Shedding new light on the generation of the visual chromophore
The visual phototransduction cascade begins with a cis–trans photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all-trans-retinal chromophore following photoactivation, which necessitates the existence of p...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 33; pp. 19629 - 19638 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
18.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The visual phototransduction cascade begins with a cis–trans photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all-trans-retinal chromophore following photoactivation, which necessitates the existence of pathways that produce 11-cis-retinal for continued formation of visual pigments and sustained vision. Proteins in the retinal pigment epithelium (RPE), a cell layer adjacent to the photoreceptor outer segments, form the well-established “dark” regeneration pathway known as the classical visual cycle. This pathway is sufficient to maintain continuous rod function and support cone photoreceptors as well although its throughput has to be augmented by additional mechanism(s) to maintain pigment levels in the face of high rates of photon capture. Recent studies indicate that the classical visual cycle works together with light-dependent processes in both the RPE and neural retina to ensure adequate 11-cis-retinal production under natural illuminances that can span ten orders of magnitude. Further elucidation of the interplay between these complementary systems is fundamental to understanding how cone-mediated vision is sustained in vivo. Here, we describe recent advances in understanding how 11-cis-retinal is synthesized via light-dependent mechanisms. |
---|---|
AbstractList | The visual phototransduction cascade begins with a
cis
–
trans
photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all-
trans
-retinal chromophore following photoactivation, which necessitates the existence of pathways that produce 11-
cis
-retinal for continued formation of visual pigments and sustained vision. Proteins in the retinal pigment epithelium (RPE), a cell layer adjacent to the photoreceptor outer segments, form the well-established “dark” regeneration pathway known as the classical visual cycle. This pathway is sufficient to maintain continuous rod function and support cone photoreceptors as well although its throughput has to be augmented by additional mechanism(s) to maintain pigment levels in the face of high rates of photon capture. Recent studies indicate that the classical visual cycle works together with light-dependent processes in both the RPE and neural retina to ensure adequate 11-
cis
-retinal production under natural illuminances that can span ten orders of magnitude. Further elucidation of the interplay between these complementary systems is fundamental to understanding how cone-mediated vision is sustained in vivo. Here, we describe recent advances in understanding how 11-
cis
-retinal is synthesized via light-dependent mechanisms. The visual phototransduction cascade begins with a cis–trans photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all-trans-retinal chromophore following photoactivation, which necessitates the existence of pathways that produce 11-cis-retinal for continued formation of visual pigments and sustained vision. Proteins in the retinal pigment epithelium (RPE), a cell layer adjacent to the photoreceptor outer segments, form the well-established “dark” regeneration pathway known as the classical visual cycle. This pathway is sufficient to maintain continuous rod function and support cone photoreceptors as well although its throughput has to be augmented by additional mechanism(s) to maintain pigment levels in the face of high rates of photon capture. Recent studies indicate that the classical visual cycle works together with light-dependent processes in both the RPE and neural retina to ensure adequate 11-cis-retinal production under natural illuminances that can span ten orders of magnitude. Further elucidation of the interplay between these complementary systems is fundamental to understanding how cone-mediated vision is sustained in vivo. Here, we describe recent advances in understanding how 11-cis-retinal is synthesized via light-dependent mechanisms. The visual phototransduction cascade begins with a - photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all- -retinal chromophore following photoactivation, which necessitates the existence of pathways that produce 11- -retinal for continued formation of visual pigments and sustained vision. Proteins in the retinal pigment epithelium (RPE), a cell layer adjacent to the photoreceptor outer segments, form the well-established "dark" regeneration pathway known as the classical visual cycle. This pathway is sufficient to maintain continuous rod function and support cone photoreceptors as well although its throughput has to be augmented by additional mechanism(s) to maintain pigment levels in the face of high rates of photon capture. Recent studies indicate that the classical visual cycle works together with light-dependent processes in both the RPE and neural retina to ensure adequate 11- -retinal production under natural illuminances that can span ten orders of magnitude. Further elucidation of the interplay between these complementary systems is fundamental to understanding how cone-mediated vision is sustained in vivo. Here, we describe recent advances in understanding how 11- -retinal is synthesized via light-dependent mechanisms. |
Author | Kiser, Philip D. Palczewski, Krzysztof |
Author_xml | – sequence: 1 givenname: Krzysztof surname: Palczewski fullname: Palczewski, Krzysztof – sequence: 2 givenname: Philip D. surname: Kiser fullname: Kiser, Philip D. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32759209$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkctLxDAQxoMouj7OnpSCFy_VyatJLoKILxA8qOeQbdNtl26yJu2K_71ZV9dHLkNmfvMxM98u2nTeWYQOMZxhEPR87kw8IwCS4PTEBhphUDgvmIJNNAIgIpeMsB20G-MUABSXsI12KBFcEVAjdPHU2Kpq3SRz9i3r2knTZ95lfWOziXU2mL5NX19_ZhZtHEyXlU3wMz9vfLD7aKs2XbQHX3EPvdxcP1_d5Q-Pt_dXlw95yUH1OaVjLKsCCB6XQAmlRpTAcWUKVWBRl2NSYIIZMM5pwbiFiogaCywUqyuJCd1DFyvd-TCe2aq0rg-m0_PQzkx41960-m_FtY2e-IUWjFEpIQmcfgkE_zrY2OtZG0vbdcZZP0RNGMUSVDpMQk_-oVM_BJfWW1IFo5Tx5UTnK6oMPsZg6_UwGPTSG730Rv94kzqOf--w5r_NSMDRCpjG3od1naQjSc4U_QAITJQ9 |
CitedBy_id | crossref_primary_10_1242_jeb_226522 crossref_primary_10_3389_fncel_2021_662453 crossref_primary_10_1016_j_biosystemseng_2024_05_016 crossref_primary_10_1021_acs_jpcb_1c01198 crossref_primary_10_3390_ijms24108786 crossref_primary_10_1007_s40828_024_00187_y crossref_primary_10_12998_wjcc_v10_i30_11128 crossref_primary_10_1016_j_ydbio_2021_03_002 crossref_primary_10_1016_j_visres_2023_108192 crossref_primary_10_1021_acs_orglett_1c01997 crossref_primary_10_1002_ange_202314468 crossref_primary_10_1016_j_envint_2023_108217 crossref_primary_10_1021_acs_jctc_3c00266 crossref_primary_10_1016_j_visres_2022_108157 crossref_primary_10_3390_ijms25031670 crossref_primary_10_2139_ssrn_3929014 crossref_primary_10_3390_ani14071000 crossref_primary_10_1002_bies_202300068 crossref_primary_10_1016_j_preteyeres_2021_101040 crossref_primary_10_1016_j_jpap_2023_100162 crossref_primary_10_3390_cells13100871 crossref_primary_10_1016_j_celrep_2023_112982 crossref_primary_10_1016_j_isci_2022_104060 crossref_primary_10_1016_j_celrep_2023_112115 crossref_primary_10_3390_cells10010115 crossref_primary_10_1038_s41586_022_04547_x crossref_primary_10_1515_nf_2021_0006 crossref_primary_10_1002_anie_202314468 crossref_primary_10_1016_j_compag_2023_107908 crossref_primary_10_3390_jof9050591 crossref_primary_10_1016_j_cplett_2023_140432 crossref_primary_10_1021_acs_jmedchem_1c00279 crossref_primary_10_3390_genes11121420 crossref_primary_10_3390_ijms25147513 crossref_primary_10_1146_annurev_vision_112122_020957 crossref_primary_10_1167_iovs_63_13_12 crossref_primary_10_1186_s12974_024_03062_2 crossref_primary_10_1177_0748730421999870 crossref_primary_10_1016_j_preteyeres_2023_101170 crossref_primary_10_1172_JCI154218 crossref_primary_10_3389_fcell_2024_1332944 crossref_primary_10_1016_j_jbc_2024_107238 crossref_primary_10_1074_jbc_REV120_014405 crossref_primary_10_1016_j_jbc_2024_105678 crossref_primary_10_1016_j_preteyeres_2021_101015 crossref_primary_10_1016_j_preteyeres_2021_101037 crossref_primary_10_1016_j_ymthe_2020_11_029 crossref_primary_10_14233_ajomc_2022_AJOMC_P409 |
Cites_doi | 10.1016/j.tibs.2010.01.005 10.1146/annurev.cellbio.16.1.365 10.1021/cr400107q 10.1074/jbc.M110.195198 10.1074/jbc.M608375200 10.1038/nchembio.1799 10.1073/pnas.0706367104 10.1016/j.preteyeres.2009.05.003 10.1172/JCI79651 10.1016/S0896-6273(02)00912-1 10.1085/jgp.36.2.269 10.1126/science.289.5480.739 10.1016/S0896-6273(01)00248-3 10.1038/s41467-017-00018-4 10.1083/jcb.97.3.703 10.1146/annurev-cellbio-100616-060432 10.1074/jbc.M208882200 10.1016/j.neuron.2019.04.004 10.1042/bj2850907 10.1073/pnas.86.23.9606 10.1016/0005-2736(88)90438-5 10.1016/j.preteyeres.2015.07.004 10.1016/j.cell.2005.06.042 10.1038/90089 10.1021/bi1001085 10.1016/j.bbalip.2020.158665 10.1073/pnas.1802519115 10.1038/ng0397-236 10.1021/bi00468a013 10.1016/j.visres.2003.09.012 10.1146/annurev-nutr-071811-150748 10.1083/jcb.200311079 10.1146/annurev-vision-111815-114407 10.1073/pnas.1212025109 10.1073/pnas.0907454106 10.1016/0006-291X(82)90655-6 10.1046/j.1471-4159.2003.01741.x 10.1038/3813 10.1128/MCB.20.12.4275-4287.2000 10.1146/annurev.biochem.75.103004.142743 10.1038/nchembio.1114 10.1016/S0006-3495(81)84848-5 10.1172/JCI80950 10.1073/pnas.0504167102 10.1111/j.1432-1033.1980.tb06002.x 10.1016/0042-6989(89)90026-6 10.1073/pnas.0707477104 10.1126/science.aad8266 10.1073/pnas.0503460102 10.1096/fj.201800467R 10.1038/nchem.2398 10.1073/pnas.1319142111 10.1073/pnas.0708405105 10.1073/pnas.150236297 10.1016/j.cmet.2008.01.009 10.1074/jbc.M112384200 10.1073/pnas.2234461100 10.1146/annurev.pharmtox.47.120505.105225 10.1074/jbc.RA119.011374 10.1126/science.1136244 10.1085/jgp.201511538 10.1085/jgp.201711815 10.1021/acs.biochem.6b00907 10.1093/molbev/msr313 10.1073/pnas.0906600106 10.1021/cr4003769 10.1016/S0076-6879(00)16739-4 10.1074/jbc.RA119.011169 10.1016/S0021-9258(19)42194-7 10.1073/pnas.250478897 10.1113/jphysiol.2003.051250 10.1073/pnas.0503318102 10.1073/pnas.0806593105 10.1038/s41598-017-02549-8 10.1021/ja411366w 10.1038/214573a0 10.1017/S0952523817000013 10.1016/j.cub.2009.07.054 10.1074/jbc.M115.682096 10.1038/nn.2258 10.1021/bi00217a001 10.1016/j.preteyeres.2010.11.001 10.1074/jbc.M509351200 10.1038/270540a0 10.1016/j.preteyeres.2004.03.001 10.1016/S0042-6989(97)00198-3 10.1096/fj.201802493R |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Aug 18, 2020 2020 |
Copyright_xml | – notice: Copyright National Academy of Sciences Aug 18, 2020 – notice: 2020 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2008211117 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 19638 |
ExternalDocumentID | 10_1073_pnas_2008211117 32759209 26968549 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY009339 – fundername: NEI NIH HHS grantid: R24 EY027283 – fundername: NEI NIH HHS grantid: U01 EY025451 – fundername: NEI NIH HHS grantid: R01 EY019312 – fundername: BLRD VA grantid: I01 BX004939 – fundername: HHS | NIH | National Eye Institute (NEI) grantid: EY009339 – fundername: HHS | NIH | National Eye Institute (NEI) grantid: EY027283 – fundername: U.S. Department of Veterans Affairs (VA) grantid: I01BX004939 – fundername: HHS | NIH | National Eye Institute (NEI) grantid: EY019312 – fundername: HHS | NIH | National Eye Institute (NEI) grantid: EY025451 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADZLD AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS F5P FRP GX1 HH5 HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZA5 ZCA ~02 ~KM ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-33b18d6021bc03233a7c051da69617fcb26121404553645e0d27f171794fd8123 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:26:06 EDT 2024 Sat Aug 17 00:47:54 EDT 2024 Thu Oct 10 18:02:29 EDT 2024 Fri Aug 23 01:31:45 EDT 2024 Sat Sep 28 08:39:42 EDT 2024 Fri Feb 02 07:18:32 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Keywords | eye vision chromophore light retina |
Language | English |
License | Published under the PNAS license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-33b18d6021bc03233a7c051da69617fcb26121404553645e0d27f171794fd8123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-2 Edited by Jeremy Nathans, Johns Hopkins University School of Medicine, Baltimore, MD, and approved July 9, 2020 (received for review May 16, 2020) Author contributions: K.P. and P.D.K. wrote the paper. |
ORCID | 0000-0002-0788-545X 0000-0003-1184-9539 |
OpenAccessLink | https://www.pnas.org/content/pnas/117/33/19629.full.pdf |
PMID | 32759209 |
PQID | 2436433452 |
PQPubID | 42026 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7443880 proquest_miscellaneous_2431809327 proquest_journals_2436433452 crossref_primary_10_1073_pnas_2008211117 pubmed_primary_32759209 jstor_primary_26968549 |
PublicationCentury | 2000 |
PublicationDate | 2020-08-18 |
PublicationDateYYYYMMDD | 2020-08-18 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_84_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_80_2 Rodieck R. W. (e_1_3_4_16_2) 1998 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_86_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_88_2 e_1_3_4_29_2 e_1_3_4_72_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_19_2 e_1_3_4_17_2 Choi E. H. (e_1_3_4_74_2) 2020 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_62_2 e_1_3_4_85_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_87_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_89_2 e_1_3_4_28_2 e_1_3_4_71_2 e_1_3_4_73_2 e_1_3_4_52_2 e_1_3_4_90_2 e_1_3_4_50_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_75_2 e_1_3_4_37_2 Ramón y Cajal S. (e_1_3_4_14_2) 1972 e_1_3_4_77_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_25_2 doi: 10.1016/j.tibs.2010.01.005 – ident: e_1_3_4_2_2 doi: 10.1146/annurev.cellbio.16.1.365 – ident: e_1_3_4_3_2 doi: 10.1021/cr400107q – ident: e_1_3_4_28_2 doi: 10.1074/jbc.M110.195198 – ident: e_1_3_4_44_2 doi: 10.1074/jbc.M608375200 – ident: e_1_3_4_36_2 doi: 10.1038/nchembio.1799 – ident: e_1_3_4_17_2 doi: 10.1073/pnas.0706367104 – ident: e_1_3_4_9_2 doi: 10.1016/j.preteyeres.2009.05.003 – ident: e_1_3_4_78_2 doi: 10.1172/JCI79651 – ident: e_1_3_4_51_2 doi: 10.1016/S0896-6273(02)00912-1 – ident: e_1_3_4_67_2 doi: 10.1085/jgp.36.2.269 – ident: e_1_3_4_24_2 doi: 10.1126/science.289.5480.739 – ident: e_1_3_4_49_2 doi: 10.1016/S0896-6273(01)00248-3 – ident: e_1_3_4_68_2 doi: 10.1038/s41467-017-00018-4 – ident: e_1_3_4_39_2 doi: 10.1083/jcb.97.3.703 – ident: e_1_3_4_7_2 doi: 10.1146/annurev-cellbio-100616-060432 – ident: e_1_3_4_43_2 doi: 10.1074/jbc.M208882200 – ident: e_1_3_4_76_2 doi: 10.1016/j.neuron.2019.04.004 – ident: e_1_3_4_54_2 doi: 10.1042/bj2850907 – ident: e_1_3_4_55_2 doi: 10.1073/pnas.86.23.9606 – ident: e_1_3_4_87_2 doi: 10.1016/0005-2736(88)90438-5 – ident: e_1_3_4_6_2 doi: 10.1016/j.preteyeres.2015.07.004 – ident: e_1_3_4_33_2 doi: 10.1016/j.cell.2005.06.042 – ident: e_1_3_4_75_2 doi: 10.1038/90089 – ident: e_1_3_4_84_2 doi: 10.1021/bi1001085 – ident: e_1_3_4_30_2 doi: 10.1016/j.bbalip.2020.158665 – ident: e_1_3_4_47_2 doi: 10.1073/pnas.1802519115 – ident: e_1_3_4_46_2 doi: 10.1038/ng0397-236 – ident: e_1_3_4_85_2 doi: 10.1021/bi00468a013 – ident: e_1_3_4_80_2 doi: 10.1016/j.visres.2003.09.012 – ident: e_1_3_4_13_2 doi: 10.1146/annurev-nutr-071811-150748 – ident: e_1_3_4_29_2 doi: 10.1083/jcb.200311079 – ident: e_1_3_4_10_2 doi: 10.1146/annurev-vision-111815-114407 – ident: e_1_3_4_34_2 doi: 10.1073/pnas.1212025109 – ident: e_1_3_4_38_2 doi: 10.1073/pnas.0907454106 – ident: e_1_3_4_86_2 doi: 10.1016/0006-291X(82)90655-6 – ident: e_1_3_4_88_2 doi: 10.1046/j.1471-4159.2003.01741.x – ident: e_1_3_4_18_2 doi: 10.1038/3813 – ident: e_1_3_4_45_2 doi: 10.1128/MCB.20.12.4275-4287.2000 – ident: e_1_3_4_4_2 doi: 10.1146/annurev.biochem.75.103004.142743 – ident: e_1_3_4_58_2 doi: 10.1038/nchembio.1114 – ident: e_1_3_4_70_2 doi: 10.1016/S0006-3495(81)84848-5 – ident: e_1_3_4_63_2 doi: 10.1172/JCI80950 – ident: e_1_3_4_31_2 doi: 10.1073/pnas.0504167102 – ident: e_1_3_4_22_2 doi: 10.1111/j.1432-1033.1980.tb06002.x – ident: e_1_3_4_81_2 doi: 10.1016/0042-6989(89)90026-6 – ident: e_1_3_4_42_2 doi: 10.1073/pnas.0707477104 – ident: e_1_3_4_27_2 doi: 10.1126/science.aad8266 – ident: e_1_3_4_32_2 doi: 10.1073/pnas.0503460102 – volume-title: The First Steps in Seeing year: 1998 ident: e_1_3_4_16_2 contributor: fullname: Rodieck R. W. – ident: e_1_3_4_71_2 doi: 10.1096/fj.201800467R – ident: e_1_3_4_8_2 doi: 10.1038/nchem.2398 – ident: e_1_3_4_61_2 doi: 10.1073/pnas.1319142111 – ident: e_1_3_4_1_2 doi: 10.1073/pnas.0708405105 – ident: e_1_3_4_19_2 doi: 10.1073/pnas.150236297 – ident: e_1_3_4_89_2 doi: 10.1016/j.cmet.2008.01.009 – ident: e_1_3_4_20_2 doi: 10.1074/jbc.M112384200 – ident: e_1_3_4_21_2 doi: 10.1073/pnas.2234461100 – ident: e_1_3_4_12_2 doi: 10.1146/annurev.pharmtox.47.120505.105225 – ident: e_1_3_4_60_2 doi: 10.1074/jbc.RA119.011374 – ident: e_1_3_4_26_2 doi: 10.1126/science.1136244 – ident: e_1_3_4_48_2 doi: 10.1085/jgp.201511538 – ident: e_1_3_4_65_2 doi: 10.1085/jgp.201711815 – volume-title: The Structure of the Retina year: 1972 ident: e_1_3_4_14_2 contributor: fullname: Ramón y Cajal S. – ident: e_1_3_4_90_2 doi: 10.1021/acs.biochem.6b00907 – ident: e_1_3_4_79_2 doi: 10.1093/molbev/msr313 – ident: e_1_3_4_35_2 doi: 10.1073/pnas.0906600106 – ident: e_1_3_4_5_2 doi: 10.1021/cr4003769 – ident: e_1_3_4_72_2 doi: 10.1016/S0076-6879(00)16739-4 – ident: e_1_3_4_77_2 doi: 10.1074/jbc.RA119.011169 – start-page: jlr.TR120000850 year: 2020 ident: e_1_3_4_74_2 article-title: Retinoids in the visual cycle: Role of the retinal G protein-coupled receptor publication-title: J. Lipid Res. contributor: fullname: Choi E. H. – ident: e_1_3_4_23_2 doi: 10.1016/S0021-9258(19)42194-7 – ident: e_1_3_4_64_2 doi: 10.1073/pnas.250478897 – ident: e_1_3_4_82_2 doi: 10.1113/jphysiol.2003.051250 – ident: e_1_3_4_62_2 doi: 10.1073/pnas.0503318102 – ident: e_1_3_4_56_2 doi: 10.1073/pnas.0806593105 – ident: e_1_3_4_40_2 doi: 10.1038/s41598-017-02549-8 – ident: e_1_3_4_37_2 doi: 10.1021/ja411366w – ident: e_1_3_4_73_2 doi: 10.1038/214573a0 – ident: e_1_3_4_57_2 doi: 10.1017/S0952523817000013 – ident: e_1_3_4_52_2 doi: 10.1016/j.cub.2009.07.054 – ident: e_1_3_4_41_2 doi: 10.1074/jbc.M115.682096 – ident: e_1_3_4_53_2 doi: 10.1038/nn.2258 – ident: e_1_3_4_15_2 doi: 10.1021/bi00217a001 – ident: e_1_3_4_11_2 doi: 10.1016/j.preteyeres.2010.11.001 – ident: e_1_3_4_66_2 doi: 10.1074/jbc.M509351200 – ident: e_1_3_4_69_2 doi: 10.1038/270540a0 – ident: e_1_3_4_50_2 doi: 10.1016/j.preteyeres.2004.03.001 – ident: e_1_3_4_83_2 doi: 10.1016/S0042-6989(97)00198-3 – ident: e_1_3_4_59_2 doi: 10.1096/fj.201802493R |
SSID | ssj0009580 |
Score | 2.5804088 |
SecondaryResourceType | review_article |
Snippet | The visual phototransduction cascade begins with a cis–trans photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and... The visual phototransduction cascade begins with a - photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and cone... The visual phototransduction cascade begins with a cis – trans photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and... |
SourceID | pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 19629 |
SubjectTerms | Animals Biological Sciences Chromophores Continuity (mathematics) Epithelium Humans Light Light Signal Transduction Opsins Opsins - metabolism PERSPECTIVE Photoactivation Photopigments Photoreception Photoreceptors Phototransduction Pigments Regeneration Retina Retinal Cone Photoreceptor Cells - metabolism Retinal pigment epithelium Retinal Pigment Epithelium - metabolism Retinaldehyde Retinaldehyde - biosynthesis Retinaldehyde - chemistry Vision Vision, Ocular Visual pigments |
Title | Shedding new light on the generation of the visual chromophore |
URI | https://www.jstor.org/stable/26968549 https://www.ncbi.nlm.nih.gov/pubmed/32759209 https://www.proquest.com/docview/2436433452 https://search.proquest.com/docview/2431809327 https://pubmed.ncbi.nlm.nih.gov/PMC7443880 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qT17Et6tVInioh7Vtkn1dBBGlCBVBBW_LJpvYgu4Wbf39zmQfPvDkdfPYMDPJfMNMvgCcJApBvgmtn5jA-NLqxM_Qk_iGiExCq6xwGd3JbTh-lDdPwVMHguYujCva12p2Vry8nhWzqautnL_qQVMnNribXEZSEofJYAVW0ECbEL1l2o2reyccj1_JZcPnE4nBvMgcQ3fM6aCg9_cEj4KEUzXiN69UFSb-BTl_V05-c0XX67BWY0h2Ua11Azqm2ISNepe-s35NJX26Bef3U5OTd2KIntkLBeKsLBiCPvbsOpFaWGndl4_Z-xKn1VOq0JtPyzezDY_XVw-XY79-McHX6PgXvhBqFOch-m2lh4ILkUUad12ehQkiFauVIwyTCOMCSj-aYc4jO4poU9ocXb3YgW5RFmYPWKxjO8plrMJAoQqHipSXKwxpzVAhaPOg30gsnVfEGKlLaEciJTmnX3L2YMdJtO3HiZEHA1MPeo2I03rr4DiJSxNCBviL47YZjZ4yGVlhyqXrQ7xjqD0PdiuNtJM3KvUg-qGrtgMRav9sQTtzxNq1Xe3_e-QBrHKKx4kyN-5Bd_G2NIcIWhbqyBnpJ0BD6IM |
link.rule.ids | 230,315,730,783,787,888,27938,27939,53808,53810 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R7YFeaCmPhm6LkTjQQ3aztvO6VKpQ0ZayCAmouEWxY7OrQrKC3R766zvjPAqoF3qN7STWN2N_oxl_BthPFZJ8E1k_NaHxpdWpn-NO4hsSMomsssJldCen0fhSHl-FVysQtmdhXNG-VrNBeXM7KGdTV1s5v9XDtk5seDY5jKUkDZPhC3iJ_hokbZDeae0m9ckTjguw5LJV9InFcF7mTqM74bRU0A18gsdhyqke8cG-VJcm_ot0Pq2dfLAZHb2GH-006hqUn4PlQg307ycKj8-e5xtYa-gp-1I3r8OKKd_CerMA3LODRqX60wZ8Pp-agjY-hsSc3VCMz6qSIZ9k164TIc4q6578mt0v8bV6SsV_82l1Zzbh8ujrxeHYby5j8DVyioUvhBolRYSUQOlAcCHyWKNDF3mUIgmyWjktMokMMaTMpgkKHttRTP5uC2QRYgt6ZVWad8ASndhRIRMVhQqtI1BkF4XCaNkECvmgBwctFNm81tzIXK48FhkBmP0F0IMtB1XXj5PYD8a8HvRb7LLGK3GcxF8TQob4ib2uGf2JkiR5aaql60OSZmgWHmzXUHcvb23Fg_iREXQdSKv7cQtC6zS7Gyh3_nvkLqyOLyYn2cm30-_v4RWnsJ-UeZM-9BZ3S_MBudFCfXSe8AcUvAqO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61IFW9QGkLhFLqSj3QQza7tvO6VKqAFS0PIbVIqJcodmx2BSQR7HLg13fGeXRBPXGNx06sb8b-Rp58BviSKiT5JrJ-akLjS6tTP8edxDckZBJZZYU70T05jQ7P5c-L8GLhqi9XtK_VdFBe3wzK6cTVVtY3OujqxIKzk71YStIwCerCBi9hOSSVqi5R7_V2k-bvE46LsOSyU_WJRVCXudPpTjgtF3QLn-BxmHKqSVzYm5ryxP8Rz6f1kwsb0ngV_nRTaepQrgbzmRrohycqj8-a6xtYaWkq-96YrMELU76FtXYhuGO7rVr113fw7dfEFLQBMiTo7JpyfVaVDHklu3RGhDyrrHtyP72b47B6QkWA9aS6Ne_hfHzwe-_Qby9l8DVyi5kvhBolRYTUQOmh4ELkscbALvIoRTJktXKaZBKZYkgnnGZY8NiOYop7WyCbEOuwVFal2QSW6MSOCpmoKFToJUNF_lEozJrNUCEv9GC3gyOrG-2NzJ2ZxyIjELN_IHqw7uDq7TiJ_mDu68F2h1_WRif2k_hpQsgQX_G5b8a4osOSvDTV3NmQtBm6hgcbDdz94J2_eBA_coTegDS7H7cgvE67u4Vz69k9P8Grs_1xdvzj9OgDvOaU_ZNAb7INS7PbufmIFGmmdlww_AV05w0F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shedding+new+light+on+the+generation+of+the+visual+chromophore&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Palczewski%2C+Krzysztof&rft.au=Kiser%2C+Philip+D.&rft.date=2020-08-18&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=33&rft.spage=19629&rft.epage=19638&rft_id=info:doi/10.1073%2Fpnas.2008211117&rft.externalDocID=26968549 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |