Role of Cdc48/p97 as a SUMO-targeted segregase curbing Rad51–Rad52 interaction
The segregase Cdc48 (also called p97 or VCP) extracts ubiquitylated proteins from their environment. Jentsch and colleagues demonstrate that Cdc48 binds SUMOylated Rad52, and removes Rad52 and the recombinase Rad51 from DNA to restrict spontaneous recombination. Cdc48 (also known as p97), a conserve...
Saved in:
Published in | Nature cell biology Vol. 15; no. 5; pp. 526 - 532 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The segregase Cdc48 (also called p97 or VCP) extracts ubiquitylated proteins from their environment. Jentsch and colleagues demonstrate that Cdc48 binds SUMOylated Rad52, and removes Rad52 and the recombinase Rad51 from DNA to restrict spontaneous recombination.
Cdc48 (also known as p97), a conserved chaperone-like ATPase, plays a strategic role in the ubiquitin system
1
,
2
,
3
. Empowered by ATP-driven conformational changes
4
, Cdc48 acts as a segregase by dislodging ubiquitylated proteins from their environment
1
,
2
,
5
. Ufd1, a known co-factor of Cdc48, also binds SUMO (ref.
6
), but whether SUMOylated proteins are subject to the segregase activity of Cdc48 as well and what these substrates are remains unknown. Here we show that Cdc48 with its co-factor Ufd1 is SUMO-targeted to proteins involved in DNA double-strand break repair. Cdc48 associates with SUMOylated Rad52, a factor that assembles the Rad51 recombinase on chromatin. By acting on the Rad52–Rad51 complex, Cdc48 curbs their physical interaction and displaces the proteins from DNA. Genetically interfering with SUMO-targeting or segregase activity leads to an increase in spontaneous recombination rates, accompanied by aberrant
in vivo
Rad51 foci formation in yeast and mammalian cells. Our data thus suggest that SUMO-targeted Cdc48 restricts the recombinase Rad51 by counterbalancing the activity of Rad52. We propose that Cdc48, through its ability to associate with co-factors that have affinities for ubiquitin and SUMO, connects the two modification pathways for protein degradation or other regulatory purposes. |
---|---|
AbstractList | The segregase Cdc48 (also called p97 or VCP) extracts ubiquitylated proteins from their environment. Jentsch and colleagues demonstrate that Cdc48 binds SUMOylated Rad52, and removes Rad52 and the recombinase Rad51 from DNA to restrict spontaneous recombination.
Cdc48 (also known as p97), a conserved chaperone-like ATPase, plays a strategic role in the ubiquitin system
1
,
2
,
3
. Empowered by ATP-driven conformational changes
4
, Cdc48 acts as a segregase by dislodging ubiquitylated proteins from their environment
1
,
2
,
5
. Ufd1, a known co-factor of Cdc48, also binds SUMO (ref.
6
), but whether SUMOylated proteins are subject to the segregase activity of Cdc48 as well and what these substrates are remains unknown. Here we show that Cdc48 with its co-factor Ufd1 is SUMO-targeted to proteins involved in DNA double-strand break repair. Cdc48 associates with SUMOylated Rad52, a factor that assembles the Rad51 recombinase on chromatin. By acting on the Rad52–Rad51 complex, Cdc48 curbs their physical interaction and displaces the proteins from DNA. Genetically interfering with SUMO-targeting or segregase activity leads to an increase in spontaneous recombination rates, accompanied by aberrant
in vivo
Rad51 foci formation in yeast and mammalian cells. Our data thus suggest that SUMO-targeted Cdc48 restricts the recombinase Rad51 by counterbalancing the activity of Rad52. We propose that Cdc48, through its ability to associate with co-factors that have affinities for ubiquitin and SUMO, connects the two modification pathways for protein degradation or other regulatory purposes. Cdc48 (also known as p97), a conserved chaperone-like ATPase, plays a strategic role in the ubiquitin system (1-3). Empowered by ATP-driven conformational changes (4), Cdc48 acts as a segregase by dislodging ubiquitylated proteins from their environment (1,2,5). Ufd1, a known co-factor of Cdc48, also binds SUMO (ref. 6), but whether SUMOylated proteins are subject to the segregase activity of Cdc48 as well and what these substrates are remains unknown. Here we show that Cdc48 with its co-factor Ufd1 is SUMO-targeted to proteins involved in DNA double-strand break repair. Cdc48 associates with SUMOylated Rad52, a factor that assembles the Rad51 recombinase on chromatin. By acting on the Rad52-Rad51 complex, Cdc48 curbs their physical interaction and displaces the proteins from DNA. Genetically interfering with SUMO-targeting or segregase activity leads to an increase in spontaneous recombination rates, accompanied by aberrant in vivo Rad51 foci formation in yeast and mammalian cells. Our data thus suggest that SUMO-targeted Cdc48 restricts the recombinase Rad51 by counterbalancing the activity of Rad52. We propose that Cdc48, through its ability to associate with co-factors that have affinities for ubiquitin and SUMO, connects the two modification pathways for protein degradation or other regulatory purposes. Cdc48 (also known as p97), a conserved chaperone-like ATPase, plays a strategic role in the ubiquitin system. Empowered by ATP-driven conformational changes, Cdc48 acts as a segregase by dislodging ubiquitylated proteins from their environment. Ufd1, a known co-factor of Cdc48, also binds SUMO (ref. 6), but whether SUMOylated proteins are subject to the segregase activity of Cdc48 as well and what these substrates are remains unknown. Here we show that Cdc48 with its co-factor Ufd1 is SUMO-targeted to proteins involved in DNA double-strand break repair. Cdc48 associates with SUMOylated Rad52, a factor that assembles the Rad51 recombinase on chromatin. By acting on the Rad52-Rad51 complex, Cdc48 curbs their physical interaction and displaces the proteins from DNA. Genetically interfering with SUMO-targeting or segregase activity leads to an increase in spontaneous recombination rates, accompanied by aberrant in vivo Rad51 foci formation in yeast and mammalian cells. Our data thus suggest that SUMO-targeted Cdc48 restricts the recombinase Rad51 by counterbalancing the activity of Rad52. We propose that Cdc48, through its ability to associate with co-factors that have affinities for ubiquitin and SUMO, connects the two modification pathways for protein degradation or other regulatory purposes. Cdc48 (also known as p97), a conserved chaperone-like ATPase, plays a strategic role in the ubiquitin system. Empowered by ATP-driven conformational changes, Cdc48 acts as a segregase by dislodging ubiquitylated proteins from their environment. Ufd1, a known co-factor of Cdc48, also binds SUMO (ref. 6), but whether SUMOylated proteins are subject to the segregase activity of Cdc48 as well and what these substrates are remains unknown. Here we show that Cdc48 with its co-factor Ufd1 is SUMO-targeted to proteins involved in DNA double-strand break repair. Cdc48 associates with SUMOylated Rad52, a factor that assembles the Rad51 recombinase on chromatin. By acting on the Rad52-Rad51 complex, Cdc48 curbs their physical interaction and displaces the proteins from DNA. Genetically interfering with SUMO-targeting or segregase activity leads to an increase in spontaneous recombination rates, accompanied by aberrant in vivo Rad51 foci formation in yeast and mammalian cells. Our data thus suggest that SUMO-targeted Cdc48 restricts the recombinase Rad51 by counterbalancing the activity of Rad52. We propose that Cdc48, through its ability to associate with co-factors that have affinities for ubiquitin and SUMO, connects the two modification pathways for protein degradation or other regulatory purposes.Cdc48 (also known as p97), a conserved chaperone-like ATPase, plays a strategic role in the ubiquitin system. Empowered by ATP-driven conformational changes, Cdc48 acts as a segregase by dislodging ubiquitylated proteins from their environment. Ufd1, a known co-factor of Cdc48, also binds SUMO (ref. 6), but whether SUMOylated proteins are subject to the segregase activity of Cdc48 as well and what these substrates are remains unknown. Here we show that Cdc48 with its co-factor Ufd1 is SUMO-targeted to proteins involved in DNA double-strand break repair. Cdc48 associates with SUMOylated Rad52, a factor that assembles the Rad51 recombinase on chromatin. By acting on the Rad52-Rad51 complex, Cdc48 curbs their physical interaction and displaces the proteins from DNA. Genetically interfering with SUMO-targeting or segregase activity leads to an increase in spontaneous recombination rates, accompanied by aberrant in vivo Rad51 foci formation in yeast and mammalian cells. Our data thus suggest that SUMO-targeted Cdc48 restricts the recombinase Rad51 by counterbalancing the activity of Rad52. We propose that Cdc48, through its ability to associate with co-factors that have affinities for ubiquitin and SUMO, connects the two modification pathways for protein degradation or other regulatory purposes. |
Audience | Academic |
Author | Ammon, Tim Leonhardt, Heinrich Kern, Maximilian Schermelleh, Lothar Jentsch, Stefan Bergink, Steven |
Author_xml | – sequence: 1 givenname: Steven surname: Bergink fullname: Bergink, Steven organization: Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Present addresses: Department of Cell Biology, University of Groningen, University Medical Center, Groningen 9713AV, The Netherlands (S.B.); Department of Biochemistry, University of Oxford, Oxford OX1 3Q4, UK (L.S.) – sequence: 2 givenname: Tim surname: Ammon fullname: Ammon, Tim organization: Department of Molecular Cell Biology, Max Planck Institute of Biochemistry – sequence: 3 givenname: Maximilian surname: Kern fullname: Kern, Maximilian organization: Department of Molecular Cell Biology, Max Planck Institute of Biochemistry – sequence: 4 givenname: Lothar surname: Schermelleh fullname: Schermelleh, Lothar organization: Department of Biology and Center for Integrated Protein Science, Ludwig Maximilians University Munich, Present addresses: Department of Cell Biology, University of Groningen, University Medical Center, Groningen 9713AV, The Netherlands (S.B.); Department of Biochemistry, University of Oxford, Oxford OX1 3Q4, UK (L.S.) – sequence: 5 givenname: Heinrich surname: Leonhardt fullname: Leonhardt, Heinrich organization: Department of Biology and Center for Integrated Protein Science, Ludwig Maximilians University Munich – sequence: 6 givenname: Stefan surname: Jentsch fullname: Jentsch, Stefan email: jentsch@biochem.mpg.de organization: Department of Molecular Cell Biology, Max Planck Institute of Biochemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23624404$$D View this record in MEDLINE/PubMed |
BookMark | eNptks1u1DAQxy1URD9AvAGyxAE4pPVXnPhYrUqpVFS0pefIcSaRq6y92I4EN96hb8iT4LTbwq4qH2Zk_Wb89_znEO057wCht5QcU8LrE2daVjH1Ah1QUclCyErtzbksi4orto8OY7wlhApBqldon3HJcioO0LelHwH7Hi86I-qTtaqwjljj65uvV0XSYYAEHY4wBBh0BGym0Fo34KXuSvrn990cGbYuQdAmWe9eo5e9HiO82cQjdPP57PviS3F5dX6xOL0sTElUKrjoS65plk1VWXIJsmMSOANltJSqaokSXNUGBIWSlbyre9YqBTUDaYis-BH6-NB3HfyPCWJqVjYaGEftwE-xoVzUQtWlmNH3O-itn4LL6u4pyokg9B816BEa63qf8pfmps0p5_lJxZnI1PEzVD4drKzJpvQ2328VfNoqyEyCn2nQU4zNxfVym323ETq1K-iadbArHX41j3Zl4MMDYIKPMUD_hFDSzIvQbBYhk8UOaWzSs0FZrx2f4TfjjLmjGyD8N6Md9C_ZYbtv |
CitedBy_id | crossref_primary_10_1016_j_yexcr_2014_08_025 crossref_primary_10_1038_s41467_020_15000_w crossref_primary_10_1038_s41598_019_54027_y crossref_primary_10_3390_biom6010014 crossref_primary_10_1007_s00018_017_2697_4 crossref_primary_10_1016_j_jmb_2017_05_012 crossref_primary_10_1146_annurev_genet_111212_133453 crossref_primary_10_1016_j_cell_2014_04_053 crossref_primary_10_1038_srep14389 crossref_primary_10_1126_scitranslmed_abg1168 crossref_primary_10_3390_ijms25115633 crossref_primary_10_1016_j_celrep_2021_109819 crossref_primary_10_1038_srep10984 crossref_primary_10_3389_fcell_2023_1193192 crossref_primary_10_1016_j_jbc_2022_102851 crossref_primary_10_1016_j_dnarep_2020_103019 crossref_primary_10_3390_cells10061467 crossref_primary_10_3389_fmolb_2017_00039 crossref_primary_10_1038_ncomms6485 crossref_primary_10_1124_molpharm_121_000374 crossref_primary_10_1016_j_dnarep_2018_08_004 crossref_primary_10_1016_j_cellin_2024_100199 crossref_primary_10_1038_ncomms13326 crossref_primary_10_1016_j_molcel_2016_08_037 crossref_primary_10_4161_cc_27779 crossref_primary_10_1016_j_molcel_2014_12_001 crossref_primary_10_1016_j_celrep_2024_114178 crossref_primary_10_1371_journal_pgen_1010275 crossref_primary_10_1091_mbc_E23_01_0035 crossref_primary_10_1093_nar_gkac009 crossref_primary_10_15252_embj_201798724 crossref_primary_10_3389_fgene_2016_00073 crossref_primary_10_1002_bies_201500084 crossref_primary_10_1002_bies_201600129 crossref_primary_10_7554_eLife_06763 crossref_primary_10_26508_lsa_202101022 crossref_primary_10_1016_j_dnarep_2017_04_006 crossref_primary_10_1152_ajpcell_00091_2016 crossref_primary_10_1073_pnas_2213703120 crossref_primary_10_7554_eLife_12765 crossref_primary_10_1016_j_jbc_2022_102199 crossref_primary_10_3390_genes7090063 crossref_primary_10_7554_eLife_35447 crossref_primary_10_1073_pnas_1418564111 crossref_primary_10_1242_jcs_252551 crossref_primary_10_1093_nar_gkv525 crossref_primary_10_1016_j_fgb_2016_01_010 crossref_primary_10_1016_j_dnarep_2016_04_001 crossref_primary_10_1016_j_gene_2016_02_042 crossref_primary_10_1101_gad_328534_119 crossref_primary_10_3390_v13091881 crossref_primary_10_1038_nsmb_3296 crossref_primary_10_1126_science_1253596 crossref_primary_10_3389_fgene_2016_00058 crossref_primary_10_3389_fmolb_2017_00021 crossref_primary_10_1242_jcs_093831 crossref_primary_10_1371_journal_pone_0076424 crossref_primary_10_7554_eLife_32744 crossref_primary_10_1038_s41467_021_25205_2 crossref_primary_10_1371_journal_pgen_1003833 crossref_primary_10_1371_journal_pone_0080442 crossref_primary_10_1016_j_mrfmmm_2017_07_001 crossref_primary_10_1371_journal_ppat_1006329 crossref_primary_10_1016_j_dnarep_2024_103691 crossref_primary_10_3389_fmolb_2022_875102 crossref_primary_10_1016_j_tibs_2015_02_006 crossref_primary_10_15252_embj_2019102361 crossref_primary_10_7554_eLife_57720 crossref_primary_10_1038_s41467_022_30215_9 crossref_primary_10_1016_j_dnarep_2016_10_011 crossref_primary_10_1074_jbc_M116_729343 crossref_primary_10_1038_ncomms9827 crossref_primary_10_3390_cells13010008 crossref_primary_10_1016_j_celrep_2024_114492 crossref_primary_10_1016_j_molcel_2016_09_039 crossref_primary_10_3389_fgene_2018_00379 crossref_primary_10_1042_BCJ20160783 crossref_primary_10_1371_journal_pone_0117779 crossref_primary_10_1083_jcb_202201027 crossref_primary_10_7554_eLife_60960 crossref_primary_10_1016_j_molcel_2019_08_003 crossref_primary_10_1155_2013_183421 crossref_primary_10_1093_nar_gkw882 crossref_primary_10_1074_jbc_M115_673038 crossref_primary_10_1016_j_arr_2024_102511 crossref_primary_10_1016_j_bbamcr_2013_08_022 crossref_primary_10_1016_j_celrep_2017_03_020 crossref_primary_10_1371_journal_pgen_1008427 crossref_primary_10_1242_jcs_133744 crossref_primary_10_3390_cells9020469 crossref_primary_10_1007_s00412_013_0429_6 crossref_primary_10_3390_biom5031697 crossref_primary_10_1016_j_molcel_2014_02_002 crossref_primary_10_3390_ijms22168796 crossref_primary_10_1007_s00412_014_0481_x crossref_primary_10_1074_jbc_M117_794545 crossref_primary_10_3389_fmolb_2021_673038 crossref_primary_10_1093_nar_gkw1369 crossref_primary_10_1038_s41598_017_16934_w crossref_primary_10_1016_j_celrep_2019_08_106 crossref_primary_10_1016_j_isci_2021_102231 crossref_primary_10_1098_rsob_150018 crossref_primary_10_1098_rsob_200296 crossref_primary_10_3389_fcell_2019_00343 crossref_primary_10_1098_rstb_2016_0281 crossref_primary_10_1098_rstb_2016_0282 |
Cites_doi | 10.1038/nsmb.2188 10.1038/ncb1619 10.1016/j.tcb.2012.06.003 10.1038/ncb1298 10.1016/j.cell.2004.11.013 10.1038/nature07963 10.1016/j.molcel.2011.11.010 10.1093/nar/28.5.1145 10.1074/jbc.M507059200 10.1038/nature09399 10.1038/nature03665 10.1016/j.tibs.2008.02.001 10.1038/nature00991 10.1038/ncb1488 10.1038/nsb872 10.1093/jb/mvq020 10.1126/science.1156947 10.1016/j.molcel.2010.07.021 10.1074/jbc.M206511200 10.1016/j.tibs.2011.06.001 10.1038/ncb2367 10.1038/ncb1997 10.1101/gad.2021311 10.1016/j.tibs.2006.11.005 10.1016/S0960-9822(99)80142-0 10.1016/S0092-8674(01)00595-5 10.1038/ncb1299 10.1016/j.dnarep.2008.02.005 10.1016/j.molcel.2011.06.036 10.1002/j.1460-2075.1996.tb00869.x 10.1074/jbc.M413209200 10.1016/j.cell.2012.10.021 10.1074/jbc.M112.379768 10.1073/pnas.0805944105 10.1038/nature03234 10.1038/nature01577 10.1016/j.molcel.2011.11.028 10.1016/j.molcel.2005.12.014 10.1038/nature06388 10.1006/geno.1996.0462 10.1093/genetics/144.4.1425 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2013 COPYRIGHT 2013 Nature Publishing Group Copyright Nature Publishing Group May 2013 |
Copyright_xml | – notice: Springer Nature Limited 2013 – notice: COPYRIGHT 2013 Nature Publishing Group – notice: Copyright Nature Publishing Group May 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 |
DOI | 10.1038/ncb2729 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Science In Context ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1476-4679 |
EndPage | 532 |
ExternalDocumentID | 2960957841 A330679324 23624404 10_1038_ncb2729 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United Kingdom Netherlands Germany |
GeographicLocations_xml | – name: United Kingdom – name: Netherlands – name: Germany |
GroupedDBID | --- .55 .GJ 0R~ 123 29M 36B 39C 4.4 53G 5RE 70F 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AARCD AAYZH ABAWZ ABCQX ABDBF ABEFU ABFSG ABJNI ABLJU ABNNU ABUWG ACBWK ACGFS ACIWK ACNCT ACPRK ACRPL ACSTC ACUHS ADBBV ADNMO AENEX AEUYN AEZWR AFANA AFBBN AFFNX AFHIU AFKRA AFRAH AFSHS AFWHJ AGAYW AGGDT AGQPQ AHBCP AHMBA AHOSX AHSBF AHWEU AIBTJ AIXLP AIYXT ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD ARMCB ASPBG ATHPR AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D0L DB5 DU5 EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR ISR ITC J5H L-9 L7B LK8 M1P M7P N9A NFIDA NNMJJ O9- ODYON P2P PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT SHXYY SIXXV SKT SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP X7M Y6R ZGI ~02 ~8M AAYXX ALIPV CITATION 5BI CGR CUY CVF ECM EIF NPM AEIIB PMFND 3V. 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7XB 88A 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 |
ID | FETCH-LOGICAL-c509t-34f53a1cb2195536e6d26e32e9ca6697b094398ce41e5253d8f2b99e82e6c0673 |
IEDL.DBID | 7X7 |
ISSN | 1465-7392 1476-4679 |
IngestDate | Fri Jul 11 09:13:46 EDT 2025 Fri Jul 25 08:58:23 EDT 2025 Tue Jun 17 21:26:09 EDT 2025 Tue Jun 10 20:08:49 EDT 2025 Fri Jun 27 04:25:20 EDT 2025 Thu Apr 03 07:09:35 EDT 2025 Tue Jul 01 00:31:09 EDT 2025 Thu Apr 24 22:58:01 EDT 2025 Sun Aug 31 08:58:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-34f53a1cb2195536e6d26e32e9ca6697b094398ce41e5253d8f2b99e82e6c0673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 23624404 |
PQID | 1348130401 |
PQPubID | 45779 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1348498547 proquest_journals_1348130401 gale_infotracmisc_A330679324 gale_infotracacademiconefile_A330679324 gale_incontextgauss_ISR_A330679324 pubmed_primary_23624404 crossref_primary_10_1038_ncb2729 crossref_citationtrail_10_1038_ncb2729 springer_journals_10_1038_ncb2729 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature cell biology |
PublicationTitleAbbrev | Nat Cell Biol |
PublicationTitleAlternate | Nat Cell Biol |
PublicationYear | 2013 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Dou, Huang, Singh, Carpenter, Yeh (CR19) 2010; 39 Ramadan (CR7) 2007; 450 Sacher, Pfander, Hoege, Jentsch (CR20) 2006; 8 Ohuchi (CR23) 2008; 7 Li (CR22) 2000; 28 Stolz, Hilt, Buchberger, Wolf (CR2) 2011; 36 Meerang (CR12) 2011; 13 Shen, Pardington-Purtymun, Comeaux, Moyzis, Chen (CR21) 1996; 36 Krejci (CR24) 2002; 277 Jensen, Carreira, Kowalczykowski (CR34) 2010; 467 Tan (CR29) 1999; 9 Pfander, Moldovan, Sacher, Hoege, Jentsch (CR38) 2005; 436 Dantuma, Hoppe (CR11) 2012; 9 Polo, Jackson (CR28) 2011; 25 Torres-Rosell (CR41) 2007; 9 Psakhye, Jentsch (CR18) 2012; 151 Perry, Tainer, Boddy (CR26) 2008; 33 Yuan (CR33) 1999; 59 Nie (CR6) 2012; 287 Wilcox, Laney (CR9) 2009; 11 Acs (CR10) 2011; 18 Schermelleh (CR31) 2008; 320 Neuber, Jarosch, Volkwein, Walter, Sommer (CR15) 2005; 7 Hannich (CR25) 2005; 280 Ghislain, Dohmen, Levy, Varshavsky (CR3) 1996; 15 James, Halladay, Craig (CR42) 1996; 144 Richly (CR39) 2005; 120 Schuberth, Buchberger (CR14) 2005; 7 Saito (CR30) 2010; 147 Rape (CR5) 2001; 107 Raman, Havens, Walter, Harper (CR8) 2011; 44 Yang, Li, Fan, Holloman, Pavletich (CR32) 2005; 433 Krejci (CR36) 2003; 423 Moldovan (CR35) 2012; 45 Rouiller (CR4) 2002; 9 Mouysset (CR13) 2008; 105 Hoege, Pfander, Moldovan, Pyrowolakis, Jentsch (CR40) 2002; 419 Cremona (CR17) 2012; 45 Song, Zhang, Hu, Chen (CR27) 2005; 280 Jentsch, Rumpf (CR1) 2007; 32 Bergink, Jentsch (CR16) 2009; 458 Rumpf, Jentsch (CR37) 2006; 21 L Schermelleh (BFncb2729_CR31) 2008; 320 S Bergink (BFncb2729_CR16) 2009; 458 Z Shen (BFncb2729_CR21) 1996; 36 L Krejci (BFncb2729_CR24) 2002; 277 M Sacher (BFncb2729_CR20) 2006; 8 C Hoege (BFncb2729_CR40) 2002; 419 A Stolz (BFncb2729_CR2) 2011; 36 NP Dantuma (BFncb2729_CR11) 2012; 9 AJ Wilcox (BFncb2729_CR9) 2009; 11 GL Moldovan (BFncb2729_CR35) 2012; 45 H Dou (BFncb2729_CR19) 2010; 39 S Rumpf (BFncb2729_CR37) 2006; 21 L Krejci (BFncb2729_CR36) 2003; 423 K Saito (BFncb2729_CR30) 2010; 147 B Pfander (BFncb2729_CR38) 2005; 436 M Rape (BFncb2729_CR5) 2001; 107 CA Cremona (BFncb2729_CR17) 2012; 45 I Rouiller (BFncb2729_CR4) 2002; 9 SE Polo (BFncb2729_CR28) 2011; 25 T Ohuchi (BFncb2729_CR23) 2008; 7 S Jentsch (BFncb2729_CR1) 2007; 32 I Psakhye (BFncb2729_CR18) 2012; 151 P James (BFncb2729_CR42) 1996; 144 M Meerang (BFncb2729_CR12) 2011; 13 M Raman (BFncb2729_CR8) 2011; 44 JJ Perry (BFncb2729_CR26) 2008; 33 H Richly (BFncb2729_CR39) 2005; 120 K Ramadan (BFncb2729_CR7) 2007; 450 W Li (BFncb2729_CR22) 2000; 28 JT Hannich (BFncb2729_CR25) 2005; 280 SS Yuan (BFncb2729_CR33) 1999; 59 TL Tan (BFncb2729_CR29) 1999; 9 J Song (BFncb2729_CR27) 2005; 280 O Neuber (BFncb2729_CR15) 2005; 7 C Schuberth (BFncb2729_CR14) 2005; 7 J Torres-Rosell (BFncb2729_CR41) 2007; 9 M Nie (BFncb2729_CR6) 2012; 287 RB Jensen (BFncb2729_CR34) 2010; 467 K Acs (BFncb2729_CR10) 2011; 18 J Mouysset (BFncb2729_CR13) 2008; 105 H Yang (BFncb2729_CR32) 2005; 433 M Ghislain (BFncb2729_CR3) 1996; 15 21981919 - Mol Cell. 2011 Oct 7;44(1):72-84 10446958 - Cancer Res. 1999 Aug 1;59(15):3547-51 20729832 - Nature. 2010 Oct 7;467(7316):678-83 15931174 - Nature. 2005 Jul 21;436(7049):428-33 21741246 - Trends Biochem Sci. 2011 Oct;36(10):515-23 19325626 - Nature. 2009 Mar 26;458(7237):461-7 10666456 - Nucleic Acids Res. 2000 Mar 1;28(5):1145-53 18097415 - Nature. 2007 Dec 20;450(7173):1258-62 18396468 - DNA Repair (Amst). 2008 Jun 1;7(6):879-89 18403209 - Trends Biochem Sci. 2008 May;33(5):201-8 22730331 - J Biol Chem. 2012 Aug 24;287(35):29610-9 18728180 - Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12879-84 16204249 - J Biol Chem. 2005 Dec 2;280(48):40122-9 22020440 - Nat Cell Biol. 2011 Oct 23;13(11):1376-82 8978031 - Genetics. 1996 Dec;144(4):1425-36 22285753 - Mol Cell. 2012 Feb 10;45(3):422-32 12434150 - Nat Struct Biol. 2002 Dec;9(12):950-7 15703751 - Nature. 2005 Feb 10;433(7026):653-7 20705237 - Mol Cell. 2010 Aug 13;39(3):333-45 17643116 - Nat Cell Biol. 2007 Aug;9(8):923-31 17142044 - Trends Biochem Sci. 2007 Jan;32(1):6-11 18535242 - Science. 2008 Jun 6;320(5881):1332-6 23122649 - Cell. 2012 Nov 9;151(4):807-20 22818974 - Trends Cell Biol. 2012 Sep;22(9):483-91 22120668 - Nat Struct Mol Biol. 2011 Nov 27;18(12 ):1345-50 20190268 - J Biochem. 2010 Jun;147(6):833-42 17013376 - Nat Cell Biol. 2006 Nov;8(11):1284-90 12171935 - J Biol Chem. 2002 Oct 18;277(42):40132-41 22153967 - Mol Cell. 2012 Jan 13;45(1):75-86 10209103 - Curr Biol. 1999 Mar 25;9(6):325-8 19915556 - Nat Cell Biol. 2009 Dec;11(12):1481-6 16179952 - Nat Cell Biol. 2005 Oct;7(10 ):999-1006 16179953 - Nat Cell Biol. 2005 Oct;7(10 ):993-8 15590687 - J Biol Chem. 2005 Feb 11;280(6):4102-10 12748644 - Nature. 2003 May 15;423(6937):305-9 8890162 - EMBO J. 1996 Sep 16;15(18):4884-99 12226657 - Nature. 2002 Sep 12;419(6903):135-41 21363960 - Genes Dev. 2011 Mar 1;25(5):409-33 8812453 - Genomics. 1996 Sep 1;36(2):271-9 15652483 - Cell. 2005 Jan 14;120(1):73-84 16427015 - Mol Cell. 2006 Jan 20;21(2):261-9 11733065 - Cell. 2001 Nov 30;107(5):667-77 |
References_xml | – volume: 18 start-page: 1345 year: 2011 end-page: 1350 ident: CR10 article-title: The AAA-ATPase VCP/p97 promotes 53BP1 recruitment by removing L3MBTL1 from DNA double-strand breaks publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.2188 – volume: 9 start-page: 923 year: 2007 end-page: 931 ident: CR41 article-title: The Smc5–Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus publication-title: Nat. Cell Biol. doi: 10.1038/ncb1619 – volume: 9 start-page: 483 year: 2012 end-page: 491 ident: CR11 article-title: Growing sphere of influence: Cdc48/p97 orchestrates ubiquitin-dependent extraction from chromatin publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2012.06.003 – volume: 7 start-page: 993 year: 2005 end-page: 998 ident: CR15 article-title: Ubx2 links theCdc48 complex to ER-associated protein degradation publication-title: Nat. Cell Biol. doi: 10.1038/ncb1298 – volume: 120 start-page: 73 year: 2005 end-page: 84 ident: CR39 article-title: A series of ubiquitin binding factors connects CDC48/p97to substrate multiubiquitylation and proteasomal targeting publication-title: Cell doi: 10.1016/j.cell.2004.11.013 – volume: 458 start-page: 461 year: 2009 end-page: 467 ident: CR16 article-title: Principles of ubiquitin and SUMO modifications in DNA repair publication-title: Nature doi: 10.1038/nature07963 – volume: 59 start-page: 3547 year: 1999 end-page: 3551 ident: CR33 article-title: BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex publication-title: Cancer Res. – volume: 45 start-page: 75 year: 2012 end-page: 86 ident: CR35 article-title: Inhibition of homologous recombination by the PCNA-interacting protein PARI publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.11.010 – volume: 28 start-page: 1145 year: 2000 end-page: 1153 ident: CR22 article-title: Regulation of double-strand break-induced mammalian homologous recombination by UBL1, a RAD51-interacting protein publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.5.1145 – volume: 280 start-page: 40122 year: 2005 end-page: 40129 ident: CR27 article-title: Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M507059200 – volume: 467 start-page: 678 year: 2010 end-page: 683 ident: CR34 article-title: Purified human BRCA2 stimulates RAD51-mediated recombination publication-title: Nature doi: 10.1038/nature09399 – volume: 436 start-page: 428 year: 2005 end-page: 433 ident: CR38 article-title: SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase publication-title: Nature doi: 10.1038/nature03665 – volume: 33 start-page: 201 year: 2008 end-page: 208 ident: CR26 article-title: A SIM-ultaneous role for SUMO and ubiquitin publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2008.02.001 – volume: 419 start-page: 135 year: 2002 end-page: 141 ident: CR40 article-title: RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO publication-title: Nature doi: 10.1038/nature00991 – volume: 8 start-page: 1284 year: 2006 end-page: 1290 ident: CR20 article-title: Control of Rad52 recombination activity by double-strand break-induced SUMO modification publication-title: Nat. Cell Biol. doi: 10.1038/ncb1488 – volume: 9 start-page: 950 year: 2002 end-page: 957 ident: CR4 article-title: Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle publication-title: Nature Struct. Biol. doi: 10.1038/nsb872 – volume: 144 start-page: 1425 year: 1996 end-page: 1436 ident: CR42 article-title: Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast publication-title: Genetics – volume: 147 start-page: 833 year: 2010 end-page: 842 ident: CR30 article-title: The putative nuclear localization signal of the human RAD52 protein is a potential sumoylation site publication-title: J. Biochem. doi: 10.1093/jb/mvq020 – volume: 320 start-page: 1332 year: 2008 end-page: 1336 ident: CR31 article-title: Subdiffraction multicolor imaging of the nuclearperiphery with 3D structured illumination microscopy publication-title: Science doi: 10.1126/science.1156947 – volume: 39 start-page: 333 year: 2010 end-page: 345 ident: CR19 article-title: Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.07.021 – volume: 277 start-page: 40132 year: 2002 end-page: 40141 ident: CR24 article-title: Interaction with Rad51 is indispensable for recombination mediator function of Rad52 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M206511200 – volume: 36 start-page: 515 year: 2011 end-page: 523 ident: CR2 article-title: Cdc48: a power machine in protein degradation publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2011.06.001 – volume: 13 start-page: 1376 year: 2011 end-page: 1382 ident: CR12 article-title: The ubiquitin-selective segregase VCP/p97 orchestratesthe response to DNA double-strand breaks publication-title: Nat. Cell Biol. doi: 10.1038/ncb2367 – volume: 11 start-page: 1481 year: 2009 end-page: 1486 ident: CR9 article-title: A ubiquitin-selective AAA-ATPase mediates transcriptional switching by remodelling a repressor-promoter DNA complex publication-title: Nat. Cell Biol. doi: 10.1038/ncb1997 – volume: 25 start-page: 409 year: 2011 end-page: 433 ident: CR28 article-title: Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications publication-title: Genes Dev. doi: 10.1101/gad.2021311 – volume: 32 start-page: 6 year: 2007 end-page: 11 ident: CR1 article-title: Cdc48 (p97): a molecular gearbox in the ubiquitin pathway? publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2006.11.005 – volume: 9 start-page: 325 year: 1999 end-page: 328 ident: CR29 article-title: Mouse Rad54 affects DNA conformation and DNA-damage-induced Rad51 foci formation publication-title: Curr. Biol. doi: 10.1016/S0960-9822(99)80142-0 – volume: 107 start-page: 667 year: 2001 end-page: 677 ident: CR5 article-title: Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone publication-title: Cell doi: 10.1016/S0092-8674(01)00595-5 – volume: 7 start-page: 999 year: 2005 end-page: 1006 ident: CR14 article-title: Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation publication-title: Nat. Cell Biol. doi: 10.1038/ncb1299 – volume: 7 start-page: 879 year: 2008 end-page: 889 ident: CR23 article-title: Rad52 sumoylation and its involvement in the efficient induction of homologous recombination publication-title: DNA Repair. doi: 10.1016/j.dnarep.2008.02.005 – volume: 44 start-page: 72 year: 2011 end-page: 84 ident: CR8 article-title: A genome-wide screen identifies p97 as an essential regulator of DNA damage-dependent CDT1 destruction publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.06.036 – volume: 15 start-page: 4884 year: 1996 end-page: 4899 ident: CR3 article-title: Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb00869.x – volume: 280 start-page: 4102 year: 2005 end-page: 4110 ident: CR25 article-title: Defining the SUMO-modified proteome by multiple approaches in publication-title: J. Biol. Chem. doi: 10.1074/jbc.M413209200 – volume: 151 start-page: 807 year: 2012 end-page: 820 ident: CR18 article-title: Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair publication-title: Cell doi: 10.1016/j.cell.2012.10.021 – volume: 287 start-page: 29610 year: 2012 end-page: 29619 ident: CR6 article-title: Dual recruitment of Cdc48 (p97)-Ufd1-Npl4 ubiquitin-selective segregase by small ubiquitin-like modifier protein (SUMO) and ubiquitin in SUMO-targeted ubiquitin ligase-mediated genome stability functions publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.379768 – volume: 105 start-page: 12879 year: 2008 end-page: 12884 ident: CR13 article-title: Cell cycle progression requires the CDC-48UFD-1/NPL-4 complex for efficient DNA replication publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0805944105 – volume: 433 start-page: 653 year: 2005 end-page: 657 ident: CR32 article-title: The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA junction publication-title: Nature doi: 10.1038/nature03234 – volume: 423 start-page: 305 year: 2003 end-page: 309 ident: CR36 article-title: DNA helicase Srs2 disrupts the Rad51 presynaptic filament publication-title: Nature doi: 10.1038/nature01577 – volume: 45 start-page: 422 year: 2012 end-page: 432 ident: CR17 article-title: Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.11.028 – volume: 21 start-page: 261 year: 2006 end-page: 269 ident: CR37 article-title: Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.12.014 – volume: 450 start-page: 1258 year: 2007 end-page: 1262 ident: CR7 article-title: Cdc48/p97 promotes reformation of the nucleus by extracting the kinase Aurora B from chromatin publication-title: Nature doi: 10.1038/nature06388 – volume: 36 start-page: 271 year: 1996 end-page: 279 ident: CR21 article-title: UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins publication-title: Genomics doi: 10.1006/geno.1996.0462 – volume: 45 start-page: 422 year: 2012 ident: BFncb2729_CR17 publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.11.028 – volume: 458 start-page: 461 year: 2009 ident: BFncb2729_CR16 publication-title: Nature doi: 10.1038/nature07963 – volume: 32 start-page: 6 year: 2007 ident: BFncb2729_CR1 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2006.11.005 – volume: 287 start-page: 29610 year: 2012 ident: BFncb2729_CR6 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.379768 – volume: 467 start-page: 678 year: 2010 ident: BFncb2729_CR34 publication-title: Nature doi: 10.1038/nature09399 – volume: 423 start-page: 305 year: 2003 ident: BFncb2729_CR36 publication-title: Nature doi: 10.1038/nature01577 – volume: 147 start-page: 833 year: 2010 ident: BFncb2729_CR30 publication-title: J. Biochem. doi: 10.1093/jb/mvq020 – volume: 13 start-page: 1376 year: 2011 ident: BFncb2729_CR12 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2367 – volume: 7 start-page: 999 year: 2005 ident: BFncb2729_CR14 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1299 – volume: 7 start-page: 879 year: 2008 ident: BFncb2729_CR23 publication-title: DNA Repair. doi: 10.1016/j.dnarep.2008.02.005 – volume: 36 start-page: 271 year: 1996 ident: BFncb2729_CR21 publication-title: Genomics doi: 10.1006/geno.1996.0462 – volume: 9 start-page: 923 year: 2007 ident: BFncb2729_CR41 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1619 – volume: 280 start-page: 40122 year: 2005 ident: BFncb2729_CR27 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M507059200 – volume: 21 start-page: 261 year: 2006 ident: BFncb2729_CR37 publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.12.014 – volume: 18 start-page: 1345 year: 2011 ident: BFncb2729_CR10 publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.2188 – volume: 436 start-page: 428 year: 2005 ident: BFncb2729_CR38 publication-title: Nature doi: 10.1038/nature03665 – volume: 8 start-page: 1284 year: 2006 ident: BFncb2729_CR20 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1488 – volume: 11 start-page: 1481 year: 2009 ident: BFncb2729_CR9 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1997 – volume: 9 start-page: 483 year: 2012 ident: BFncb2729_CR11 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2012.06.003 – volume: 105 start-page: 12879 year: 2008 ident: BFncb2729_CR13 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0805944105 – volume: 28 start-page: 1145 year: 2000 ident: BFncb2729_CR22 publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.5.1145 – volume: 120 start-page: 73 year: 2005 ident: BFncb2729_CR39 publication-title: Cell doi: 10.1016/j.cell.2004.11.013 – volume: 419 start-page: 135 year: 2002 ident: BFncb2729_CR40 publication-title: Nature doi: 10.1038/nature00991 – volume: 7 start-page: 993 year: 2005 ident: BFncb2729_CR15 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1298 – volume: 45 start-page: 75 year: 2012 ident: BFncb2729_CR35 publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.11.010 – volume: 44 start-page: 72 year: 2011 ident: BFncb2729_CR8 publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.06.036 – volume: 9 start-page: 325 year: 1999 ident: BFncb2729_CR29 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(99)80142-0 – volume: 39 start-page: 333 year: 2010 ident: BFncb2729_CR19 publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.07.021 – volume: 280 start-page: 4102 year: 2005 ident: BFncb2729_CR25 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M413209200 – volume: 15 start-page: 4884 year: 1996 ident: BFncb2729_CR3 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb00869.x – volume: 33 start-page: 201 year: 2008 ident: BFncb2729_CR26 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2008.02.001 – volume: 320 start-page: 1332 year: 2008 ident: BFncb2729_CR31 publication-title: Science doi: 10.1126/science.1156947 – volume: 144 start-page: 1425 year: 1996 ident: BFncb2729_CR42 publication-title: Genetics doi: 10.1093/genetics/144.4.1425 – volume: 277 start-page: 40132 year: 2002 ident: BFncb2729_CR24 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M206511200 – volume: 25 start-page: 409 year: 2011 ident: BFncb2729_CR28 publication-title: Genes Dev. doi: 10.1101/gad.2021311 – volume: 107 start-page: 667 year: 2001 ident: BFncb2729_CR5 publication-title: Cell doi: 10.1016/S0092-8674(01)00595-5 – volume: 36 start-page: 515 year: 2011 ident: BFncb2729_CR2 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2011.06.001 – volume: 9 start-page: 950 year: 2002 ident: BFncb2729_CR4 publication-title: Nature Struct. Biol. doi: 10.1038/nsb872 – volume: 151 start-page: 807 year: 2012 ident: BFncb2729_CR18 publication-title: Cell doi: 10.1016/j.cell.2012.10.021 – volume: 59 start-page: 3547 year: 1999 ident: BFncb2729_CR33 publication-title: Cancer Res. – volume: 433 start-page: 653 year: 2005 ident: BFncb2729_CR32 publication-title: Nature doi: 10.1038/nature03234 – volume: 450 start-page: 1258 year: 2007 ident: BFncb2729_CR7 publication-title: Nature doi: 10.1038/nature06388 – reference: 15703751 - Nature. 2005 Feb 10;433(7026):653-7 – reference: 15652483 - Cell. 2005 Jan 14;120(1):73-84 – reference: 22730331 - J Biol Chem. 2012 Aug 24;287(35):29610-9 – reference: 21981919 - Mol Cell. 2011 Oct 7;44(1):72-84 – reference: 12171935 - J Biol Chem. 2002 Oct 18;277(42):40132-41 – reference: 20729832 - Nature. 2010 Oct 7;467(7316):678-83 – reference: 18396468 - DNA Repair (Amst). 2008 Jun 1;7(6):879-89 – reference: 20190268 - J Biochem. 2010 Jun;147(6):833-42 – reference: 12748644 - Nature. 2003 May 15;423(6937):305-9 – reference: 10666456 - Nucleic Acids Res. 2000 Mar 1;28(5):1145-53 – reference: 16427015 - Mol Cell. 2006 Jan 20;21(2):261-9 – reference: 16179952 - Nat Cell Biol. 2005 Oct;7(10 ):999-1006 – reference: 22020440 - Nat Cell Biol. 2011 Oct 23;13(11):1376-82 – reference: 21363960 - Genes Dev. 2011 Mar 1;25(5):409-33 – reference: 20705237 - Mol Cell. 2010 Aug 13;39(3):333-45 – reference: 15590687 - J Biol Chem. 2005 Feb 11;280(6):4102-10 – reference: 22120668 - Nat Struct Mol Biol. 2011 Nov 27;18(12 ):1345-50 – reference: 16204249 - J Biol Chem. 2005 Dec 2;280(48):40122-9 – reference: 16179953 - Nat Cell Biol. 2005 Oct;7(10 ):993-8 – reference: 17142044 - Trends Biochem Sci. 2007 Jan;32(1):6-11 – reference: 22285753 - Mol Cell. 2012 Feb 10;45(3):422-32 – reference: 21741246 - Trends Biochem Sci. 2011 Oct;36(10):515-23 – reference: 22818974 - Trends Cell Biol. 2012 Sep;22(9):483-91 – reference: 18403209 - Trends Biochem Sci. 2008 May;33(5):201-8 – reference: 11733065 - Cell. 2001 Nov 30;107(5):667-77 – reference: 23122649 - Cell. 2012 Nov 9;151(4):807-20 – reference: 8812453 - Genomics. 1996 Sep 1;36(2):271-9 – reference: 12226657 - Nature. 2002 Sep 12;419(6903):135-41 – reference: 18097415 - Nature. 2007 Dec 20;450(7173):1258-62 – reference: 22153967 - Mol Cell. 2012 Jan 13;45(1):75-86 – reference: 18728180 - Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12879-84 – reference: 12434150 - Nat Struct Biol. 2002 Dec;9(12):950-7 – reference: 10446958 - Cancer Res. 1999 Aug 1;59(15):3547-51 – reference: 8890162 - EMBO J. 1996 Sep 16;15(18):4884-99 – reference: 17013376 - Nat Cell Biol. 2006 Nov;8(11):1284-90 – reference: 18535242 - Science. 2008 Jun 6;320(5881):1332-6 – reference: 10209103 - Curr Biol. 1999 Mar 25;9(6):325-8 – reference: 17643116 - Nat Cell Biol. 2007 Aug;9(8):923-31 – reference: 15931174 - Nature. 2005 Jul 21;436(7049):428-33 – reference: 19325626 - Nature. 2009 Mar 26;458(7237):461-7 – reference: 19915556 - Nat Cell Biol. 2009 Dec;11(12):1481-6 – reference: 8978031 - Genetics. 1996 Dec;144(4):1425-36 |
SSID | ssj0014407 |
Score | 2.436679 |
Snippet | The segregase Cdc48 (also called p97 or VCP) extracts ubiquitylated proteins from their environment. Jentsch and colleagues demonstrate that Cdc48 binds... Cdc48 (also known as p97), a conserved chaperone-like ATPase, plays a strategic role in the ubiquitin system. Empowered by ATP-driven conformational changes,... Cdc48 (also known as p97), a conserved chaperone-like ATPase, plays a strategic role in the ubiquitin system (1-3). Empowered by ATP-driven conformational... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 526 |
SubjectTerms | 631/337/1427 631/80/474/538 Adenosine triphosphatase Adenosine Triphosphatases - genetics Adenosine Triphosphatases - metabolism Animals ATP Biochemistry Biodegradation Biology Blotting, Western Cancer Research Cell Biology Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell Line, Tumor Cellular control mechanisms Deoxyribonucleic acid Developmental Biology DNA DNA Breaks, Double-Stranded DNA damage DNA Repair DNA, Fungal - genetics DNA, Fungal - metabolism Electrophoresis, Polyacrylamide Gel Enzyme Activation Humans Immunoprecipitation letter Life Sciences Mammals Multiprotein Complexes - metabolism Observations Properties Protein Binding Protein Interaction Mapping - methods Proteins Proteolysis Rad51 Recombinase - genetics Rad51 Recombinase - metabolism Rad52 DNA Repair and Recombination Protein - genetics Rad52 DNA Repair and Recombination Protein - metabolism Recombinant Proteins - genetics Recombinant Proteins - metabolism Recombination, Genetic Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Small Ubiquitin-Related Modifier Proteins - metabolism Stem Cells SUMO-1 Protein - metabolism Sumoylation Testing Two-Hybrid System Techniques Ubiquitin-Conjugating Enzymes - metabolism Ubiquitin-proteasome system Valosin Containing Protein Yeast Yeasts |
Title | Role of Cdc48/p97 as a SUMO-targeted segregase curbing Rad51–Rad52 interaction |
URI | https://link.springer.com/article/10.1038/ncb2729 https://www.ncbi.nlm.nih.gov/pubmed/23624404 https://www.proquest.com/docview/1348130401 https://www.proquest.com/docview/1348498547 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExIviI2PBcZkEIKnqI3tOM4TGtOmgURBhUl9ixz70pcpKU37wH_PXex26ybtJS8-J_H54-58d79j7GPZCA0FmLSuS5kqumiqjawpEqAxHppcDGDPPyb68kp9n-WzeOHWx7DKzZk4HNS-c3RHPsooYxRt73H2ZfE3papR5F2NJTQes32CLqOQrmK2NbjIb1mE7KI8LVARCEmzBAk-al0tgl55I43unsm3hNIdL-kgfC6es2dRa-SnYZoP2CNoD9mTUEfy3ws2mXbXwLuGn3mnzGhRFtz23HI8Mn-mIdYbPO8Bbes5Si3u1ks0iOd8an2epfQUnHAjliHL4SW7ujj_c3aZxkIJqUN5v0qlanJpMxwSMiGXGrTHGZACSme1LouawgdL40BlgMyX3jSiLkswArSjSjWv2F7btXDEuEL1zRjQNle18sJZnGRvtfLjMaCpBwn7tGFY5SKKOBWzuK4Gb7Y0VeRswviWcBGAM-6TfCCOVwRD0VKcy9yu-7769ntanUoyZVC3VAn7HImaDj_kbEwbwN8l5KodyuMdStwnbrd5M7FV3Kd9dbOqEvZ-20w9KfashW4daFRpclUk7HVYENsRCZT_hLCIvTcr5NbLd4f75uEfeMueiqHUBgVTHrO91XIN71DhWdUnw6o-Yftfzye_pv8BDvD7Lw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2QvSCeBMoYBCPU7Qb20mcA0KltNql7YKWVuotdRxnL1Wy3ewK9af4RmbiZNstErdecvHY8WM8D88L4H1S8MjGVvlZlghf0kNTpkRGngCFym0R8ibZ89E4Gp7I76fh6Qb86WJhyK2yo4kNoc4rQ2_k_YAiRlH3HgRfZhc-VY0i62pXQsOhxYG9_I0qW_159A3P9wPn-3vHu0O_rSrgG2SOC1_IIhQ6MBne1TAUkY1ynK7gNjE6ipI4I1-7RBkrA4szFbkqeJYkVnEbGSrrguPegU0pUJXpwebXvfHPycpuIWUToI3kJ_RjFD1cmC4lIe-X-EcnyV7xv5tc4BobvGGXbdjd_gO438qpbMch1kPYsOUjuOsqV14-hvGkOresKthubqTqz5KY6ZpphkT6h--8y23Oaova_BT5JDPLOargUzbReRj49OWMMlXMXVzFEzi5lU18Cr2yKu1zYBIFRqVspEOZyZwbjWiV60jmg4FF5dJ68LHbsNS0ecupfMZ52tjPhUrbnfWArQBnLlXHvyDvaMdTSnxRkmfNVC_rOh39mqQ7gpQnlGalB59aoKLCHxndBirgdClX1hrk9hok3kyz3twdbNpShjq9wmMP3q6aqSd5u5W2WjoYmahQxh48cwixWhFHiYNyOmLvDkOuDb6-3Bf_n8AbuDc8PjpMD0fjg5ewxZtCH-TKuQ29xXxpX6G4tchetzjO4Oy2r9VflYw2Yw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFIC6IN4ECBvE4Rbtx7MQ5IFS1rLoUFrRQaW_BsSd7qZJlsyvUX-PrmImTbbdI3HrJxWPHjxnPjOfF2OusFAmkoMOiyOJQ0kNToeOCPAFK7aBUok32_GWSHJ3ITzM122F_-lgYcqvs78T2ona1pTfyQUQRo6h7D6NB2blFfDscfVj8CqmCFFla-3IaHkWO4ew3qm_N-_EhnvUbIUYffxwchV2FgdAio1yFsSxVbCJbIN0qFSeQOJx6LCCzJkmytCC_u0xbkBHgrGOnS1FkGWgBiaUSLzjuNXY9jVVENJbONsoe2UxTH9mkwhSFEB-wS-nIBxX-z8u055zwMj-4wBAvWWhbxje6w253Eivf9yh2l-1AdY_d8DUsz-6zybQ-BV6X_MBZqQeLLOWm4Ybjdf019H7m4HgDqNfPkWNyu16iMj7nU-NUFNJXcMpZsfQRFg_YyZVs4UO2W9UVPGZcouioNSRGyUI6YQ0imDOJdMMhoJoJAXvbb1huuwzmVEjjNG8t6bHOu50NGN8ALnzSjn9BXtGO55QCoyJkmpt10-Tj79N8PyY1CuVaGbB3HVBZ44-s6UIWcLqUNWsLcm8LEmnUbjf3B5t3d0STn2N0wF5umqkn-b1VUK89jMy0kmnAHnmE2KxIoOxB2R2xd48hFwbfXu6T_0_gBbuJxJR_Hk-On7Jboq34QT6de2x3tVzDM5S7VsXzFsE5-3nVFPUX7TA5Mw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+Cdc48%2Fp97+as+a+SUMO-targeted+segregase+curbing+Rad51-Rad52+interaction&rft.jtitle=Nature+cell+biology&rft.au=Bergink%2C+Steven&rft.au=Ammon%2C+Tim&rft.au=Kern%2C+Maximilian&rft.au=Schermelleh%2C+Lothar&rft.date=2013-05-01&rft.pub=Nature+Publishing+Group&rft.issn=1465-7392&rft.volume=15&rft.issue=5&rft.spage=526&rft_id=info:doi/10.1038%2Fncb2729&rft.externalDocID=A330679324 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-7392&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-7392&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-7392&client=summon |