Shedding new light on the generation of the visual chromophore

The visual phototransduction cascade begins with a cis–trans photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all-trans-retinal chromophore following photoactivation, which necessitates the existence of p...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 33; pp. 19629 - 19638
Main Authors Palczewski, Krzysztof, Kiser, Philip D.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 18.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The visual phototransduction cascade begins with a cis–trans photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all-trans-retinal chromophore following photoactivation, which necessitates the existence of pathways that produce 11-cis-retinal for continued formation of visual pigments and sustained vision. Proteins in the retinal pigment epithelium (RPE), a cell layer adjacent to the photoreceptor outer segments, form the well-established “dark” regeneration pathway known as the classical visual cycle. This pathway is sufficient to maintain continuous rod function and support cone photoreceptors as well although its throughput has to be augmented by additional mechanism(s) to maintain pigment levels in the face of high rates of photon capture. Recent studies indicate that the classical visual cycle works together with light-dependent processes in both the RPE and neural retina to ensure adequate 11-cis-retinal production under natural illuminances that can span ten orders of magnitude. Further elucidation of the interplay between these complementary systems is fundamental to understanding how cone-mediated vision is sustained in vivo. Here, we describe recent advances in understanding how 11-cis-retinal is synthesized via light-dependent mechanisms.
AbstractList The visual phototransduction cascade begins with a cis – trans photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all- trans -retinal chromophore following photoactivation, which necessitates the existence of pathways that produce 11- cis -retinal for continued formation of visual pigments and sustained vision. Proteins in the retinal pigment epithelium (RPE), a cell layer adjacent to the photoreceptor outer segments, form the well-established “dark” regeneration pathway known as the classical visual cycle. This pathway is sufficient to maintain continuous rod function and support cone photoreceptors as well although its throughput has to be augmented by additional mechanism(s) to maintain pigment levels in the face of high rates of photon capture. Recent studies indicate that the classical visual cycle works together with light-dependent processes in both the RPE and neural retina to ensure adequate 11- cis -retinal production under natural illuminances that can span ten orders of magnitude. Further elucidation of the interplay between these complementary systems is fundamental to understanding how cone-mediated vision is sustained in vivo. Here, we describe recent advances in understanding how 11- cis -retinal is synthesized via light-dependent mechanisms.
The visual phototransduction cascade begins with a cis–trans photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all-trans-retinal chromophore following photoactivation, which necessitates the existence of pathways that produce 11-cis-retinal for continued formation of visual pigments and sustained vision. Proteins in the retinal pigment epithelium (RPE), a cell layer adjacent to the photoreceptor outer segments, form the well-established “dark” regeneration pathway known as the classical visual cycle. This pathway is sufficient to maintain continuous rod function and support cone photoreceptors as well although its throughput has to be augmented by additional mechanism(s) to maintain pigment levels in the face of high rates of photon capture. Recent studies indicate that the classical visual cycle works together with light-dependent processes in both the RPE and neural retina to ensure adequate 11-cis-retinal production under natural illuminances that can span ten orders of magnitude. Further elucidation of the interplay between these complementary systems is fundamental to understanding how cone-mediated vision is sustained in vivo. Here, we describe recent advances in understanding how 11-cis-retinal is synthesized via light-dependent mechanisms.
The visual phototransduction cascade begins with a - photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all- -retinal chromophore following photoactivation, which necessitates the existence of pathways that produce 11- -retinal for continued formation of visual pigments and sustained vision. Proteins in the retinal pigment epithelium (RPE), a cell layer adjacent to the photoreceptor outer segments, form the well-established "dark" regeneration pathway known as the classical visual cycle. This pathway is sufficient to maintain continuous rod function and support cone photoreceptors as well although its throughput has to be augmented by additional mechanism(s) to maintain pigment levels in the face of high rates of photon capture. Recent studies indicate that the classical visual cycle works together with light-dependent processes in both the RPE and neural retina to ensure adequate 11- -retinal production under natural illuminances that can span ten orders of magnitude. Further elucidation of the interplay between these complementary systems is fundamental to understanding how cone-mediated vision is sustained in vivo. Here, we describe recent advances in understanding how 11- -retinal is synthesized via light-dependent mechanisms.
Author Kiser, Philip D.
Palczewski, Krzysztof
Author_xml – sequence: 1
  givenname: Krzysztof
  surname: Palczewski
  fullname: Palczewski, Krzysztof
– sequence: 2
  givenname: Philip D.
  surname: Kiser
  fullname: Kiser, Philip D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32759209$$D View this record in MEDLINE/PubMed
BookMark eNpdkctLxDAQxoMouj7OnpSCFy_VyatJLoKILxA8qOeQbdNtl26yJu2K_71ZV9dHLkNmfvMxM98u2nTeWYQOMZxhEPR87kw8IwCS4PTEBhphUDgvmIJNNAIgIpeMsB20G-MUABSXsI12KBFcEVAjdPHU2Kpq3SRz9i3r2knTZ95lfWOziXU2mL5NX19_ZhZtHEyXlU3wMz9vfLD7aKs2XbQHX3EPvdxcP1_d5Q-Pt_dXlw95yUH1OaVjLKsCCB6XQAmlRpTAcWUKVWBRl2NSYIIZMM5pwbiFiogaCywUqyuJCd1DFyvd-TCe2aq0rg-m0_PQzkx41960-m_FtY2e-IUWjFEpIQmcfgkE_zrY2OtZG0vbdcZZP0RNGMUSVDpMQk_-oVM_BJfWW1IFo5Tx5UTnK6oMPsZg6_UwGPTSG730Rv94kzqOf--w5r_NSMDRCpjG3od1naQjSc4U_QAITJQ9
CitedBy_id crossref_primary_10_1242_jeb_226522
crossref_primary_10_3389_fncel_2021_662453
crossref_primary_10_1016_j_biosystemseng_2024_05_016
crossref_primary_10_1021_acs_jpcb_1c01198
crossref_primary_10_3390_ijms24108786
crossref_primary_10_1007_s40828_024_00187_y
crossref_primary_10_12998_wjcc_v10_i30_11128
crossref_primary_10_1016_j_ydbio_2021_03_002
crossref_primary_10_1016_j_visres_2023_108192
crossref_primary_10_1021_acs_orglett_1c01997
crossref_primary_10_1002_ange_202314468
crossref_primary_10_1016_j_envint_2023_108217
crossref_primary_10_1021_acs_jctc_3c00266
crossref_primary_10_1016_j_visres_2022_108157
crossref_primary_10_3390_ijms25031670
crossref_primary_10_2139_ssrn_3929014
crossref_primary_10_3390_ani14071000
crossref_primary_10_1002_bies_202300068
crossref_primary_10_1016_j_preteyeres_2021_101040
crossref_primary_10_1016_j_jpap_2023_100162
crossref_primary_10_3390_cells13100871
crossref_primary_10_1016_j_celrep_2023_112982
crossref_primary_10_1016_j_isci_2022_104060
crossref_primary_10_1016_j_celrep_2023_112115
crossref_primary_10_3390_cells10010115
crossref_primary_10_1038_s41586_022_04547_x
crossref_primary_10_1515_nf_2021_0006
crossref_primary_10_1002_anie_202314468
crossref_primary_10_1016_j_compag_2023_107908
crossref_primary_10_3390_jof9050591
crossref_primary_10_1016_j_cplett_2023_140432
crossref_primary_10_1021_acs_jmedchem_1c00279
crossref_primary_10_3390_genes11121420
crossref_primary_10_3390_ijms25147513
crossref_primary_10_1146_annurev_vision_112122_020957
crossref_primary_10_1167_iovs_63_13_12
crossref_primary_10_1186_s12974_024_03062_2
crossref_primary_10_1177_0748730421999870
crossref_primary_10_1016_j_preteyeres_2023_101170
crossref_primary_10_1172_JCI154218
crossref_primary_10_3389_fcell_2024_1332944
crossref_primary_10_1016_j_jbc_2024_107238
crossref_primary_10_1074_jbc_REV120_014405
crossref_primary_10_1016_j_jbc_2024_105678
crossref_primary_10_1016_j_preteyeres_2021_101015
crossref_primary_10_1016_j_preteyeres_2021_101037
crossref_primary_10_1016_j_ymthe_2020_11_029
crossref_primary_10_14233_ajomc_2022_AJOMC_P409
Cites_doi 10.1016/j.tibs.2010.01.005
10.1146/annurev.cellbio.16.1.365
10.1021/cr400107q
10.1074/jbc.M110.195198
10.1074/jbc.M608375200
10.1038/nchembio.1799
10.1073/pnas.0706367104
10.1016/j.preteyeres.2009.05.003
10.1172/JCI79651
10.1016/S0896-6273(02)00912-1
10.1085/jgp.36.2.269
10.1126/science.289.5480.739
10.1016/S0896-6273(01)00248-3
10.1038/s41467-017-00018-4
10.1083/jcb.97.3.703
10.1146/annurev-cellbio-100616-060432
10.1074/jbc.M208882200
10.1016/j.neuron.2019.04.004
10.1042/bj2850907
10.1073/pnas.86.23.9606
10.1016/0005-2736(88)90438-5
10.1016/j.preteyeres.2015.07.004
10.1016/j.cell.2005.06.042
10.1038/90089
10.1021/bi1001085
10.1016/j.bbalip.2020.158665
10.1073/pnas.1802519115
10.1038/ng0397-236
10.1021/bi00468a013
10.1016/j.visres.2003.09.012
10.1146/annurev-nutr-071811-150748
10.1083/jcb.200311079
10.1146/annurev-vision-111815-114407
10.1073/pnas.1212025109
10.1073/pnas.0907454106
10.1016/0006-291X(82)90655-6
10.1046/j.1471-4159.2003.01741.x
10.1038/3813
10.1128/MCB.20.12.4275-4287.2000
10.1146/annurev.biochem.75.103004.142743
10.1038/nchembio.1114
10.1016/S0006-3495(81)84848-5
10.1172/JCI80950
10.1073/pnas.0504167102
10.1111/j.1432-1033.1980.tb06002.x
10.1016/0042-6989(89)90026-6
10.1073/pnas.0707477104
10.1126/science.aad8266
10.1073/pnas.0503460102
10.1096/fj.201800467R
10.1038/nchem.2398
10.1073/pnas.1319142111
10.1073/pnas.0708405105
10.1073/pnas.150236297
10.1016/j.cmet.2008.01.009
10.1074/jbc.M112384200
10.1073/pnas.2234461100
10.1146/annurev.pharmtox.47.120505.105225
10.1074/jbc.RA119.011374
10.1126/science.1136244
10.1085/jgp.201511538
10.1085/jgp.201711815
10.1021/acs.biochem.6b00907
10.1093/molbev/msr313
10.1073/pnas.0906600106
10.1021/cr4003769
10.1016/S0076-6879(00)16739-4
10.1074/jbc.RA119.011169
10.1016/S0021-9258(19)42194-7
10.1073/pnas.250478897
10.1113/jphysiol.2003.051250
10.1073/pnas.0503318102
10.1073/pnas.0806593105
10.1038/s41598-017-02549-8
10.1021/ja411366w
10.1038/214573a0
10.1017/S0952523817000013
10.1016/j.cub.2009.07.054
10.1074/jbc.M115.682096
10.1038/nn.2258
10.1021/bi00217a001
10.1016/j.preteyeres.2010.11.001
10.1074/jbc.M509351200
10.1038/270540a0
10.1016/j.preteyeres.2004.03.001
10.1016/S0042-6989(97)00198-3
10.1096/fj.201802493R
ContentType Journal Article
Copyright Copyright National Academy of Sciences Aug 18, 2020
2020
Copyright_xml – notice: Copyright National Academy of Sciences Aug 18, 2020
– notice: 2020
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2008211117
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef


Virology and AIDS Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 19638
ExternalDocumentID 10_1073_pnas_2008211117
32759209
26968549
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY009339
– fundername: NEI NIH HHS
  grantid: R24 EY027283
– fundername: NEI NIH HHS
  grantid: U01 EY025451
– fundername: NEI NIH HHS
  grantid: R01 EY019312
– fundername: BLRD VA
  grantid: I01 BX004939
– fundername: HHS | NIH | National Eye Institute (NEI)
  grantid: EY009339
– fundername: HHS | NIH | National Eye Institute (NEI)
  grantid: EY027283
– fundername: U.S. Department of Veterans Affairs (VA)
  grantid: I01BX004939
– fundername: HHS | NIH | National Eye Institute (NEI)
  grantid: EY019312
– fundername: HHS | NIH | National Eye Institute (NEI)
  grantid: EY025451
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-33b18d6021bc03233a7c051da69617fcb26121404553645e0d27f171794fd8123
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:26:06 EDT 2024
Sat Aug 17 00:47:54 EDT 2024
Thu Oct 10 18:02:29 EDT 2024
Fri Aug 23 01:31:45 EDT 2024
Sat Sep 28 08:39:42 EDT 2024
Fri Feb 02 07:18:32 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords eye
vision
chromophore
light
retina
Language English
License Published under the PNAS license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-33b18d6021bc03233a7c051da69617fcb26121404553645e0d27f171794fd8123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-2
Edited by Jeremy Nathans, Johns Hopkins University School of Medicine, Baltimore, MD, and approved July 9, 2020 (received for review May 16, 2020)
Author contributions: K.P. and P.D.K. wrote the paper.
ORCID 0000-0002-0788-545X
0000-0003-1184-9539
OpenAccessLink https://www.pnas.org/content/pnas/117/33/19629.full.pdf
PMID 32759209
PQID 2436433452
PQPubID 42026
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7443880
proquest_miscellaneous_2431809327
proquest_journals_2436433452
crossref_primary_10_1073_pnas_2008211117
pubmed_primary_32759209
jstor_primary_26968549
PublicationCentury 2000
PublicationDate 2020-08-18
PublicationDateYYYYMMDD 2020-08-18
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_82_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_84_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_80_2
Rodieck R. W. (e_1_3_4_16_2) 1998
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_86_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_88_2
e_1_3_4_29_2
e_1_3_4_72_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_19_2
e_1_3_4_17_2
Choi E. H. (e_1_3_4_74_2) 2020
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_83_2
e_1_3_4_62_2
e_1_3_4_85_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_87_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_89_2
e_1_3_4_28_2
e_1_3_4_71_2
e_1_3_4_73_2
e_1_3_4_52_2
e_1_3_4_90_2
e_1_3_4_50_2
e_1_3_4_79_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_75_2
e_1_3_4_37_2
Ramón y Cajal S. (e_1_3_4_14_2) 1972
e_1_3_4_77_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_25_2
  doi: 10.1016/j.tibs.2010.01.005
– ident: e_1_3_4_2_2
  doi: 10.1146/annurev.cellbio.16.1.365
– ident: e_1_3_4_3_2
  doi: 10.1021/cr400107q
– ident: e_1_3_4_28_2
  doi: 10.1074/jbc.M110.195198
– ident: e_1_3_4_44_2
  doi: 10.1074/jbc.M608375200
– ident: e_1_3_4_36_2
  doi: 10.1038/nchembio.1799
– ident: e_1_3_4_17_2
  doi: 10.1073/pnas.0706367104
– ident: e_1_3_4_9_2
  doi: 10.1016/j.preteyeres.2009.05.003
– ident: e_1_3_4_78_2
  doi: 10.1172/JCI79651
– ident: e_1_3_4_51_2
  doi: 10.1016/S0896-6273(02)00912-1
– ident: e_1_3_4_67_2
  doi: 10.1085/jgp.36.2.269
– ident: e_1_3_4_24_2
  doi: 10.1126/science.289.5480.739
– ident: e_1_3_4_49_2
  doi: 10.1016/S0896-6273(01)00248-3
– ident: e_1_3_4_68_2
  doi: 10.1038/s41467-017-00018-4
– ident: e_1_3_4_39_2
  doi: 10.1083/jcb.97.3.703
– ident: e_1_3_4_7_2
  doi: 10.1146/annurev-cellbio-100616-060432
– ident: e_1_3_4_43_2
  doi: 10.1074/jbc.M208882200
– ident: e_1_3_4_76_2
  doi: 10.1016/j.neuron.2019.04.004
– ident: e_1_3_4_54_2
  doi: 10.1042/bj2850907
– ident: e_1_3_4_55_2
  doi: 10.1073/pnas.86.23.9606
– ident: e_1_3_4_87_2
  doi: 10.1016/0005-2736(88)90438-5
– ident: e_1_3_4_6_2
  doi: 10.1016/j.preteyeres.2015.07.004
– ident: e_1_3_4_33_2
  doi: 10.1016/j.cell.2005.06.042
– ident: e_1_3_4_75_2
  doi: 10.1038/90089
– ident: e_1_3_4_84_2
  doi: 10.1021/bi1001085
– ident: e_1_3_4_30_2
  doi: 10.1016/j.bbalip.2020.158665
– ident: e_1_3_4_47_2
  doi: 10.1073/pnas.1802519115
– ident: e_1_3_4_46_2
  doi: 10.1038/ng0397-236
– ident: e_1_3_4_85_2
  doi: 10.1021/bi00468a013
– ident: e_1_3_4_80_2
  doi: 10.1016/j.visres.2003.09.012
– ident: e_1_3_4_13_2
  doi: 10.1146/annurev-nutr-071811-150748
– ident: e_1_3_4_29_2
  doi: 10.1083/jcb.200311079
– ident: e_1_3_4_10_2
  doi: 10.1146/annurev-vision-111815-114407
– ident: e_1_3_4_34_2
  doi: 10.1073/pnas.1212025109
– ident: e_1_3_4_38_2
  doi: 10.1073/pnas.0907454106
– ident: e_1_3_4_86_2
  doi: 10.1016/0006-291X(82)90655-6
– ident: e_1_3_4_88_2
  doi: 10.1046/j.1471-4159.2003.01741.x
– ident: e_1_3_4_18_2
  doi: 10.1038/3813
– ident: e_1_3_4_45_2
  doi: 10.1128/MCB.20.12.4275-4287.2000
– ident: e_1_3_4_4_2
  doi: 10.1146/annurev.biochem.75.103004.142743
– ident: e_1_3_4_58_2
  doi: 10.1038/nchembio.1114
– ident: e_1_3_4_70_2
  doi: 10.1016/S0006-3495(81)84848-5
– ident: e_1_3_4_63_2
  doi: 10.1172/JCI80950
– ident: e_1_3_4_31_2
  doi: 10.1073/pnas.0504167102
– ident: e_1_3_4_22_2
  doi: 10.1111/j.1432-1033.1980.tb06002.x
– ident: e_1_3_4_81_2
  doi: 10.1016/0042-6989(89)90026-6
– ident: e_1_3_4_42_2
  doi: 10.1073/pnas.0707477104
– ident: e_1_3_4_27_2
  doi: 10.1126/science.aad8266
– ident: e_1_3_4_32_2
  doi: 10.1073/pnas.0503460102
– volume-title: The First Steps in Seeing
  year: 1998
  ident: e_1_3_4_16_2
  contributor:
    fullname: Rodieck R. W.
– ident: e_1_3_4_71_2
  doi: 10.1096/fj.201800467R
– ident: e_1_3_4_8_2
  doi: 10.1038/nchem.2398
– ident: e_1_3_4_61_2
  doi: 10.1073/pnas.1319142111
– ident: e_1_3_4_1_2
  doi: 10.1073/pnas.0708405105
– ident: e_1_3_4_19_2
  doi: 10.1073/pnas.150236297
– ident: e_1_3_4_89_2
  doi: 10.1016/j.cmet.2008.01.009
– ident: e_1_3_4_20_2
  doi: 10.1074/jbc.M112384200
– ident: e_1_3_4_21_2
  doi: 10.1073/pnas.2234461100
– ident: e_1_3_4_12_2
  doi: 10.1146/annurev.pharmtox.47.120505.105225
– ident: e_1_3_4_60_2
  doi: 10.1074/jbc.RA119.011374
– ident: e_1_3_4_26_2
  doi: 10.1126/science.1136244
– ident: e_1_3_4_48_2
  doi: 10.1085/jgp.201511538
– ident: e_1_3_4_65_2
  doi: 10.1085/jgp.201711815
– volume-title: The Structure of the Retina
  year: 1972
  ident: e_1_3_4_14_2
  contributor:
    fullname: Ramón y Cajal S.
– ident: e_1_3_4_90_2
  doi: 10.1021/acs.biochem.6b00907
– ident: e_1_3_4_79_2
  doi: 10.1093/molbev/msr313
– ident: e_1_3_4_35_2
  doi: 10.1073/pnas.0906600106
– ident: e_1_3_4_5_2
  doi: 10.1021/cr4003769
– ident: e_1_3_4_72_2
  doi: 10.1016/S0076-6879(00)16739-4
– ident: e_1_3_4_77_2
  doi: 10.1074/jbc.RA119.011169
– start-page: jlr.TR120000850
  year: 2020
  ident: e_1_3_4_74_2
  article-title: Retinoids in the visual cycle: Role of the retinal G protein-coupled receptor
  publication-title: J. Lipid Res.
  contributor:
    fullname: Choi E. H.
– ident: e_1_3_4_23_2
  doi: 10.1016/S0021-9258(19)42194-7
– ident: e_1_3_4_64_2
  doi: 10.1073/pnas.250478897
– ident: e_1_3_4_82_2
  doi: 10.1113/jphysiol.2003.051250
– ident: e_1_3_4_62_2
  doi: 10.1073/pnas.0503318102
– ident: e_1_3_4_56_2
  doi: 10.1073/pnas.0806593105
– ident: e_1_3_4_40_2
  doi: 10.1038/s41598-017-02549-8
– ident: e_1_3_4_37_2
  doi: 10.1021/ja411366w
– ident: e_1_3_4_73_2
  doi: 10.1038/214573a0
– ident: e_1_3_4_57_2
  doi: 10.1017/S0952523817000013
– ident: e_1_3_4_52_2
  doi: 10.1016/j.cub.2009.07.054
– ident: e_1_3_4_41_2
  doi: 10.1074/jbc.M115.682096
– ident: e_1_3_4_53_2
  doi: 10.1038/nn.2258
– ident: e_1_3_4_15_2
  doi: 10.1021/bi00217a001
– ident: e_1_3_4_11_2
  doi: 10.1016/j.preteyeres.2010.11.001
– ident: e_1_3_4_66_2
  doi: 10.1074/jbc.M509351200
– ident: e_1_3_4_69_2
  doi: 10.1038/270540a0
– ident: e_1_3_4_50_2
  doi: 10.1016/j.preteyeres.2004.03.001
– ident: e_1_3_4_83_2
  doi: 10.1016/S0042-6989(97)00198-3
– ident: e_1_3_4_59_2
  doi: 10.1096/fj.201802493R
SSID ssj0009580
Score 2.5804088
SecondaryResourceType review_article
Snippet The visual phototransduction cascade begins with a cis–trans photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and...
The visual phototransduction cascade begins with a - photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and cone...
The visual phototransduction cascade begins with a cis – trans photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 19629
SubjectTerms Animals
Biological Sciences
Chromophores
Continuity (mathematics)
Epithelium
Humans
Light
Light Signal Transduction
Opsins
Opsins - metabolism
PERSPECTIVE
Photoactivation
Photopigments
Photoreception
Photoreceptors
Phototransduction
Pigments
Regeneration
Retina
Retinal Cone Photoreceptor Cells - metabolism
Retinal pigment epithelium
Retinal Pigment Epithelium - metabolism
Retinaldehyde
Retinaldehyde - biosynthesis
Retinaldehyde - chemistry
Vision
Vision, Ocular
Visual pigments
Title Shedding new light on the generation of the visual chromophore
URI https://www.jstor.org/stable/26968549
https://www.ncbi.nlm.nih.gov/pubmed/32759209
https://www.proquest.com/docview/2436433452
https://search.proquest.com/docview/2431809327
https://pubmed.ncbi.nlm.nih.gov/PMC7443880
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qT17Et6tVInioh7Vtkn1dBBGlCBVBBW_LJpvYgu4Wbf39zmQfPvDkdfPYMDPJfMNMvgCcJApBvgmtn5jA-NLqxM_Qk_iGiExCq6xwGd3JbTh-lDdPwVMHguYujCva12p2Vry8nhWzqautnL_qQVMnNribXEZSEofJYAVW0ECbEL1l2o2reyccj1_JZcPnE4nBvMgcQ3fM6aCg9_cEj4KEUzXiN69UFSb-BTl_V05-c0XX67BWY0h2Ua11Azqm2ISNepe-s35NJX26Bef3U5OTd2KIntkLBeKsLBiCPvbsOpFaWGndl4_Z-xKn1VOq0JtPyzezDY_XVw-XY79-McHX6PgXvhBqFOch-m2lh4ILkUUad12ehQkiFauVIwyTCOMCSj-aYc4jO4poU9ocXb3YgW5RFmYPWKxjO8plrMJAoQqHipSXKwxpzVAhaPOg30gsnVfEGKlLaEciJTmnX3L2YMdJtO3HiZEHA1MPeo2I03rr4DiJSxNCBviL47YZjZ4yGVlhyqXrQ7xjqD0PdiuNtJM3KvUg-qGrtgMRav9sQTtzxNq1Xe3_e-QBrHKKx4kyN-5Bd_G2NIcIWhbqyBnpJ0BD6IM
link.rule.ids 230,315,730,783,787,888,27938,27939,53808,53810
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R7YFeaCmPhm6LkTjQQ3aztvO6VKpQ0ZayCAmouEWxY7OrQrKC3R766zvjPAqoF3qN7STWN2N_oxl_BthPFZJ8E1k_NaHxpdWpn-NO4hsSMomsssJldCen0fhSHl-FVysQtmdhXNG-VrNBeXM7KGdTV1s5v9XDtk5seDY5jKUkDZPhC3iJ_hokbZDeae0m9ckTjguw5LJV9InFcF7mTqM74bRU0A18gsdhyqke8cG-VJcm_ot0Pq2dfLAZHb2GH-006hqUn4PlQg307ycKj8-e5xtYa-gp-1I3r8OKKd_CerMA3LODRqX60wZ8Pp-agjY-hsSc3VCMz6qSIZ9k164TIc4q6578mt0v8bV6SsV_82l1Zzbh8ujrxeHYby5j8DVyioUvhBolRYSUQOlAcCHyWKNDF3mUIgmyWjktMokMMaTMpgkKHttRTP5uC2QRYgt6ZVWad8ASndhRIRMVhQqtI1BkF4XCaNkECvmgBwctFNm81tzIXK48FhkBmP0F0IMtB1XXj5PYD8a8HvRb7LLGK3GcxF8TQob4ib2uGf2JkiR5aaql60OSZmgWHmzXUHcvb23Fg_iREXQdSKv7cQtC6zS7Gyh3_nvkLqyOLyYn2cm30-_v4RWnsJ-UeZM-9BZ3S_MBudFCfXSe8AcUvAqO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61IFW9QGkLhFLqSj3QQza7tvO6VKqAFS0PIbVIqJcodmx2BSQR7HLg13fGeXRBPXGNx06sb8b-Rp58BviSKiT5JrJ-akLjS6tTP8edxDckZBJZZYU70T05jQ7P5c-L8GLhqi9XtK_VdFBe3wzK6cTVVtY3OujqxIKzk71YStIwCerCBi9hOSSVqi5R7_V2k-bvE46LsOSyU_WJRVCXudPpTjgtF3QLn-BxmHKqSVzYm5ryxP8Rz6f1kwsb0ngV_nRTaepQrgbzmRrohycqj8-a6xtYaWkq-96YrMELU76FtXYhuGO7rVr113fw7dfEFLQBMiTo7JpyfVaVDHklu3RGhDyrrHtyP72b47B6QkWA9aS6Ne_hfHzwe-_Qby9l8DVyi5kvhBolRYTUQOmh4ELkscbALvIoRTJktXKaZBKZYkgnnGZY8NiOYop7WyCbEOuwVFal2QSW6MSOCpmoKFToJUNF_lEozJrNUCEv9GC3gyOrG-2NzJ2ZxyIjELN_IHqw7uDq7TiJ_mDu68F2h1_WRif2k_hpQsgQX_G5b8a4osOSvDTV3NmQtBm6hgcbDdz94J2_eBA_coTegDS7H7cgvE67u4Vz69k9P8Grs_1xdvzj9OgDvOaU_ZNAb7INS7PbufmIFGmmdlww_AV05w0F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shedding+new+light+on+the+generation+of+the+visual+chromophore&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Palczewski%2C+Krzysztof&rft.au=Kiser%2C+Philip+D.&rft.date=2020-08-18&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=33&rft.spage=19629&rft.epage=19638&rft_id=info:doi/10.1073%2Fpnas.2008211117&rft.externalDocID=26968549
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon