Online Personalized Preference Learning Method Based on In-Formative Query for Lane Centering Control Trajectory

The personalization of autonomous vehicles or advanced driver assistance systems has been a widely researched topic, with many proposals aiming to achieve human-like or driver-imitating methods. However, these approaches rely on an implicit assumption that all drivers prefer the vehicle to drive lik...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 11; p. 5246
Main Authors Ran, Wei, Chen, Hui, Xia, Taokai, Nishimura, Yosuke, Guo, Chaopeng, Yin, Youyu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 31.05.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The personalization of autonomous vehicles or advanced driver assistance systems has been a widely researched topic, with many proposals aiming to achieve human-like or driver-imitating methods. However, these approaches rely on an implicit assumption that all drivers prefer the vehicle to drive like themselves, which may not hold true for all drivers. To address this issue, this study proposes an online personalized preference learning method (OPPLM) that utilizes a pairwise comparison group preference query and the Bayesian approach. The proposed OPPLM adopts a two-layer hierarchical structure model based on utility theory to represent driver preferences on the trajectory. To improve the accuracy of learning, the uncertainty of driver query answers is modeled. In addition, informative query and greedy query selection methods are used to improve learning speed. To determine when the driver’s preferred trajectory has been found, a convergence criterion is proposed. To evaluate the effectiveness of the OPPLM, a user study is conducted to learn the driver’s preferred trajectory in the curve of the lane centering control (LCC) system. The results show that the OPPLM can converge quickly, requiring only about 11 queries on average. Moreover, it accurately learned the driver’s favorite trajectory, and the estimated utility of the driver preference model is highly consistent with the subject evaluation score.
AbstractList The personalization of autonomous vehicles or advanced driver assistance systems has been a widely researched topic, with many proposals aiming to achieve human-like or driver-imitating methods. However, these approaches rely on an implicit assumption that all drivers prefer the vehicle to drive like themselves, which may not hold true for all drivers. To address this issue, this study proposes an online personalized preference learning method (OPPLM) that utilizes a pairwise comparison group preference query and the Bayesian approach. The proposed OPPLM adopts a two-layer hierarchical structure model based on utility theory to represent driver preferences on the trajectory. To improve the accuracy of learning, the uncertainty of driver query answers is modeled. In addition, informative query and greedy query selection methods are used to improve learning speed. To determine when the driver’s preferred trajectory has been found, a convergence criterion is proposed. To evaluate the effectiveness of the OPPLM, a user study is conducted to learn the driver’s preferred trajectory in the curve of the lane centering control (LCC) system. The results show that the OPPLM can converge quickly, requiring only about 11 queries on average. Moreover, it accurately learned the driver’s favorite trajectory, and the estimated utility of the driver preference model is highly consistent with the subject evaluation score.
The personalization of autonomous vehicles or advanced driver assistance systems has been a widely researched topic, with many proposals aiming to achieve human-like or driver-imitating methods. However, these approaches rely on an implicit assumption that all drivers prefer the vehicle to drive like themselves, which may not hold true for all drivers. To address this issue, this study proposes an online personalized preference learning method (OPPLM) that utilizes a pairwise comparison group preference query and the Bayesian approach. The proposed OPPLM adopts a two-layer hierarchical structure model based on utility theory to represent driver preferences on the trajectory. To improve the accuracy of learning, the uncertainty of driver query answers is modeled. In addition, informative query and greedy query selection methods are used to improve learning speed. To determine when the driver's preferred trajectory has been found, a convergence criterion is proposed. To evaluate the effectiveness of the OPPLM, a user study is conducted to learn the driver's preferred trajectory in the curve of the lane centering control (LCC) system. The results show that the OPPLM can converge quickly, requiring only about 11 queries on average. Moreover, it accurately learned the driver's favorite trajectory, and the estimated utility of the driver preference model is highly consistent with the subject evaluation score.The personalization of autonomous vehicles or advanced driver assistance systems has been a widely researched topic, with many proposals aiming to achieve human-like or driver-imitating methods. However, these approaches rely on an implicit assumption that all drivers prefer the vehicle to drive like themselves, which may not hold true for all drivers. To address this issue, this study proposes an online personalized preference learning method (OPPLM) that utilizes a pairwise comparison group preference query and the Bayesian approach. The proposed OPPLM adopts a two-layer hierarchical structure model based on utility theory to represent driver preferences on the trajectory. To improve the accuracy of learning, the uncertainty of driver query answers is modeled. In addition, informative query and greedy query selection methods are used to improve learning speed. To determine when the driver's preferred trajectory has been found, a convergence criterion is proposed. To evaluate the effectiveness of the OPPLM, a user study is conducted to learn the driver's preferred trajectory in the curve of the lane centering control (LCC) system. The results show that the OPPLM can converge quickly, requiring only about 11 queries on average. Moreover, it accurately learned the driver's favorite trajectory, and the estimated utility of the driver preference model is highly consistent with the subject evaluation score.
Audience Academic
Author Nishimura, Yosuke
Chen, Hui
Yin, Youyu
Ran, Wei
Xia, Taokai
Guo, Chaopeng
AuthorAffiliation 1 School of Automotive Studies, Tongji University, Shanghai 201804, China; ranwei@tongji.edu.cn (W.R.)
3 JTEKT Research and Development Center (WUXI) Co., Ltd., Wuxi 214161, China
2 JTEKT Corporation, Nara 634-8555, Japan
AuthorAffiliation_xml – name: 2 JTEKT Corporation, Nara 634-8555, Japan
– name: 1 School of Automotive Studies, Tongji University, Shanghai 201804, China; ranwei@tongji.edu.cn (W.R.)
– name: 3 JTEKT Research and Development Center (WUXI) Co., Ltd., Wuxi 214161, China
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0009-0000-3747-7724
  surname: Ran
  fullname: Ran, Wei
– sequence: 2
  givenname: Hui
  surname: Chen
  fullname: Chen, Hui
– sequence: 3
  givenname: Taokai
  surname: Xia
  fullname: Xia, Taokai
– sequence: 4
  givenname: Yosuke
  surname: Nishimura
  fullname: Nishimura, Yosuke
– sequence: 5
  givenname: Chaopeng
  surname: Guo
  fullname: Guo, Chaopeng
– sequence: 6
  givenname: Youyu
  surname: Yin
  fullname: Yin, Youyu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37299972$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v3CAQhq0qVfPRHvoHKku9NAcnmA8DpypZNelKWyWV0jPCeNiw8sIW7EjbX1-cTVdJVHEADc-8zDDvcXHgg4ei-FijM0IkOk-Y1DXDtHlTHNUU00pgjA6enQ-L45RWCGFCiHhXHBKOpZQcHxWbG987D-UtxBS87t0f6MrbCBYieAPlAnT0zi_LHzDch6681CkDwZdzX12FuNaDe4Dy5whxW9oQy4XOYjPwA8Qpaxb8EENf3kW9AjOEuH1fvLW6T_DhaT8pfl19u5t9rxY31_PZxaIyDMmhIo1gtNFUQyMaLmtteceRRo1trLTSWExsw1rbUY6YbUwnsRRCE0sYJ_manBTznW4X9EptolvruFVBO_UYCHGpdByc6UFRgwXQrgamEeWStHVHqCVgeCvahoqs9XWntRnbNXQmtxd1_0L05Y1392oZHlSNMGNS4Kzw5Ukhht8jpEGtXTLQ9_m7wpgUFnl6UwsT-vkVugpjzKPZUYiJGqFMne2opc4dOG9Dftjk1cHamWwP63L8grPHAgTPCZ-e97Av_p8VMnC6A0wMKWUH7JEaqclmam-zzJ6_Yo0bshWmaWvX_yfjL3U-0z4
CitedBy_id crossref_primary_10_3390_s24051666
crossref_primary_10_3390_s24154808
crossref_primary_10_1016_j_trc_2023_104470
Cites_doi 10.1109/TSMC.2016.2529582
10.1109/TITS.2020.2988303
10.1007/978-3-642-14125-6
10.3758/BF03193146
10.1109/TIV.2019.2960935
10.1109/TITS.2017.2706978
10.1145/2157689.2157815
10.1109/ITSC.2014.6957822
10.1016/j.aap.2018.08.028
10.1016/j.trf.2017.11.015
10.1109/LRA.2021.3063927
10.1109/ACC.2007.4282788
10.1109/JAS.2020.1003261
10.1145/2909824.3020250
10.1145/3003715.3005455
10.3390/s22124500
10.1145/1015330.1015430
10.1016/j.trc.2018.10.024
10.1111/j.1559-1816.1999.tb01392.x
10.1109/TVT.2020.3020335
10.1080/00423114.2018.1497185
10.1109/TITS.2022.3144867
10.1109/ICRA.2018.8460854
10.1016/j.robot.2008.10.024
10.1109/TIV.2019.2955910
10.1002/rob.21918
10.1109/TITS.2020.3001131
10.3390/s19173672
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23115246
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database

CrossRef

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_4c28e4d1e5a04793b1d34f3ec7b8b648
PMC10255982
A752559887
37299972
10_3390_s23115246
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c509t-368546a4ae686791af7d70a06f6f9f9cf23f65bfd4705f6cd92988a3f35739cf3
IEDL.DBID 7X7
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:59 EDT 2025
Thu Aug 21 18:37:57 EDT 2025
Fri Jul 11 00:19:50 EDT 2025
Fri Jul 25 20:37:19 EDT 2025
Tue Jun 10 20:11:31 EDT 2025
Wed Feb 19 02:06:58 EST 2025
Thu Apr 24 23:07:24 EDT 2025
Tue Jul 01 01:20:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Bayesian approach
LCC trajectory
online learning
preference learning
utility theory
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-368546a4ae686791af7d70a06f6f9f9cf23f65bfd4705f6cd92988a3f35739cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0000-3747-7724
OpenAccessLink https://www.proquest.com/docview/2824058100?pq-origsite=%requestingapplication%
PMID 37299972
PQID 2824058100
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_4c28e4d1e5a04793b1d34f3ec7b8b648
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10255982
proquest_miscellaneous_2824692982
proquest_journals_2824058100
gale_infotracacademiconefile_A752559887
pubmed_primary_37299972
crossref_primary_10_3390_s23115246
crossref_citationtrail_10_3390_s23115246
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-31
PublicationDateYYYYMMDD 2023-05-31
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-31
  day: 31
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhan (ref_34) 2021; 6
Huang (ref_7) 2020; 7
Xu (ref_12) 2021; 22
Grigorescu (ref_13) 2020; 37
ref_36
Faul (ref_40) 2007; 39
ref_35
Schnelle (ref_11) 2017; 47
ref_33
Yi (ref_4) 2020; 5
ref_32
ref_31
Yi (ref_9) 2022; 23
Akrour (ref_30) 2012; 7524
ref_19
ref_18
Rahman (ref_1) 2018; 121
Nagahama (ref_10) 2021; 22
ref_17
ref_39
ref_16
ref_15
ref_37
Cao (ref_38) 2018; 57
Hasenjager (ref_3) 2020; 5
Horswill (ref_22) 1999; 29
ref_24
Heucke (ref_8) 2018; 19
ref_23
ref_21
ref_20
ref_29
Reagan (ref_2) 2018; 52
Zhu (ref_14) 2018; 97
ref_28
Gao (ref_5) 2020; 69
ref_27
ref_26
Argall (ref_25) 2009; 57
ref_6
References_xml – ident: ref_28
– volume: 47
  start-page: 111
  year: 2017
  ident: ref_11
  article-title: A Driver Steering Model with Personalized Desired Path Generation
  publication-title: IEEE Trans. Syst. Man Cybern Syst.
  doi: 10.1109/TSMC.2016.2529582
– volume: 22
  start-page: 5624
  year: 2021
  ident: ref_10
  article-title: Autonomous Driving Learning Preference of Collision Avoidance Maneuvers
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2020.2988303
– ident: ref_23
  doi: 10.1007/978-3-642-14125-6
– ident: ref_32
– volume: 39
  start-page: 175
  year: 2007
  ident: ref_40
  article-title: G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences
  publication-title: Behav. Res. Methods
  doi: 10.3758/BF03193146
– ident: ref_26
– volume: 5
  start-page: 397
  year: 2020
  ident: ref_4
  article-title: Implicit Personalization in Driving Assistance: State-of-the-Art and Open Issues
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2019.2960935
– volume: 19
  start-page: 666
  year: 2018
  ident: ref_8
  article-title: Driving Style Recognition for Intelligent Vehicle Control and Advanced Driver Assistance: A Survey
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2017.2706978
– ident: ref_27
  doi: 10.1145/2157689.2157815
– ident: ref_6
  doi: 10.1109/ITSC.2014.6957822
– ident: ref_16
– ident: ref_37
– volume: 121
  start-page: 134
  year: 2018
  ident: ref_1
  article-title: Modelling driver acceptance of driver support systems
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2018.08.028
– ident: ref_35
– volume: 52
  start-page: 176
  year: 2018
  ident: ref_2
  article-title: Crash avoidance and driver assistance technologies—Are they used?
  publication-title: Transp. Res. Part F Traffic Psychol. Behav.
  doi: 10.1016/j.trf.2017.11.015
– volume: 6
  start-page: 3545
  year: 2021
  ident: ref_34
  article-title: Human-Guided Robot Behavior Learning: A GAN-Assisted Preference-Based Reinforcement Learning Approach
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3063927
– ident: ref_39
  doi: 10.1109/ACC.2007.4282788
– volume: 7
  start-page: 1107
  year: 2020
  ident: ref_7
  article-title: Study on the driving style adaptive vehicle longitudinal control strategy
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2020.1003261
– ident: ref_31
– ident: ref_33
– ident: ref_20
  doi: 10.1145/2909824.3020250
– ident: ref_21
  doi: 10.1145/3003715.3005455
– ident: ref_15
  doi: 10.3390/s22124500
– ident: ref_18
  doi: 10.1145/1015330.1015430
– volume: 97
  start-page: 348
  year: 2018
  ident: ref_14
  article-title: Human-like autonomous car-following model with deep reinforcement learning
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2018.10.024
– ident: ref_24
  doi: 10.1007/978-3-642-14125-6
– volume: 29
  start-page: 377
  year: 1999
  ident: ref_22
  article-title: The Effect of Perceived Control on Risk Taking1
  publication-title: J. Appl. Social Pyschol.
  doi: 10.1111/j.1559-1816.1999.tb01392.x
– volume: 69
  start-page: 12482
  year: 2020
  ident: ref_5
  article-title: Personalized Adaptive Cruise Control Based on Online Driving Style Recognition Technology and Model Predictive Control
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3020335
– volume: 7524
  start-page: 116
  year: 2012
  ident: ref_30
  article-title: APRIL: Active Preference-learning based Reinforcement Learning
  publication-title: arXiv
– volume: 57
  start-page: 1287
  year: 2018
  ident: ref_38
  article-title: An optimal hierarchical framework of the trajectory following by convex optimisation for highly automated driving vehicles
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423114.2018.1497185
– volume: 23
  start-page: 14128
  year: 2022
  ident: ref_9
  article-title: A Survey on Imitation Learning Techniques for End-to-End Autonomous Vehicles
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2022.3144867
– ident: ref_29
  doi: 10.1109/ICRA.2018.8460854
– volume: 57
  start-page: 469
  year: 2009
  ident: ref_25
  article-title: A survey of robot learning from demonstration
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2008.10.024
– ident: ref_36
– volume: 5
  start-page: 335
  year: 2020
  ident: ref_3
  article-title: A Survey of Personalization for Advanced Driver Assistance Systems
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2019.2955910
– ident: ref_19
– volume: 37
  start-page: 362
  year: 2020
  ident: ref_13
  article-title: A survey of deep learning techniques for autonomous driving
  publication-title: J. Field Robotics
  doi: 10.1002/rob.21918
– volume: 22
  start-page: 7341
  year: 2021
  ident: ref_12
  article-title: Learning From Naturalistic Driving Data for Human-Like Autonomous Highway Driving
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3001131
– ident: ref_17
  doi: 10.3390/s19173672
SSID ssj0023338
Score 2.4064193
Snippet The personalization of autonomous vehicles or advanced driver assistance systems has been a widely researched topic, with many proposals aiming to achieve...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5246
SubjectTerms Autonomous vehicles
Bayesian approach
Behavior
Customization
Driverless cars
Efficiency
Expected utility
LCC trajectory
Machine learning
Methods
online learning
preference learning
Preferences
Queries
Robots
User feedback
utility theory
SummonAdditionalLinks – databaseName: DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3daxQxEMAH6ZM-iG39WG0liqAvS3eTbJJ7bItHFZUKFvoWsvnQiuyV9q5Q_3pnNnvLHgp98fUSlmxm5mZmM_kNwBsjfWu486UxjSylUbF0msiI3ifnQtQ6V_l-USdn8uN5cz5p9UU1YRkPnDfuQHpuogx1bBzR0EVbByGTiF63plWyv-aLPm-dTA2plsDMK3OEBCb1B9ecoDKcotyJ9-kh_X__FU980Wad5MTxzB_BwyFiZId5pdtwL3Y78GDCEdyFywwMZafryPp3DOx07CDCBojqd_a57xfNjtB1Bbbo2IeunOeg9Sayr6t4dcswiGWfHD6Mvvv2z2fHuZydoV_72X_kv30MZ_P3345PyqGVQukxIliWhJmXykkXFRH2apd00JWrVFJplmY-cZFU06YgUTZJ-YBRkzFOJNFogcPiCWx1iy4-A1bFwBUdjkYtZJRxhhlgUzlZR9PMEvcFvFtvsfUDZ5zaXfyymG-QNOwojQJej1MvM1zjX5OOSE7jBOJh9z-glthBS-xdWlLAW5KyJavFxXg3XD7AVyL-lT3UTY-qN7qAvbUi2MGcry3mpRjYmrqqCng1DqMh0ukKimSxynMUbRsv4GnWm3HNdDZKN5QLMBsatfFSmyPdxY8e9l1nhj5__j-24QXc52gcufphD7aWV6u4j0HVsn3Z288fznsgmg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3db9QwDMCtMV7gAY3PlQ0UEBK8FNokTXIPCG0Tp4EYGhIn7a1K02SApt643SGOvx67aaurmHhtrCqN7dpu0p8BXhjpKsOtS40pZCqN8qnVREZ0Llhbe63jKd_P6ngmP54VZ1vQ99jsFvDq2tKO-knNFhevf_9cv0OHf0sVJ5bsb644IWO4VDfgJgYkTf55IofNBC6wDItQobH4KBS1xP5_38sbgWl8aHIjCk134E6XPrKDqO-7sOWbe3B7Ayp4Hy4jPZSd9mn2H1-z06GdCOuIqufspG0ezQ4xjtVs3rAPTTqNGewvz76s_GLNMKNlnyzejD4Ct_dnR_FsO8Mg96P94r9-ALPp-69Hx2nXVyF1mB4sU2LOS2Wl9Ypwe7kNutaZzVRQYRImLnARVFGFWqKignI1plDGWBFEoQUOi4ew3cwbvwss8zVXtFPqtZBe-gmWg0VmZe5NMQncJfCqX-LSddBx6n1xUWLxQdooB20k8HwQvYykjeuEDklPgwDBsdsL88V52flaKR03Xta5LywB9EWV10IG4Z2uTKWkSeAlabkko8LJONv9iYCPRDCs8kAXLbfe6AT2e0Moe9MssUjFLNfkWZbAs2EYvZK2WlAl81WUUbRsPIFH0W6GOdNGKf2unIAZWdToocYjzfdvLfk7j0B9_vj_89qDWxzNPh5y2Ift5WLln2DutKyetp7xF-BDGVQ
  priority: 102
  providerName: Scholars Portal
Title Online Personalized Preference Learning Method Based on In-Formative Query for Lane Centering Control Trajectory
URI https://www.ncbi.nlm.nih.gov/pubmed/37299972
https://www.proquest.com/docview/2824058100
https://www.proquest.com/docview/2824692982
https://pubmed.ncbi.nlm.nih.gov/PMC10255982
https://doaj.org/article/4c28e4d1e5a04793b1d34f3ec7b8b648
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8SZQVgYhwSVqYju294S6VZeCaLUgKu0tchy7gFB22QdS-fXM2N50VyAuOcRW5GRmPN-MJ98Q8koL22hmbK51JXKhpcuNQmZEa70xrVMqVvmey9ML8WFaTVPCbZnKKjd7Ytio25nFHPkhhAaALXRZFG_nP3PsGoWnq6mFxk2yj9RlWNKlptcBF4f4K7IJcQjtD5cMqWUYYt0tHxSo-v_ekLc80m615Jb7Gd8ldxJupEdR0PfIDdfdJ7e32AQfkHmkDaWTDb7-7Vo66fuI0ESleknPQtdoOgIH1tJZR993-ThC11-Oflq7xRUFKEs_GngYZn_D8-lxLGqn4N2-h1T_1UNyMT75cnyap4YKuQVcsMqRbF5II4yTyLNXGq9aVZhCeumHfmg9415WjW8FSMhL2wJ20tpwzyvFYZg_InvdrHNPCC1cyyQekTrFhRNuCHFgVRhROl0NPbMZebP5xLVNbOPY9OJHDVEHSqPupZGRl_3UeaTY-NekEcqpn4Cs2OHGbHFZJyOrhWXaibZ0lUHmfN6ULReeO6sa3UihM_IapVyj7cJirEm_IMArIQtWfaSqQFivVUYONopQJ6Ne1tcqmJEX_TCYI56xgEhm6zhH4mdjGXkc9aZfM56Q4n_KGdE7GrXzUrsj3bevgfK7jEz67On_1_WM3GKg9rG64YDsrRZr9xxA06oZBMuAqx6_G5D90cn55PMgJCDgeib0H7EmHDY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAAYNAcIma2I7tPSDUFqpduq2K1Ep7Sx3HLiCUXfYBWn4Uv5GZOEl3BeLWa2xZtuedGX9DyEstbKGZsbHWmYiFli42CpERrfXGlE6pUOV7JPun4uMoG22Q3-1bGCyrbHVirajLscV_5NsQGoBvodMkeTf5HmPXKMyuti00AlscuOVPCNlmbwfvgb6vGNv_cLLXj5uuArEF4ziPEXFdSCOMkwg2lxqvSpWYRHrpe75nPeNeZoUvBWzTS1uCA6G14Z5nisMwh3WvkKtgeBOUKDW6CPA4xHsBvYjzXrI9Ywhlw9C3XrF5dWuAvw3AigVcr85cMXf7t8jNxk-lO4GxbpMNV90hN1bQC--SSYAppcetP__LlfS461tCG-jWc3pYd6mmu2AwSzqu6KCK94Or_MPRTws3XVJwnenQwGL4t7len-6FInoK1vRrnVpY3iOnl3LV98lmNa7cQ0ITVzKJKVmnuHDC9SDuzBIjUqeznmc2Im_aK85tg26OTTa-5RDlIDXyjhoRedFNnQRIj39N2kU6dRMQhbv-MJ6e541Q58Iy7USZuswgUj8v0pILz51VhS6k0BF5jVTOUVfAZqxpnjzAkRB1K99RWQ2Qr1VEtlpGyBslMssvWD4iz7thEH_M6QBJxoswR-K1sYg8CHzT7RkzsvguOiJ6jaPWDrU-Un35XEOMpwG5nz36_76ekWv9k8NhPhwcHTwm1xmIQKis2CKb8-nCPQGHbV48raWEkrPLFss_KgdUlA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRUJwQLwJLGAQCC5RE9ux3QNC-6DassuqSKzUW3AcewGhtPQBKj-NX8dMnGRbgbjtNbYs2_POjL8h5LkWttDM2FjrTMRCSxcbhciI1npjSqdUqPI9kYen4t04G2-R3-1bGCyrbHVirajLicV_5D0IDcC30GmS9HxTFjE6GLyZfo-xgxRmWtt2GoFFjtzqJ4Rv89fDA6D1C8YGbz_uH8ZNh4HYgqFcxIi-LqQRxkkEnkuNV6VKTCK99H3ft55xL7PClwK27KUtwZnQ2nDPM8VhmMO6l8hlOFyKMqbG58Eeh9gvIBlx3k96c4awNgz97DX7V7cJ-NsYrFnDzUrNNdM3uEGuNz4r3Q1MdpNsueoWubaGZHibTANkKR21vv0vV9JR18OENjCuZ_R93bGa7oHxLOmkosMqHgS3-YejH5ZutqLgRtNjA4vhn-d6fbofCuopWNavdZphdYecXshV3yXb1aRy9wlNXMkkpmed4sIJ14cYNEuMSJ3O-p7ZiLxqrzi3DdI5Ntz4lkPEg9TIO2pE5Fk3dRrgPf41aQ_p1E1ARO76w2R2ljcCngvLtBNl6jKDqP28SEsuPHdWFbqQQkfkJVI5R70Bm7Gmef4AR0IErnxXZTVYvlYR2WkZIW8Uyjw_Z_-IPO2GQRVgfgdIMlmGORKvjUXkXuCbbs-YncU30hHRGxy1cajNkerL5xpuPA0o_uzB__f1hFwBgcyPhydHD8lVBhIQiix2yPZitnSPwHdbFI9rIaHk00VL5R_vSljK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Personalized+Preference+Learning+Method+Based+on+In-Formative+Query+for+Lane+Centering+Control+Trajectory&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wei%2C+Ran&rft.au=Chen%2C+Hui&rft.au=Xia%2C+Taokai&rft.au=Nishimura%2C+Yosuke&rft.date=2023-05-31&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=11&rft.spage=5246&rft_id=info:doi/10.3390%2Fs23115246&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon