Fold-change detection and scale invariance of cell–cell signaling in social amoeba
Cell–cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute concentrations of the extracellular signaling molecules. To direct cell aggregation, the social amoebae Dictyostelium discoideum collectively giv...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 21; pp. E4149 - E4157 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
23.05.2017
|
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cell–cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute concentrations of the extracellular signaling molecules. To direct cell aggregation, the social amoebae Dictyostelium discoideum collectively give rise to oscillations and waves of cyclic adenosine 3′,5′-monophosphate (cAMP) under a wide range of cell density. To date, the systems-level mechanism underlying the robustness is unclear. By using quantitative live-cell imaging, here we show that the magnitude of the cAMP relay response of individual cells is determined by fold change in the extracellular cAMP concentrations. The range of cell density and exogenous cAMP concentrations that support oscillations at the population level agrees well with conditions that support a large fold-change–dependent response at the single-cell level. Mathematical analysis suggests that invariance of the oscillations to density transformation is a natural outcome of combining secrete-and-sense systems with a fold-change detection mechanism. |
---|---|
AbstractList | Cell–cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute concentrations of the extracellular signaling molecules. To direct cell aggregation, the social amoebae Dictyostelium discoideum collectively give rise to oscillations and waves of cyclic adenosine 3′,5′-monophosphate (cAMP) under a wide range of cell density. To date, the systems-level mechanism underlying the robustness is unclear. By using quantitative live-cell imaging, here we show that the magnitude of the cAMP relay response of individual cells is determined by fold change in the extracellular cAMP concentrations. The range of cell density and exogenous cAMP concentrations that support oscillations at the population level agrees well with conditions that support a large fold-change–dependent response at the single-cell level. Mathematical analysis suggests that invariance of the oscillations to density transformation is a natural outcome of combining secrete-and-sense systems with a fold-change detection mechanism. Recent works have hinted at an ability of cells to respond in the exact same manner to a fold change in the input stimulus. The property is thought to allow cells to function properly regardless of changes in the absolute concentrations of signaling molecules. Despite its general importance, however, evidence has remained scarce. The present work demonstrated that, in the social amoeba Dictyostelium , a response to cell–cell communication molecules is fold-change dependent and that this property is tightly linked to the condition that allows them to oscillate collectively, and thus to organize into a multicellular form. Such properties may be of importance for robustness of other developmental systems where oscillatory signaling plays a pivotal role in defining multicellular organization. Cell–cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute concentrations of the extracellular signaling molecules. To direct cell aggregation, the social amoebae Dictyostelium discoideum collectively give rise to oscillations and waves of cyclic adenosine 3′,5′-monophosphate (cAMP) under a wide range of cell density. To date, the systems-level mechanism underlying the robustness is unclear. By using quantitative live-cell imaging, here we show that the magnitude of the cAMP relay response of individual cells is determined by fold change in the extracellular cAMP concentrations. The range of cell density and exogenous cAMP concentrations that support oscillations at the population level agrees well with conditions that support a large fold-change–dependent response at the single-cell level. Mathematical analysis suggests that invariance of the oscillations to density transformation is a natural outcome of combining secrete-and-sense systems with a fold-change detection mechanism. Cell-cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute concentrations of the extracellular signaling molecules. To direct cell aggregation, the social amoebae Dictyostelium discoideum collectively give rise to oscillations and waves of cyclic adenosine 3',5'-monophosphate (cAMP) under a wide range of cell density. To date, the systems-level mechanism underlying the robustness is unclear. By using quantitative live-cell imaging, here we show that the magnitude of the cAMP relay response of individual cells is determined by fold change in the extracellular cAMP concentrations. The range of cell density and exogenous cAMP concentrations that support oscillations at the population level agrees well with conditions that support a large fold-change-dependent response at the single-cell level. Mathematical analysis suggests that invariance of the oscillations to density transformation is a natural outcome of combining secrete-and-sense systems with a fold-change detection mechanism.Cell-cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute concentrations of the extracellular signaling molecules. To direct cell aggregation, the social amoebae Dictyostelium discoideum collectively give rise to oscillations and waves of cyclic adenosine 3',5'-monophosphate (cAMP) under a wide range of cell density. To date, the systems-level mechanism underlying the robustness is unclear. By using quantitative live-cell imaging, here we show that the magnitude of the cAMP relay response of individual cells is determined by fold change in the extracellular cAMP concentrations. The range of cell density and exogenous cAMP concentrations that support oscillations at the population level agrees well with conditions that support a large fold-change-dependent response at the single-cell level. Mathematical analysis suggests that invariance of the oscillations to density transformation is a natural outcome of combining secrete-and-sense systems with a fold-change detection mechanism. Cell-cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute concentrations of the extracellular signaling molecules. To direct cell aggregation, the social amoebae collectively give rise to oscillations and waves of cyclic adenosine 3',5'-monophosphate (cAMP) under a wide range of cell density. To date, the systems-level mechanism underlying the robustness is unclear. By using quantitative live-cell imaging, here we show that the magnitude of the cAMP relay response of individual cells is determined by fold change in the extracellular cAMP concentrations. The range of cell density and exogenous cAMP concentrations that support oscillations at the population level agrees well with conditions that support a large fold-change-dependent response at the single-cell level. Mathematical analysis suggests that invariance of the oscillations to density transformation is a natural outcome of combining secrete-and-sense systems with a fold-change detection mechanism. |
Author | Kamino, Keita Kaneko, Kunihiko Kondo, Yohei Honda-Kitahara, Mai Sawai, Satoshi Nakajima, Akihiko |
Author_xml | – sequence: 1 givenname: Keita surname: Kamino fullname: Kamino, Keita organization: Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan – sequence: 2 givenname: Yohei surname: Kondo fullname: Kondo, Yohei organization: Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan – sequence: 3 givenname: Akihiko surname: Nakajima fullname: Nakajima, Akihiko organization: Research Center for Complex Systems Biology, University of Tokyo, Tokyo 153-8902, Japan – sequence: 4 givenname: Mai surname: Honda-Kitahara fullname: Honda-Kitahara, Mai organization: Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan – sequence: 5 givenname: Kunihiko surname: Kaneko fullname: Kaneko, Kunihiko organization: Research Center for Complex Systems Biology, University of Tokyo, Tokyo 153-8902, Japan – sequence: 6 givenname: Satoshi surname: Sawai fullname: Sawai, Satoshi organization: Research Center for Complex Systems Biology, University of Tokyo, Tokyo 153-8902, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28495969$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kb1uFDEUhS0URDaBmgpkiYZmkuu_GbtBQhEBpEg0obbueDwbr7z2Mp6NRMc78IY8CR5tSCAF1ZXs7xzde84JOUo5eUJeMjhj0InzXcJyxjrgTDPG5BOyYmBY00oDR2QFwLtGSy6PyUkpGwAwSsMzcsy1NMq0ZkWuL3McGneDae3p4Gfv5pATxTTQ4jB6GtItTgGT8zSP1PkYf_34uQxawjphDGldGVqyCxgpbrPv8Tl5OmIs_sXdPCVfLz9cX3xqrr58_Hzx_qpxCszc8LZFg7wfBKrROI9GKo6yH4VmTtQH3kmHA44d70ULII0z6GE00GuF2ItT8u7gu9v3Wz84n-YJo91NYYvTd5sx2H9_Urix63xrlZSatboavL0zmPK3vS-z3YayHIfJ532xTBtTc2W8reibR-gm76caQKUMqFZ3YLpKvf57o_tV_gRegfMD4KZcyuTHe4SBXSq1S6X2odKqUI8ULsy4tFRPCvE_ulcH3abMeXrYpJVaCK7Eb3H3sUI |
CitedBy_id | crossref_primary_10_15252_msb_202211127 crossref_primary_10_1016_j_cobme_2024_100551 crossref_primary_10_1016_j_bpj_2024_07_017 crossref_primary_10_2142_biophys_62_276 crossref_primary_10_1016_j_coisb_2017_12_005 crossref_primary_10_1103_PhysRevLett_130_207102 crossref_primary_10_1091_mbc_E20_05_0319 crossref_primary_10_1016_j_isci_2018_03_013 crossref_primary_10_1063_5_0147231 crossref_primary_10_1247_csf_24065 crossref_primary_10_1016_j_aca_2020_05_065 crossref_primary_10_1063_5_0145251 crossref_primary_10_1091_mbc_E24_06_0245 crossref_primary_10_1371_journal_pone_0259742 crossref_primary_10_1103_PhysRevE_109_034131 crossref_primary_10_1091_mbc_E20_08_0545 crossref_primary_10_1126_sciadv_abc1087 crossref_primary_10_1073_pnas_2211807120 crossref_primary_10_1088_1751_8121_ad6ab4 crossref_primary_10_1016_j_bpj_2019_01_011 crossref_primary_10_1038_s42003_019_0371_0 crossref_primary_10_1088_1742_5468_ad72dc crossref_primary_10_1038_s41467_019_10535_z crossref_primary_10_1016_j_ygeno_2018_11_024 crossref_primary_10_1016_j_devcel_2024_11_016 crossref_primary_10_7554_eLife_83796 crossref_primary_10_1016_j_isci_2021_102796 crossref_primary_10_1038_s41467_019_13573_9 crossref_primary_10_3389_fncir_2021_705161 crossref_primary_10_3390_challe10010028 crossref_primary_10_1016_j_semcdb_2022_04_014 crossref_primary_10_1016_j_chaos_2024_115209 crossref_primary_10_2142_biophys_58_316 |
Cites_doi | 10.1073/pnas.1218025110 10.1038/nature03228 10.1126/science.6259734 10.1016/j.cub.2005.01.007 10.1103/PhysRevLett.76.1174 10.1016/j.molcel.2014.01.026 10.1017/CBO9780511608193 10.1073/pnas.1412197111 10.1039/C6LC00898D 10.1371/journal.pone.0136095 10.1371/journal.pcbi.1003110 10.1083/jcb.200808105 10.1016/j.bpj.2013.01.023 10.1099/00221287-85-2-321 10.1016/S0006-3495(01)75886-9 10.1016/0167-2789(89)90234-0 10.1098/rsif.2012.0935 10.1073/pnas.93.3.1151 10.1073/pnas.1108608108 10.1098/rsif.2016.0233 10.1083/jcb.200406177 10.1049/iet-syb.2014.0026 10.1016/j.cell.2009.06.013 10.1073/pnas.1002352107 10.1371/journal.pcbi.1003781 10.1016/j.bpj.2015.03.015 10.1126/science.1183415 10.1016/j.arr.2008.04.003 10.1242/jcs.20.1.1 10.1016/0025-5564(94)90037-X 10.1126/science.1242782 10.1038/nprot.2010.198 10.1074/jbc.C400302200 10.1016/j.molcel.2009.11.018 10.1371/journal.pone.0164674 10.1038/ncomms6367 10.1242/dev.046888 10.1126/science.7089556 10.1111/j.1365-2958.2007.05803.x 10.1083/jcb.86.2.545 10.1007/978-1-4939-3480-5_8 10.1007/978-1-4939-3480-5_26 10.1016/0012-1606(83)90178-1 10.1016/j.cell.2016.01.028 10.1091/mbc.e05-08-0781 10.1083/jcb.86.2.537 10.1038/259670a0 10.1016/S0006-3495(98)77976-7 10.1126/scisignal.2002413 10.1016/S0092-8674(02)00745-6 10.1016/j.molcel.2009.11.017 10.1083/jcb.86.2.554 10.1091/mbc.e03-08-0566 10.1242/dev.106.3.421 10.1016/j.cels.2016.12.009 10.1371/journal.pcbi.1000422 10.1083/jcb.80.2.300 10.1126/science.277.5323.251 10.15252/msb.20145352 10.1016/j.bpj.2009.08.021 10.1126/science.1200037 10.1111/j.1440-169X.2011.01266.x 10.1016/j.cub.2008.08.069 10.1371/journal.pcbi.1002748 10.1016/S0006-3495(87)83275-7 10.1091/mbc.5.6.703 10.1242/jcs.19.1.215 10.1111/j.1365-2818.2008.02066.x 10.1073/pnas.94.17.9153 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences May 23, 2017 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences May 23, 2017 |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1702181114 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Virology and AIDS Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Fold-change detection and collective oscillations |
EISSN | 1091-6490 |
EndPage | E4157 |
ExternalDocumentID | PMC5448168 28495969 10_1073_pnas_1702181114 26483325 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science (JSPS) grantid: 2510300 – fundername: Japan Society for the Promotion of Science (JSPS) grantid: 22680024 – fundername: Japan Society for the Promotion of Science (JSPS) grantid: 25710022 – fundername: Japan Society for the Promotion of Science (JSPS) grantid: 23111506 – fundername: Japan Society for the Promotion of Science (JSPS) grantid: 15KT0076 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-266a9a2bd3a5f9cea9452a4bf381c39ce274cadaf72b360049c9ae0f90b85aab3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:32:01 EDT 2025 Fri Jul 11 00:56:42 EDT 2025 Mon Jun 30 08:14:03 EDT 2025 Thu Apr 03 07:02:38 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Tue Jul 01 03:19:35 EDT 2025 Fri May 30 11:47:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | robustness fold-change detection Dictyostelium oscillations collective behavior |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-266a9a2bd3a5f9cea9452a4bf381c39ce274cadaf72b360049c9ae0f90b85aab3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 Edited by Peter N. Devreotes, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved April 9, 2017 (received for review February 9, 2017) Author contributions: K. Kamino, Y.K., K. Kaneko, and S.S. designed research; K. Kamino, Y.K., A.N., and S.S. performed research; M.H.-K. and S.S. contributed new reagents; K. Kamino and A.N. acquired and analyzed live cell image data; K. Kamino and Y.K. performed theoretical and computational analysis; and K. Kamino, Y.K., and S.S. wrote the paper. |
ORCID | 0000-0002-2801-4522 0000-0003-3764-219X |
OpenAccessLink | https://www.pnas.org/content/pnas/114/21/E4149.full.pdf |
PMID | 28495969 |
PQID | 1905687097 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5448168 proquest_miscellaneous_1899111126 proquest_journals_1905687097 pubmed_primary_28495969 crossref_primary_10_1073_pnas_1702181114 crossref_citationtrail_10_1073_pnas_1702181114 jstor_primary_26483325 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-23 |
PublicationDateYYYYMMDD | 2017-05-23 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2017 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_50_2 Brzostowski JA (e_1_3_3_41_2) 2013; 126 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_70_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_64_2 9211856 - Science. 1997 Jul 11;277(5323):251-4 19431710 - Biophys J. 1987 Nov;52(5):807-28 21808031 - Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13870-5 21585355 - Dev Growth Differ. 2011 May;53(4):503-17 15231839 - J Biol Chem. 2004 Sep 3;279(36):37215-8 19047467 - J Cell Biol. 2008 Dec 1;183(5):949-61 27271915 - Methods Mol Biol. 2016;1407:381-96 7089556 - Science. 1982 Jul 16;217(4556):220-5 25249632 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14448-53 15668169 - Curr Biol. 2005 Jan 26;15(2):134-9 25902445 - Biophys J. 2015 Apr 21;108(8):2061-73 25478701 - IET Syst Biol. 2014 Dec;8(6):268-81 24530305 - Mol Cell. 2014 Mar 20;53(6):867-79 8155908 - Math Biosci. 1994 Mar;120(1):25-76 24503857 - Science. 2014 Feb 7;343(6171):1242782 23902692 - J Cell Sci. 2013 Oct 15;126(Pt 20):4614-26 25121598 - PLoS Comput Biol. 2014 Aug 14;10(8):e1003781 20392739 - Development. 2010 May;137(10):1595-9 23133355 - PLoS Comput Biol. 2012;8(11):e1002748 6259734 - Science. 1981 Apr 24;212(4493):443-6 7949426 - Mol Biol Cell. 1994 Jun;5(6):703-11 23825937 - PLoS Comput Biol. 2013;9(6):e1003110 222770 - J Cell Biol. 1979 Feb;80(2):300-9 27358278 - J R Soc Interface. 2016 Jun;13(119):null 18657484 - Ageing Res Rev. 2008 Jul;7(3):234-48 25617347 - Mol Syst Biol. 2015 Jan 23;11(1):779 27271897 - Methods Mol Biol. 2016;1407:107-22 26871631 - Cell. 2016 Feb 11;164(4):656-67 17630977 - Mol Microbiol. 2007 Jul;65(2):508-20 19703401 - Cell. 2009 Aug 21;138(4):760-73 15534002 - J Cell Biol. 2004 Nov 8;167(3):505-18 23479620 - Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5016-21 1236856 - J Cell Sci. 1975 Oct;19(1):215-29 2557197 - Development. 1989 Jul;106(3):421-6 23473502 - Biophys J. 2013 Mar 5;104(5):1191-202 27735954 - Lab Chip. 2016 Nov 1;16(22):4382-4394 27792738 - PLoS One. 2016 Oct 28;11(10 ):e0164674 6249827 - J Cell Biol. 1980 Aug;86(2):554-61 9591694 - Biophys J. 1998 May;74(5):2702-13 20729472 - Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15995-6000 6249826 - J Cell Biol. 1980 Aug;86(2):545-53 6299820 - Dev Biol. 1983 Apr;96(2):405-15 20413456 - Science. 2010 May 21;328(5981):1021-5 19883581 - Biophys J. 2009 Nov 4;97(9):2388-98 11566809 - Biophys J. 2001 Oct;81(4):2395-402 4615133 - J Gen Microbiol. 1974 Dec;85(2):321-34 22215733 - Sci Signal. 2012 Jan 03;5(205):ra2 26305221 - PLoS One. 2015 Aug 25;10(8):e0136095 18755009 - J Microsc. 2008 Sep;231(3):529-34 16267269 - Mol Biol Cell. 2006 Jan;17(1):357-66 23293140 - J R Soc Interface. 2013 Jan 04;10(80):20120935 21412271 - Nat Protoc. 2011 Apr;6(4):427-38 175290 - Nature. 1976 Feb 26;259(5545):670-1 15662425 - Nature. 2005 Jan 20;433(7023):323-6 20005849 - Mol Cell. 2009 Dec 11;36(5):872-84 175073 - J Cell Sci. 1976 Jan;20(1):1-20 28089543 - Cell Syst. 2017 Feb 22;4(2):171-181.e8 12062103 - Cell. 2002 May 31;109 (5):599-610 19593362 - PLoS Comput Biol. 2009 Jul;5(7):e1000422 8577731 - Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1151-5 20005851 - Mol Cell. 2009 Dec 11;36(5):894-9 6249825 - J Cell Biol. 1980 Aug;86(2):537-44 21385708 - Science. 2011 Mar 4;331(6021):1154-9 14595105 - Mol Biol Cell. 2003 Dec;14(12):5019-27 25373620 - Nat Commun. 2014 Nov 06;5:5367 9256451 - Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9153-8 18948008 - Curr Biol. 2008 Oct 28;18(20):1587-93 10061652 - Phys Rev Lett. 1996 Feb 12;76(7):1174-1177 |
References_xml | – ident: e_1_3_3_43_2 doi: 10.1073/pnas.1218025110 – ident: e_1_3_3_58_2 doi: 10.1038/nature03228 – ident: e_1_3_3_29_2 doi: 10.1126/science.6259734 – ident: e_1_3_3_37_2 doi: 10.1016/j.cub.2005.01.007 – volume: 126 start-page: 4614 year: 2013 ident: e_1_3_3_41_2 article-title: Phosphorylation of chemoattractant receptors regulates chemotaxis, actin reorganization and signal relay publication-title: J Cell Sci – ident: e_1_3_3_20_2 doi: 10.1103/PhysRevLett.76.1174 – ident: e_1_3_3_11_2 doi: 10.1016/j.molcel.2014.01.026 – ident: e_1_3_3_64_2 doi: 10.1017/CBO9780511608193 – ident: e_1_3_3_17_2 doi: 10.1073/pnas.1412197111 – ident: e_1_3_3_33_2 doi: 10.1039/C6LC00898D – ident: e_1_3_3_49_2 doi: 10.1371/journal.pone.0136095 – ident: e_1_3_3_44_2 doi: 10.1371/journal.pcbi.1003110 – ident: e_1_3_3_32_2 doi: 10.1083/jcb.200808105 – ident: e_1_3_3_28_2 doi: 10.1016/j.bpj.2013.01.023 – ident: e_1_3_3_19_2 doi: 10.1099/00221287-85-2-321 – ident: e_1_3_3_61_2 doi: 10.1016/S0006-3495(01)75886-9 – ident: e_1_3_3_66_2 doi: 10.1016/0167-2789(89)90234-0 – ident: e_1_3_3_47_2 doi: 10.1098/rsif.2012.0935 – ident: e_1_3_3_67_2 doi: 10.1073/pnas.93.3.1151 – ident: e_1_3_3_6_2 doi: 10.1073/pnas.1108608108 – ident: e_1_3_3_16_2 doi: 10.1098/rsif.2016.0233 – ident: e_1_3_3_36_2 doi: 10.1083/jcb.200406177 – ident: e_1_3_3_48_2 doi: 10.1049/iet-syb.2014.0026 – ident: e_1_3_3_3_2 doi: 10.1016/j.cell.2009.06.013 – ident: e_1_3_3_5_2 doi: 10.1073/pnas.1002352107 – ident: e_1_3_3_7_2 doi: 10.1371/journal.pcbi.1003781 – ident: e_1_3_3_55_2 doi: 10.1016/j.bpj.2015.03.015 – ident: e_1_3_3_24_2 doi: 10.1126/science.1183415 – ident: e_1_3_3_35_2 doi: 10.1016/j.arr.2008.04.003 – ident: e_1_3_3_22_2 doi: 10.1242/jcs.20.1.1 – ident: e_1_3_3_51_2 doi: 10.1016/0025-5564(94)90037-X – ident: e_1_3_3_12_2 doi: 10.1126/science.1242782 – ident: e_1_3_3_27_2 doi: 10.1038/nprot.2010.198 – ident: e_1_3_3_59_2 doi: 10.1074/jbc.C400302200 – ident: e_1_3_3_4_2 doi: 10.1016/j.molcel.2009.11.018 – ident: e_1_3_3_8_2 doi: 10.1371/journal.pone.0164674 – ident: e_1_3_3_18_2 doi: 10.1038/ncomms6367 – ident: e_1_3_3_56_2 doi: 10.1242/dev.046888 – ident: e_1_3_3_2_2 doi: 10.1126/science.7089556 – ident: e_1_3_3_52_2 doi: 10.1111/j.1365-2958.2007.05803.x – ident: e_1_3_3_15_2 doi: 10.1083/jcb.86.2.545 – ident: e_1_3_3_62_2 doi: 10.1007/978-1-4939-3480-5_8 – ident: e_1_3_3_34_2 doi: 10.1007/978-1-4939-3480-5_26 – ident: e_1_3_3_30_2 doi: 10.1016/0012-1606(83)90178-1 – ident: e_1_3_3_57_2 doi: 10.1016/j.cell.2016.01.028 – ident: e_1_3_3_38_2 doi: 10.1091/mbc.e05-08-0781 – ident: e_1_3_3_13_2 doi: 10.1083/jcb.86.2.537 – ident: e_1_3_3_54_2 doi: 10.1038/259670a0 – ident: e_1_3_3_60_2 doi: 10.1016/S0006-3495(98)77976-7 – ident: e_1_3_3_42_2 doi: 10.1126/scisignal.2002413 – ident: e_1_3_3_40_2 doi: 10.1016/S0092-8674(02)00745-6 – ident: e_1_3_3_9_2 doi: 10.1016/j.molcel.2009.11.017 – ident: e_1_3_3_14_2 doi: 10.1083/jcb.86.2.554 – ident: e_1_3_3_63_2 doi: 10.1091/mbc.e03-08-0566 – ident: e_1_3_3_65_2 doi: 10.1242/dev.106.3.421 – ident: e_1_3_3_46_2 doi: 10.1016/j.cels.2016.12.009 – ident: e_1_3_3_69_2 doi: 10.1371/journal.pcbi.1000422 – ident: e_1_3_3_1_2 doi: 10.1083/jcb.80.2.300 – ident: e_1_3_3_23_2 doi: 10.1126/science.277.5323.251 – ident: e_1_3_3_26_2 doi: 10.15252/msb.20145352 – ident: e_1_3_3_70_2 doi: 10.1016/j.bpj.2009.08.021 – ident: e_1_3_3_10_2 doi: 10.1126/science.1200037 – ident: e_1_3_3_25_2 doi: 10.1111/j.1440-169X.2011.01266.x – ident: e_1_3_3_39_2 doi: 10.1016/j.cub.2008.08.069 – ident: e_1_3_3_45_2 doi: 10.1371/journal.pcbi.1002748 – ident: e_1_3_3_50_2 doi: 10.1016/S0006-3495(87)83275-7 – ident: e_1_3_3_53_2 doi: 10.1091/mbc.5.6.703 – ident: e_1_3_3_21_2 doi: 10.1242/jcs.19.1.215 – ident: e_1_3_3_31_2 doi: 10.1111/j.1365-2818.2008.02066.x – ident: e_1_3_3_68_2 doi: 10.1073/pnas.94.17.9153 – reference: 24530305 - Mol Cell. 2014 Mar 20;53(6):867-79 – reference: 23133355 - PLoS Comput Biol. 2012;8(11):e1002748 – reference: 19883581 - Biophys J. 2009 Nov 4;97(9):2388-98 – reference: 10061652 - Phys Rev Lett. 1996 Feb 12;76(7):1174-1177 – reference: 19431710 - Biophys J. 1987 Nov;52(5):807-28 – reference: 26305221 - PLoS One. 2015 Aug 25;10(8):e0136095 – reference: 23293140 - J R Soc Interface. 2013 Jan 04;10(80):20120935 – reference: 18657484 - Ageing Res Rev. 2008 Jul;7(3):234-48 – reference: 15231839 - J Biol Chem. 2004 Sep 3;279(36):37215-8 – reference: 21585355 - Dev Growth Differ. 2011 May;53(4):503-17 – reference: 8577731 - Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1151-5 – reference: 26871631 - Cell. 2016 Feb 11;164(4):656-67 – reference: 25902445 - Biophys J. 2015 Apr 21;108(8):2061-73 – reference: 7089556 - Science. 1982 Jul 16;217(4556):220-5 – reference: 6249827 - J Cell Biol. 1980 Aug;86(2):554-61 – reference: 1236856 - J Cell Sci. 1975 Oct;19(1):215-29 – reference: 20005851 - Mol Cell. 2009 Dec 11;36(5):894-9 – reference: 6299820 - Dev Biol. 1983 Apr;96(2):405-15 – reference: 20392739 - Development. 2010 May;137(10):1595-9 – reference: 27358278 - J R Soc Interface. 2016 Jun;13(119):null – reference: 21385708 - Science. 2011 Mar 4;331(6021):1154-9 – reference: 222770 - J Cell Biol. 1979 Feb;80(2):300-9 – reference: 19593362 - PLoS Comput Biol. 2009 Jul;5(7):e1000422 – reference: 2557197 - Development. 1989 Jul;106(3):421-6 – reference: 11566809 - Biophys J. 2001 Oct;81(4):2395-402 – reference: 175290 - Nature. 1976 Feb 26;259(5545):670-1 – reference: 23902692 - J Cell Sci. 2013 Oct 15;126(Pt 20):4614-26 – reference: 6259734 - Science. 1981 Apr 24;212(4493):443-6 – reference: 21808031 - Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13870-5 – reference: 14595105 - Mol Biol Cell. 2003 Dec;14(12):5019-27 – reference: 17630977 - Mol Microbiol. 2007 Jul;65(2):508-20 – reference: 25249632 - Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14448-53 – reference: 15534002 - J Cell Biol. 2004 Nov 8;167(3):505-18 – reference: 25617347 - Mol Syst Biol. 2015 Jan 23;11(1):779 – reference: 12062103 - Cell. 2002 May 31;109 (5):599-610 – reference: 6249825 - J Cell Biol. 1980 Aug;86(2):537-44 – reference: 27271915 - Methods Mol Biol. 2016;1407:381-96 – reference: 21412271 - Nat Protoc. 2011 Apr;6(4):427-38 – reference: 23479620 - Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5016-21 – reference: 6249826 - J Cell Biol. 1980 Aug;86(2):545-53 – reference: 4615133 - J Gen Microbiol. 1974 Dec;85(2):321-34 – reference: 9591694 - Biophys J. 1998 May;74(5):2702-13 – reference: 20729472 - Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15995-6000 – reference: 28089543 - Cell Syst. 2017 Feb 22;4(2):171-181.e8 – reference: 7949426 - Mol Biol Cell. 1994 Jun;5(6):703-11 – reference: 8155908 - Math Biosci. 1994 Mar;120(1):25-76 – reference: 15668169 - Curr Biol. 2005 Jan 26;15(2):134-9 – reference: 22215733 - Sci Signal. 2012 Jan 03;5(205):ra2 – reference: 20005849 - Mol Cell. 2009 Dec 11;36(5):872-84 – reference: 27792738 - PLoS One. 2016 Oct 28;11(10 ):e0164674 – reference: 23825937 - PLoS Comput Biol. 2013;9(6):e1003110 – reference: 25121598 - PLoS Comput Biol. 2014 Aug 14;10(8):e1003781 – reference: 24503857 - Science. 2014 Feb 7;343(6171):1242782 – reference: 16267269 - Mol Biol Cell. 2006 Jan;17(1):357-66 – reference: 19703401 - Cell. 2009 Aug 21;138(4):760-73 – reference: 175073 - J Cell Sci. 1976 Jan;20(1):1-20 – reference: 20413456 - Science. 2010 May 21;328(5981):1021-5 – reference: 9256451 - Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9153-8 – reference: 23473502 - Biophys J. 2013 Mar 5;104(5):1191-202 – reference: 18755009 - J Microsc. 2008 Sep;231(3):529-34 – reference: 15662425 - Nature. 2005 Jan 20;433(7023):323-6 – reference: 19047467 - J Cell Biol. 2008 Dec 1;183(5):949-61 – reference: 27735954 - Lab Chip. 2016 Nov 1;16(22):4382-4394 – reference: 27271897 - Methods Mol Biol. 2016;1407:107-22 – reference: 18948008 - Curr Biol. 2008 Oct 28;18(20):1587-93 – reference: 9211856 - Science. 1997 Jul 11;277(5323):251-4 – reference: 25373620 - Nat Commun. 2014 Nov 06;5:5367 – reference: 25478701 - IET Syst Biol. 2014 Dec;8(6):268-81 |
SSID | ssj0009580 |
Score | 2.4197955 |
Snippet | Cell–cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute... Recent works have hinted at an ability of cells to respond in the exact same manner to a fold change in the input stimulus. The property is thought to allow... Cell-cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E4149 |
SubjectTerms | Agglomeration Amoeba Biological Sciences Cell aggregation Cell density Cell number Cells Change detection Cyclic AMP Density Dilution Genetic transformation Invariance Mathematical analysis Molecules Oscillations Physical Sciences PNAS Plus Robustness (mathematics) Scale invariance Transformations (mathematics) |
Title | Fold-change detection and scale invariance of cell–cell signaling in social amoeba |
URI | https://www.jstor.org/stable/26483325 https://www.ncbi.nlm.nih.gov/pubmed/28495969 https://www.proquest.com/docview/1905687097 https://www.proquest.com/docview/1899111126 https://pubmed.ncbi.nlm.nih.gov/PMC5448168 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXKcuGCWGChsKAgcVhUuTSx8-HjCrVa0aWsUCv1FjmJrYa2CaIpB34LP5Zx7DjpUhBwiSLHtizPy3jGmjeD0OsgcaMkEwmWcBZjmnIXcx_eZOALKlNwMmp-xYdZcLWg75f-stf70Yla2lfJMP1-lFfyP1KFNpCrYsn-g2TtpNAA7yBfeIKE4flXMp6Umwxr6u4gE5UwZb_VVThsvUoH8g1c4ZoUoKLHxWaD1WOggjb4xrBZzK0535Yi4V1b9caebbsmkmDWXB1etkQUox12Azy4mbVljad8m9dlvQdTkVdW-U9V-ZBa75crkduraL7mn_OtvuNd56t8XVq8wQCOpzCFSi2t6UV5964Czr-RjzWduJvq--giu0rag4OTamr1UGi9DGYNDqiuLGoVt6afGoRqorXRw2Pq6kyov5wQoNJUWeOC74ZuWBs4zTQHubhnH-PJ4vo6no-X8zvorgdOiFer_W5K50gTnMxym8RRIXl7a_oDm0eHvR5zaG7H5XYMnfkDdN94KM6lhtsp6oniITptNtC5MInK3zxCnzr4cyz-HMCfU-PPafHnlNKx-HMs_qCHo_HnaPw9RovJeP7uCpsaHTgFU7PCYN9xxr0kI9yXLBWcUd_jNJFgCaYEGrwQFEDGZeglJFD-aMq4GEk2SiKf84ScoZOiLMRT5Eg_YnLEVIJKQgmVkSSjlJIoCzNXBizoo2Gzi3FqEtirOiqbuA6kCEmstj1ut72PLuyALzp3y--7ntVisf1U4Cchnt9H542cYvPnwzgGbgMcdCzso1f2M-hltYe8EOUe-kRM2RGuB-t-osXaTh5R5rOA9VF4IHDbQeV8P_xS5Ks697tPqaqU8-zPy3qO7rW_3zk6qb7uxQswnqvkZY3hn1Onxno |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fold-change+detection+and+scale+invariance+of+cell-cell+signaling+in+social+amoeba&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kamino%2C+Keita&rft.au=Kondo%2C+Yohei&rft.au=Nakajima%2C+Akihiko&rft.au=Honda-Kitahara%2C+Mai&rft.date=2017-05-23&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=21&rft.spage=E4149&rft_id=info:doi/10.1073%2Fpnas.1702181114&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |