Transparency versus Efficiency: Important Considerations in the Design of Photoacid Generators for ArF Lithography

The advent of 193nm lithography has stimulated the search for novel photocid generators (PAGs) with increased transparency at 193nm. This need for more transparency stems from the use of phenyl groups in the classic 248nm PACs, such as triphenylsulfonium salts. Unfortunately for 193nm resist develop...

Full description

Saved in:
Bibliographic Details
Published inJournal of Photopolymer Science and Technology Vol. 15; no. 3; pp. 453 - 464
Main Authors Cameron, James F., Pohlers, Gerd, Suzuki, Yasuhiro, Chan, Nicholas
Format Journal Article
LanguageEnglish
Published The Society of Photopolymer Science and Technology(SPST) 2002
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The advent of 193nm lithography has stimulated the search for novel photocid generators (PAGs) with increased transparency at 193nm. This need for more transparency stems from the use of phenyl groups in the classic 248nm PACs, such as triphenylsulfonium salts. Unfortunately for 193nm resist development, the phenyl group is highly absorbing at that wavelength, thereby severely restricting the PAG formulation space. It has not yet been pointed out, however, that photoacid generation efficiency has also become more important for 193nm systems. The reason is that 193 polymers cannot sensitize the PAG, as is the case for 248nm phenolic systems, i.e. the light absorbed by the polymer does not contribute to acid generation. Furthermore, the photoacid generation efficiency of sulfonium PACs drops considerably when going from 248nm to 193nm. Thus, the ability to quantify the photoefficiency of a new PAG quickly becomes key to successful new 193nm PAG development. While there are many ways to determine the quantum yield of photoacid generation Φ. of PACs, they are usually both time and labor-intensive. Therefore, in the first part of this paper, we describe the P-parameter as a fast, simple and more practical way than the quantum yield, Φ to characterize the photoefficiency of a PAG. Results for a number of sulfonium PAGs at both 248 and 193nm are determined this way, and the observed trends are discussed. In the second part of this work we investigate how lithographic performance is impacted by those two parameters. A transparency/efficiency matrix of nine PAGs is evaluated in a standard 193nm resist formulation. The results indicate that the PAGs with a combination of high efficiency and high transparency yield the best lithographic results, underlining the importance of efficiency and transparency as key parametesr in 193nm PAG design.
AbstractList The advent of 193nm lithography has stimulated the search for novel photocid generators (PAGs) with increased transparency at 193nm. This need for more transparency stems from the use of phenyl groups in the classic 248nm PACs, such as triphenylsulfonium salts. Unfortunately for 193nm resist development, the phenyl group is highly absorbing at that wavelength, thereby severely restricting the PAG formulation space. It has not yet been pointed out, however, that photoacid generation efficiency has also become more important for 193nm systems. The reason is that 193 polymers cannot sensitize the PAG, as is the case for 248nm phenolic systems, i.e. the light absorbed by the polymer does not contribute to acid generation. Furthermore, the photoacid generation efficiency of sulfonium PACs drops considerably when going from 248nm to 193nm. Thus, the ability to quantify the photoefficiency of a new PAG quickly becomes key to successful new 193nm PAG development. While there are many ways to determine the quantum yield of photoacid generation Φ. of PACs, they are usually both time and labor-intensive. Therefore, in the first part of this paper, we describe the P-parameter as a fast, simple and more practical way than the quantum yield, Φ to characterize the photoefficiency of a PAG. Results for a number of sulfonium PAGs at both 248 and 193nm are determined this way, and the observed trends are discussed. In the second part of this work we investigate how lithographic performance is impacted by those two parameters. A transparency/efficiency matrix of nine PAGs is evaluated in a standard 193nm resist formulation. The results indicate that the PAGs with a combination of high efficiency and high transparency yield the best lithographic results, underlining the importance of efficiency and transparency as key parametesr in 193nm PAG design.
Author Suzuki, Yasuhiro
Chan, Nicholas
Cameron, James F.
Pohlers, Gerd
Author_xml – sequence: 1
  fullname: Cameron, James F.
  organization: Shipley Company, Microelectronic Materials Research and Development Laboratories
– sequence: 2
  fullname: Pohlers, Gerd
  organization: Shipley Company, Microelectronic Materials Research and Development Laboratories
– sequence: 3
  fullname: Suzuki, Yasuhiro
  organization: Shipley Company, Microelectronic Materials Research and Development Laboratories
– sequence: 4
  fullname: Chan, Nicholas
  organization: Shipley Company, Microelectronic Materials Research and Development Laboratories
BookMark eNpVkMFKAzEQhoNUsFWfwEteYGvSZLuJt1JtLSzoQc9LzE66kTZZJlHo29ulUvQyMwz_NwzfhIxCDEDIHWfTmdTyvu9ijn3cHfaAU15OZSkuyJgLqYu5EPMRGTPNZaFnUl6RSUqfjAlRlnpM8A1NSL1BCPZAvwHTV6JPznnrh80D3ez7iNmETJcxJN8CmuyPE_WB5g7oIyS_DTQ6-jo8Yaxv6RrCEIuYqItIF7iitc9d3KLpu8MNuXRml-D2t1-T99XT2_K5qF_Wm-WiLmzJdC5mmoP7UBqYamWrnVL6wwghZsxKVRnGxRyqkpVKMiadNUxUyhhb6blqGbBKXBNxumsxpoTgmh793uCh4awZtDV_tTW8bI7ajlR9oj5TNls4Mwaztzv4x3Ct1MCJUzni55jtDDYQxA-WqoSO
CitedBy_id crossref_primary_10_1021_cm062802k
crossref_primary_10_1021_cm802343u
crossref_primary_10_2494_photopolymer_30_351
crossref_primary_10_1039_b408992h
crossref_primary_10_1117_1_3259205
ContentType Journal Article
Copyright The Technical Association of Photopolymers, Japan
Copyright_xml – notice: The Technical Association of Photopolymers, Japan
DBID AAYXX
CITATION
DOI 10.2494/photopolymer.15.453
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1349-6336
EndPage 464
ExternalDocumentID 10_2494_photopolymer_15_453
article_photopolymer1988_15_3_15_3_453_article_char_en
GroupedDBID 2WC
5GY
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
HH5
JSF
JSH
KQ8
OK1
RJT
RNS
RZJ
TKC
ZE2
AAYXX
CITATION
ID FETCH-LOGICAL-c509t-291efb89e08d4d9f889ba33320c487a0136e750584004fca0378aac7968d0e073
ISSN 0914-9244
IngestDate Fri Aug 23 00:32:14 EDT 2024
Wed Apr 05 10:33:21 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-291efb89e08d4d9f889ba33320c487a0136e750584004fca0378aac7968d0e073
OpenAccessLink https://www.jstage.jst.go.jp/article/photopolymer1988/15/3/15_3_453/_article/-char/en
PageCount 12
ParticipantIDs crossref_primary_10_2494_photopolymer_15_453
jstage_primary_article_photopolymer1988_15_3_15_3_453_article_char_en
PublicationCentury 2000
PublicationDate 2002
2002-00-00
PublicationDateYYYYMMDD 2002-01-01
PublicationDate_xml – year: 2002
  text: 2002
PublicationDecade 2000
PublicationTitle Journal of Photopolymer Science and Technology
PublicationTitleAlternate J. Photopol. Sci. Technol.
PublicationYear 2002
Publisher The Society of Photopolymer Science and Technology(SPST)
Publisher_xml – name: The Society of Photopolymer Science and Technology(SPST)
References 4). Hacker, N. P.; Welsh, K. M. Proc. SPIE Advances in Resist Technology and Processing VIII, 1991, 1466, 384-393: Hacker, N. P.; Welsh, K. M. Adv. Chem. Ser., 1993, 236, 557-572: Allen, R. D.; Opitz, J.; Larson, C. E.; Wallow, T. I.; DiPietro, R. A.; Breyta, G.; Sooriyakumaran, R.; Hofer, D. C. J. Photopolym. Sci. Technol., 1997, 10, 503-510.
10). G. Pohlers, S. Virdee, J. C. Scaiano, R. Sinta, Chem. Mater., 8 (1996) 2654-2658.
16). S. Takechi, M. Takahashi, A. Kotachi, K. Nozaki, E. Yano, I. Hanyu, J. Photopolym. Sci. Technol., 9 (1996) 475, and references cited therein.
2). K. Nakano, K. Maeda, S. Iwasa, T. Ohfuji, E. Hasegawa, J. Photopolym. Sci. Technol., 10 (1997) 561-570; T. Kajita, H. Ishii, S. Usui, K. Douki, H. Chawanya, T. Shimokawa, J. Photopolym. Sci. Technol., 13 (2000) 625-628; K. Nakano, K. Maeda, S. Iwasa, T. Ohfuji, E. Hasegawa, J. Photopolym. Sci. Technol., 13 (2000) 235-236.
9). D. R. McKean, U. P. Schaedeli, S. A. MacDonald, Polym. Mater. Sci. Eng., 60 (1989) 45-48; D. R. McKean, U. P. Schaedeli, S. A. MacDonald, ACS Symp. Ser., 412 (Polymers in Microlithography) (1989) 27-38; D. R. McKean, U. P. Schaedeli, S. A. MacDonald, J. Polym. Sci., Part A, Polym. Chem. Ed., 27 (1989) 3927-3935.
8). J. Thackeray, M. Denison, T. Fedynyshyn, D. Kang, R. F. Sinta, ACS Symp. Ser., 614 (Microelectronics Technology) (1995) 110-123.
15). J. F. Cameron, L. Fradkin, K. Moore, G. Pohlers, Proc. 16th International Conference on. Photopolymers: Principles, Processes and Materials, Society of Plastics Engineers, Mid-Hudson Section, (2000), 99-114.
13). C. R. Szmanda, R. Kavanagh, J. Bohland, J. Cameron, P. Trefonas, R. Blacksmith, Proc. SPIE Advances in Resist Technology and Processing XVI, 3678 (1999) 857-866; C. R. Szmanda, R. L. Brainard, J. Mackevich, A. Awaji, T. Tanaka, Y. Yamada, J. Bohland, S, Tedesco, B. Dal'Zotto, W. Bruenger, M. Torkler, w. Fallman, H. Loeschner, R. Kaesmaier, P. M. Nealey, A. R. Pawloski, J. Vac. Sci. Technol. Ser. B, 17 (1999) 3356-3361.
5). J. F. Cameron, D. Kang, M. King, J. M. M. Mori, S. Virdee, T. M. Zydowsky, R. F. Sinta, Proc. 10th International Conference on Photopolymers: Principles, Processes and Materials, Society of Plastics Engineers, Mid-Hudson Section, (1997) 120-139.
7). G. Buhr, R. Dammel, C. R. Lindley, Polym. Mater. Sci. Eng., 61 (1989) 269-277.
14). J. F. Cameron, L. Fradkin, K. Moore, G. Pohlers, Proc. SPIE Advances in Resist Technology and Processing XVII, 3999 (2000) 190-203.
1). H. Ito, Proc, SPIE Advances in Resist Technology and Processing XVI, 3678 (1999) 2-12; H. Ito, J. Photopolym. Sci. Technol., 11 (1998) 379-394; E. Reichmanis, O. Nalamasu, F. M. Houlihan, Acc. Chem. Res., 32 (1999) 659-667.
3). J. F. Cameron, K. Moore, N. Chan, G.. Pohlers, Proc. SPIE Advances in Resist Technology and Processing XVIII, 4345 (2001) 106-118; J. F. Cameron, K. Moore, N. Chan, G.. Pohlers, J. Photopolym. Sci. Technol.,14, (2000), 345-356.
11). G. Pohlers, J. C. Scaiano, R. Sinta, Chem. Mater., 9 (1997) 3222-3230..
6). J. F. Cameron, S. L. Ablaza, G. Xu, W. Yueh, Proc. SPIE Advances in Resist Technology and Processing XVI, 3678 (1999) 785-799; J. F. Cameron, S. L. Ablaza, G. Xu, W. Yueh, J. Photopolym. Sci. Technol.,12 (1999) 607-620; J. F. Cameron, S. L. Ablaza, G. Xu, W. Yueh, Polym. Mater. Sci. Eng., 81 (1999) 45-46; J. F. Cameron, S. L. Ablaza, G. Xu, W. Yueh, J. Vac. Sci. Technol. Ser. B, 18 (2000) 2543-2550.
12). N. Takeyama, Y. Ueda, T. Kusumoto, H. Ueki, M. Hanabata, ACS Symp. Ser., 537 (Polymers for Microelectronics) (1994) 53-63.
References_xml
SSID ssj0033559
Score 1.6242058
Snippet The advent of 193nm lithography has stimulated the search for novel photocid generators (PAGs) with increased transparency at 193nm. This need for more...
SourceID crossref
jstage
SourceType Aggregation Database
Publisher
StartPage 453
SubjectTerms acid generating efficiency
C-parameter
deep UV and 193nm chemically amplified resists
P-parameter
photoacid generator
quantum yield
Title Transparency versus Efficiency: Important Considerations in the Design of Photoacid Generators for ArF Lithography
URI https://www.jstage.jst.go.jp/article/photopolymer1988/15/3/15_3_453/_article/-char/en
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Photopolymer Science and Technology, 2002, Vol.15(3), pp.453-464
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb5wwELWStGp7qfqppl_yobeULWCzmN6ibVZppVatspHSEzLGaLdqICJwSH59Z2ww0OSQRt0DQsiA1_Mwb4bxG0LehYnSEfw8KWPf45nyPRkr7QWxzCT3pUxiXOD89dv88Jh_OYlOtrbvjbKW2iabqctr15XcxqpwDOyKq2T_wbLuonAA9sG-sAULw_ZmNjbK5LicS13sYX5Fe46lkjfmeTVSTp9PDb8uG1eZc0geR8r5ySRwmES4ddVUUm3yTonaVOHBHMT9eonSGuuxtvVVNmtOP6t-X5zq2k0YGJS_GrtfSGhjP_abHN295cxN0BUWY-6C9XU-fLG6bG157Z_yvF1v6mqUlVB2gEYnfRrEGJxdfBj6_NSbdRaI99H3o1UfKOmCmQH3wJO0oQltp3LGE2_OrLyKm-ujEabZaOLmVrK44wDcKqv__XoBV5VjTeRRJ2dBNHPnTnS7O1Sk49ZBIkQaRCmzGzgx7ZvhIjvA9Da5E8bgs2J6wQ_3PYwBK7Sqkd3_tPpZ2J8P1_RmwrHu_gI3o09RNKxp9Yg87ABC9-3tH5MtXT4h9xd9lcGnpB5jmFoM0wHDH6lDMJ0imG5KCgimFsG0KqhDMB0QTAHBcPclHSH4GTleHqwWh15XB8RTQGcbL0wCXWQi0b7IeZ4UQiSZZIyFvgJ3W6LqoAbiC1Qa5oZCSZ_FQkoVJ3OR-xreYc_JTlmV-gWhYcaZRs0joQTsFSLiPIO3EDDFIvCL-S55349cemblXlJwk3GgJ4ZE-8FA75IDO7qu8e2s_vI_XecVeWCqFZkQ4Wuy09StfgOkucneGjz9AfeM1B8
link.rule.ids 315,786,790,4043,27956,27957,27958
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transparency+versus+Efficiency%3A+Important+Considerations+in+the+Design+of+Photoacid+Generators+for+ArF+Lithography&rft.jtitle=Journal+of+Photopolymer+Science+and+Technology&rft.au=Cameron%2C+James+F.&rft.au=Pohlers%2C+Gerd&rft.au=Suzuki%2C+Yasuhiro&rft.au=Chan%2C+Nicholas&rft.date=2002&rft.pub=The+Society+of+Photopolymer+Science+and+Technology%28SPST%29&rft.issn=0914-9244&rft.eissn=1349-6336&rft.volume=15&rft.issue=3&rft.spage=453&rft.epage=464&rft_id=info:doi/10.2494%2Fphotopolymer.15.453&rft.externalDocID=article_photopolymer1988_15_3_15_3_453_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0914-9244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0914-9244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0914-9244&client=summon