Online Personalized Preference Learning Method Based on In-Formative Query for Lane Centering Control Trajectory
The personalization of autonomous vehicles or advanced driver assistance systems has been a widely researched topic, with many proposals aiming to achieve human-like or driver-imitating methods. However, these approaches rely on an implicit assumption that all drivers prefer the vehicle to drive lik...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 11; p. 5246 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
31.05.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The personalization of autonomous vehicles or advanced driver assistance systems has been a widely researched topic, with many proposals aiming to achieve human-like or driver-imitating methods. However, these approaches rely on an implicit assumption that all drivers prefer the vehicle to drive like themselves, which may not hold true for all drivers. To address this issue, this study proposes an online personalized preference learning method (OPPLM) that utilizes a pairwise comparison group preference query and the Bayesian approach. The proposed OPPLM adopts a two-layer hierarchical structure model based on utility theory to represent driver preferences on the trajectory. To improve the accuracy of learning, the uncertainty of driver query answers is modeled. In addition, informative query and greedy query selection methods are used to improve learning speed. To determine when the driver’s preferred trajectory has been found, a convergence criterion is proposed. To evaluate the effectiveness of the OPPLM, a user study is conducted to learn the driver’s preferred trajectory in the curve of the lane centering control (LCC) system. The results show that the OPPLM can converge quickly, requiring only about 11 queries on average. Moreover, it accurately learned the driver’s favorite trajectory, and the estimated utility of the driver preference model is highly consistent with the subject evaluation score. |
---|---|
AbstractList | The personalization of autonomous vehicles or advanced driver assistance systems has been a widely researched topic, with many proposals aiming to achieve human-like or driver-imitating methods. However, these approaches rely on an implicit assumption that all drivers prefer the vehicle to drive like themselves, which may not hold true for all drivers. To address this issue, this study proposes an online personalized preference learning method (OPPLM) that utilizes a pairwise comparison group preference query and the Bayesian approach. The proposed OPPLM adopts a two-layer hierarchical structure model based on utility theory to represent driver preferences on the trajectory. To improve the accuracy of learning, the uncertainty of driver query answers is modeled. In addition, informative query and greedy query selection methods are used to improve learning speed. To determine when the driver’s preferred trajectory has been found, a convergence criterion is proposed. To evaluate the effectiveness of the OPPLM, a user study is conducted to learn the driver’s preferred trajectory in the curve of the lane centering control (LCC) system. The results show that the OPPLM can converge quickly, requiring only about 11 queries on average. Moreover, it accurately learned the driver’s favorite trajectory, and the estimated utility of the driver preference model is highly consistent with the subject evaluation score. The personalization of autonomous vehicles or advanced driver assistance systems has been a widely researched topic, with many proposals aiming to achieve human-like or driver-imitating methods. However, these approaches rely on an implicit assumption that all drivers prefer the vehicle to drive like themselves, which may not hold true for all drivers. To address this issue, this study proposes an online personalized preference learning method (OPPLM) that utilizes a pairwise comparison group preference query and the Bayesian approach. The proposed OPPLM adopts a two-layer hierarchical structure model based on utility theory to represent driver preferences on the trajectory. To improve the accuracy of learning, the uncertainty of driver query answers is modeled. In addition, informative query and greedy query selection methods are used to improve learning speed. To determine when the driver's preferred trajectory has been found, a convergence criterion is proposed. To evaluate the effectiveness of the OPPLM, a user study is conducted to learn the driver's preferred trajectory in the curve of the lane centering control (LCC) system. The results show that the OPPLM can converge quickly, requiring only about 11 queries on average. Moreover, it accurately learned the driver's favorite trajectory, and the estimated utility of the driver preference model is highly consistent with the subject evaluation score.The personalization of autonomous vehicles or advanced driver assistance systems has been a widely researched topic, with many proposals aiming to achieve human-like or driver-imitating methods. However, these approaches rely on an implicit assumption that all drivers prefer the vehicle to drive like themselves, which may not hold true for all drivers. To address this issue, this study proposes an online personalized preference learning method (OPPLM) that utilizes a pairwise comparison group preference query and the Bayesian approach. The proposed OPPLM adopts a two-layer hierarchical structure model based on utility theory to represent driver preferences on the trajectory. To improve the accuracy of learning, the uncertainty of driver query answers is modeled. In addition, informative query and greedy query selection methods are used to improve learning speed. To determine when the driver's preferred trajectory has been found, a convergence criterion is proposed. To evaluate the effectiveness of the OPPLM, a user study is conducted to learn the driver's preferred trajectory in the curve of the lane centering control (LCC) system. The results show that the OPPLM can converge quickly, requiring only about 11 queries on average. Moreover, it accurately learned the driver's favorite trajectory, and the estimated utility of the driver preference model is highly consistent with the subject evaluation score. |
Audience | Academic |
Author | Nishimura, Yosuke Chen, Hui Yin, Youyu Ran, Wei Xia, Taokai Guo, Chaopeng |
AuthorAffiliation | 1 School of Automotive Studies, Tongji University, Shanghai 201804, China; ranwei@tongji.edu.cn (W.R.) 3 JTEKT Research and Development Center (WUXI) Co., Ltd., Wuxi 214161, China 2 JTEKT Corporation, Nara 634-8555, Japan |
AuthorAffiliation_xml | – name: 2 JTEKT Corporation, Nara 634-8555, Japan – name: 1 School of Automotive Studies, Tongji University, Shanghai 201804, China; ranwei@tongji.edu.cn (W.R.) – name: 3 JTEKT Research and Development Center (WUXI) Co., Ltd., Wuxi 214161, China |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0009-0000-3747-7724 surname: Ran fullname: Ran, Wei – sequence: 2 givenname: Hui surname: Chen fullname: Chen, Hui – sequence: 3 givenname: Taokai surname: Xia fullname: Xia, Taokai – sequence: 4 givenname: Yosuke surname: Nishimura fullname: Nishimura, Yosuke – sequence: 5 givenname: Chaopeng surname: Guo fullname: Guo, Chaopeng – sequence: 6 givenname: Youyu surname: Yin fullname: Yin, Youyu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37299972$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v3CAQhq0qVfPRHvoHKku9NAcnmA8DpypZNelKWyWV0jPCeNiw8sIW7EjbX1-cTVdJVHEADc-8zDDvcXHgg4ei-FijM0IkOk-Y1DXDtHlTHNUU00pgjA6enQ-L45RWCGFCiHhXHBKOpZQcHxWbG987D-UtxBS87t0f6MrbCBYieAPlAnT0zi_LHzDch6681CkDwZdzX12FuNaDe4Dy5whxW9oQy4XOYjPwA8Qpaxb8EENf3kW9AjOEuH1fvLW6T_DhaT8pfl19u5t9rxY31_PZxaIyDMmhIo1gtNFUQyMaLmtteceRRo1trLTSWExsw1rbUY6YbUwnsRRCE0sYJ_manBTznW4X9EptolvruFVBO_UYCHGpdByc6UFRgwXQrgamEeWStHVHqCVgeCvahoqs9XWntRnbNXQmtxd1_0L05Y1392oZHlSNMGNS4Kzw5Ukhht8jpEGtXTLQ9_m7wpgUFnl6UwsT-vkVugpjzKPZUYiJGqFMne2opc4dOG9Dftjk1cHamWwP63L8grPHAgTPCZ-e97Av_p8VMnC6A0wMKWUH7JEaqclmam-zzJ6_Yo0bshWmaWvX_yfjL3U-0z4 |
CitedBy_id | crossref_primary_10_3390_s24051666 crossref_primary_10_3390_s24154808 crossref_primary_10_1016_j_trc_2023_104470 |
Cites_doi | 10.1109/TSMC.2016.2529582 10.1109/TITS.2020.2988303 10.1007/978-3-642-14125-6 10.3758/BF03193146 10.1109/TIV.2019.2960935 10.1109/TITS.2017.2706978 10.1145/2157689.2157815 10.1109/ITSC.2014.6957822 10.1016/j.aap.2018.08.028 10.1016/j.trf.2017.11.015 10.1109/LRA.2021.3063927 10.1109/ACC.2007.4282788 10.1109/JAS.2020.1003261 10.1145/2909824.3020250 10.1145/3003715.3005455 10.3390/s22124500 10.1145/1015330.1015430 10.1016/j.trc.2018.10.024 10.1111/j.1559-1816.1999.tb01392.x 10.1109/TVT.2020.3020335 10.1080/00423114.2018.1497185 10.1109/TITS.2022.3144867 10.1109/ICRA.2018.8460854 10.1016/j.robot.2008.10.024 10.1109/TIV.2019.2955910 10.1002/rob.21918 10.1109/TITS.2020.3001131 10.3390/s19173672 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23115246 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_4c28e4d1e5a04793b1d34f3ec7b8b648 PMC10255982 A752559887 37299972 10_3390_s23115246 |
Genre | Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c509t-368546a4ae686791af7d70a06f6f9f9cf23f65bfd4705f6cd92988a3f35739cf3 |
IEDL.DBID | 7X7 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:59 EDT 2025 Thu Aug 21 18:37:57 EDT 2025 Fri Jul 11 00:19:50 EDT 2025 Fri Jul 25 20:37:19 EDT 2025 Tue Jun 10 20:11:31 EDT 2025 Wed Feb 19 02:06:58 EST 2025 Thu Apr 24 23:07:24 EDT 2025 Tue Jul 01 01:20:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Bayesian approach LCC trajectory online learning preference learning utility theory |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-368546a4ae686791af7d70a06f6f9f9cf23f65bfd4705f6cd92988a3f35739cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0000-3747-7724 |
OpenAccessLink | https://www.proquest.com/docview/2824058100?pq-origsite=%requestingapplication% |
PMID | 37299972 |
PQID | 2824058100 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4c28e4d1e5a04793b1d34f3ec7b8b648 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10255982 proquest_miscellaneous_2824692982 proquest_journals_2824058100 gale_infotracacademiconefile_A752559887 pubmed_primary_37299972 crossref_primary_10_3390_s23115246 crossref_citationtrail_10_3390_s23115246 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-31 |
PublicationDateYYYYMMDD | 2023-05-31 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zhan (ref_34) 2021; 6 Huang (ref_7) 2020; 7 Xu (ref_12) 2021; 22 Grigorescu (ref_13) 2020; 37 ref_36 Faul (ref_40) 2007; 39 ref_35 Schnelle (ref_11) 2017; 47 ref_33 Yi (ref_4) 2020; 5 ref_32 ref_31 Yi (ref_9) 2022; 23 Akrour (ref_30) 2012; 7524 ref_19 ref_18 Rahman (ref_1) 2018; 121 Nagahama (ref_10) 2021; 22 ref_17 ref_39 ref_16 ref_15 ref_37 Cao (ref_38) 2018; 57 Hasenjager (ref_3) 2020; 5 Horswill (ref_22) 1999; 29 ref_24 Heucke (ref_8) 2018; 19 ref_23 ref_21 ref_20 ref_29 Reagan (ref_2) 2018; 52 Zhu (ref_14) 2018; 97 ref_28 Gao (ref_5) 2020; 69 ref_27 ref_26 Argall (ref_25) 2009; 57 ref_6 |
References_xml | – ident: ref_28 – volume: 47 start-page: 111 year: 2017 ident: ref_11 article-title: A Driver Steering Model with Personalized Desired Path Generation publication-title: IEEE Trans. Syst. Man Cybern Syst. doi: 10.1109/TSMC.2016.2529582 – volume: 22 start-page: 5624 year: 2021 ident: ref_10 article-title: Autonomous Driving Learning Preference of Collision Avoidance Maneuvers publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2020.2988303 – ident: ref_23 doi: 10.1007/978-3-642-14125-6 – ident: ref_32 – volume: 39 start-page: 175 year: 2007 ident: ref_40 article-title: G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences publication-title: Behav. Res. Methods doi: 10.3758/BF03193146 – ident: ref_26 – volume: 5 start-page: 397 year: 2020 ident: ref_4 article-title: Implicit Personalization in Driving Assistance: State-of-the-Art and Open Issues publication-title: IEEE Trans. Intell. Veh. doi: 10.1109/TIV.2019.2960935 – volume: 19 start-page: 666 year: 2018 ident: ref_8 article-title: Driving Style Recognition for Intelligent Vehicle Control and Advanced Driver Assistance: A Survey publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2017.2706978 – ident: ref_27 doi: 10.1145/2157689.2157815 – ident: ref_6 doi: 10.1109/ITSC.2014.6957822 – ident: ref_16 – ident: ref_37 – volume: 121 start-page: 134 year: 2018 ident: ref_1 article-title: Modelling driver acceptance of driver support systems publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2018.08.028 – ident: ref_35 – volume: 52 start-page: 176 year: 2018 ident: ref_2 article-title: Crash avoidance and driver assistance technologies—Are they used? publication-title: Transp. Res. Part F Traffic Psychol. Behav. doi: 10.1016/j.trf.2017.11.015 – volume: 6 start-page: 3545 year: 2021 ident: ref_34 article-title: Human-Guided Robot Behavior Learning: A GAN-Assisted Preference-Based Reinforcement Learning Approach publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3063927 – ident: ref_39 doi: 10.1109/ACC.2007.4282788 – volume: 7 start-page: 1107 year: 2020 ident: ref_7 article-title: Study on the driving style adaptive vehicle longitudinal control strategy publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2020.1003261 – ident: ref_31 – ident: ref_33 – ident: ref_20 doi: 10.1145/2909824.3020250 – ident: ref_21 doi: 10.1145/3003715.3005455 – ident: ref_15 doi: 10.3390/s22124500 – ident: ref_18 doi: 10.1145/1015330.1015430 – volume: 97 start-page: 348 year: 2018 ident: ref_14 article-title: Human-like autonomous car-following model with deep reinforcement learning publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2018.10.024 – ident: ref_24 doi: 10.1007/978-3-642-14125-6 – volume: 29 start-page: 377 year: 1999 ident: ref_22 article-title: The Effect of Perceived Control on Risk Taking1 publication-title: J. Appl. Social Pyschol. doi: 10.1111/j.1559-1816.1999.tb01392.x – volume: 69 start-page: 12482 year: 2020 ident: ref_5 article-title: Personalized Adaptive Cruise Control Based on Online Driving Style Recognition Technology and Model Predictive Control publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3020335 – volume: 7524 start-page: 116 year: 2012 ident: ref_30 article-title: APRIL: Active Preference-learning based Reinforcement Learning publication-title: arXiv – volume: 57 start-page: 1287 year: 2018 ident: ref_38 article-title: An optimal hierarchical framework of the trajectory following by convex optimisation for highly automated driving vehicles publication-title: Veh. Syst. Dyn. doi: 10.1080/00423114.2018.1497185 – volume: 23 start-page: 14128 year: 2022 ident: ref_9 article-title: A Survey on Imitation Learning Techniques for End-to-End Autonomous Vehicles publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2022.3144867 – ident: ref_29 doi: 10.1109/ICRA.2018.8460854 – volume: 57 start-page: 469 year: 2009 ident: ref_25 article-title: A survey of robot learning from demonstration publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2008.10.024 – ident: ref_36 – volume: 5 start-page: 335 year: 2020 ident: ref_3 article-title: A Survey of Personalization for Advanced Driver Assistance Systems publication-title: IEEE Trans. Intell. Veh. doi: 10.1109/TIV.2019.2955910 – ident: ref_19 – volume: 37 start-page: 362 year: 2020 ident: ref_13 article-title: A survey of deep learning techniques for autonomous driving publication-title: J. Field Robotics doi: 10.1002/rob.21918 – volume: 22 start-page: 7341 year: 2021 ident: ref_12 article-title: Learning From Naturalistic Driving Data for Human-Like Autonomous Highway Driving publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3001131 – ident: ref_17 doi: 10.3390/s19173672 |
SSID | ssj0023338 |
Score | 2.4064193 |
Snippet | The personalization of autonomous vehicles or advanced driver assistance systems has been a widely researched topic, with many proposals aiming to achieve... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5246 |
SubjectTerms | Autonomous vehicles Bayesian approach Behavior Customization Driverless cars Efficiency Expected utility LCC trajectory Machine learning Methods online learning preference learning Preferences Queries Robots User feedback utility theory |
SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3daxQxEMAH6ZM-iG39WG0liqAvS3eTbJJ7bItHFZUKFvoWsvnQiuyV9q5Q_3pnNnvLHgp98fUSlmxm5mZmM_kNwBsjfWu486UxjSylUbF0msiI3ifnQtQ6V_l-USdn8uN5cz5p9UU1YRkPnDfuQHpuogx1bBzR0EVbByGTiF63plWyv-aLPm-dTA2plsDMK3OEBCb1B9ecoDKcotyJ9-kh_X__FU980Wad5MTxzB_BwyFiZId5pdtwL3Y78GDCEdyFywwMZafryPp3DOx07CDCBojqd_a57xfNjtB1Bbbo2IeunOeg9Sayr6t4dcswiGWfHD6Mvvv2z2fHuZydoV_72X_kv30MZ_P3345PyqGVQukxIliWhJmXykkXFRH2apd00JWrVFJplmY-cZFU06YgUTZJ-YBRkzFOJNFogcPiCWx1iy4-A1bFwBUdjkYtZJRxhhlgUzlZR9PMEvcFvFtvsfUDZ5zaXfyymG-QNOwojQJej1MvM1zjX5OOSE7jBOJh9z-glthBS-xdWlLAW5KyJavFxXg3XD7AVyL-lT3UTY-qN7qAvbUi2MGcry3mpRjYmrqqCng1DqMh0ukKimSxynMUbRsv4GnWm3HNdDZKN5QLMBsatfFSmyPdxY8e9l1nhj5__j-24QXc52gcufphD7aWV6u4j0HVsn3Z288fznsgmg priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3db9QwDMCtMV7gAY3PlQ0UEBK8FNokTXIPCG0Tp4EYGhIn7a1K02SApt643SGOvx67aaurmHhtrCqN7dpu0p8BXhjpKsOtS40pZCqN8qnVREZ0Llhbe63jKd_P6ngmP54VZ1vQ99jsFvDq2tKO-knNFhevf_9cv0OHf0sVJ5bsb644IWO4VDfgJgYkTf55IofNBC6wDItQobH4KBS1xP5_38sbgWl8aHIjCk134E6XPrKDqO-7sOWbe3B7Ayp4Hy4jPZSd9mn2H1-z06GdCOuIqufspG0ezQ4xjtVs3rAPTTqNGewvz76s_GLNMKNlnyzejD4Ct_dnR_FsO8Mg96P94r9-ALPp-69Hx2nXVyF1mB4sU2LOS2Wl9Ypwe7kNutaZzVRQYRImLnARVFGFWqKignI1plDGWBFEoQUOi4ew3cwbvwss8zVXtFPqtZBe-gmWg0VmZe5NMQncJfCqX-LSddBx6n1xUWLxQdooB20k8HwQvYykjeuEDklPgwDBsdsL88V52flaKR03Xta5LywB9EWV10IG4Z2uTKWkSeAlabkko8LJONv9iYCPRDCs8kAXLbfe6AT2e0Moe9MssUjFLNfkWZbAs2EYvZK2WlAl81WUUbRsPIFH0W6GOdNGKf2unIAZWdToocYjzfdvLfk7j0B9_vj_89qDWxzNPh5y2Ift5WLln2DutKyetp7xF-BDGVQ priority: 102 providerName: Scholars Portal |
Title | Online Personalized Preference Learning Method Based on In-Formative Query for Lane Centering Control Trajectory |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37299972 https://www.proquest.com/docview/2824058100 https://www.proquest.com/docview/2824692982 https://pubmed.ncbi.nlm.nih.gov/PMC10255982 https://doaj.org/article/4c28e4d1e5a04793b1d34f3ec7b8b648 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8SZQVgYhwSVqYju294S6VZeCaLUgKu0tchy7gFB22QdS-fXM2N50VyAuOcRW5GRmPN-MJ98Q8koL22hmbK51JXKhpcuNQmZEa70xrVMqVvmey9ML8WFaTVPCbZnKKjd7Ytio25nFHPkhhAaALXRZFG_nP3PsGoWnq6mFxk2yj9RlWNKlptcBF4f4K7IJcQjtD5cMqWUYYt0tHxSo-v_ekLc80m615Jb7Gd8ldxJupEdR0PfIDdfdJ7e32AQfkHmkDaWTDb7-7Vo66fuI0ESleknPQtdoOgIH1tJZR993-ThC11-Oflq7xRUFKEs_GngYZn_D8-lxLGqn4N2-h1T_1UNyMT75cnyap4YKuQVcsMqRbF5II4yTyLNXGq9aVZhCeumHfmg9415WjW8FSMhL2wJ20tpwzyvFYZg_InvdrHNPCC1cyyQekTrFhRNuCHFgVRhROl0NPbMZebP5xLVNbOPY9OJHDVEHSqPupZGRl_3UeaTY-NekEcqpn4Cs2OHGbHFZJyOrhWXaibZ0lUHmfN6ULReeO6sa3UihM_IapVyj7cJirEm_IMArIQtWfaSqQFivVUYONopQJ6Ne1tcqmJEX_TCYI56xgEhm6zhH4mdjGXkc9aZfM56Q4n_KGdE7GrXzUrsj3bevgfK7jEz67On_1_WM3GKg9rG64YDsrRZr9xxA06oZBMuAqx6_G5D90cn55PMgJCDgeib0H7EmHDY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAAYNAcIma2I7tPSDUFqpduq2K1Ep7Sx3HLiCUXfYBWn4Uv5GZOEl3BeLWa2xZtuedGX9DyEstbKGZsbHWmYiFli42CpERrfXGlE6pUOV7JPun4uMoG22Q3-1bGCyrbHVirajLscV_5NsQGoBvodMkeTf5HmPXKMyuti00AlscuOVPCNlmbwfvgb6vGNv_cLLXj5uuArEF4ziPEXFdSCOMkwg2lxqvSpWYRHrpe75nPeNeZoUvBWzTS1uCA6G14Z5nisMwh3WvkKtgeBOUKDW6CPA4xHsBvYjzXrI9Ywhlw9C3XrF5dWuAvw3AigVcr85cMXf7t8jNxk-lO4GxbpMNV90hN1bQC--SSYAppcetP__LlfS461tCG-jWc3pYd6mmu2AwSzqu6KCK94Or_MPRTws3XVJwnenQwGL4t7len-6FInoK1vRrnVpY3iOnl3LV98lmNa7cQ0ITVzKJKVmnuHDC9SDuzBIjUqeznmc2Im_aK85tg26OTTa-5RDlIDXyjhoRedFNnQRIj39N2kU6dRMQhbv-MJ6e541Q58Iy7USZuswgUj8v0pILz51VhS6k0BF5jVTOUVfAZqxpnjzAkRB1K99RWQ2Qr1VEtlpGyBslMssvWD4iz7thEH_M6QBJxoswR-K1sYg8CHzT7RkzsvguOiJ6jaPWDrU-Un35XEOMpwG5nz36_76ekWv9k8NhPhwcHTwm1xmIQKis2CKb8-nCPQGHbV48raWEkrPLFss_KgdUlA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRUJwQLwJLGAQCC5RE9ux3QNC-6DassuqSKzUW3AcewGhtPQBKj-NX8dMnGRbgbjtNbYs2_POjL8h5LkWttDM2FjrTMRCSxcbhciI1npjSqdUqPI9kYen4t04G2-R3-1bGCyrbHVirajLicV_5D0IDcC30GmS9HxTFjE6GLyZfo-xgxRmWtt2GoFFjtzqJ4Rv89fDA6D1C8YGbz_uH8ZNh4HYgqFcxIi-LqQRxkkEnkuNV6VKTCK99H3ft55xL7PClwK27KUtwZnQ2nDPM8VhmMO6l8hlOFyKMqbG58Eeh9gvIBlx3k96c4awNgz97DX7V7cJ-NsYrFnDzUrNNdM3uEGuNz4r3Q1MdpNsueoWubaGZHibTANkKR21vv0vV9JR18OENjCuZ_R93bGa7oHxLOmkosMqHgS3-YejH5ZutqLgRtNjA4vhn-d6fbofCuopWNavdZphdYecXshV3yXb1aRy9wlNXMkkpmed4sIJ14cYNEuMSJ3O-p7ZiLxqrzi3DdI5Ntz4lkPEg9TIO2pE5Fk3dRrgPf41aQ_p1E1ARO76w2R2ljcCngvLtBNl6jKDqP28SEsuPHdWFbqQQkfkJVI5R70Bm7Gmef4AR0IErnxXZTVYvlYR2WkZIW8Uyjw_Z_-IPO2GQRVgfgdIMlmGORKvjUXkXuCbbs-YncU30hHRGxy1cajNkerL5xpuPA0o_uzB__f1hFwBgcyPhydHD8lVBhIQiix2yPZitnSPwHdbFI9rIaHk00VL5R_vSljK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Personalized+Preference+Learning+Method+Based+on+In-Formative+Query+for+Lane+Centering+Control+Trajectory&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wei%2C+Ran&rft.au=Chen%2C+Hui&rft.au=Xia%2C+Taokai&rft.au=Nishimura%2C+Yosuke&rft.date=2023-05-31&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=11&rft.spage=5246&rft_id=info:doi/10.3390%2Fs23115246&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |