbS0vrBxpNhT-sB2O5vBj0_1gP35_u332Xl5efXj59npZekq0GMpGgTi3GoAJZuaK5iTbh3IDkSnES2QcpZTqwhRaSta53g2pTtroVadOGBfN3NX03xJrSM_RjuYVeyXNt6ZYHvz8sX3N-Y6rE3NUUms84AvTwNi-DtRGs2yT46GwXoKUzIcOagKdSUyevQKXYQp-mwvUwKUkiCbTH3-f6PtKs9nzsDJBnAxpBSp2yII5iFI8xCk-RdkVlSvFPnqj0FlS_3whu7TRrdIY4jbb3hdCS5Ri3uINqwZ |
CitedBy_id | crossref_primary_10_1007_s13534_019_00096_x crossref_primary_10_1016_j_cobme_2019_01_003 crossref_primary_10_2215_CJN_03680320 crossref_primary_10_1109_JBHI_2021_3125707 crossref_primary_10_1021_acsmaterialslett_0c00309 crossref_primary_10_3390_s23115005 crossref_primary_10_1016_j_bpa_2019_05_001 crossref_primary_10_1371_journal_pone_0311654 crossref_primary_10_33549_physiolres_935372 crossref_primary_10_1021_acssensors_3c00630 crossref_primary_10_3390_s23249680 crossref_primary_10_3390_s23125744 crossref_primary_10_5334_paah_214 crossref_primary_10_1016_j_eml_2021_101298 crossref_primary_10_1002_gch2_202000076 crossref_primary_10_1080_08037051_2024_2304190 crossref_primary_10_1021_acsami_2c22825 crossref_primary_10_1080_19475411_2022_2107112 crossref_primary_10_1016_j_cej_2025_161769 crossref_primary_10_1016_j_bios_2020_112569 crossref_primary_10_1016_j_eml_2019_01_009 crossref_primary_10_1109_TCYB_2022_3141380 crossref_primary_10_1111_psyp_14173 crossref_primary_10_1038_s41528_023_00247_2 crossref_primary_10_1167_iovs_63_3_28 crossref_primary_10_1021_acsami_4c05688 crossref_primary_10_1007_s10409_023_23093_x crossref_primary_10_1038_s41551_023_01130_1 crossref_primary_10_1109_JBHI_2022_3227235 crossref_primary_10_1016_j_eml_2019_100453 crossref_primary_10_1016_j_rinp_2021_104395 crossref_primary_10_32604_cmc_2023_036466 crossref_primary_10_1007_s10773_024_05797_3 crossref_primary_10_3390_mi14061218 crossref_primary_10_1115_1_4046662 crossref_primary_10_3390_s20185425 crossref_primary_10_1016_j_mechmat_2023_104799 crossref_primary_10_1109_ACCESS_2019_2943736 crossref_primary_10_1371_journal_pone_0285849 crossref_primary_10_34133_2020_1085417 crossref_primary_10_5664_jcsm_10194 crossref_primary_10_1016_j_cma_2019_112623 crossref_primary_10_1155_2022_5019153 crossref_primary_10_1109_JBHI_2020_3021532 crossref_primary_10_1002_adma_201902062 crossref_primary_10_1111_2047_3095_12415 crossref_primary_10_1007_s42558_020_00022_7 crossref_primary_10_4018_IJISMD_300779 crossref_primary_10_1016_j_bspc_2023_104757 crossref_primary_10_1126_sciadv_aay2840 crossref_primary_10_1109_TBME_2021_3055154 crossref_primary_10_1016_j_sna_2022_113805 crossref_primary_10_1002_adma_202313612 crossref_primary_10_1002_adma_202411131 crossref_primary_10_1016_j_tibtech_2020_12_011 crossref_primary_10_1007_s10439_023_03275_1 crossref_primary_10_1016_j_ijmecsci_2021_106463 crossref_primary_10_1155_2021_8868083 crossref_primary_10_1021_acsnano_4c04291 crossref_primary_10_3390_s23146517 crossref_primary_10_1115_1_4042288 crossref_primary_10_1016_j_compeleceng_2024_109319 crossref_primary_10_1111_psyp_14480 crossref_primary_10_1016_j_jmbbm_2024_106765 crossref_primary_10_7498_aps_69_20200664 crossref_primary_10_3390_bios11110435 crossref_primary_10_3389_fcvm_2022_1052068 crossref_primary_10_1002_adhm_202100383 crossref_primary_10_3390_diagnostics11122255 crossref_primary_10_1038_s41598_021_01358_4 crossref_primary_10_1007_s10439_025_03681_7 crossref_primary_10_1038_s41528_020_0065_1 crossref_primary_10_3390_s19224942 crossref_primary_10_1016_j_sna_2024_115084 crossref_primary_10_1152_ajpendo_00300_2020 crossref_primary_10_1109_ACCESS_2021_3103763 crossref_primary_10_1039_D0MH00483A crossref_primary_10_1016_j_jece_2025_115788 crossref_primary_10_1038_s41569_025_01127_0 crossref_primary_10_1016_j_esr_2023_101124 crossref_primary_10_1016_j_measurement_2022_111211 crossref_primary_10_1109_JSEN_2022_3155071 crossref_primary_10_3390_s23063304 crossref_primary_10_1002_aisy_202000108 crossref_primary_10_1109_JSEN_2020_3021923 crossref_primary_10_1186_s40001_023_01259_4 crossref_primary_10_1115_1_4068063 crossref_primary_10_1016_j_jmbbm_2019_103417 crossref_primary_10_1038_s44172_024_00326_w crossref_primary_10_1002_adem_202200873 crossref_primary_10_1038_s41528_022_00161_z crossref_primary_10_1002_adma_202406424 crossref_primary_10_1007_s10462_022_10353_8 crossref_primary_10_1007_s00380_023_02316_y crossref_primary_10_1016_j_bspc_2022_103850 crossref_primary_10_1152_japplphysiol_00793_2021 crossref_primary_10_1016_j_cej_2022_139815 crossref_primary_10_2139_ssrn_3999278 crossref_primary_10_1021_acsami_4c04134 crossref_primary_10_3390_mi13050645 crossref_primary_10_3389_fphys_2023_1191272 crossref_primary_10_37188_lam_2021_004 crossref_primary_10_1073_pnas_2100466118 crossref_primary_10_1039_D2EE01590K crossref_primary_10_1007_s12274_024_6969_7 crossref_primary_10_1016_j_bspc_2021_103188 crossref_primary_10_1126_sciadv_abg2507 crossref_primary_10_3390_s21248438 crossref_primary_10_1186_s12872_023_03135_9 crossref_primary_10_1007_s12265_022_10339_5 crossref_primary_10_1038_s41440_023_01196_z crossref_primary_10_1063_5_0149276 crossref_primary_10_3389_fphys_2021_783457 crossref_primary_10_1038_s41928_021_00557_1 crossref_primary_10_1088_1361_6579_ad7fcc crossref_primary_10_1109_ACCESS_2020_3041498 crossref_primary_10_1016_j_eml_2024_102166 crossref_primary_10_1109_JBHI_2022_3181328 crossref_primary_10_1109_JBHI_2023_3278168 crossref_primary_10_1115_1_4047003 crossref_primary_10_1115_1_4049423 crossref_primary_10_1016_j_compbiomed_2021_104861 crossref_primary_10_1016_j_compstruct_2022_116131 crossref_primary_10_1016_j_nanoen_2021_106704 crossref_primary_10_1039_D1CS00858G crossref_primary_10_1115_1_4051183 crossref_primary_10_1002_adfm_202406022 crossref_primary_10_1097_MNH_0000000000000517 crossref_primary_10_1038_s41467_023_40763_3 crossref_primary_10_2139_ssrn_4094622 crossref_primary_10_17116_profmed20252802174 crossref_primary_10_1016_j_sleep_2022_09_026 crossref_primary_10_1109_TIM_2024_3480192 crossref_primary_10_1002_adfm_202422733 crossref_primary_10_1002_aelm_202201333 crossref_primary_10_1186_s12968_021_00739_y crossref_primary_10_1093_ajh_hpab160 crossref_primary_10_1073_pnas_1917762116 crossref_primary_10_1109_LED_2019_2954878 crossref_primary_10_1002_adma_202110291 crossref_primary_10_1109_JSEN_2022_3222588 crossref_primary_10_1021_acssensors_3c02180 crossref_primary_10_1038_s41928_021_00556_2 crossref_primary_10_3389_fcvm_2023_1150214 crossref_primary_10_1109_ACCESS_2024_3524614 crossref_primary_10_1016_j_compbiomed_2024_108730 crossref_primary_10_1109_JTEHM_2022_3209754 crossref_primary_10_1063_5_0180437 crossref_primary_10_1016_j_bbe_2021_11_001 crossref_primary_10_1109_OJEMB_2024_3401105 crossref_primary_10_1038_s41467_021_22663_6 crossref_primary_10_1109_RBME_2019_2931587 crossref_primary_10_1145_3699781 crossref_primary_10_1016_j_jsv_2021_116476 crossref_primary_10_1002_advs_202104426 crossref_primary_10_3390_bios12020055 crossref_primary_10_1063_5_0039817 crossref_primary_10_1088_1361_6439_ac87ba crossref_primary_10_1007_s12553_019_00406_4 crossref_primary_10_1021_acsami_2c16741 crossref_primary_10_1109_JSEN_2021_3134890 crossref_primary_10_1016_j_isci_2020_102027 crossref_primary_10_1016_j_jmbbm_2022_105432 crossref_primary_10_1088_1361_6560_ac9c3f crossref_primary_10_1002_adfm_202411811 crossref_primary_10_3390_s20041052 crossref_primary_10_1016_j_nanoen_2023_108636 crossref_primary_10_1016_j_sna_2022_113858 crossref_primary_10_1109_TMC_2024_3452499 crossref_primary_10_1109_TMI_2022_3141613 crossref_primary_10_1016_j_ijmecsci_2024_109166 crossref_primary_10_1111_jgs_17673 crossref_primary_10_1007_s12559_021_09910_0 crossref_primary_10_1016_j_jmps_2021_104400 crossref_primary_10_1038_s41591_020_0792_9 crossref_primary_10_1002_adfm_202418318 crossref_primary_10_1007_s12551_021_00783_z crossref_primary_10_1016_j_bios_2020_112483 crossref_primary_10_1109_JSEN_2023_3267146 crossref_primary_10_1109_RBME_2022_3141877 crossref_primary_10_1038_s41551_023_01098_y crossref_primary_10_1364_BOE_448038 crossref_primary_10_1109_TUFFC_2023_3333318 crossref_primary_10_1152_ajpheart_00454_2023 crossref_primary_10_1002_nbm_5048 crossref_primary_10_3390_s20164484 crossref_primary_10_1016_j_cej_2021_133260 crossref_primary_10_1109_LSENS_2023_3308120 crossref_primary_10_1109_TBME_2020_3028186 crossref_primary_10_1038_s41598_020_58367_y crossref_primary_10_1016_j_apacoust_2020_107534 crossref_primary_10_1364_BOE_403033 crossref_primary_10_1088_1361_6439_abfd0a crossref_primary_10_3390_metrology2030022 crossref_primary_10_1097_HJH_0000000000002928 crossref_primary_10_1021_acsmacrolett_8b01011 crossref_primary_10_1038_s41528_020_00090_9 crossref_primary_10_1016_j_jacc_2020_03_018 crossref_primary_10_1016_j_mechmat_2019_03_015 crossref_primary_10_1038_s41598_024_68813_w |
Cites_doi | 10.1002/adhm.201601013 10.1016/j.irbm.2014.07.002 10.1109/BIOCAS.2017.8325551 10.1093/ajh/hpy050 10.1038/s41746-018-0023-7 10.1001/jamainternmed.2016.0190 10.1002/adma.201502535 10.1007/978-1-4757-2257-4 10.1038/ncomms5496 10.1007/s10439-011-0467-2 10.1177/016173467900100406 10.1007/s10877-017-0044-9 10.1002/adfm.201200498 10.1093/ajhp/55.suppl_3.S12 10.1126/science.67.1725.72 10.1016/S0140-6736(02)11911-8 10.1038/ncomms15894 10.1007/978-1-4757-2696-1 10.1098/rspa.2003.1156 10.1056/NEJMoa1511939 10.3390/technologies5020021 10.1093/eurheartj/ehl254 10.1007/s11517-012-0955-z 10.1161/01.CIR.0000154900.76284.F6 10.1126/scitranslmed.aap8674 10.1186/cc1489 10.1088/0031-8949/90/1/015202 10.1016/S0008-6363(97)00267-8 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Oct 30, 2018 2018 |
Copyright_xml | – notice: Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Oct 30, 2018 – notice: 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1814392115 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 11149 |
ExternalDocumentID | PMC6217416 30322935 10_1073_pnas_1814392115 26532419 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: 11625207 – fundername: National Natural Science Foundation of China (NSFC) grantid: 11222220 – fundername: National Science Foundation (NSF) grantid: 1534120 – fundername: National Basic Research Program of China grantid: 2015CB351900 – fundername: National Science Foundation (NSF) grantid: 1400169 – fundername: National Natural Science Foundation of China (NSFC) grantid: 11402135 – fundername: National Science Foundation (NSF) grantid: 1635443 – fundername: National Natural Science Foundation of China (NSFC) grantid: 11320101001 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-3810e22a9007486270be9dc04f03f911a0e7ca2ed7e1179a3dcc20919faa067f3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:23:13 EDT 2025 Fri Jul 11 09:33:29 EDT 2025 Mon Jun 30 08:19:49 EDT 2025 Thu Apr 03 07:06:46 EDT 2025 Thu Apr 24 22:57:06 EDT 2025 Tue Jul 01 03:39:52 EDT 2025 Fri May 30 11:17:19 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Keywords | arterial stiffness blood pressure pulse wave velocity artery hyperelastic model hemodynamics |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-3810e22a9007486270be9dc04f03f911a0e7ca2ed7e1179a3dcc20919faa067f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: Y.M., Z.X., and J.A.R. designed research; Y.M., J.C., A.H.-F., and Z.X. performed research; Y.M. contributed new reagents/analytic tools; Y.M., J.C., A.H.-F., Y.X., H.U.C., J.Y.L., Z.X., D.K., H.W., S.H., S.-K.K., Y.K., X.Y., M.J.S., M.S.R., J.B.M., X.F., R.G., and Y.H. analyzed data; and Y.M., J.C., X.W., R.G., J.A.R., and Y.H. wrote the paper. Reviewers: M.J.B., Massachusetts Institute of Technology; and P.S., University of Houston. 1Y.M. and J.C. contributed equally to this work. Contributed by John A. Rogers, September 10, 2018 (sent for review August 21, 2018; reviewed by Markus J. Buehler and Pradeep Sharma) |
ORCID | 0000-0002-1968-5092 |
OpenAccessLink | https://www.pnas.org/content/pnas/115/44/11144.full.pdf |
PMID | 30322935 |
PQID | 2130774048 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6217416 proquest_miscellaneous_2120751953 proquest_journals_2130774048 pubmed_primary_30322935 crossref_primary_10_1073_pnas_1814392115 crossref_citationtrail_10_1073_pnas_1814392115 jstor_primary_26532419 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-30 |
PublicationDateYYYYMMDD | 2018-10-30 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2018 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Bramwell JC (e_1_3_3_17_2) 1922; 93 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_31_2 Timoshenko S (e_1_3_3_20_2) 1940 Pickering TG (e_1_3_3_9_2) 2005; 111 e_1_3_3_6_2 e_1_3_3_5_2 Fuke S (e_1_3_3_10_2) 2013; 2013 e_1_3_3_8_2 e_1_3_3_7_2 Acton FS (e_1_3_3_28_2) 1970 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_32_2 doi: 10.1002/adhm.201601013 – volume: 2013 start-page: 6107 year: 2013 ident: e_1_3_3_10_2 article-title: Blood pressure estimation from pulse wave velocity measured on the chest publication-title: Conf Proc IEEE Eng Med Biol Soc – ident: e_1_3_3_13_2 doi: 10.1016/j.irbm.2014.07.002 – ident: e_1_3_3_16_2 doi: 10.1109/BIOCAS.2017.8325551 – ident: e_1_3_3_2_2 doi: 10.1093/ajh/hpy050 – ident: e_1_3_3_30_2 doi: 10.1038/s41746-018-0023-7 – ident: e_1_3_3_4_2 doi: 10.1001/jamainternmed.2016.0190 – ident: e_1_3_3_15_2 doi: 10.1002/adma.201502535 – ident: e_1_3_3_21_2 doi: 10.1007/978-1-4757-2257-4 – ident: e_1_3_3_23_2 doi: 10.1038/ncomms5496 – ident: e_1_3_3_29_2 doi: 10.1007/s10439-011-0467-2 – ident: e_1_3_3_18_2 doi: 10.1177/016173467900100406 – volume-title: Theory of Plates and Shells year: 1940 ident: e_1_3_3_20_2 – ident: e_1_3_3_11_2 doi: 10.1007/s10877-017-0044-9 – ident: e_1_3_3_22_2 doi: 10.1002/adfm.201200498 – ident: e_1_3_3_6_2 doi: 10.1093/ajhp/55.suppl_3.S12 – ident: e_1_3_3_5_2 doi: 10.1126/science.67.1725.72 – ident: e_1_3_3_1_2 doi: 10.1016/S0140-6736(02)11911-8 – ident: e_1_3_3_31_2 doi: 10.1038/ncomms15894 – ident: e_1_3_3_19_2 doi: 10.1007/978-1-4757-2696-1 – ident: e_1_3_3_24_2 doi: 10.1098/rspa.2003.1156 – ident: e_1_3_3_3_2 doi: 10.1056/NEJMoa1511939 – ident: e_1_3_3_14_2 doi: 10.3390/technologies5020021 – ident: e_1_3_3_27_2 doi: 10.1093/eurheartj/ehl254 – volume: 93 start-page: 298 year: 1922 ident: e_1_3_3_17_2 article-title: The velocity of the pulse wave in man publication-title: Proc R Soc B – ident: e_1_3_3_7_2 doi: 10.1007/s11517-012-0955-z – volume: 111 start-page: 697 year: 2005 ident: e_1_3_3_9_2 article-title: Recommendations for blood pressure measurement in humans and experimental animals: Part 1: Blood pressure measurement in humans: A statement for professionals from the subcommittee of professional and public education of the American Heart Association council on high blood pressure research publication-title: Circulation doi: 10.1161/01.CIR.0000154900.76284.F6 – ident: e_1_3_3_8_2 doi: 10.1126/scitranslmed.aap8674 – volume-title: Numerical Methods That Work year: 1970 ident: e_1_3_3_28_2 – ident: e_1_3_3_12_2 doi: 10.1186/cc1489 – ident: e_1_3_3_25_2 doi: 10.1088/0031-8949/90/1/015202 – ident: e_1_3_3_26_2 doi: 10.1016/S0008-6363(97)00267-8 |
SSID | ssj0009580 |
Score | 2.6533768 |
Snippet | Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose... Continuous, cuffless, and noninvasive blood pressure monitoring by measuring the pulse wave velocity is generally considered to be a promising technique for... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11144 |
SubjectTerms | Arteries Arteries - physiology Blood Flow Velocity - physiology Blood pressure Blood Pressure - physiology Blood Pressure Determination - methods Blood vessels Correlation analysis Electrocardiography - methods Empirical equations Formulas (mathematics) Heart rate Humans Measurement methods Monitoring methods Monitoring systems Monitoring, Physiologic - methods Physical Sciences Pulsatile Flow - physiology Pulse Wave Analysis - methods Risk factors Veins & arteries Velocity Wave velocity |
Title | Relation between blood pressure and pulse wave velocity for human arteries |
URI | https://www.jstor.org/stable/26532419 https://www.ncbi.nlm.nih.gov/pubmed/30322935 https://www.proquest.com/docview/2130774048 https://www.proquest.com/docview/2120751953 https://pubmed.ncbi.nlm.nih.gov/PMC6217416 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgvPCCGDAIDGQkHoYql9T5Io8VWlVNo-yhlcpT5CTOFjSl09oIiV_P8VfSjiINpCpqHMdpfU-uj-3ja0I-FLySpZCSgcxXLOS5YMKPBJORSAJ8ylxH2_86i6eL8GwZLfvpAr26ZJMPi19715X8j1WRBruqVbL_YNmuUCTgO-yLIyyM471s7JRsndpKy9AHWtvqJgZuWjR-g59qkyElDypqK9E0m_NpRafTEVqOetG1aWunIJi5IcNxvwDFeoX1gA0uZuOtoW3t1evmR91LB1a1WQHSXPaKjin-IQjwLZtoMbrZpm_c2qn767pD3LLVl77Ly1bYdtYOU4x0zFg742I8K4gJi0OzN-hQ7klz7tgs77S4C8Mt7wq_bM7_8PtwVGqz4kash6AsIFncFbMTYXv2LZsszs-z-ely_pA84uhaBG6EpwvU_NlEsLA_zYWDSoJPd4rfYTJGzLqvm3JXbbtFX-ZPyRPb76BjA6JD8kA2z8ihsyE9seHHPz4nZw5V1KKKalRRhyoKVFGNKqpQRR2qKFBFNaqoQ9ULspiczr9Mmd1xgxUgjhumwr1JzkWqmCX6uomfy7Qs_LDygwrNovBlUgguy0SqUIIiKIuCo6bSSgjQnio4IgfNqpGvCEVaKODsw6AqwygKRFrirlRKNaYQycAjQ1d7WWHD0atdUa4zLYtIgkxVd9ZXt0dOuhtuTCSWv2c90ubo8vE4QsdhlHrk2Nkns-_xOuOgcegEoSnzyPvuMrysmjoTjVy1Kg8Ht1ZTzh55aczZFQ4SyEGa8dRkx9BdBhXBffdKU1_pSO6xGhAYxa_v8dw35HH_Wh2Tg81tK9-CD2_ydxrAvwHlZrdu |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relation+between+blood+pressure+and+pulse+wave+velocity+for+human+arteries&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ma%2C+Yinji&rft.au=Choi%2C+Jungil&rft.au=Hourlier-Fargette%2C+Aur%C3%A9lie&rft.au=Xue%2C+Yeguang&rft.date=2018-10-30&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=115&rft.issue=44&rft.spage=11144&rft_id=info:doi/10.1073%2Fpnas.1814392115&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |