Fold-change detection and scale invariance of cell–cell signaling in social amoeba

Cell–cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute concentrations of the extracellular signaling molecules. To direct cell aggregation, the social amoebae Dictyostelium discoideum collectively giv...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 21; pp. E4149 - E4157
Main Authors Kamino, Keita, Kondo, Yohei, Nakajima, Akihiko, Honda-Kitahara, Mai, Kaneko, Kunihiko, Sawai, Satoshi
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 23.05.2017
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cell–cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute concentrations of the extracellular signaling molecules. To direct cell aggregation, the social amoebae Dictyostelium discoideum collectively give rise to oscillations and waves of cyclic adenosine 3′,5′-monophosphate (cAMP) under a wide range of cell density. To date, the systems-level mechanism underlying the robustness is unclear. By using quantitative live-cell imaging, here we show that the magnitude of the cAMP relay response of individual cells is determined by fold change in the extracellular cAMP concentrations. The range of cell density and exogenous cAMP concentrations that support oscillations at the population level agrees well with conditions that support a large fold-change–dependent response at the single-cell level. Mathematical analysis suggests that invariance of the oscillations to density transformation is a natural outcome of combining secrete-and-sense systems with a fold-change detection mechanism.
AbstractList Cell–cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute concentrations of the extracellular signaling molecules. To direct cell aggregation, the social amoebae Dictyostelium discoideum collectively give rise to oscillations and waves of cyclic adenosine 3′,5′-monophosphate (cAMP) under a wide range of cell density. To date, the systems-level mechanism underlying the robustness is unclear. By using quantitative live-cell imaging, here we show that the magnitude of the cAMP relay response of individual cells is determined by fold change in the extracellular cAMP concentrations. The range of cell density and exogenous cAMP concentrations that support oscillations at the population level agrees well with conditions that support a large fold-change–dependent response at the single-cell level. Mathematical analysis suggests that invariance of the oscillations to density transformation is a natural outcome of combining secrete-and-sense systems with a fold-change detection mechanism.
Recent works have hinted at an ability of cells to respond in the exact same manner to a fold change in the input stimulus. The property is thought to allow cells to function properly regardless of changes in the absolute concentrations of signaling molecules. Despite its general importance, however, evidence has remained scarce. The present work demonstrated that, in the social amoeba Dictyostelium , a response to cell–cell communication molecules is fold-change dependent and that this property is tightly linked to the condition that allows them to oscillate collectively, and thus to organize into a multicellular form. Such properties may be of importance for robustness of other developmental systems where oscillatory signaling plays a pivotal role in defining multicellular organization. Cell–cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute concentrations of the extracellular signaling molecules. To direct cell aggregation, the social amoebae Dictyostelium discoideum collectively give rise to oscillations and waves of cyclic adenosine 3′,5′-monophosphate (cAMP) under a wide range of cell density. To date, the systems-level mechanism underlying the robustness is unclear. By using quantitative live-cell imaging, here we show that the magnitude of the cAMP relay response of individual cells is determined by fold change in the extracellular cAMP concentrations. The range of cell density and exogenous cAMP concentrations that support oscillations at the population level agrees well with conditions that support a large fold-change–dependent response at the single-cell level. Mathematical analysis suggests that invariance of the oscillations to density transformation is a natural outcome of combining secrete-and-sense systems with a fold-change detection mechanism.
Cell-cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute concentrations of the extracellular signaling molecules. To direct cell aggregation, the social amoebae Dictyostelium discoideum collectively give rise to oscillations and waves of cyclic adenosine 3',5'-monophosphate (cAMP) under a wide range of cell density. To date, the systems-level mechanism underlying the robustness is unclear. By using quantitative live-cell imaging, here we show that the magnitude of the cAMP relay response of individual cells is determined by fold change in the extracellular cAMP concentrations. The range of cell density and exogenous cAMP concentrations that support oscillations at the population level agrees well with conditions that support a large fold-change-dependent response at the single-cell level. Mathematical analysis suggests that invariance of the oscillations to density transformation is a natural outcome of combining secrete-and-sense systems with a fold-change detection mechanism.Cell-cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute concentrations of the extracellular signaling molecules. To direct cell aggregation, the social amoebae Dictyostelium discoideum collectively give rise to oscillations and waves of cyclic adenosine 3',5'-monophosphate (cAMP) under a wide range of cell density. To date, the systems-level mechanism underlying the robustness is unclear. By using quantitative live-cell imaging, here we show that the magnitude of the cAMP relay response of individual cells is determined by fold change in the extracellular cAMP concentrations. The range of cell density and exogenous cAMP concentrations that support oscillations at the population level agrees well with conditions that support a large fold-change-dependent response at the single-cell level. Mathematical analysis suggests that invariance of the oscillations to density transformation is a natural outcome of combining secrete-and-sense systems with a fold-change detection mechanism.
Cell-cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute concentrations of the extracellular signaling molecules. To direct cell aggregation, the social amoebae collectively give rise to oscillations and waves of cyclic adenosine 3',5'-monophosphate (cAMP) under a wide range of cell density. To date, the systems-level mechanism underlying the robustness is unclear. By using quantitative live-cell imaging, here we show that the magnitude of the cAMP relay response of individual cells is determined by fold change in the extracellular cAMP concentrations. The range of cell density and exogenous cAMP concentrations that support oscillations at the population level agrees well with conditions that support a large fold-change-dependent response at the single-cell level. Mathematical analysis suggests that invariance of the oscillations to density transformation is a natural outcome of combining secrete-and-sense systems with a fold-change detection mechanism.
Author Kamino, Keita
Kaneko, Kunihiko
Kondo, Yohei
Honda-Kitahara, Mai
Sawai, Satoshi
Nakajima, Akihiko
Author_xml – sequence: 1
  givenname: Keita
  surname: Kamino
  fullname: Kamino, Keita
  organization: Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
– sequence: 2
  givenname: Yohei
  surname: Kondo
  fullname: Kondo, Yohei
  organization: Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
– sequence: 3
  givenname: Akihiko
  surname: Nakajima
  fullname: Nakajima, Akihiko
  organization: Research Center for Complex Systems Biology, University of Tokyo, Tokyo 153-8902, Japan
– sequence: 4
  givenname: Mai
  surname: Honda-Kitahara
  fullname: Honda-Kitahara, Mai
  organization: Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
– sequence: 5
  givenname: Kunihiko
  surname: Kaneko
  fullname: Kaneko, Kunihiko
  organization: Research Center for Complex Systems Biology, University of Tokyo, Tokyo 153-8902, Japan
– sequence: 6
  givenname: Satoshi
  surname: Sawai
  fullname: Sawai, Satoshi
  organization: Research Center for Complex Systems Biology, University of Tokyo, Tokyo 153-8902, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28495969$$D View this record in MEDLINE/PubMed
BookMark eNp9kb1uFDEUhS0URDaBmgpkiYZmkuu_GbtBQhEBpEg0obbueDwbr7z2Mp6NRMc78IY8CR5tSCAF1ZXs7xzde84JOUo5eUJeMjhj0InzXcJyxjrgTDPG5BOyYmBY00oDR2QFwLtGSy6PyUkpGwAwSsMzcsy1NMq0ZkWuL3McGneDae3p4Gfv5pATxTTQ4jB6GtItTgGT8zSP1PkYf_34uQxawjphDGldGVqyCxgpbrPv8Tl5OmIs_sXdPCVfLz9cX3xqrr58_Hzx_qpxCszc8LZFg7wfBKrROI9GKo6yH4VmTtQH3kmHA44d70ULII0z6GE00GuF2ItT8u7gu9v3Wz84n-YJo91NYYvTd5sx2H9_Urix63xrlZSatboavL0zmPK3vS-z3YayHIfJ532xTBtTc2W8reibR-gm76caQKUMqFZ3YLpKvf57o_tV_gRegfMD4KZcyuTHe4SBXSq1S6X2odKqUI8ULsy4tFRPCvE_ulcH3abMeXrYpJVaCK7Eb3H3sUI
CitedBy_id crossref_primary_10_15252_msb_202211127
crossref_primary_10_1016_j_cobme_2024_100551
crossref_primary_10_1016_j_bpj_2024_07_017
crossref_primary_10_2142_biophys_62_276
crossref_primary_10_1016_j_coisb_2017_12_005
crossref_primary_10_1103_PhysRevLett_130_207102
crossref_primary_10_1091_mbc_E20_05_0319
crossref_primary_10_1016_j_isci_2018_03_013
crossref_primary_10_1063_5_0147231
crossref_primary_10_1247_csf_24065
crossref_primary_10_1016_j_aca_2020_05_065
crossref_primary_10_1063_5_0145251
crossref_primary_10_1091_mbc_E24_06_0245
crossref_primary_10_1371_journal_pone_0259742
crossref_primary_10_1103_PhysRevE_109_034131
crossref_primary_10_1091_mbc_E20_08_0545
crossref_primary_10_1126_sciadv_abc1087
crossref_primary_10_1073_pnas_2211807120
crossref_primary_10_1088_1751_8121_ad6ab4
crossref_primary_10_1016_j_bpj_2019_01_011
crossref_primary_10_1038_s42003_019_0371_0
crossref_primary_10_1088_1742_5468_ad72dc
crossref_primary_10_1038_s41467_019_10535_z
crossref_primary_10_1016_j_ygeno_2018_11_024
crossref_primary_10_1016_j_devcel_2024_11_016
crossref_primary_10_7554_eLife_83796
crossref_primary_10_1016_j_isci_2021_102796
crossref_primary_10_1038_s41467_019_13573_9
crossref_primary_10_3389_fncir_2021_705161
crossref_primary_10_3390_challe10010028
crossref_primary_10_1016_j_semcdb_2022_04_014
crossref_primary_10_1016_j_chaos_2024_115209
crossref_primary_10_2142_biophys_58_316
Cites_doi 10.1073/pnas.1218025110
10.1038/nature03228
10.1126/science.6259734
10.1016/j.cub.2005.01.007
10.1103/PhysRevLett.76.1174
10.1016/j.molcel.2014.01.026
10.1017/CBO9780511608193
10.1073/pnas.1412197111
10.1039/C6LC00898D
10.1371/journal.pone.0136095
10.1371/journal.pcbi.1003110
10.1083/jcb.200808105
10.1016/j.bpj.2013.01.023
10.1099/00221287-85-2-321
10.1016/S0006-3495(01)75886-9
10.1016/0167-2789(89)90234-0
10.1098/rsif.2012.0935
10.1073/pnas.93.3.1151
10.1073/pnas.1108608108
10.1098/rsif.2016.0233
10.1083/jcb.200406177
10.1049/iet-syb.2014.0026
10.1016/j.cell.2009.06.013
10.1073/pnas.1002352107
10.1371/journal.pcbi.1003781
10.1016/j.bpj.2015.03.015
10.1126/science.1183415
10.1016/j.arr.2008.04.003
10.1242/jcs.20.1.1
10.1016/0025-5564(94)90037-X
10.1126/science.1242782
10.1038/nprot.2010.198
10.1074/jbc.C400302200
10.1016/j.molcel.2009.11.018
10.1371/journal.pone.0164674
10.1038/ncomms6367
10.1242/dev.046888
10.1126/science.7089556
10.1111/j.1365-2958.2007.05803.x
10.1083/jcb.86.2.545
10.1007/978-1-4939-3480-5_8
10.1007/978-1-4939-3480-5_26
10.1016/0012-1606(83)90178-1
10.1016/j.cell.2016.01.028
10.1091/mbc.e05-08-0781
10.1083/jcb.86.2.537
10.1038/259670a0
10.1016/S0006-3495(98)77976-7
10.1126/scisignal.2002413
10.1016/S0092-8674(02)00745-6
10.1016/j.molcel.2009.11.017
10.1083/jcb.86.2.554
10.1091/mbc.e03-08-0566
10.1242/dev.106.3.421
10.1016/j.cels.2016.12.009
10.1371/journal.pcbi.1000422
10.1083/jcb.80.2.300
10.1126/science.277.5323.251
10.15252/msb.20145352
10.1016/j.bpj.2009.08.021
10.1126/science.1200037
10.1111/j.1440-169X.2011.01266.x
10.1016/j.cub.2008.08.069
10.1371/journal.pcbi.1002748
10.1016/S0006-3495(87)83275-7
10.1091/mbc.5.6.703
10.1242/jcs.19.1.215
10.1111/j.1365-2818.2008.02066.x
10.1073/pnas.94.17.9153
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences May 23, 2017
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences May 23, 2017
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1702181114
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
Virology and AIDS Abstracts
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Fold-change detection and collective oscillations
EISSN 1091-6490
EndPage E4157
ExternalDocumentID PMC5448168
28495969
10_1073_pnas_1702181114
26483325
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Japan Society for the Promotion of Science (JSPS)
  grantid: 2510300
– fundername: Japan Society for the Promotion of Science (JSPS)
  grantid: 22680024
– fundername: Japan Society for the Promotion of Science (JSPS)
  grantid: 25710022
– fundername: Japan Society for the Promotion of Science (JSPS)
  grantid: 23111506
– fundername: Japan Society for the Promotion of Science (JSPS)
  grantid: 15KT0076
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-266a9a2bd3a5f9cea9452a4bf381c39ce274cadaf72b360049c9ae0f90b85aab3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:32:01 EDT 2025
Fri Jul 11 00:56:42 EDT 2025
Mon Jun 30 08:14:03 EDT 2025
Thu Apr 03 07:02:38 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Tue Jul 01 03:19:35 EDT 2025
Fri May 30 11:47:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords robustness
fold-change detection
Dictyostelium
oscillations
collective behavior
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-266a9a2bd3a5f9cea9452a4bf381c39ce274cadaf72b360049c9ae0f90b85aab3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
Edited by Peter N. Devreotes, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved April 9, 2017 (received for review February 9, 2017)
Author contributions: K. Kamino, Y.K., K. Kaneko, and S.S. designed research; K. Kamino, Y.K., A.N., and S.S. performed research; M.H.-K. and S.S. contributed new reagents; K. Kamino and A.N. acquired and analyzed live cell image data; K. Kamino and Y.K. performed theoretical and computational analysis; and K. Kamino, Y.K., and S.S. wrote the paper.
ORCID 0000-0002-2801-4522
0000-0003-3764-219X
OpenAccessLink https://www.pnas.org/content/pnas/114/21/E4149.full.pdf
PMID 28495969
PQID 1905687097
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5448168
proquest_miscellaneous_1899111126
proquest_journals_1905687097
pubmed_primary_28495969
crossref_primary_10_1073_pnas_1702181114
crossref_citationtrail_10_1073_pnas_1702181114
jstor_primary_26483325
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-23
PublicationDateYYYYMMDD 2017-05-23
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_50_2
Brzostowski JA (e_1_3_3_41_2) 2013; 126
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_70_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_64_2
9211856 - Science. 1997 Jul 11;277(5323):251-4
19431710 - Biophys J. 1987 Nov;52(5):807-28
21808031 - Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13870-5
21585355 - Dev Growth Differ. 2011 May;53(4):503-17
15231839 - J Biol Chem. 2004 Sep 3;279(36):37215-8
19047467 - J Cell Biol. 2008 Dec 1;183(5):949-61
27271915 - Methods Mol Biol. 2016;1407:381-96
7089556 - Science. 1982 Jul 16;217(4556):220-5
25249632 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14448-53
15668169 - Curr Biol. 2005 Jan 26;15(2):134-9
25902445 - Biophys J. 2015 Apr 21;108(8):2061-73
25478701 - IET Syst Biol. 2014 Dec;8(6):268-81
24530305 - Mol Cell. 2014 Mar 20;53(6):867-79
8155908 - Math Biosci. 1994 Mar;120(1):25-76
24503857 - Science. 2014 Feb 7;343(6171):1242782
23902692 - J Cell Sci. 2013 Oct 15;126(Pt 20):4614-26
25121598 - PLoS Comput Biol. 2014 Aug 14;10(8):e1003781
20392739 - Development. 2010 May;137(10):1595-9
23133355 - PLoS Comput Biol. 2012;8(11):e1002748
6259734 - Science. 1981 Apr 24;212(4493):443-6
7949426 - Mol Biol Cell. 1994 Jun;5(6):703-11
23825937 - PLoS Comput Biol. 2013;9(6):e1003110
222770 - J Cell Biol. 1979 Feb;80(2):300-9
27358278 - J R Soc Interface. 2016 Jun;13(119):null
18657484 - Ageing Res Rev. 2008 Jul;7(3):234-48
25617347 - Mol Syst Biol. 2015 Jan 23;11(1):779
27271897 - Methods Mol Biol. 2016;1407:107-22
26871631 - Cell. 2016 Feb 11;164(4):656-67
17630977 - Mol Microbiol. 2007 Jul;65(2):508-20
19703401 - Cell. 2009 Aug 21;138(4):760-73
15534002 - J Cell Biol. 2004 Nov 8;167(3):505-18
23479620 - Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5016-21
1236856 - J Cell Sci. 1975 Oct;19(1):215-29
2557197 - Development. 1989 Jul;106(3):421-6
23473502 - Biophys J. 2013 Mar 5;104(5):1191-202
27735954 - Lab Chip. 2016 Nov 1;16(22):4382-4394
27792738 - PLoS One. 2016 Oct 28;11(10 ):e0164674
6249827 - J Cell Biol. 1980 Aug;86(2):554-61
9591694 - Biophys J. 1998 May;74(5):2702-13
20729472 - Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15995-6000
6249826 - J Cell Biol. 1980 Aug;86(2):545-53
6299820 - Dev Biol. 1983 Apr;96(2):405-15
20413456 - Science. 2010 May 21;328(5981):1021-5
19883581 - Biophys J. 2009 Nov 4;97(9):2388-98
11566809 - Biophys J. 2001 Oct;81(4):2395-402
4615133 - J Gen Microbiol. 1974 Dec;85(2):321-34
22215733 - Sci Signal. 2012 Jan 03;5(205):ra2
26305221 - PLoS One. 2015 Aug 25;10(8):e0136095
18755009 - J Microsc. 2008 Sep;231(3):529-34
16267269 - Mol Biol Cell. 2006 Jan;17(1):357-66
23293140 - J R Soc Interface. 2013 Jan 04;10(80):20120935
21412271 - Nat Protoc. 2011 Apr;6(4):427-38
175290 - Nature. 1976 Feb 26;259(5545):670-1
15662425 - Nature. 2005 Jan 20;433(7023):323-6
20005849 - Mol Cell. 2009 Dec 11;36(5):872-84
175073 - J Cell Sci. 1976 Jan;20(1):1-20
28089543 - Cell Syst. 2017 Feb 22;4(2):171-181.e8
12062103 - Cell. 2002 May 31;109 (5):599-610
19593362 - PLoS Comput Biol. 2009 Jul;5(7):e1000422
8577731 - Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1151-5
20005851 - Mol Cell. 2009 Dec 11;36(5):894-9
6249825 - J Cell Biol. 1980 Aug;86(2):537-44
21385708 - Science. 2011 Mar 4;331(6021):1154-9
14595105 - Mol Biol Cell. 2003 Dec;14(12):5019-27
25373620 - Nat Commun. 2014 Nov 06;5:5367
9256451 - Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9153-8
18948008 - Curr Biol. 2008 Oct 28;18(20):1587-93
10061652 - Phys Rev Lett. 1996 Feb 12;76(7):1174-1177
References_xml – ident: e_1_3_3_43_2
  doi: 10.1073/pnas.1218025110
– ident: e_1_3_3_58_2
  doi: 10.1038/nature03228
– ident: e_1_3_3_29_2
  doi: 10.1126/science.6259734
– ident: e_1_3_3_37_2
  doi: 10.1016/j.cub.2005.01.007
– volume: 126
  start-page: 4614
  year: 2013
  ident: e_1_3_3_41_2
  article-title: Phosphorylation of chemoattractant receptors regulates chemotaxis, actin reorganization and signal relay
  publication-title: J Cell Sci
– ident: e_1_3_3_20_2
  doi: 10.1103/PhysRevLett.76.1174
– ident: e_1_3_3_11_2
  doi: 10.1016/j.molcel.2014.01.026
– ident: e_1_3_3_64_2
  doi: 10.1017/CBO9780511608193
– ident: e_1_3_3_17_2
  doi: 10.1073/pnas.1412197111
– ident: e_1_3_3_33_2
  doi: 10.1039/C6LC00898D
– ident: e_1_3_3_49_2
  doi: 10.1371/journal.pone.0136095
– ident: e_1_3_3_44_2
  doi: 10.1371/journal.pcbi.1003110
– ident: e_1_3_3_32_2
  doi: 10.1083/jcb.200808105
– ident: e_1_3_3_28_2
  doi: 10.1016/j.bpj.2013.01.023
– ident: e_1_3_3_19_2
  doi: 10.1099/00221287-85-2-321
– ident: e_1_3_3_61_2
  doi: 10.1016/S0006-3495(01)75886-9
– ident: e_1_3_3_66_2
  doi: 10.1016/0167-2789(89)90234-0
– ident: e_1_3_3_47_2
  doi: 10.1098/rsif.2012.0935
– ident: e_1_3_3_67_2
  doi: 10.1073/pnas.93.3.1151
– ident: e_1_3_3_6_2
  doi: 10.1073/pnas.1108608108
– ident: e_1_3_3_16_2
  doi: 10.1098/rsif.2016.0233
– ident: e_1_3_3_36_2
  doi: 10.1083/jcb.200406177
– ident: e_1_3_3_48_2
  doi: 10.1049/iet-syb.2014.0026
– ident: e_1_3_3_3_2
  doi: 10.1016/j.cell.2009.06.013
– ident: e_1_3_3_5_2
  doi: 10.1073/pnas.1002352107
– ident: e_1_3_3_7_2
  doi: 10.1371/journal.pcbi.1003781
– ident: e_1_3_3_55_2
  doi: 10.1016/j.bpj.2015.03.015
– ident: e_1_3_3_24_2
  doi: 10.1126/science.1183415
– ident: e_1_3_3_35_2
  doi: 10.1016/j.arr.2008.04.003
– ident: e_1_3_3_22_2
  doi: 10.1242/jcs.20.1.1
– ident: e_1_3_3_51_2
  doi: 10.1016/0025-5564(94)90037-X
– ident: e_1_3_3_12_2
  doi: 10.1126/science.1242782
– ident: e_1_3_3_27_2
  doi: 10.1038/nprot.2010.198
– ident: e_1_3_3_59_2
  doi: 10.1074/jbc.C400302200
– ident: e_1_3_3_4_2
  doi: 10.1016/j.molcel.2009.11.018
– ident: e_1_3_3_8_2
  doi: 10.1371/journal.pone.0164674
– ident: e_1_3_3_18_2
  doi: 10.1038/ncomms6367
– ident: e_1_3_3_56_2
  doi: 10.1242/dev.046888
– ident: e_1_3_3_2_2
  doi: 10.1126/science.7089556
– ident: e_1_3_3_52_2
  doi: 10.1111/j.1365-2958.2007.05803.x
– ident: e_1_3_3_15_2
  doi: 10.1083/jcb.86.2.545
– ident: e_1_3_3_62_2
  doi: 10.1007/978-1-4939-3480-5_8
– ident: e_1_3_3_34_2
  doi: 10.1007/978-1-4939-3480-5_26
– ident: e_1_3_3_30_2
  doi: 10.1016/0012-1606(83)90178-1
– ident: e_1_3_3_57_2
  doi: 10.1016/j.cell.2016.01.028
– ident: e_1_3_3_38_2
  doi: 10.1091/mbc.e05-08-0781
– ident: e_1_3_3_13_2
  doi: 10.1083/jcb.86.2.537
– ident: e_1_3_3_54_2
  doi: 10.1038/259670a0
– ident: e_1_3_3_60_2
  doi: 10.1016/S0006-3495(98)77976-7
– ident: e_1_3_3_42_2
  doi: 10.1126/scisignal.2002413
– ident: e_1_3_3_40_2
  doi: 10.1016/S0092-8674(02)00745-6
– ident: e_1_3_3_9_2
  doi: 10.1016/j.molcel.2009.11.017
– ident: e_1_3_3_14_2
  doi: 10.1083/jcb.86.2.554
– ident: e_1_3_3_63_2
  doi: 10.1091/mbc.e03-08-0566
– ident: e_1_3_3_65_2
  doi: 10.1242/dev.106.3.421
– ident: e_1_3_3_46_2
  doi: 10.1016/j.cels.2016.12.009
– ident: e_1_3_3_69_2
  doi: 10.1371/journal.pcbi.1000422
– ident: e_1_3_3_1_2
  doi: 10.1083/jcb.80.2.300
– ident: e_1_3_3_23_2
  doi: 10.1126/science.277.5323.251
– ident: e_1_3_3_26_2
  doi: 10.15252/msb.20145352
– ident: e_1_3_3_70_2
  doi: 10.1016/j.bpj.2009.08.021
– ident: e_1_3_3_10_2
  doi: 10.1126/science.1200037
– ident: e_1_3_3_25_2
  doi: 10.1111/j.1440-169X.2011.01266.x
– ident: e_1_3_3_39_2
  doi: 10.1016/j.cub.2008.08.069
– ident: e_1_3_3_45_2
  doi: 10.1371/journal.pcbi.1002748
– ident: e_1_3_3_50_2
  doi: 10.1016/S0006-3495(87)83275-7
– ident: e_1_3_3_53_2
  doi: 10.1091/mbc.5.6.703
– ident: e_1_3_3_21_2
  doi: 10.1242/jcs.19.1.215
– ident: e_1_3_3_31_2
  doi: 10.1111/j.1365-2818.2008.02066.x
– ident: e_1_3_3_68_2
  doi: 10.1073/pnas.94.17.9153
– reference: 24530305 - Mol Cell. 2014 Mar 20;53(6):867-79
– reference: 23133355 - PLoS Comput Biol. 2012;8(11):e1002748
– reference: 19883581 - Biophys J. 2009 Nov 4;97(9):2388-98
– reference: 10061652 - Phys Rev Lett. 1996 Feb 12;76(7):1174-1177
– reference: 19431710 - Biophys J. 1987 Nov;52(5):807-28
– reference: 26305221 - PLoS One. 2015 Aug 25;10(8):e0136095
– reference: 23293140 - J R Soc Interface. 2013 Jan 04;10(80):20120935
– reference: 18657484 - Ageing Res Rev. 2008 Jul;7(3):234-48
– reference: 15231839 - J Biol Chem. 2004 Sep 3;279(36):37215-8
– reference: 21585355 - Dev Growth Differ. 2011 May;53(4):503-17
– reference: 8577731 - Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1151-5
– reference: 26871631 - Cell. 2016 Feb 11;164(4):656-67
– reference: 25902445 - Biophys J. 2015 Apr 21;108(8):2061-73
– reference: 7089556 - Science. 1982 Jul 16;217(4556):220-5
– reference: 6249827 - J Cell Biol. 1980 Aug;86(2):554-61
– reference: 1236856 - J Cell Sci. 1975 Oct;19(1):215-29
– reference: 20005851 - Mol Cell. 2009 Dec 11;36(5):894-9
– reference: 6299820 - Dev Biol. 1983 Apr;96(2):405-15
– reference: 20392739 - Development. 2010 May;137(10):1595-9
– reference: 27358278 - J R Soc Interface. 2016 Jun;13(119):null
– reference: 21385708 - Science. 2011 Mar 4;331(6021):1154-9
– reference: 222770 - J Cell Biol. 1979 Feb;80(2):300-9
– reference: 19593362 - PLoS Comput Biol. 2009 Jul;5(7):e1000422
– reference: 2557197 - Development. 1989 Jul;106(3):421-6
– reference: 11566809 - Biophys J. 2001 Oct;81(4):2395-402
– reference: 175290 - Nature. 1976 Feb 26;259(5545):670-1
– reference: 23902692 - J Cell Sci. 2013 Oct 15;126(Pt 20):4614-26
– reference: 6259734 - Science. 1981 Apr 24;212(4493):443-6
– reference: 21808031 - Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13870-5
– reference: 14595105 - Mol Biol Cell. 2003 Dec;14(12):5019-27
– reference: 17630977 - Mol Microbiol. 2007 Jul;65(2):508-20
– reference: 25249632 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14448-53
– reference: 15534002 - J Cell Biol. 2004 Nov 8;167(3):505-18
– reference: 25617347 - Mol Syst Biol. 2015 Jan 23;11(1):779
– reference: 12062103 - Cell. 2002 May 31;109 (5):599-610
– reference: 6249825 - J Cell Biol. 1980 Aug;86(2):537-44
– reference: 27271915 - Methods Mol Biol. 2016;1407:381-96
– reference: 21412271 - Nat Protoc. 2011 Apr;6(4):427-38
– reference: 23479620 - Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5016-21
– reference: 6249826 - J Cell Biol. 1980 Aug;86(2):545-53
– reference: 4615133 - J Gen Microbiol. 1974 Dec;85(2):321-34
– reference: 9591694 - Biophys J. 1998 May;74(5):2702-13
– reference: 20729472 - Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15995-6000
– reference: 28089543 - Cell Syst. 2017 Feb 22;4(2):171-181.e8
– reference: 7949426 - Mol Biol Cell. 1994 Jun;5(6):703-11
– reference: 8155908 - Math Biosci. 1994 Mar;120(1):25-76
– reference: 15668169 - Curr Biol. 2005 Jan 26;15(2):134-9
– reference: 22215733 - Sci Signal. 2012 Jan 03;5(205):ra2
– reference: 20005849 - Mol Cell. 2009 Dec 11;36(5):872-84
– reference: 27792738 - PLoS One. 2016 Oct 28;11(10 ):e0164674
– reference: 23825937 - PLoS Comput Biol. 2013;9(6):e1003110
– reference: 25121598 - PLoS Comput Biol. 2014 Aug 14;10(8):e1003781
– reference: 24503857 - Science. 2014 Feb 7;343(6171):1242782
– reference: 16267269 - Mol Biol Cell. 2006 Jan;17(1):357-66
– reference: 19703401 - Cell. 2009 Aug 21;138(4):760-73
– reference: 175073 - J Cell Sci. 1976 Jan;20(1):1-20
– reference: 20413456 - Science. 2010 May 21;328(5981):1021-5
– reference: 9256451 - Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9153-8
– reference: 23473502 - Biophys J. 2013 Mar 5;104(5):1191-202
– reference: 18755009 - J Microsc. 2008 Sep;231(3):529-34
– reference: 15662425 - Nature. 2005 Jan 20;433(7023):323-6
– reference: 19047467 - J Cell Biol. 2008 Dec 1;183(5):949-61
– reference: 27735954 - Lab Chip. 2016 Nov 1;16(22):4382-4394
– reference: 27271897 - Methods Mol Biol. 2016;1407:107-22
– reference: 18948008 - Curr Biol. 2008 Oct 28;18(20):1587-93
– reference: 9211856 - Science. 1997 Jul 11;277(5323):251-4
– reference: 25373620 - Nat Commun. 2014 Nov 06;5:5367
– reference: 25478701 - IET Syst Biol. 2014 Dec;8(6):268-81
SSID ssj0009580
Score 2.4197955
Snippet Cell–cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute...
Recent works have hinted at an ability of cells to respond in the exact same manner to a fold change in the input stimulus. The property is thought to allow...
Cell-cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E4149
SubjectTerms Agglomeration
Amoeba
Biological Sciences
Cell aggregation
Cell density
Cell number
Cells
Change detection
Cyclic AMP
Density
Dilution
Genetic transformation
Invariance
Mathematical analysis
Molecules
Oscillations
Physical Sciences
PNAS Plus
Robustness (mathematics)
Scale invariance
Transformations (mathematics)
Title Fold-change detection and scale invariance of cell–cell signaling in social amoeba
URI https://www.jstor.org/stable/26483325
https://www.ncbi.nlm.nih.gov/pubmed/28495969
https://www.proquest.com/docview/1905687097
https://www.proquest.com/docview/1899111126
https://pubmed.ncbi.nlm.nih.gov/PMC5448168
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXKcuGCWGChsKAgcVhUuTSx8-HjCrVa0aWsUCv1FjmJrYa2CaIpB34LP5Zx7DjpUhBwiSLHtizPy3jGmjeD0OsgcaMkEwmWcBZjmnIXcx_eZOALKlNwMmp-xYdZcLWg75f-stf70Yla2lfJMP1-lFfyP1KFNpCrYsn-g2TtpNAA7yBfeIKE4flXMp6Umwxr6u4gE5UwZb_VVThsvUoH8g1c4ZoUoKLHxWaD1WOggjb4xrBZzK0535Yi4V1b9caebbsmkmDWXB1etkQUox12Azy4mbVljad8m9dlvQdTkVdW-U9V-ZBa75crkduraL7mn_OtvuNd56t8XVq8wQCOpzCFSi2t6UV5964Czr-RjzWduJvq--giu0rag4OTamr1UGi9DGYNDqiuLGoVt6afGoRqorXRw2Pq6kyov5wQoNJUWeOC74ZuWBs4zTQHubhnH-PJ4vo6no-X8zvorgdOiFer_W5K50gTnMxym8RRIXl7a_oDm0eHvR5zaG7H5XYMnfkDdN94KM6lhtsp6oniITptNtC5MInK3zxCnzr4cyz-HMCfU-PPafHnlNKx-HMs_qCHo_HnaPw9RovJeP7uCpsaHTgFU7PCYN9xxr0kI9yXLBWcUd_jNJFgCaYEGrwQFEDGZeglJFD-aMq4GEk2SiKf84ScoZOiLMRT5Eg_YnLEVIJKQgmVkSSjlJIoCzNXBizoo2Gzi3FqEtirOiqbuA6kCEmstj1ut72PLuyALzp3y--7ntVisf1U4Cchnt9H542cYvPnwzgGbgMcdCzso1f2M-hltYe8EOUe-kRM2RGuB-t-osXaTh5R5rOA9VF4IHDbQeV8P_xS5Ks697tPqaqU8-zPy3qO7rW_3zk6qb7uxQswnqvkZY3hn1Onxno
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fold-change+detection+and+scale+invariance+of+cell-cell+signaling+in+social+amoeba&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kamino%2C+Keita&rft.au=Kondo%2C+Yohei&rft.au=Nakajima%2C+Akihiko&rft.au=Honda-Kitahara%2C+Mai&rft.date=2017-05-23&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=21&rft.spage=E4149&rft_id=info:doi/10.1073%2Fpnas.1702181114&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon