Emergent electromagnetic induction beyond room temperature

Emergent electromagnetic induction based on electrodynamics of noncollinear spin states may enable dramatic miniaturization of inductor elements widely used in electric circuits, yet the research is still in its infancy and many issues must be resolved toward its application. One such problem is how...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 118; no. 33; pp. 1 - 6
Main Authors Kitaori, Aki, Kanazawa, Naoya, Yokouchi, Tomoyuki, Kagawa, Fumitaka, Nagaosa, Naoto, Tokura, Yoshinori
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 17.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emergent electromagnetic induction based on electrodynamics of noncollinear spin states may enable dramatic miniaturization of inductor elements widely used in electric circuits, yet the research is still in its infancy and many issues must be resolved toward its application. One such problem is how to increase working temperature to room temperature, and possible thermal agitation effects on the quantum process of the emergent induction are unknown. We report here large emergent electromagnetic induction achieved around and above room temperature, making use of a few tens of micrometer-sized devices based on the high-temperature (up to 330 K) and short-period (≤ 3 nm) spin-spiral states of a metallic helimagnet. The observed inductance value L and its sign are observed to vary to a large extent, depending not only on the spin-helix structure controlled by temperature and applied magnetic field but also on the applied current density. The present finding on room-temperature operation and possible sign control of L may provide a step toward realizing microscale quantum inductors on the basis of emergent electromagnetism in spin-helix states.
AbstractList Emergent inductors that utilize emergent electric fields generated by the current-induced motion of spiral spin textures have the potential to realize dramatic miniaturization of inductance elements. By using YMn 6 Sn 6 , which has been attracting attention as a kagome lattice magnetic material in recent years, we have realized the room-temperature operation of emergent inductors. This micron-scale emergent inductor device shows not only an inductance as large as a commercially available product but also a sign change of inductance, which is a previously undescribed phenomenon. Emergent electromagnetic induction based on electrodynamics of noncollinear spin states may enable dramatic miniaturization of inductor elements widely used in electric circuits, yet the research is still in its infancy and many issues must be resolved toward its application. One such problem is how to increase working temperature to room temperature, and possible thermal agitation effects on the quantum process of the emergent induction are unknown. We report here large emergent electromagnetic induction achieved around and above room temperature, making use of a few tens of micrometer-sized devices based on the high-temperature (up to 330 K) and short-period ( ≤ 3 nm) spin-spiral states of a metallic helimagnet. The observed inductance value L and its sign are observed to vary to a large extent, depending not only on the spin-helix structure controlled by temperature and applied magnetic field but also on the applied current density. The present finding on room-temperature operation and possible sign control of L may provide a step toward realizing microscale quantum inductors on the basis of emergent electromagnetism in spin-helix states.
Emergent electromagnetic induction based on electrodynamics of noncollinear spin states may enable dramatic miniaturization of inductor elements widely used in electric circuits, yet the research is still in its infancy and many issues must be resolved toward its application. One such problem is how to increase working temperature to room temperature, and possible thermal agitation effects on the quantum process of the emergent induction are unknown. We report here large emergent electromagnetic induction achieved around and above room temperature, making use of a few tens of micrometer-sized devices based on the high-temperature (up to 330 K) and short-period (≤ 3 nm) spin-spiral states of a metallic helimagnet. The observed inductance value and its sign are observed to vary to a large extent, depending not only on the spin-helix structure controlled by temperature and applied magnetic field but also on the applied current density. The present finding on room-temperature operation and possible sign control of may provide a step toward realizing microscale quantum inductors on the basis of emergent electromagnetism in spin-helix states.
Emergent electromagnetic induction based on electrodynamics of noncollinear spin states may enable dramatic miniaturization of inductor elements widely used in electric circuits, yet the research is still in its infancy and many issues must be resolved toward its application. One such problem is how to increase working temperature to room temperature, and possible thermal agitation effects on the quantum process of the emergent induction are unknown. We report here large emergent electromagnetic induction achieved around and above room temperature, making use of a few tens of micrometer-sized devices based on the high-temperature (up to 330 K) and short-period (≤ 3 nm) spin-spiral states of a metallic helimagnet. The observed inductance value L and its sign are observed to vary to a large extent, depending not only on the spin-helix structure controlled by temperature and applied magnetic field but also on the applied current density. The present finding on room-temperature operation and possible sign control of L may provide a step toward realizing microscale quantum inductors on the basis of emergent electromagnetism in spin-helix states.
Emergent electromagnetic induction based on electrodynamics of noncollinear spin states may enable dramatic miniaturization of inductor elements widely used in electric circuits, yet the research is still in its infancy and many issues must be resolved toward its application. One such problem is how to increase working temperature to room temperature, and possible thermal agitation effects on the quantum process of the emergent induction are unknown. We report here large emergent electromagnetic induction achieved around and above room temperature, making use of a few tens of micrometer-sized devices based on the high-temperature (up to 330 K) and short-period (≤ 3 nm) spin-spiral states of a metallic helimagnet. The observed inductance value L and its sign are observed to vary to a large extent, depending not only on the spin-helix structure controlled by temperature and applied magnetic field but also on the applied current density. The present finding on room-temperature operation and possible sign control of L may provide a step toward realizing microscale quantum inductors on the basis of emergent electromagnetism in spin-helix states.Emergent electromagnetic induction based on electrodynamics of noncollinear spin states may enable dramatic miniaturization of inductor elements widely used in electric circuits, yet the research is still in its infancy and many issues must be resolved toward its application. One such problem is how to increase working temperature to room temperature, and possible thermal agitation effects on the quantum process of the emergent induction are unknown. We report here large emergent electromagnetic induction achieved around and above room temperature, making use of a few tens of micrometer-sized devices based on the high-temperature (up to 330 K) and short-period (≤ 3 nm) spin-spiral states of a metallic helimagnet. The observed inductance value L and its sign are observed to vary to a large extent, depending not only on the spin-helix structure controlled by temperature and applied magnetic field but also on the applied current density. The present finding on room-temperature operation and possible sign control of L may provide a step toward realizing microscale quantum inductors on the basis of emergent electromagnetism in spin-helix states.
Significance Emergent inductors that utilize emergent electric fields generated by the current-induced motion of spiral spin textures have the potential to realize dramatic miniaturization of inductance elements. By using YMn 6 Sn 6 , which has been attracting attention as a kagome lattice magnetic material in recent years, we have realized the room-temperature operation of emergent inductors. This micron-scale emergent inductor device shows not only an inductance as large as a commercially available product but also a sign change of inductance, which is a previously undescribed phenomenon. Emergent electromagnetic induction based on electrodynamics of noncollinear spin states may enable dramatic miniaturization of inductor elements widely used in electric circuits, yet the research is still in its infancy and many issues must be resolved toward its application. One such problem is how to increase working temperature to room temperature, and possible thermal agitation effects on the quantum process of the emergent induction are unknown. We report here large emergent electromagnetic induction achieved around and above room temperature, making use of a few tens of micrometer-sized devices based on the high-temperature (up to 330 K) and short-period ( ≤ 3 nm) spin-spiral states of a metallic helimagnet. The observed inductance value L and its sign are observed to vary to a large extent, depending not only on the spin-helix structure controlled by temperature and applied magnetic field but also on the applied current density. The present finding on room-temperature operation and possible sign control of L may provide a step toward realizing microscale quantum inductors on the basis of emergent electromagnetism in spin-helix states.
Author Kanazawa, Naoya
Nagaosa, Naoto
Yokouchi, Tomoyuki
Kitaori, Aki
Kagawa, Fumitaka
Tokura, Yoshinori
Author_xml – sequence: 1
  givenname: Aki
  surname: Kitaori
  fullname: Kitaori, Aki
– sequence: 2
  givenname: Naoya
  surname: Kanazawa
  fullname: Kanazawa, Naoya
– sequence: 3
  givenname: Tomoyuki
  surname: Yokouchi
  fullname: Yokouchi, Tomoyuki
– sequence: 4
  givenname: Fumitaka
  surname: Kagawa
  fullname: Kagawa, Fumitaka
– sequence: 5
  givenname: Naoto
  surname: Nagaosa
  fullname: Nagaosa, Naoto
– sequence: 6
  givenname: Yoshinori
  surname: Tokura
  fullname: Tokura, Yoshinori
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34389677$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtv1DAUhS1URKeFNStQJDZs0l6_YpsFEqrKQ6rEBtaW41wPGSX2YDuV-u_JaMrwWN3F-e7ROToX5CymiIS8pHBFQfHrfXTlilGQgjFK9ROyoWBo2wkDZ2QDwFSrBRPn5KKUHQAYqeEZOeeCa9MptSHvbmfMW4y1wQl9zWl224h19M0Yh8XXMcWmx4cUhyanNDcV5z1mV5eMz8nT4KaCLx7vJfn-8fbbzef27uunLzcf7lovwdSWgw-6Y7pDppR3QlGHxvcIwTEMPAxG9lJ3fcBuGKjjWmoRlIEhIOMoHL8k74---6WfcfBr2Owmu8_j7PKDTW60_ypx_GG36d5qrowRejV4-2iQ088FS7XzWDxOk4uYlmKZ7KjQWlK5om_-Q3dpyXGtd6C4ZEwCW6nrI-VzKiVjOIWhYA-72MMu9s8u68frvzuc-N9DrMCrI7ArNeWTzhQoobTgvwACApaA
CitedBy_id crossref_primary_10_1038_s41535_023_00616_0
crossref_primary_10_1103_PhysRevB_105_224405
crossref_primary_10_1103_PhysRevB_107_L100408
crossref_primary_10_7566_JPSJ_92_081002
crossref_primary_10_35848_1882_0786_acd617
crossref_primary_10_1038_s42005_022_00833_2
crossref_primary_10_1103_PhysRevMaterials_7_024404
crossref_primary_10_1038_s42005_024_01656_z
crossref_primary_10_1088_1361_648X_ac7bcb
crossref_primary_10_1088_2634_4386_ace549
crossref_primary_10_1103_PhysRevLett_132_116501
crossref_primary_10_1038_s42005_021_00765_3
crossref_primary_10_1016_j_jmmm_2022_170036
crossref_primary_10_1063_5_0127091
crossref_primary_10_1063_5_0181272
crossref_primary_10_1063_5_0133335
crossref_primary_10_1103_PhysRevB_107_024406
crossref_primary_10_1103_PhysRevB_108_134436
crossref_primary_10_7566_JPSJ_92_024702
crossref_primary_10_7566_JPSJ_92_074705
crossref_primary_10_1002_adfm_202200356
crossref_primary_10_2139_ssrn_4188802
crossref_primary_10_7566_JPSJ_91_101002
crossref_primary_10_1103_PhysRevLett_128_147201
crossref_primary_10_1088_1361_6633_acfd3d
crossref_primary_10_1038_s44306_023_00001_4
crossref_primary_10_1038_s44306_023_00004_1
Cites_doi 10.1103/RevModPhys.82.1959
10.1103/PhysRevLett.87.236602
10.1134/S0021364015100057
10.1103/PhysRevB.103.014416
10.1038/s41570-019-0087-1
10.1038/nphys2231
10.1103/PhysRevLett.98.246601
10.7567/1347-4065/ab5294
10.1088/0953-8984/28/28/286002
10.1103/PhysRevLett.107.236602
10.1103/PhysRevLett.102.186602
10.1016/j.jmmm.2006.10.577
10.1126/sciadv.abe2680
10.1016/0925-8388(95)01998-7
10.1098/rspa.1984.0023
10.1103/PhysRevB.103.L100402
10.1038/nnano.2013.243
10.1021/jacs.0c04537
10.1103/PhysRevB.101.100405
10.1021/acs.jpcc.0c02584
10.1038/s41586-020-2775-x
10.1107/S0021889811038970
10.1107/S0108768192011510
10.1146/annurev.matsci.37.052506.084243
10.1103/PhysRevB.93.180408
10.1002/1521-3749(200211)628:11<2549::AID-ZAAC2549>3.0.CO;2-X
10.1038/s41467-019-13675-4
10.1103/PhysRevB.98.054410
10.1103/PhysRevB.86.214426
10.1038/s42005-021-00765-3
10.1103/PhysRevLett.102.067201
10.1103/PhysRevLett.108.147202
10.1016/j.jallcom.2005.04.080
ContentType Journal Article
Copyright Copyright National Academy of Sciences Aug 17, 2021
2021
Copyright_xml – notice: Copyright National Academy of Sciences Aug 17, 2021
– notice: 2021
DBID NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2105422118
DatabaseName PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
Virology and AIDS Abstracts
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 6
ExternalDocumentID 10_1073_pnas_2105422118
34389677
27074784
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: JP20H05155
– fundername: MEXT | Japan Science and Technology Agency (JST)
  grantid: JPMJCR16F1
– fundername: MEXT | Japan Science and Technology Agency (JST)
  grantid: JPMJCR1874
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: JP20H01859
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACV
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-30cf86286e277ca471ae9cbe0fa2ef3fd95b586bfe6dd1a38584f790dfe23e4a3
IEDL.DBID RPM
ISSN 0027-8424
1091-6490
IngestDate Tue Sep 17 21:28:06 EDT 2024
Sat Oct 26 04:21:21 EDT 2024
Thu Oct 10 16:32:14 EDT 2024
Fri Aug 23 01:31:58 EDT 2024
Sat Nov 02 12:06:15 EDT 2024
Sun Oct 20 12:50:16 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords emergent inductor
spiral magnet
room temperature
Language English
License Published under the PNAS license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-30cf86286e277ca471ae9cbe0fa2ef3fd95b586bfe6dd1a38584f790dfe23e4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: N.N. and Y.T. designed research; A.K., N.K., F.K., N.N., and Y.T. performed research; A.K., N.K., T.Y., F.K., and Y.T. analyzed data; and A.K., N.K., T.Y., N.N., and Y.T. wrote the paper.
Reviewers: A.R., Universität zu Köln; and K.L.W., University of California, Los Angeles.
Contributed by Naoto Nagaosa, July 9, 2021 (sent for review March 20, 2021; reviewed by Achim Rosch and Kang L. Wang)
ORCID 0000-0002-2732-4983
0000-0003-3270-2915
0000-0002-7748-8759
OpenAccessLink https://www.pnas.org/content/pnas/118/33/e2105422118.full.pdf
PMID 34389677
PQID 2563522502
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8379948
proquest_miscellaneous_2561488515
proquest_journals_2563522502
crossref_primary_10_1073_pnas_2105422118
pubmed_primary_34389677
jstor_primary_27074784
PublicationCentury 2000
PublicationDate 2021-08-17
PublicationDateYYYYMMDD 2021-08-17
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2021
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
Volovik G. E. (e_1_3_4_8_2) 1987; 20
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_6_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_23_2
e_1_3_4_20_2
e_1_3_4_21_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_16_2
e_1_3_4_13_2
e_1_3_4_14_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
References_xml – ident: e_1_3_4_4_2
  doi: 10.1103/RevModPhys.82.1959
– ident: e_1_3_4_18_2
  doi: 10.1103/PhysRevLett.87.236602
– ident: e_1_3_4_27_2
  doi: 10.1134/S0021364015100057
– ident: e_1_3_4_28_2
  doi: 10.1103/PhysRevB.103.014416
– ident: e_1_3_4_16_2
  doi: 10.1038/s41570-019-0087-1
– ident: e_1_3_4_7_2
  doi: 10.1038/nphys2231
– ident: e_1_3_4_9_2
  doi: 10.1103/PhysRevLett.98.246601
– ident: e_1_3_4_1_2
  doi: 10.7567/1347-4065/ab5294
– ident: e_1_3_4_22_2
  doi: 10.1088/0953-8984/28/28/286002
– ident: e_1_3_4_12_2
  doi: 10.1103/PhysRevLett.107.236602
– ident: e_1_3_4_6_2
  doi: 10.1103/PhysRevLett.102.186602
– ident: e_1_3_4_26_2
  doi: 10.1016/j.jmmm.2006.10.577
– ident: e_1_3_4_29_2
  doi: 10.1126/sciadv.abe2680
– ident: e_1_3_4_24_2
  doi: 10.1016/0925-8388(95)01998-7
– ident: e_1_3_4_3_2
  doi: 10.1098/rspa.1984.0023
– ident: e_1_3_4_32_2
  doi: 10.1103/PhysRevB.103.L100402
– ident: e_1_3_4_5_2
  doi: 10.1038/nnano.2013.243
– ident: e_1_3_4_15_2
  doi: 10.1021/jacs.0c04537
– volume: 20
  start-page: L83
  year: 1987
  ident: e_1_3_4_8_2
  article-title: Linear momentum in ferromagnets
  publication-title: J. Phys. Chem.
  contributor:
    fullname: Volovik G. E.
– ident: e_1_3_4_30_2
  doi: 10.1103/PhysRevB.101.100405
– ident: e_1_3_4_17_2
  doi: 10.1021/acs.jpcc.0c02584
– ident: e_1_3_4_2_2
  doi: 10.1038/s41586-020-2775-x
– ident: e_1_3_4_34_2
  doi: 10.1107/S0021889811038970
– ident: e_1_3_4_19_2
  doi: 10.1107/S0108768192011510
– ident: e_1_3_4_31_2
  doi: 10.1146/annurev.matsci.37.052506.084243
– ident: e_1_3_4_14_2
  doi: 10.1103/PhysRevB.93.180408
– ident: e_1_3_4_20_2
  doi: 10.1002/1521-3749(200211)628:11<2549::AID-ZAAC2549>3.0.CO;2-X
– ident: e_1_3_4_23_2
  doi: 10.1038/s41467-019-13675-4
– ident: e_1_3_4_21_2
  doi: 10.1103/PhysRevB.98.054410
– ident: e_1_3_4_13_2
  doi: 10.1103/PhysRevB.86.214426
– ident: e_1_3_4_33_2
  doi: 10.1038/s42005-021-00765-3
– ident: e_1_3_4_10_2
  doi: 10.1103/PhysRevLett.102.067201
– ident: e_1_3_4_11_2
  doi: 10.1103/PhysRevLett.108.147202
– ident: e_1_3_4_25_2
  doi: 10.1016/j.jallcom.2005.04.080
SSID ssj0009580
Score 2.5979693
Snippet Emergent electromagnetic induction based on electrodynamics of noncollinear spin states may enable dramatic miniaturization of inductor elements widely used in...
Significance Emergent inductors that utilize emergent electric fields generated by the current-induced motion of spiral spin textures have the potential to...
Emergent inductors that utilize emergent electric fields generated by the current-induced motion of spiral spin textures have the potential to realize dramatic...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Circuits
Electrodynamics
Electromagnetic induction
Electromagnetism
High temperature
Inductance
Inductors
Magnetic fields
Miniaturization
Physical Sciences
Room temperature
Title Emergent electromagnetic induction beyond room temperature
URI https://www.jstor.org/stable/27074784
https://www.ncbi.nlm.nih.gov/pubmed/34389677
https://www.proquest.com/docview/2563522502
https://www.proquest.com/docview/2561488515
https://pubmed.ncbi.nlm.nih.gov/PMC8379948
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT8IwEL4AT74YUdEpkpn4gA9jo-vWzTdDIKjB-CAJb0u7dUoig8j4_712PxTjk8_tuuV67d23u_sO4EY4XKLpHlp-mCBAGXrSEoHLLTTm0mfSEbFQvwZmz_50Th8X3qIBXlULo5P2Y7EcZB-rQbZ817mVm1VsV3li9stshKAqDGlgN6GJClpB9JppNyjqTghev5TQis-HufYm49sBYhyPEsQ9qlWfq5p_-4ztWaUiMfEvl_N35uQPUzQ5gsPShzTvi29tQ0Nmx9AuT-nW7JdU0rcncDcuqitzs2x3s-JvmSpbNBGKF7yxptA1LKbyoE1FVFWyLJ_CfDJ-HU2tsluCFaPRzy3XidNAFZpKwljM0ehwGcZCOiknMnXTJPSEF_gilX6SDLkKCNKUhU6SSuJKyt0OtLJ1Js_BZAJRc4qOCl5-CN9ooMKPaOoTophHGTWgX0kr2hSkGJEOZjM3UjKOvmVsQEdLs55HmKbsxzW6lXij8tjgc56vHEJ8mQHX9TAqvIpi8Eyud3oOQjh0FD0DzordqBevttMAtrdP9QRFpr0_gjqmSbVLnbr495OXcEBUvouiy2VdaOWfO3mFDksueuiqPzz1tJp-AfRB6qk
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGWDh_QgUCBIDDElTx4kTNoSKyqOIoUVskZ04UEFDBenCr-fsPKAVC8x-RNbZvu-L774DOBYOl-i625YfJkhQ2p60ROByC5259Jl0RCzUr4Hend8d0OtH73EOvCoXRgftx2JoZ68jOxs-69jK8ShuVXFirfveBZKqMKRBax4W8Lw6tCLptdZuUGSeELyAKaGVog9zW-OMf9jIcjxKkPmoYn2uKv_tMzbll4rQxN9A52zs5A9ndLkCD9UyihiUF3uSCzv-nFF4_PM6V2G5hKfmedG8BnMyW4e18gL4ME9KlerTDTjrFImbuVlW0hnxp0xlRJrI8gtJWlPo9BhTgXNTaWCVAs6bMLjs9C-6VlmIwYoRT-SW68RpoHJYJWEs5ujPuAxjIZ2UE5m6aRJ6wgt8kUo_SdpcvTXSlIVOkkriSsrdLWhkb5ncAZMJJOQpYiC8V5EZ0kC9bCKKSIgSNWXUgJPKDNG40NuI9Ds5cyNlvOjbeAZsaTPV_QjT1QBwjmZlt6g8kTjO8xXWxI8ZcFQ341lSDyQ8k28T3QfZIWJQz4Dtwsz15NU-MYBNbYC6g9Lpnm5Bs2q97tKMu_8eeQiL3X7vNrq9urvZgyWiwmqUKi9rQiN_n8h9xEW5ONCn4AvuwQvF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsQwEB1xSIgGWM7AAkGigCLHOk6c0CFgxS0KkBBNZCc2INiwgmzD1zN2DlhERe0jssb2vBfPvAHYFT6X6Lp7TpTkSFB6oXREHHAHnbmMmPRFJvSvgavr6PSOnt-H9z9KfZmg_Uw8u8XrwC2en0xs5XCQeU2cmHdzdYSkKklo7A1z5U3CNJ5ZP2qIequ3G1fZJwQvYUpoo-rDAm9Y8A8XmU5ICbIfXbAv0CXAI8bGfFMVnvgX8PwdP_nDIfXn4aFZShWH8uKOSuFmn79UHv-11gWYq2GqfVh16cCELBahU18EH_ZerVa9vwQHJ1UCZ2nXFXUG_LHQmZE2sv1KmtYWJk3G1iDd1lpYtZDzMtz1T26PTp26IIOTIa4oncDPVKxzWSVhLOPo17hMMiF9xYlUgcqTUIRxJJSM8rzH9ZsjVSzxcyVJICkPVmCqeCvkGthMIDFXiIXwfkWGSGP9woloIida3JRRC_YaU6TDSncjNe_lLEi1AdNvA1qwYkzV9iPMVAXAObqN7dL6ZOK4MNKYEz9mwU7bjGdKP5TwQr6NTB9kiYhFQwtWK1O3kzd7xQI2tgnaDlqve7wFTWt0u2tTrv975DbM3Bz308uz64sNmCU6ukaL87IuTJXvI7mJ8KgUW-YgfAFd0w5F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergent+electromagnetic+induction+beyond+room+temperature&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kitaori%2C+Aki&rft.au=Kanazawa%2C+Naoya&rft.au=Yokouchi%2C+Tomoyuki&rft.au=Kagawa%2C+Fumitaka&rft.date=2021-08-17&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=118&rft.issue=33&rft_id=info:doi/10.1073%2Fpnas.2105422118&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon