A Review of Laser Ultrasonic Lamb Wave Damage Detection Methods for Thin-Walled Structures

Thin-walled structures, like aircraft skins and ship shells, are often several meters in size but only a few millimeters thick. By utilizing the laser ultrasonic Lamb wave detection method (LU-LDM), signals can be detected over long distances without physical contact. Additionally, this technology o...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 6; p. 3183
Main Authors Zheng, Shanpu, Luo, Ying, Xu, Chenguang, Xu, Guidong
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 16.03.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thin-walled structures, like aircraft skins and ship shells, are often several meters in size but only a few millimeters thick. By utilizing the laser ultrasonic Lamb wave detection method (LU-LDM), signals can be detected over long distances without physical contact. Additionally, this technology offers excellent flexibility in designing the measurement point distribution. The characteristics of LU-LDM are first analyzed in this review, specifically in terms of laser ultrasound and hardware configuration. Next, the methods are categorized based on three criteria: the quantity of collected wavefield data, the spectral domain, and the distribution of measurement points. The advantages and disadvantages of multiple methods are compared, and the suitable conditions for each method are summarized. Thirdly, we summarize four combined methods that balance detection efficiency and accuracy. Finally, several future development trends are suggested, and the current gaps and shortcomings in LU-LDM are highlighted. This review builds a comprehensive framework for LU-LDM for the first time, which is expected to serve as a technical reference for applying this technology in large, thin-walled structures.
AbstractList Thin-walled structures, like aircraft skins and ship shells, are often several meters in size but only a few millimeters thick. By utilizing the laser ultrasonic Lamb wave detection method (LU-LDM), signals can be detected over long distances without physical contact. Additionally, this technology offers excellent flexibility in designing the measurement point distribution. The characteristics of LU-LDM are first analyzed in this review, specifically in terms of laser ultrasound and hardware configuration. Next, the methods are categorized based on three criteria: the quantity of collected wavefield data, the spectral domain, and the distribution of measurement points. The advantages and disadvantages of multiple methods are compared, and the suitable conditions for each method are summarized. Thirdly, we summarize four combined methods that balance detection efficiency and accuracy. Finally, several future development trends are suggested, and the current gaps and shortcomings in LU-LDM are highlighted. This review builds a comprehensive framework for LU-LDM for the first time, which is expected to serve as a technical reference for applying this technology in large, thin-walled structures.
Thin-walled structures, like aircraft skins and ship shells, are often several meters in size but only a few millimeters thick. By utilizing the laser ultrasonic Lamb wave detection method (LU-LDM), signals can be detected over long distances without physical contact. Additionally, this technology offers excellent flexibility in designing the measurement point distribution. The characteristics of LU-LDM are first analyzed in this review, specifically in terms of laser ultrasound and hardware configuration. Next, the methods are categorized based on three criteria: the quantity of collected wavefield data, the spectral domain, and the distribution of measurement points. The advantages and disadvantages of multiple methods are compared, and the suitable conditions for each method are summarized. Thirdly, we summarize four combined methods that balance detection efficiency and accuracy. Finally, several future development trends are suggested, and the current gaps and shortcomings in LU-LDM are highlighted. This review builds a comprehensive framework for LU-LDM for the first time, which is expected to serve as a technical reference for applying this technology in large, thin-walled structures.Thin-walled structures, like aircraft skins and ship shells, are often several meters in size but only a few millimeters thick. By utilizing the laser ultrasonic Lamb wave detection method (LU-LDM), signals can be detected over long distances without physical contact. Additionally, this technology offers excellent flexibility in designing the measurement point distribution. The characteristics of LU-LDM are first analyzed in this review, specifically in terms of laser ultrasound and hardware configuration. Next, the methods are categorized based on three criteria: the quantity of collected wavefield data, the spectral domain, and the distribution of measurement points. The advantages and disadvantages of multiple methods are compared, and the suitable conditions for each method are summarized. Thirdly, we summarize four combined methods that balance detection efficiency and accuracy. Finally, several future development trends are suggested, and the current gaps and shortcomings in LU-LDM are highlighted. This review builds a comprehensive framework for LU-LDM for the first time, which is expected to serve as a technical reference for applying this technology in large, thin-walled structures.
Audience Academic
Author Xu, Guidong
Zheng, Shanpu
Xu, Chenguang
Luo, Ying
AuthorAffiliation 1 Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
2 School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China
AuthorAffiliation_xml – name: 1 Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
– name: 2 School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China
Author_xml – sequence: 1
  givenname: Shanpu
  surname: Zheng
  fullname: Zheng, Shanpu
– sequence: 2
  givenname: Ying
  surname: Luo
  fullname: Luo, Ying
– sequence: 3
  givenname: Chenguang
  surname: Xu
  fullname: Xu, Chenguang
– sequence: 4
  givenname: Guidong
  surname: Xu
  fullname: Xu, Guidong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36991893$$D View this record in MEDLINE/PubMed
BookMark eNplkk1r3DAQhkVJaZJtD_0DxdBLc3CiD9uSTmVJvwJbCu2WQC9Clke7WmwrkeQt-ffVZpOQpOgwYvTOI43eOUYHox8BobcEnzIm8VmkDDeMCPYCHZGKVqWgFB882h-i4xg3GFPGmHiFDlkjJRGSHaE_8-InbB38LbwtFjpCKH73KejoR2dyYmiLS72F4pMe9CoHSGCS82PxHdLad7GwPhTLtRvLS9330BW_UphMmgLE1-il1X2EN3dxhpZfPi_Pv5WLH18vzueL0tRYppJSoTVtK2itNtYKUwOv26quLAXJKm4rKzrcNKAJE2A5brFlorWE4M4YYDN0scd2Xm_UVXCDDjfKa6duEz6slA7JmR6UEUbjru0EFqJqqGxJLRtmcCtqwxtZZ9bHPetqagfoDIz5K_on0Kcno1urld8qgnHNed1kwoc7QvDXE8SkBhcN9L0ewU9RUS6pxHxnxAy9fybd-CmM-at2KsKzSbeq071qpXMHbrQ-X2zy6mBwJs-BdTk_5xWTrCGU54J3j3t4ePy951lwtheY4GMMYJVxSe9MzWTX517UbqrUw1TlipNnFffQ_7X_AE6_yuw
CitedBy_id crossref_primary_10_1016_j_sna_2023_114742
crossref_primary_10_1109_JSEN_2024_3482471
crossref_primary_10_3390_s24206516
crossref_primary_10_3390_s24154904
crossref_primary_10_1016_j_ijmecsci_2024_109854
crossref_primary_10_3390_aerospace11070524
crossref_primary_10_1016_j_ultras_2025_107617
crossref_primary_10_1016_j_ultras_2025_107635
crossref_primary_10_1016_j_tws_2024_112345
crossref_primary_10_1088_1361_665X_ad4e7b
crossref_primary_10_1016_j_ultras_2023_107163
crossref_primary_10_1007_s40964_024_00816_5
crossref_primary_10_1109_JSEN_2024_3522386
Cites_doi 10.3390/s19092180
10.1109/TUFFC.2021.3087949
10.1177/0954406212452233
10.1177/1475921716689733
10.1016/j.ymssp.2021.108463
10.1177/1045389X20952536
10.3390/app10124360
10.1016/j.ndteint.2016.11.009
10.1016/j.ndteint.2013.04.003
10.1016/j.ndteint.2021.102480
10.1109/TUFFC.2014.006747
10.1016/j.ndteint.2008.09.011
10.3390/signals2010002
10.4028/www.scientific.net/KEM.518.1
10.3390/s19030545
10.1063/1.5031651
10.1088/1757-899X/1024/1/012032
10.1177/1475921714546060
10.3390/met11050718
10.3788/AOS201434.0714001
10.1080/09243046.2020.1825154
10.1016/j.jsv.2019.114985
10.1063/1.5099801
10.1088/0964-1726/20/10/105002
10.3390/s21103334
10.1016/j.ultras.2021.106672
10.3390/s21020609
10.1177/1475921718764848
10.1016/j.actamat.2022.118552
10.1016/0041-624X(93)90039-3
10.1177/1475921719880296
10.1115/IMECE2019-10928
10.1088/0964-1726/25/10/105022
10.1016/j.measurement.2021.109109
10.1063/1.96411
10.1088/1361-665X/ab85e0
10.1016/j.ymssp.2018.11.016
10.1016/j.wavemoti.2013.04.004
10.1117/12.2219619
10.3390/ma14175114
10.1142/S0217984921502638
10.1016/j.ndteint.2008.10.006
10.1016/j.ymssp.2020.106694
10.1007/s12541-012-0087-2
10.1007/s12666-022-02653-y
10.1088/0964-1726/24/10/105019
10.1177/1475921720976926
10.3390/app12062894
10.1007/s00170-020-05946-y
10.1109/TUFFC.924
10.1016/j.polymertesting.2021.107466
10.1088/0964-1726/13/2/003
10.1016/j.ultras.2015.12.014
10.1177/1475921715623359
10.1016/j.sna.2014.04.027
10.1177/1045389X14529026
10.3390/s22010406
10.1016/j.neucom.2012.11.053
10.1016/j.marstruc.2021.103013
10.1016/j.ultras.2014.05.011
10.1016/j.compstruct.2022.115971
10.1080/10589759.2022.2045292
10.2320/matertrans.I-M2011853
10.1063/5.0038340
10.1016/j.ymssp.2020.107107
10.1088/0964-1726/22/2/025022
10.1016/j.ymssp.2021.108154
10.1016/j.compstruct.2018.07.124
10.1016/j.optlastec.2011.08.007
10.1088/1674-1056/25/12/124304
10.1088/0964-1726/25/8/085042
10.1109/FENDT50467.2020.9337534
10.1016/j.ultras.2016.03.013
10.1177/1045389X14545389
10.1088/0964-1726/24/10/105021
10.1016/j.optlaseng.2010.07.008
10.1088/0964-1726/22/7/075028
10.1016/j.ijmecsci.2022.107769
10.3390/s20061790
10.1115/SMASIS2020-2288
10.1063/1.4974606
10.1016/j.jmrt.2022.07.056
10.1109/TUFFC.2014.006925
10.1063/1.5099819
10.1002/stc.1504
10.1088/0964-1726/16/6/014
10.1109/MetroAeroSpace51421.2021.9511673
10.1109/TUFFC.2017.2780901
10.1364/AO.405453
10.1007/s11340-011-9567-z
10.1016/j.ndteint.2020.102344
10.1364/OL.44.005695
10.3390/s20051265
10.1016/j.ultras.2021.106451
10.1007/s10338-021-00216-0
10.1109/TUFFC.2016.2536144
10.1007/s42791-019-0012-2
10.3390/s20113035
10.1016/j.ymssp.2022.109010
10.3390/s21030811
10.1063/1.1711602
10.1007/s12650-018-0497-z
10.5768/JAO202142.0107002
10.1088/0964-1726/25/5/053001
10.1016/j.ultras.2021.106486
10.1016/j.ultras.2018.06.005
10.1016/j.ultras.2018.10.008
10.1016/j.ndteint.2020.102366
10.1063/1.3114311
10.1016/j.ymssp.2014.09.008
10.1016/j.ultras.2020.106114
10.36001/ijphm.2022.v13i1.3107
10.1016/j.eswa.2020.114189
10.1016/j.compositesb.2012.07.033
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23063183
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_c8ca0dbd80884629b15963c0b85c7695
PMC10057756
A743936127
36991893
10_3390_s23063183
Genre Journal Article
Review
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12072133; 11520101001
– fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province, China
  grantid: KYCX22_3613
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c509t-228aa2b4ebfacff8c5e75b454f2e9347f4f8d066ea138ef70b0f38bf110dcce3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:26:41 EDT 2025
Thu Aug 21 18:38:03 EDT 2025
Fri Jul 11 10:31:32 EDT 2025
Fri Jul 25 20:11:34 EDT 2025
Tue Jul 01 05:44:32 EDT 2025
Thu Apr 03 06:54:04 EDT 2025
Tue Jul 01 01:19:56 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords ultrasonic lamb wave
thin-walled structures
nondestructive testing
damage imaging algorithm
laser ultrasonic detection
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-228aa2b4ebfacff8c5e75b454f2e9347f4f8d066ea138ef70b0f38bf110dcce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.proquest.com/docview/2791736933?pq-origsite=%requestingapplication%
PMID 36991893
PQID 2791736933
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_c8ca0dbd80884629b15963c0b85c7695
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10057756
proquest_miscellaneous_2792907233
proquest_journals_2791736933
gale_infotracacademiconefile_A743936127
pubmed_primary_36991893
crossref_citationtrail_10_3390_s23063183
crossref_primary_10_3390_s23063183
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230316
PublicationDateYYYYMMDD 2023-03-16
PublicationDate_xml – month: 3
  year: 2023
  text: 20230316
  day: 16
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
Belanger (ref_106) 2009; 42
ref_93
Zhixiang (ref_130) 2021; 42
Lee (ref_140) 2018; 204
Sampath (ref_29) 2022; 237
Song (ref_136) 2022; 121
ref_13
Zhang (ref_123) 2021; 147
ref_11
Gao (ref_78) 2019; 93
ref_99
ref_96
Chia (ref_66) 2012; 43
Zhang (ref_113) 2016; 25
ref_18
Yuan (ref_98) 2015; 24
ref_17
Esfandabadi (ref_75) 2017; 65
Davis (ref_31) 2020; 110
Chia (ref_41) 2012; 19
Wang (ref_43) 2022; 166
Song (ref_133) 2020; 116
(ref_79) 2013; 7
ref_128
ref_127
Song (ref_47) 2022; 297
Zhang (ref_65) 2014; 34
Ng (ref_28) 2019; 44
Liu (ref_33) 2018; 44
ref_23
ref_120
ref_22
ref_21
He (ref_100) 2016; 15
ref_122
ref_20
ref_121
Lee (ref_37) 2011; 49
Tian (ref_87) 2020; 20
Yuan (ref_90) 2015; 26
Perelli (ref_73) 2015; 62
An (ref_64) 2013; 22
ref_72
Song (ref_134) 2020; 20
Staszewski (ref_26) 2012; 518
Tian (ref_135) 2016; 25
Cui (ref_126) 2021; 21
Shen (ref_68) 2019; Volume 10972
Lee (ref_24) 2009; 42
Bao (ref_95) 2019; 18
Ma (ref_32) 2019; Volume 10972
ref_83
Liu (ref_131) 2021; 35
Yang (ref_89) 2013; 227
Zhang (ref_115) 2008; 55
Hu (ref_112) 2014; 54
Flynn (ref_55) 2013; 59
Zhang (ref_141) 2019; 94
Ruzzene (ref_50) 2007; 16
Li (ref_77) 2021; 38
Ambrozinski (ref_85) 2012; Volume 8347
Liu (ref_88) 2018; 21
Chia (ref_1) 2012; 44
Gu (ref_8) 2022; 20
Mesnil (ref_76) 2016; 67
Liu (ref_125) 2014; 128
Xiao (ref_44) 2021; 4
Rautela (ref_138) 2021; 115
Huthwaite (ref_116) 2013; 50
Rao (ref_117) 2016; 63
ref_58
Zhao (ref_101) 2011; 20
Ma (ref_53) 2021; 32
Zhang (ref_25) 2022; 59
Miorelli (ref_124) 2021; 122
ref_54
Lee (ref_139) 2021; 30
Spytek (ref_137) 2020; 116
Chia (ref_42) 2009; 7389
Grammatikopoulos (ref_3) 2021; 78
Michaels (ref_52) 2009; 1096
ref_61
Zhong (ref_91) 2014; 214
ref_69
Jin (ref_7) 2022; 106
Yao (ref_71) 2017; 39
Rautela (ref_129) 2021; 167
Mitra (ref_12) 2016; 25
Chen (ref_80) 2022; 173
Chen (ref_114) 2015; 62
Li (ref_81) 2022; 37
Tian (ref_82) 2019; 121
Monchalin (ref_39) 1985; 47
Choi (ref_4) 2017; 86
Hua (ref_102) 2020; 464
Liu (ref_14) 2016; 69
Gao (ref_59) 2021; 116
Gorgin (ref_34) 2020; 105
Dajani (ref_10) 2023; 246
ref_119
Ma (ref_16) 2020; 59
ref_36
ref_35
Dhital (ref_48) 2012; 52
Ahmed (ref_19) 2021; 176
ref_111
ref_30
Ding (ref_38) 2020; 29
Dhital (ref_45) 2012; Volume 8343
Sheen (ref_107) 2012; 13
Wang (ref_51) 2022; 75
Zhu (ref_60) 2013; 22
Truong (ref_56) 2018; 17
Yang (ref_97) 2022; 163
Khan (ref_9) 2019; 1
He (ref_62) 2016; 25
Guo (ref_132) 2021; 68
Balasubramaniam (ref_70) 2021; 2
Li (ref_86) 2021; 34
ref_104
He (ref_118) 2020; 19
Yi (ref_40) 2021; 58
Lissenden (ref_67) 2021; 129
ref_108
Mallet (ref_27) 2004; 13
ref_109
ref_46
Hua (ref_103) 2015; 14
Tian (ref_57) 2015; 24
Stepinski (ref_84) 2015; 26
ref_2
Han (ref_92) 2015; 54
ref_49
Qiu (ref_15) 2020; 63
Hutchins (ref_105) 1993; 31
Albiruni (ref_110) 2012; 53
ref_5
He (ref_63) 2017; 1806
Sabeti (ref_74) 2020; 140
ref_6
References_xml – ident: ref_109
  doi: 10.3390/s19092180
– volume: 68
  start-page: 3216
  year: 2021
  ident: ref_132
  article-title: Automatic Quantification of Subsurface Defects by Analyzing Laser Ultrasonic Signals Using Convolutional Neural Networks and Wavelet Transform
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control.
  doi: 10.1109/TUFFC.2021.3087949
– volume: 227
  start-page: 703
  year: 2013
  ident: ref_89
  article-title: Impact source localization in plate utilizing multiple signal classification
  publication-title: Proc. Inst. Mech. Eng Part C J. Mech. Eng. Sci.
  doi: 10.1177/0954406212452233
– volume: 17
  start-page: 255
  year: 2018
  ident: ref_56
  article-title: Thickness reconstruction of nuclear power plant pipes with flow-accelerated corrosion damage using laser ultrasonic wavenumber imaging
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921716689733
– volume: 7389
  start-page: 576
  year: 2009
  ident: ref_42
  article-title: Structural damage identification based on laser ultrasonic propagation imaging technology
  publication-title: Proc. SPIE
– volume: 166
  start-page: 108463
  year: 2022
  ident: ref_43
  article-title: Damage visualization using laser-generated residual guided waves with optimization of laser scanning path
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108463
– volume: 32
  start-page: 182
  year: 2021
  ident: ref_53
  article-title: Lamb wave imaging with actuator network for damage quantification in aluminum plate structures
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X20952536
– ident: ref_111
  doi: 10.3390/app10124360
– volume: 4
  start-page: 021004
  year: 2021
  ident: ref_44
  article-title: Thin-plate imaging inspection using scattered waves cross-correlation algorithm and non-contact air-coupled transducer
  publication-title: J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
– volume: 86
  start-page: 53
  year: 2017
  ident: ref_4
  article-title: Multi-directional adjacent wave subtraction and shifted time point mapping algorithms and their application to defect visualization in a space tank liner
  publication-title: Ndt E Int.
  doi: 10.1016/j.ndteint.2016.11.009
– volume: 59
  start-page: 1
  year: 2013
  ident: ref_55
  article-title: Structural imaging through local wavenumber estimation of guided waves
  publication-title: Ndt E Int.
  doi: 10.1016/j.ndteint.2013.04.003
– volume: 38
  start-page: 1
  year: 2021
  ident: ref_77
  article-title: Lamb wavefield reconstruction and damage imaging of composite plate based on compressed sensing
  publication-title: Acta Mater. Compos. Sin.
– volume: 122
  start-page: 102480
  year: 2021
  ident: ref_124
  article-title: Defect sizing in guided wave imaging structural health monitoring using convolutional neural networks
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2021.102480
– ident: ref_108
– volume: 62
  start-page: 208
  year: 2015
  ident: ref_114
  article-title: A Methodology for Estimating Guided Wave Scattering Patterns From Sparse Transducer Array Measurements
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control.
  doi: 10.1109/TUFFC.2014.006747
– volume: 42
  start-page: 222
  year: 2009
  ident: ref_24
  article-title: Application of laser-generated guided wave for evaluation of corrosion in carbon steel pipe
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2008.09.011
– volume: 2
  start-page: 13
  year: 2021
  ident: ref_70
  article-title: Ultrasonic guided wave signal based nondestructive testing of a bonded composite structure using piezoelectric transducers
  publication-title: Signals
  doi: 10.3390/signals2010002
– ident: ref_94
– volume: 518
  start-page: 1
  year: 2012
  ident: ref_26
  article-title: A review of laser Doppler vibrometry for structural health monitoring applications
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.518.1
– ident: ref_46
  doi: 10.3390/s19030545
– ident: ref_121
  doi: 10.1063/1.5031651
– ident: ref_21
  doi: 10.1088/1757-899X/1024/1/012032
– volume: 14
  start-page: 20
  year: 2015
  ident: ref_103
  article-title: High-resolution damage detection based on local signal difference coefficient model
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921714546060
– ident: ref_5
  doi: 10.3390/met11050718
– volume: 34
  start-page: 0714001
  year: 2014
  ident: ref_65
  article-title: Research on Interference Energy Calculation Method inLaser Ultrasonic Technique
  publication-title: Acta Opt. Sin.
  doi: 10.3788/AOS201434.0714001
– volume: 30
  start-page: 431
  year: 2021
  ident: ref_139
  article-title: Corner inspection method for L-shaped composite structures using laser ultrasonic rotational scanning technique
  publication-title: Adv. Compos. Mater.
  doi: 10.1080/09243046.2020.1825154
– ident: ref_83
– volume: 464
  start-page: 114985
  year: 2020
  ident: ref_102
  article-title: Time-frequency damage index of Broadband Lamb wave for corrosion inspection
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2019.114985
– ident: ref_30
  doi: 10.1063/1.5099801
– volume: 20
  start-page: 105002
  year: 2011
  ident: ref_101
  article-title: Ultrasonic Lamb wave tomography in structural health monitoring
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/20/10/105002
– volume: 20
  start-page: 147592172094295
  year: 2020
  ident: ref_134
  article-title: Noncontact super-resolution guided wave array imaging of subwavelength defects using a multiscale deep learning approach
  publication-title: Struct. Health Monit.
– ident: ref_99
  doi: 10.3390/s21103334
– ident: ref_13
– volume: 121
  start-page: 106672
  year: 2022
  ident: ref_136
  article-title: Accelerated noncontact guided wave array imaging via sparse array data reconstruction
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2021.106672
– ident: ref_58
  doi: 10.3390/s21020609
– volume: 18
  start-page: 621
  year: 2019
  ident: ref_95
  article-title: Transmitter beamforming and weighted image fusion–based multiple signal classification algorithm for corrosion monitoring
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921718764848
– volume: 246
  start-page: 118552
  year: 2023
  ident: ref_10
  article-title: Detecting Thermally-Induced Spinodal Decomposition with Picosecond Ultrasonics in Cast Austenitic Stainless Steels
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2022.118552
– volume: 31
  start-page: 97
  year: 1993
  ident: ref_105
  article-title: Lamb-wave tomography using non-contact transduction
  publication-title: Ultrasonics
  doi: 10.1016/0041-624X(93)90039-3
– volume: 19
  start-page: 1237
  year: 2020
  ident: ref_118
  article-title: Guided wave tomography based on least-squares reverse-time migration
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921719880296
– ident: ref_69
  doi: 10.1115/IMECE2019-10928
– volume: 25
  start-page: 105022
  year: 2016
  ident: ref_62
  article-title: A quantitative damage imaging technique based on enhanced CCRTM for composite plates using 2D scan
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/10/105022
– volume: 176
  start-page: 109109
  year: 2021
  ident: ref_19
  article-title: Robotic laser sensing and laser mirror excitation for pulse-echo scanning inspection of fixed composite structures with non-planar geometries
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109109
– volume: 47
  start-page: 14
  year: 1985
  ident: ref_39
  article-title: Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.96411
– volume: 29
  start-page: 075006
  year: 2020
  ident: ref_38
  article-title: A flexible laser ultrasound transducer for Lamb wave-based structural health monitoring
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ab85e0
– volume: 121
  start-page: 158
  year: 2019
  ident: ref_82
  article-title: Pulsed laser-scanning laser Doppler vibrometer (PL-SLDV) phased arrays for damage detection in aluminum plates
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.11.016
– volume: Volume 10972
  start-page: 322
  year: 2019
  ident: ref_68
  article-title: Scanning laser vibrometry imaging of fatigue cracks via nonlinear ultrasonic guided wave scattering and mode conversion
  publication-title: Proceedings of the Health Monitoring of Structural and Biological Systems XIII
– volume: 50
  start-page: 979
  year: 2013
  ident: ref_116
  article-title: High-resolution guided wave tomography
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2013.04.004
– ident: ref_18
  doi: 10.1117/12.2219619
– ident: ref_104
  doi: 10.3390/ma14175114
– volume: 35
  start-page: 2150263
  year: 2021
  ident: ref_131
  article-title: Effective detection of metal surface defects based on double-line laser ultrasonic with convolutional neural networks
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984921502638
– volume: 63
  start-page: 14
  year: 2020
  ident: ref_15
  article-title: Non-Destructive Testing for Aerospace Composite Structures Using Laser Ultrasonic Technique
  publication-title: Aeronaut. Manuf. Technol.
– volume: Volume 8343
  start-page: 79
  year: 2012
  ident: ref_45
  article-title: Laser excitation and fully non-contact sensing ultrasonic propagation imaging system for damage evaluation
  publication-title: Proceedings of the Industrial and Commercial Applications of Smart Structures Technologies 2012
– volume: 7
  start-page: 177
  year: 2013
  ident: ref_79
  article-title: Beamforming of guided waves
  publication-title: Adv. Struct. Damage Detect. Theory Eng. Appl.
– volume: 42
  start-page: 113
  year: 2009
  ident: ref_106
  article-title: Feasibility of low frequency straight-ray guided wave tomography
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2008.10.006
– volume: 39
  start-page: 5
  year: 2017
  ident: ref_71
  article-title: NDT Method for Thin Plate Damage Based on Laser Vibrometer
  publication-title: Nondestruct. Test.
– volume: 140
  start-page: 106694
  year: 2020
  ident: ref_74
  article-title: Spatio-temporal undersampling: Recovering ultrasonic guided wavefields from incomplete data with compressive sensing
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.106694
– volume: 13
  start-page: 671
  year: 2012
  ident: ref_107
  article-title: A study on quantitative lamb wave tomogram via modified RAPID algorithm with shape factor optimization
  publication-title: Int. J. Precis. Eng. Manuf.
  doi: 10.1007/s12541-012-0087-2
– volume: 44
  start-page: 1075
  year: 2018
  ident: ref_33
  article-title: Comparison of Imaging Quality of Compact Rectangular Arrays Based on Laser and Piezoelectric Transducers
  publication-title: J. Beijing Univ. Technol.
– volume: 75
  start-page: 2777
  year: 2022
  ident: ref_51
  article-title: Research on the fk Domain Multimodal Damage Detection Imaging Fusion Method in Metal Plate
  publication-title: Trans. Indian Inst. Met.
  doi: 10.1007/s12666-022-02653-y
– volume: 24
  start-page: 105019
  year: 2015
  ident: ref_57
  article-title: Guided wave imaging for detection and evaluation of impact-induced delamination in composites
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/10/105019
– ident: ref_6
– volume: 20
  start-page: 2813
  year: 2020
  ident: ref_87
  article-title: Noncontact laser vibrometry-based fence-like arrays with wavefield filtering-assisted adaptive imaging algorithms for detecting multiple pits in a compact cluster
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921720976926
– ident: ref_72
  doi: 10.3390/app12062894
– volume: 110
  start-page: 1203
  year: 2020
  ident: ref_31
  article-title: Additively manufactured integrated slit mask for laser ultrasonic guided wave inspection
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-020-05946-y
– volume: 55
  start-page: 2254
  year: 2008
  ident: ref_115
  article-title: Defect characterization using an ultrasonic array to measure the scattering coefficient matrix
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control.
  doi: 10.1109/TUFFC.924
– volume: Volume 8347
  start-page: 271
  year: 2012
  ident: ref_85
  article-title: Experimental comparison of 2D arrays topologies for SHM of planar structures
  publication-title: Proceedings of the Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2012
– volume: 106
  start-page: 107466
  year: 2022
  ident: ref_7
  article-title: Identification and imaging of multi-defects on a complicated composite structure by ultrasonic guided wave
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2021.107466
– volume: 13
  start-page: 261
  year: 2004
  ident: ref_27
  article-title: Structural health monitoring using scanning laser vibrometry: II. Lamb waves for damage detection
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/13/2/003
– volume: 67
  start-page: 94
  year: 2016
  ident: ref_76
  article-title: Sparse wavefield reconstruction and source detection using compressed sensing
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2015.12.014
– volume: 15
  start-page: 65
  year: 2016
  ident: ref_100
  article-title: Lamb wave-based subwavelength damage imaging using the DORT-MUSIC technique in metallic plates
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921715623359
– volume: 214
  start-page: 234
  year: 2014
  ident: ref_91
  article-title: Multiple damage detection on aircraft composite structures using near-field MUSIC algorithm
  publication-title: Sensors Actuators A Phys.
  doi: 10.1016/j.sna.2014.04.027
– volume: 26
  start-page: 400
  year: 2015
  ident: ref_90
  article-title: Two-dimensional near-field multiple signal classification algorithm–based impact localization
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X14529026
– ident: ref_119
  doi: 10.3390/s22010406
– volume: 128
  start-page: 217
  year: 2014
  ident: ref_125
  article-title: 2-D defect profile reconstruction from ultrasonic guided wave signals based on QGA-kernelized ELM
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.053
– volume: 78
  start-page: 103013
  year: 2021
  ident: ref_3
  article-title: The effects of geometric detail on the vibratory responses of complex ship-like thin-walled structures
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2021.103013
– ident: ref_36
– volume: 54
  start-page: 2015
  year: 2014
  ident: ref_112
  article-title: Tomographic reconstruction of damage images in hollow cylinders using Lamb waves
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2014.05.011
– volume: 297
  start-page: 115971
  year: 2022
  ident: ref_47
  article-title: Contactless inspection of CFRP artificial disbonds using combined laser thermography and laser ultrasonics with optical microphone
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2022.115971
– ident: ref_22
– volume: 37
  start-page: 721
  year: 2022
  ident: ref_81
  article-title: Damage Imaging of Lamb Wave in Isotropic Plate Using Phased Array Delay and Sum Based on Frequency-domain Inverse Scattering Model
  publication-title: Nondestruct. Test. Eval.
  doi: 10.1080/10589759.2022.2045292
– volume: 53
  start-page: 330
  year: 2012
  ident: ref_110
  article-title: Non-contact guided waves tomographic imaging of plate-like structures using a probabilistic algorithm
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.I-M2011853
– volume: 129
  start-page: 021101
  year: 2021
  ident: ref_67
  article-title: Nonlinear ultrasonic guided waves—Principles for nondestructive evaluation
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0038340
– ident: ref_49
– volume: 147
  start-page: 107107
  year: 2021
  ident: ref_123
  article-title: Damage localization in plate-like structures using time-varying feature and one-dimensional convolutional neural network
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107107
– volume: 21
  start-page: 147592172110239
  year: 2021
  ident: ref_126
  article-title: Damage imaging in skin-stringer composite aircraft panel by ultrasonic-guided waves using deep learning with convolutional neural network
  publication-title: Struct. Health Monit.
– volume: 22
  start-page: 025022
  year: 2013
  ident: ref_64
  article-title: Complete noncontact laser ultrasonic imaging for automated crack visualization in a plate
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/2/025022
– volume: 163
  start-page: 108154
  year: 2022
  ident: ref_97
  article-title: Ameliorated-multiple signal classification (Am-MUSIC) for damage imaging using a sparse sensor network
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108154
– volume: 204
  start-page: 395
  year: 2018
  ident: ref_140
  article-title: Composite repair patch evaluation using pulse-echo laser ultrasonic correlation mapping method
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.07.124
– volume: 44
  start-page: 428
  year: 2012
  ident: ref_1
  article-title: Laser ultrasonic anomalous wave propagation imaging method with adjacent wave subtraction: Application to actual damages in composite wing
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2011.08.007
– volume: 25
  start-page: 124304
  year: 2016
  ident: ref_113
  article-title: Quantitative damage imaging using Lamb wave diffraction tomography
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/25/12/124304
– volume: 25
  start-page: 085042
  year: 2016
  ident: ref_135
  article-title: Rapid guided wave delamination detection and quantification in composites using global-local sensing
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/8/085042
– ident: ref_93
  doi: 10.1109/FENDT50467.2020.9337534
– ident: ref_127
– volume: 69
  start-page: 248
  year: 2016
  ident: ref_14
  article-title: Numerical simulation of damage detection using laser-generated ultrasound
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2016.03.013
– volume: 26
  start-page: 2283
  year: 2015
  ident: ref_84
  article-title: Efficient tool for designing 2D phased arrays in lamb waves imaging of isotropic structures
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X14545389
– volume: 24
  start-page: 105021
  year: 2015
  ident: ref_98
  article-title: A single frequency component-based re-estimated MUSIC algorithm for impact localization on complex composite structures
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/10/105021
– volume: 49
  start-page: 167
  year: 2011
  ident: ref_37
  article-title: Laser ultrasonic propagation imaging method in the frequency domain based on wavelet transformation
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2010.07.008
– volume: 22
  start-page: 075028
  year: 2013
  ident: ref_60
  article-title: Fast damage imaging using the time-reversal technique in the frequency–wavenumber domain
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/7/075028
– ident: ref_23
– volume: 237
  start-page: 107769
  year: 2022
  ident: ref_29
  article-title: Non-contact microcrack detection via nonlinear Lamb wave mixing and laser line arrays
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2022.107769
– ident: ref_122
  doi: 10.3390/s20061790
– ident: ref_35
  doi: 10.1115/SMASIS2020-2288
– volume: 1806
  start-page: 050012
  year: 2017
  ident: ref_63
  article-title: Lamb wave-based BVID imaging for a curved composite sandwich panel
  publication-title: Aip Conf. Proc.
  doi: 10.1063/1.4974606
– volume: 20
  start-page: 128
  year: 2022
  ident: ref_8
  article-title: Multi-scale investigation on local strain and damage evolution of Al1050/steel/Al1050 clad sheet
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2022.07.056
– volume: 62
  start-page: 1373
  year: 2015
  ident: ref_73
  article-title: Compressive sensing of full wave field data for structural health monitoring applications
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2014.006925
– ident: ref_120
  doi: 10.1063/1.5099819
– volume: 19
  start-page: 605
  year: 2012
  ident: ref_41
  article-title: Composite aircraft debonding visualization by laser ultrasonic scanning excitation and integrated piezoelectric sensing
  publication-title: Struct. Control. Health Monit.
  doi: 10.1002/stc.1504
– volume: 16
  start-page: 2116
  year: 2007
  ident: ref_50
  article-title: Frequency–wavenumber domain filtering for improved damage visualization
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/16/6/014
– volume: 58
  start-page: 2319001
  year: 2021
  ident: ref_40
  article-title: Study of Lamb Wave Dispersion Characterization Using Multiplexed Two-Wave Mixing Interferometer
  publication-title: Laser Optoelectron. Prog.
– ident: ref_2
  doi: 10.1109/MetroAeroSpace51421.2021.9511673
– ident: ref_17
– volume: 65
  start-page: 269
  year: 2017
  ident: ref_75
  article-title: Full wavefield analysis and damage imaging through compressive sensing in lamb wave inspections
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control.
  doi: 10.1109/TUFFC.2017.2780901
– volume: 59
  start-page: 9591
  year: 2020
  ident: ref_16
  article-title: Investigation of the mechanism and influence of laser wavelength and energy on laser opto-ultrasonic dual detection
  publication-title: Appl. Opt.
  doi: 10.1364/AO.405453
– volume: 52
  start-page: 1111
  year: 2012
  ident: ref_48
  article-title: A fully non-contact ultrasonic propagation imaging system for closed surface crack evaluation
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-011-9567-z
– volume: 116
  start-page: 102344
  year: 2020
  ident: ref_133
  article-title: Super-resolution visualization of subwavelength defects via deep learning-enhanced ultrasonic beamforming: A proof-of- principle study
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2020.102344
– volume: 44
  start-page: 5695
  year: 2019
  ident: ref_28
  article-title: Design of a new optical system to generate narrowband guided waves with an application for evaluating the health status of rail material
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.005695
– ident: ref_96
  doi: 10.3390/s20051265
– volume: 115
  start-page: 106451
  year: 2021
  ident: ref_138
  article-title: Combined two-level damage identification strategy using ultrasonic guided waves and physical knowledge assisted machine learning
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2021.106451
– volume: 34
  start-page: 404
  year: 2021
  ident: ref_86
  article-title: Total Focusing Method Damage Imaging in Frequency Domain Using Laser-Ultrasonic Lamb Wave Based on Time-domain Filtering in Multi-band
  publication-title: Acta Mech. Solida Sin.
  doi: 10.1007/s10338-021-00216-0
– volume: 63
  start-page: 737
  year: 2016
  ident: ref_117
  article-title: Guided wave tomography based on full waveform inversion
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control.
  doi: 10.1109/TUFFC.2016.2536144
– volume: 1
  start-page: 107
  year: 2019
  ident: ref_9
  article-title: Damage assessment of smart composite structures via machine learning: A review
  publication-title: JMST Adv.
  doi: 10.1007/s42791-019-0012-2
– ident: ref_61
  doi: 10.3390/s20113035
– volume: 173
  start-page: 109010
  year: 2022
  ident: ref_80
  article-title: Sign coherence factor-based search algorithm for defect localization with laser generated Lamb waves
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109010
– ident: ref_11
  doi: 10.3390/s21030811
– ident: ref_20
  doi: 10.1063/1.1711602
– volume: 21
  start-page: 751
  year: 2018
  ident: ref_88
  article-title: Full non-contact laser-based Lamb waves phased array inspection of aluminum plate
  publication-title: J. Vis.
  doi: 10.1007/s12650-018-0497-z
– volume: 42
  start-page: 149
  year: 2021
  ident: ref_130
  article-title: Laser ultrasonic surface defects detection method based on 2D-CNN
  publication-title: J. Appl. Opt.
  doi: 10.5768/JAO202142.0107002
– volume: 25
  start-page: 053001
  year: 2016
  ident: ref_12
  article-title: Guided wave based structural health monitoring: A review
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/5/053001
– volume: Volume 10972
  start-page: 422
  year: 2019
  ident: ref_32
  article-title: Lamb wave defect detection and evaluation using a fully non-contact laser system
  publication-title: Proceedings of the Health Monitoring of Structural and Biological Systems XIII
– volume: 116
  start-page: 106486
  year: 2021
  ident: ref_59
  article-title: Multi-frequency localized wave energy for delamination identification using laser ultrasonic guided wave
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2021.106486
– volume: 94
  start-page: 411
  year: 2019
  ident: ref_141
  article-title: Detection of disbonds in multi-layer bonded structures using the laser ultrasonic pulse-echo mode
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2018.06.005
– volume: 59
  start-page: 1900006
  year: 2022
  ident: ref_25
  article-title: New Progress in Application of Laser Doppler Vibration Measurement Technology
  publication-title: Laser Optoelectron. Prog.
– ident: ref_54
– volume: 93
  start-page: 122
  year: 2019
  ident: ref_78
  article-title: Amplitude modified sparse imaging for damage detection in quasi-isotropic composite laminates using non-contact laser induced Lamb waves
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2018.10.008
– volume: 116
  start-page: 102366
  year: 2020
  ident: ref_137
  article-title: Multi-resolution non-contact damage detection in complex-shaped composite laminates using ultrasound
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2020.102366
– volume: 1096
  start-page: 604
  year: 2009
  ident: ref_52
  article-title: Incident wave removal through frequency-wavenumber filtering of full wavefield data
  publication-title: Aip Conf. Proc.
  doi: 10.1063/1.3114311
– volume: 54
  start-page: 336
  year: 2015
  ident: ref_92
  article-title: Time–frequency beamforming for nondestructive evaluations of plate using ultrasonic Lamb wave
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2014.09.008
– volume: 105
  start-page: 106114
  year: 2020
  ident: ref_34
  article-title: Environmental and operational conditions effects on Lamb wave based structural health monitoring systems: A review
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2020.106114
– ident: ref_128
  doi: 10.36001/ijphm.2022.v13i1.3107
– volume: 167
  start-page: 114189
  year: 2021
  ident: ref_129
  article-title: Ultrasonic guided wave based structural damage detection and localization using model assisted convolutional and recurrent neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114189
– volume: 43
  start-page: 2898
  year: 2012
  ident: ref_66
  article-title: Radome health management based on synthesized impact detection, laser ultrasonic spectral imaging, and wavelet-transformed ultrasonic propagation imaging methods
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2012.07.033
SSID ssj0023338
Score 2.5009801
SecondaryResourceType review_article
Snippet Thin-walled structures, like aircraft skins and ship shells, are often several meters in size but only a few millimeters thick. By utilizing the laser...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3183
SubjectTerms Ablation
Aircraft
Aluminum
damage imaging algorithm
Energy
laser ultrasonic detection
Lasers
Methods
nondestructive testing
Review
thin-walled structures
ultrasonic lamb wave
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqnugBUVogtFSmqgSXqIkfsXNc-lCFaC-0ouJi-SmQ2ixit_x-ZpxstFGReuGaTCJnPJP5vsT-hpCj5EUUzjelE0BRBFO21E6KMiXdolxbjB53I19eNRc34vOtvF1r9YVrwnp54N5xx157WwUXNKSDaFjroP423FdOS6-aNquXQs1bkamBanFgXr2OEAdSf7xAoI3RO6k-WaT_8at4rRZN10muFZ7zF-T5gBjprB_pNtmI3UuytaYjuEO-z2j_jZ_OE_0Cdek3vbmDey1Q9xYO3Dv6zf6J9NTew-uDnsZlXoDV0cvcP3pBAblS7OBZ4nf1GOjXrCr7AFR8l1yfn12fXJRD04TSQ-1floxpa5kT0SXrweNeRiWdkCKx2HKhkkg6AM6ItuY6JlW5KnHtEsCA4H3kr8hmN-_iG0LrWoUqMBYcwDovgw1Jy4wxQxTKuYJ8XPnS-EFQHPta3BkgFuh2M7q9IIej6a9eReNfRp9wQkYDFL7OByAczBAO5qlwKMgHnE6D6QmD8XbYZQCPhEJXZoYEjAOsUwXZX824GfJ2YZgC-sqblsNo3o-nIePwN4rt4vwh27C2UgxtXvcBMo4ZLm1rgIAF0ZPQmTzU9Ez380dW9a5xX7CSzdv_4YY98oxBFuBiubrZJ5sQNfEdoKelO8iJ8hccOhht
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAKK8GCjIICS5REz9i54SWlqpClAutWHGJ_IRKbVKaLb-fGSebbgTiGk8iP2bG3zjjbwh5E50IwroqtwJCFMGUybWVIo9R10jXFoLD28jHX6qjU_FpKZfjgVs_plWufWJy1L5zeEa-xxQEFryC-Pv95a8cq0bh39WxhMZtcgepyzClSy1vAi4O8dfAJsQhtN_rEW6jDs_2oETV_7dD3tiR5tmSG9vP4QNyf8SNdDEs9Da5FdqH5N4Gm-Aj8n1Bh5N-2kX6GXanK3p6Dt_qkf0WHlxY-s38DvTAXIAToQdhldKwWnqcqkj3FPArxTqeOZ6uB0-_Jm7ZawjIH5OTw48n-0f5WDohd4AAVjlj2hhmRbDROJh3J4OSVkgRWai5UFFE7QFtBFNyHaIqbBG5thHAgHcu8Cdkq-3asENoWSpfeMa8BXDnpDc-apmQpg9CWZuRd-u5bNxIK47VLc4bCC9w2ptp2jPyehK9HLg0_iX0ARdkEkD66_Sgu_rRjNbUOO1M4a3X4CNFxWoLoKzirrBaOlXVMiNvcTkbNFLojDPjXQMYEtJdNQsMwziAO5WR3fWKN6P19s2NrmXk1dQMdoc_U0wbuuskw-pCMZR5OijI1Gd4tS4BCGZEz1RnNqh5S3v2M3F7l3g7WMnq2f_79Zzcxbr3mAxXVrtkC_QhvAB0tLIvkwn8AWtVEIw
  priority: 102
  providerName: ProQuest
Title A Review of Laser Ultrasonic Lamb Wave Damage Detection Methods for Thin-Walled Structures
URI https://www.ncbi.nlm.nih.gov/pubmed/36991893
https://www.proquest.com/docview/2791736933
https://www.proquest.com/docview/2792907233
https://pubmed.ncbi.nlm.nih.gov/PMC10057756
https://doaj.org/article/c8ca0dbd80884629b15963c0b85c7695
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9NAEB71IaFyQLwJlGhBSHAx2Ou1d31AKKUNFSIVgkZEvVj7bJFSB5IUwb9nxnGsWJSLD-uRteuZ2flmH98AvAhWeGFsHhmBKYrgUkfKZCIKQRVE1-a9pdvIo5P8eCw-TrLJFqxrbDY_cHFtakf1pMbz6evfP_-8Q4d_SxknpuxvFgSjyTa3YRcDkiT_HIl2M4GnmIatSIW64ntwI80RH6ki7USlmrz_3yl6I0Z1z09uBKThbbjVIEk2WKn-Dmz56i7c3OAXvAdnA7Za-2ezwD5hvJqz8RS_tSA-XGy4NOyb_uXZob7EaYUd-mV9MKtio7qu9IIhomVU2TOi9Xbv2NeabfYKU_T7cDo8On1_HDXFFCKLmGAZca605kZ4E7RFTdjMy8yITATui1TIIIJyiD-8TlLlg4xNHFJlAsIDZ61PH8BONav8I2BJIl3sOHcG4Z7NnHZBZTX2dF5IY3rwav0vS9sQjVO9i2mJCQdpoGw10IPnreiPFbvGdUIHpJBWgAix64bZ_Lxs_Ku0yurYGadw1hQ5LwzCtDy1sVGZlXmR9eAlqbMkQ8LOWN3cPsAhEQFWOaDELEW4J3uwv9Z4uTbHkktMa9FYUuzNs_Y1eiJtr-jKz65qGV7EkpPMw5WBtH1e21kPVMd0OoPqvqm-X9Rs3wndF5ZZ_vi_H30CexytnE7GJfk-7KAp-KcIlZamD9tyIvGphh_6sHtwdPL5S79edujXLvIXc00WLg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAAYNAcImaOE7sHBBaWKot3e2FrVhxsfxskdqkdLcgfhT_kZkkm-4KxK1XZ2I59ry-2P6GkJfBcs-NLWLDAaJwJnQsTc7jEGSJdG3eW7yNPNkvRgf80yyfbZDfy7sweKxy6RMbR-1qi__It5kAYJEVgL_fnX6PsWoU7q4uS2i0arHnf_0EyDZ_uzuE9X3F2M7H6YdR3FUViC0Ex0XMmNSaGe5N0BaGZHMvcsNzHpgvMy4CD9JBIPY6zaQPIjFJyKQJECedtT6Dbq-QqxB3EzQoMbvAdxnAvZa8KMvKZHuO2T2azFrIayoD_O3_VwLg-uHMlWi3c4vc7NJUOmj16jbZ8NUdcmOFvPAu-Tqg7cYCrQMdQzA8owfH0NccyXah4cTQL_qHp0N9Aj6LDv2iOfVV0UlTtHpOIV2mWDY0xp_53tHPDZXtOeD_e2R6GXN6n2xWdeUfEpqmwiWOMWcgl7S50y7IvElsnefCmIi8Wc6lsh2LORbTOFaAZnDaVT_tEXnRi5621B3_EnqPC9ILINt201CfHarOeJWVVifOOAkumResNJADFplNjMytKMo8Iq9xORX6BBiM1d3VBvgkZNdSA0R9GeSSIiJbyxVXnbOYqwvVjsjz_jGYOe7d6MrX540MKxPBUOZBqyD9mOHVMoW8MyJyTXXWPmr9SfXtqKEST_EyssiLR_8f1zNybTSdjNV4d3_vMbnOQNfxHF5abJFN0A3_BBKzhXnamAMl6pLN7w-MN08B
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG8CBQwCwSXaxLFj54DQwlK19CEkWrHqxfITkNps2WxB_DT-HTNJdrsrELdek0nk2PP4Jh5_Q8jz6Hjg1pWp5ZCicCZNqqzgaYyqQrq2EByeRt7bL7cO-YexGK-R3_OzMFhWOfeJraP2E4f_yAdMQmJRlJB_D2JfFvFxtPnm9HuKHaRwp3XeTqNTkZ3w6yekb83r7RGs9QvGNt8fvNtK-w4DqYNAOUsZU8Ywy4ONxsHwnAhSWC54ZKEquIw8Kg9BOZi8UCHKzGaxUDZCzPTOhQJee4lcloXI0cTk-DzXKyD164iMiqLKBg0ifTSflfDXdgn4OxYsBcPVQs2lyLd5g1zvISsddjp2k6yF-ha5tkRkeJscDWm3yUAnke5CYJzSw2N4V4PEu3DhxNLP5kegI3MC_ouOwqytAKvpXtvAuqEAnSm2EE3xx37w9FNLa3s2Dc0dcnARc3qXrNeTOtwnNM-lzzxj3gKudMIbH5VoQa4PXFqbkFfzudSuZzTHxhrHGjIbnHa9mPaEPFuInnY0Hv8SeosLshBA5u32wmT6RfeGrJ1yJvPWK3DPvGSVBTxYFi6zSjhZViIhL3E5NfoHGIwz_TEH-CRk2tJDzAALwJUyIRvzFde942j0uZon5OniNpg87uOYOkzOWhlWZZKhzL1OQRZjhkerHDBoQtSK6qx81Oqd-tvXllY8x4PJUpQP_j-uJ-QKGJ7e3d7feUiuMlB1LMnLyw2yDqoRHgFGm9nHrTVQoi_Y-v4A6TVTNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Laser+Ultrasonic+Lamb+Wave+Damage+Detection+Methods+for+Thin-Walled+Structures&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zheng%2C+Shanpu&rft.au=Luo%2C+Ying&rft.au=Xu%2C+Chenguang&rft.au=Xu%2C+Guidong&rft.date=2023-03-16&rft.eissn=1424-8220&rft.volume=23&rft.issue=6&rft_id=info:doi/10.3390%2Fs23063183&rft_id=info%3Apmid%2F36991893&rft.externalDocID=36991893
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon