A Review of Laser Ultrasonic Lamb Wave Damage Detection Methods for Thin-Walled Structures
Thin-walled structures, like aircraft skins and ship shells, are often several meters in size but only a few millimeters thick. By utilizing the laser ultrasonic Lamb wave detection method (LU-LDM), signals can be detected over long distances without physical contact. Additionally, this technology o...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 6; p. 3183 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
16.03.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thin-walled structures, like aircraft skins and ship shells, are often several meters in size but only a few millimeters thick. By utilizing the laser ultrasonic Lamb wave detection method (LU-LDM), signals can be detected over long distances without physical contact. Additionally, this technology offers excellent flexibility in designing the measurement point distribution. The characteristics of LU-LDM are first analyzed in this review, specifically in terms of laser ultrasound and hardware configuration. Next, the methods are categorized based on three criteria: the quantity of collected wavefield data, the spectral domain, and the distribution of measurement points. The advantages and disadvantages of multiple methods are compared, and the suitable conditions for each method are summarized. Thirdly, we summarize four combined methods that balance detection efficiency and accuracy. Finally, several future development trends are suggested, and the current gaps and shortcomings in LU-LDM are highlighted. This review builds a comprehensive framework for LU-LDM for the first time, which is expected to serve as a technical reference for applying this technology in large, thin-walled structures. |
---|---|
AbstractList | Thin-walled structures, like aircraft skins and ship shells, are often several meters in size but only a few millimeters thick. By utilizing the laser ultrasonic Lamb wave detection method (LU-LDM), signals can be detected over long distances without physical contact. Additionally, this technology offers excellent flexibility in designing the measurement point distribution. The characteristics of LU-LDM are first analyzed in this review, specifically in terms of laser ultrasound and hardware configuration. Next, the methods are categorized based on three criteria: the quantity of collected wavefield data, the spectral domain, and the distribution of measurement points. The advantages and disadvantages of multiple methods are compared, and the suitable conditions for each method are summarized. Thirdly, we summarize four combined methods that balance detection efficiency and accuracy. Finally, several future development trends are suggested, and the current gaps and shortcomings in LU-LDM are highlighted. This review builds a comprehensive framework for LU-LDM for the first time, which is expected to serve as a technical reference for applying this technology in large, thin-walled structures. Thin-walled structures, like aircraft skins and ship shells, are often several meters in size but only a few millimeters thick. By utilizing the laser ultrasonic Lamb wave detection method (LU-LDM), signals can be detected over long distances without physical contact. Additionally, this technology offers excellent flexibility in designing the measurement point distribution. The characteristics of LU-LDM are first analyzed in this review, specifically in terms of laser ultrasound and hardware configuration. Next, the methods are categorized based on three criteria: the quantity of collected wavefield data, the spectral domain, and the distribution of measurement points. The advantages and disadvantages of multiple methods are compared, and the suitable conditions for each method are summarized. Thirdly, we summarize four combined methods that balance detection efficiency and accuracy. Finally, several future development trends are suggested, and the current gaps and shortcomings in LU-LDM are highlighted. This review builds a comprehensive framework for LU-LDM for the first time, which is expected to serve as a technical reference for applying this technology in large, thin-walled structures.Thin-walled structures, like aircraft skins and ship shells, are often several meters in size but only a few millimeters thick. By utilizing the laser ultrasonic Lamb wave detection method (LU-LDM), signals can be detected over long distances without physical contact. Additionally, this technology offers excellent flexibility in designing the measurement point distribution. The characteristics of LU-LDM are first analyzed in this review, specifically in terms of laser ultrasound and hardware configuration. Next, the methods are categorized based on three criteria: the quantity of collected wavefield data, the spectral domain, and the distribution of measurement points. The advantages and disadvantages of multiple methods are compared, and the suitable conditions for each method are summarized. Thirdly, we summarize four combined methods that balance detection efficiency and accuracy. Finally, several future development trends are suggested, and the current gaps and shortcomings in LU-LDM are highlighted. This review builds a comprehensive framework for LU-LDM for the first time, which is expected to serve as a technical reference for applying this technology in large, thin-walled structures. |
Audience | Academic |
Author | Xu, Guidong Zheng, Shanpu Xu, Chenguang Luo, Ying |
AuthorAffiliation | 1 Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China 2 School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China |
AuthorAffiliation_xml | – name: 1 Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China – name: 2 School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China |
Author_xml | – sequence: 1 givenname: Shanpu surname: Zheng fullname: Zheng, Shanpu – sequence: 2 givenname: Ying surname: Luo fullname: Luo, Ying – sequence: 3 givenname: Chenguang surname: Xu fullname: Xu, Chenguang – sequence: 4 givenname: Guidong surname: Xu fullname: Xu, Guidong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36991893$$D View this record in MEDLINE/PubMed |
BookMark | eNplkk1r3DAQhkVJaZJtD_0DxdBLc3CiD9uSTmVJvwJbCu2WQC9Clke7WmwrkeQt-ffVZpOQpOgwYvTOI43eOUYHox8BobcEnzIm8VmkDDeMCPYCHZGKVqWgFB882h-i4xg3GFPGmHiFDlkjJRGSHaE_8-InbB38LbwtFjpCKH73KejoR2dyYmiLS72F4pMe9CoHSGCS82PxHdLad7GwPhTLtRvLS9330BW_UphMmgLE1-il1X2EN3dxhpZfPi_Pv5WLH18vzueL0tRYppJSoTVtK2itNtYKUwOv26quLAXJKm4rKzrcNKAJE2A5brFlorWE4M4YYDN0scd2Xm_UVXCDDjfKa6duEz6slA7JmR6UEUbjru0EFqJqqGxJLRtmcCtqwxtZZ9bHPetqagfoDIz5K_on0Kcno1urld8qgnHNed1kwoc7QvDXE8SkBhcN9L0ewU9RUS6pxHxnxAy9fybd-CmM-at2KsKzSbeq071qpXMHbrQ-X2zy6mBwJs-BdTk_5xWTrCGU54J3j3t4ePy951lwtheY4GMMYJVxSe9MzWTX517UbqrUw1TlipNnFffQ_7X_AE6_yuw |
CitedBy_id | crossref_primary_10_1016_j_sna_2023_114742 crossref_primary_10_1109_JSEN_2024_3482471 crossref_primary_10_3390_s24206516 crossref_primary_10_3390_s24154904 crossref_primary_10_1016_j_ijmecsci_2024_109854 crossref_primary_10_3390_aerospace11070524 crossref_primary_10_1016_j_ultras_2025_107617 crossref_primary_10_1016_j_ultras_2025_107635 crossref_primary_10_1016_j_tws_2024_112345 crossref_primary_10_1088_1361_665X_ad4e7b crossref_primary_10_1016_j_ultras_2023_107163 crossref_primary_10_1007_s40964_024_00816_5 crossref_primary_10_1109_JSEN_2024_3522386 |
Cites_doi | 10.3390/s19092180 10.1109/TUFFC.2021.3087949 10.1177/0954406212452233 10.1177/1475921716689733 10.1016/j.ymssp.2021.108463 10.1177/1045389X20952536 10.3390/app10124360 10.1016/j.ndteint.2016.11.009 10.1016/j.ndteint.2013.04.003 10.1016/j.ndteint.2021.102480 10.1109/TUFFC.2014.006747 10.1016/j.ndteint.2008.09.011 10.3390/signals2010002 10.4028/www.scientific.net/KEM.518.1 10.3390/s19030545 10.1063/1.5031651 10.1088/1757-899X/1024/1/012032 10.1177/1475921714546060 10.3390/met11050718 10.3788/AOS201434.0714001 10.1080/09243046.2020.1825154 10.1016/j.jsv.2019.114985 10.1063/1.5099801 10.1088/0964-1726/20/10/105002 10.3390/s21103334 10.1016/j.ultras.2021.106672 10.3390/s21020609 10.1177/1475921718764848 10.1016/j.actamat.2022.118552 10.1016/0041-624X(93)90039-3 10.1177/1475921719880296 10.1115/IMECE2019-10928 10.1088/0964-1726/25/10/105022 10.1016/j.measurement.2021.109109 10.1063/1.96411 10.1088/1361-665X/ab85e0 10.1016/j.ymssp.2018.11.016 10.1016/j.wavemoti.2013.04.004 10.1117/12.2219619 10.3390/ma14175114 10.1142/S0217984921502638 10.1016/j.ndteint.2008.10.006 10.1016/j.ymssp.2020.106694 10.1007/s12541-012-0087-2 10.1007/s12666-022-02653-y 10.1088/0964-1726/24/10/105019 10.1177/1475921720976926 10.3390/app12062894 10.1007/s00170-020-05946-y 10.1109/TUFFC.924 10.1016/j.polymertesting.2021.107466 10.1088/0964-1726/13/2/003 10.1016/j.ultras.2015.12.014 10.1177/1475921715623359 10.1016/j.sna.2014.04.027 10.1177/1045389X14529026 10.3390/s22010406 10.1016/j.neucom.2012.11.053 10.1016/j.marstruc.2021.103013 10.1016/j.ultras.2014.05.011 10.1016/j.compstruct.2022.115971 10.1080/10589759.2022.2045292 10.2320/matertrans.I-M2011853 10.1063/5.0038340 10.1016/j.ymssp.2020.107107 10.1088/0964-1726/22/2/025022 10.1016/j.ymssp.2021.108154 10.1016/j.compstruct.2018.07.124 10.1016/j.optlastec.2011.08.007 10.1088/1674-1056/25/12/124304 10.1088/0964-1726/25/8/085042 10.1109/FENDT50467.2020.9337534 10.1016/j.ultras.2016.03.013 10.1177/1045389X14545389 10.1088/0964-1726/24/10/105021 10.1016/j.optlaseng.2010.07.008 10.1088/0964-1726/22/7/075028 10.1016/j.ijmecsci.2022.107769 10.3390/s20061790 10.1115/SMASIS2020-2288 10.1063/1.4974606 10.1016/j.jmrt.2022.07.056 10.1109/TUFFC.2014.006925 10.1063/1.5099819 10.1002/stc.1504 10.1088/0964-1726/16/6/014 10.1109/MetroAeroSpace51421.2021.9511673 10.1109/TUFFC.2017.2780901 10.1364/AO.405453 10.1007/s11340-011-9567-z 10.1016/j.ndteint.2020.102344 10.1364/OL.44.005695 10.3390/s20051265 10.1016/j.ultras.2021.106451 10.1007/s10338-021-00216-0 10.1109/TUFFC.2016.2536144 10.1007/s42791-019-0012-2 10.3390/s20113035 10.1016/j.ymssp.2022.109010 10.3390/s21030811 10.1063/1.1711602 10.1007/s12650-018-0497-z 10.5768/JAO202142.0107002 10.1088/0964-1726/25/5/053001 10.1016/j.ultras.2021.106486 10.1016/j.ultras.2018.06.005 10.1016/j.ultras.2018.10.008 10.1016/j.ndteint.2020.102366 10.1063/1.3114311 10.1016/j.ymssp.2014.09.008 10.1016/j.ultras.2020.106114 10.36001/ijphm.2022.v13i1.3107 10.1016/j.eswa.2020.114189 10.1016/j.compositesb.2012.07.033 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23063183 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_c8ca0dbd80884629b15963c0b85c7695 PMC10057756 A743936127 36991893 10_3390_s23063183 |
Genre | Journal Article Review |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12072133; 11520101001 – fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province, China grantid: KYCX22_3613 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c509t-228aa2b4ebfacff8c5e75b454f2e9347f4f8d066ea138ef70b0f38bf110dcce3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:26:41 EDT 2025 Thu Aug 21 18:38:03 EDT 2025 Fri Jul 11 10:31:32 EDT 2025 Fri Jul 25 20:11:34 EDT 2025 Tue Jul 01 05:44:32 EDT 2025 Thu Apr 03 06:54:04 EDT 2025 Tue Jul 01 01:19:56 EDT 2025 Thu Apr 24 23:11:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | ultrasonic lamb wave thin-walled structures nondestructive testing damage imaging algorithm laser ultrasonic detection |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-228aa2b4ebfacff8c5e75b454f2e9347f4f8d066ea138ef70b0f38bf110dcce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2791736933?pq-origsite=%requestingapplication% |
PMID | 36991893 |
PQID | 2791736933 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c8ca0dbd80884629b15963c0b85c7695 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10057756 proquest_miscellaneous_2792907233 proquest_journals_2791736933 gale_infotracacademiconefile_A743936127 pubmed_primary_36991893 crossref_citationtrail_10_3390_s23063183 crossref_primary_10_3390_s23063183 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230316 |
PublicationDateYYYYMMDD | 2023-03-16 |
PublicationDate_xml | – month: 3 year: 2023 text: 20230316 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_94 Belanger (ref_106) 2009; 42 ref_93 Zhixiang (ref_130) 2021; 42 Lee (ref_140) 2018; 204 Sampath (ref_29) 2022; 237 Song (ref_136) 2022; 121 ref_13 Zhang (ref_123) 2021; 147 ref_11 Gao (ref_78) 2019; 93 ref_99 ref_96 Chia (ref_66) 2012; 43 Zhang (ref_113) 2016; 25 ref_18 Yuan (ref_98) 2015; 24 ref_17 Esfandabadi (ref_75) 2017; 65 Davis (ref_31) 2020; 110 Chia (ref_41) 2012; 19 Wang (ref_43) 2022; 166 Song (ref_133) 2020; 116 (ref_79) 2013; 7 ref_128 ref_127 Song (ref_47) 2022; 297 Zhang (ref_65) 2014; 34 Ng (ref_28) 2019; 44 Liu (ref_33) 2018; 44 ref_23 ref_120 ref_22 ref_21 He (ref_100) 2016; 15 ref_122 ref_20 ref_121 Lee (ref_37) 2011; 49 Tian (ref_87) 2020; 20 Yuan (ref_90) 2015; 26 Perelli (ref_73) 2015; 62 An (ref_64) 2013; 22 ref_72 Song (ref_134) 2020; 20 Staszewski (ref_26) 2012; 518 Tian (ref_135) 2016; 25 Cui (ref_126) 2021; 21 Shen (ref_68) 2019; Volume 10972 Lee (ref_24) 2009; 42 Bao (ref_95) 2019; 18 Ma (ref_32) 2019; Volume 10972 ref_83 Liu (ref_131) 2021; 35 Yang (ref_89) 2013; 227 Zhang (ref_115) 2008; 55 Hu (ref_112) 2014; 54 Flynn (ref_55) 2013; 59 Zhang (ref_141) 2019; 94 Ruzzene (ref_50) 2007; 16 Li (ref_77) 2021; 38 Ambrozinski (ref_85) 2012; Volume 8347 Liu (ref_88) 2018; 21 Chia (ref_1) 2012; 44 Gu (ref_8) 2022; 20 Mesnil (ref_76) 2016; 67 Liu (ref_125) 2014; 128 Xiao (ref_44) 2021; 4 Rautela (ref_138) 2021; 115 Huthwaite (ref_116) 2013; 50 Rao (ref_117) 2016; 63 ref_58 Zhao (ref_101) 2011; 20 Ma (ref_53) 2021; 32 Zhang (ref_25) 2022; 59 Miorelli (ref_124) 2021; 122 ref_54 Lee (ref_139) 2021; 30 Spytek (ref_137) 2020; 116 Chia (ref_42) 2009; 7389 Grammatikopoulos (ref_3) 2021; 78 Michaels (ref_52) 2009; 1096 ref_61 Zhong (ref_91) 2014; 214 ref_69 Jin (ref_7) 2022; 106 Yao (ref_71) 2017; 39 Rautela (ref_129) 2021; 167 Mitra (ref_12) 2016; 25 Chen (ref_80) 2022; 173 Chen (ref_114) 2015; 62 Li (ref_81) 2022; 37 Tian (ref_82) 2019; 121 Monchalin (ref_39) 1985; 47 Choi (ref_4) 2017; 86 Hua (ref_102) 2020; 464 Liu (ref_14) 2016; 69 Gao (ref_59) 2021; 116 Gorgin (ref_34) 2020; 105 Dajani (ref_10) 2023; 246 ref_119 Ma (ref_16) 2020; 59 ref_36 ref_35 Dhital (ref_48) 2012; 52 Ahmed (ref_19) 2021; 176 ref_111 ref_30 Ding (ref_38) 2020; 29 Dhital (ref_45) 2012; Volume 8343 Sheen (ref_107) 2012; 13 Wang (ref_51) 2022; 75 Zhu (ref_60) 2013; 22 Truong (ref_56) 2018; 17 Yang (ref_97) 2022; 163 Khan (ref_9) 2019; 1 He (ref_62) 2016; 25 Guo (ref_132) 2021; 68 Balasubramaniam (ref_70) 2021; 2 Li (ref_86) 2021; 34 ref_104 He (ref_118) 2020; 19 Yi (ref_40) 2021; 58 Lissenden (ref_67) 2021; 129 ref_108 Mallet (ref_27) 2004; 13 ref_109 ref_46 Hua (ref_103) 2015; 14 Tian (ref_57) 2015; 24 Stepinski (ref_84) 2015; 26 ref_2 Han (ref_92) 2015; 54 ref_49 Qiu (ref_15) 2020; 63 Hutchins (ref_105) 1993; 31 Albiruni (ref_110) 2012; 53 ref_5 He (ref_63) 2017; 1806 Sabeti (ref_74) 2020; 140 ref_6 |
References_xml | – ident: ref_109 doi: 10.3390/s19092180 – volume: 68 start-page: 3216 year: 2021 ident: ref_132 article-title: Automatic Quantification of Subsurface Defects by Analyzing Laser Ultrasonic Signals Using Convolutional Neural Networks and Wavelet Transform publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control. doi: 10.1109/TUFFC.2021.3087949 – volume: 227 start-page: 703 year: 2013 ident: ref_89 article-title: Impact source localization in plate utilizing multiple signal classification publication-title: Proc. Inst. Mech. Eng Part C J. Mech. Eng. Sci. doi: 10.1177/0954406212452233 – volume: 17 start-page: 255 year: 2018 ident: ref_56 article-title: Thickness reconstruction of nuclear power plant pipes with flow-accelerated corrosion damage using laser ultrasonic wavenumber imaging publication-title: Struct. Health Monit. doi: 10.1177/1475921716689733 – volume: 7389 start-page: 576 year: 2009 ident: ref_42 article-title: Structural damage identification based on laser ultrasonic propagation imaging technology publication-title: Proc. SPIE – volume: 166 start-page: 108463 year: 2022 ident: ref_43 article-title: Damage visualization using laser-generated residual guided waves with optimization of laser scanning path publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108463 – volume: 32 start-page: 182 year: 2021 ident: ref_53 article-title: Lamb wave imaging with actuator network for damage quantification in aluminum plate structures publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X20952536 – ident: ref_111 doi: 10.3390/app10124360 – volume: 4 start-page: 021004 year: 2021 ident: ref_44 article-title: Thin-plate imaging inspection using scattered waves cross-correlation algorithm and non-contact air-coupled transducer publication-title: J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. – volume: 86 start-page: 53 year: 2017 ident: ref_4 article-title: Multi-directional adjacent wave subtraction and shifted time point mapping algorithms and their application to defect visualization in a space tank liner publication-title: Ndt E Int. doi: 10.1016/j.ndteint.2016.11.009 – volume: 59 start-page: 1 year: 2013 ident: ref_55 article-title: Structural imaging through local wavenumber estimation of guided waves publication-title: Ndt E Int. doi: 10.1016/j.ndteint.2013.04.003 – volume: 38 start-page: 1 year: 2021 ident: ref_77 article-title: Lamb wavefield reconstruction and damage imaging of composite plate based on compressed sensing publication-title: Acta Mater. Compos. Sin. – volume: 122 start-page: 102480 year: 2021 ident: ref_124 article-title: Defect sizing in guided wave imaging structural health monitoring using convolutional neural networks publication-title: NDT E Int. doi: 10.1016/j.ndteint.2021.102480 – ident: ref_108 – volume: 62 start-page: 208 year: 2015 ident: ref_114 article-title: A Methodology for Estimating Guided Wave Scattering Patterns From Sparse Transducer Array Measurements publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control. doi: 10.1109/TUFFC.2014.006747 – volume: 42 start-page: 222 year: 2009 ident: ref_24 article-title: Application of laser-generated guided wave for evaluation of corrosion in carbon steel pipe publication-title: NDT E Int. doi: 10.1016/j.ndteint.2008.09.011 – volume: 2 start-page: 13 year: 2021 ident: ref_70 article-title: Ultrasonic guided wave signal based nondestructive testing of a bonded composite structure using piezoelectric transducers publication-title: Signals doi: 10.3390/signals2010002 – ident: ref_94 – volume: 518 start-page: 1 year: 2012 ident: ref_26 article-title: A review of laser Doppler vibrometry for structural health monitoring applications publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.518.1 – ident: ref_46 doi: 10.3390/s19030545 – ident: ref_121 doi: 10.1063/1.5031651 – ident: ref_21 doi: 10.1088/1757-899X/1024/1/012032 – volume: 14 start-page: 20 year: 2015 ident: ref_103 article-title: High-resolution damage detection based on local signal difference coefficient model publication-title: Struct. Health Monit. doi: 10.1177/1475921714546060 – ident: ref_5 doi: 10.3390/met11050718 – volume: 34 start-page: 0714001 year: 2014 ident: ref_65 article-title: Research on Interference Energy Calculation Method inLaser Ultrasonic Technique publication-title: Acta Opt. Sin. doi: 10.3788/AOS201434.0714001 – volume: 30 start-page: 431 year: 2021 ident: ref_139 article-title: Corner inspection method for L-shaped composite structures using laser ultrasonic rotational scanning technique publication-title: Adv. Compos. Mater. doi: 10.1080/09243046.2020.1825154 – ident: ref_83 – volume: 464 start-page: 114985 year: 2020 ident: ref_102 article-title: Time-frequency damage index of Broadband Lamb wave for corrosion inspection publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2019.114985 – ident: ref_30 doi: 10.1063/1.5099801 – volume: 20 start-page: 105002 year: 2011 ident: ref_101 article-title: Ultrasonic Lamb wave tomography in structural health monitoring publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/20/10/105002 – volume: 20 start-page: 147592172094295 year: 2020 ident: ref_134 article-title: Noncontact super-resolution guided wave array imaging of subwavelength defects using a multiscale deep learning approach publication-title: Struct. Health Monit. – ident: ref_99 doi: 10.3390/s21103334 – ident: ref_13 – volume: 121 start-page: 106672 year: 2022 ident: ref_136 article-title: Accelerated noncontact guided wave array imaging via sparse array data reconstruction publication-title: Ultrasonics doi: 10.1016/j.ultras.2021.106672 – ident: ref_58 doi: 10.3390/s21020609 – volume: 18 start-page: 621 year: 2019 ident: ref_95 article-title: Transmitter beamforming and weighted image fusion–based multiple signal classification algorithm for corrosion monitoring publication-title: Struct. Health Monit. doi: 10.1177/1475921718764848 – volume: 246 start-page: 118552 year: 2023 ident: ref_10 article-title: Detecting Thermally-Induced Spinodal Decomposition with Picosecond Ultrasonics in Cast Austenitic Stainless Steels publication-title: Acta Mater. doi: 10.1016/j.actamat.2022.118552 – volume: 31 start-page: 97 year: 1993 ident: ref_105 article-title: Lamb-wave tomography using non-contact transduction publication-title: Ultrasonics doi: 10.1016/0041-624X(93)90039-3 – volume: 19 start-page: 1237 year: 2020 ident: ref_118 article-title: Guided wave tomography based on least-squares reverse-time migration publication-title: Struct. Health Monit. doi: 10.1177/1475921719880296 – ident: ref_69 doi: 10.1115/IMECE2019-10928 – volume: 25 start-page: 105022 year: 2016 ident: ref_62 article-title: A quantitative damage imaging technique based on enhanced CCRTM for composite plates using 2D scan publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/10/105022 – volume: 176 start-page: 109109 year: 2021 ident: ref_19 article-title: Robotic laser sensing and laser mirror excitation for pulse-echo scanning inspection of fixed composite structures with non-planar geometries publication-title: Measurement doi: 10.1016/j.measurement.2021.109109 – volume: 47 start-page: 14 year: 1985 ident: ref_39 article-title: Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer publication-title: Appl. Phys. Lett. doi: 10.1063/1.96411 – volume: 29 start-page: 075006 year: 2020 ident: ref_38 article-title: A flexible laser ultrasound transducer for Lamb wave-based structural health monitoring publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ab85e0 – volume: 121 start-page: 158 year: 2019 ident: ref_82 article-title: Pulsed laser-scanning laser Doppler vibrometer (PL-SLDV) phased arrays for damage detection in aluminum plates publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.11.016 – volume: Volume 10972 start-page: 322 year: 2019 ident: ref_68 article-title: Scanning laser vibrometry imaging of fatigue cracks via nonlinear ultrasonic guided wave scattering and mode conversion publication-title: Proceedings of the Health Monitoring of Structural and Biological Systems XIII – volume: 50 start-page: 979 year: 2013 ident: ref_116 article-title: High-resolution guided wave tomography publication-title: Wave Motion doi: 10.1016/j.wavemoti.2013.04.004 – ident: ref_18 doi: 10.1117/12.2219619 – ident: ref_104 doi: 10.3390/ma14175114 – volume: 35 start-page: 2150263 year: 2021 ident: ref_131 article-title: Effective detection of metal surface defects based on double-line laser ultrasonic with convolutional neural networks publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984921502638 – volume: 63 start-page: 14 year: 2020 ident: ref_15 article-title: Non-Destructive Testing for Aerospace Composite Structures Using Laser Ultrasonic Technique publication-title: Aeronaut. Manuf. Technol. – volume: Volume 8343 start-page: 79 year: 2012 ident: ref_45 article-title: Laser excitation and fully non-contact sensing ultrasonic propagation imaging system for damage evaluation publication-title: Proceedings of the Industrial and Commercial Applications of Smart Structures Technologies 2012 – volume: 7 start-page: 177 year: 2013 ident: ref_79 article-title: Beamforming of guided waves publication-title: Adv. Struct. Damage Detect. Theory Eng. Appl. – volume: 42 start-page: 113 year: 2009 ident: ref_106 article-title: Feasibility of low frequency straight-ray guided wave tomography publication-title: NDT E Int. doi: 10.1016/j.ndteint.2008.10.006 – volume: 39 start-page: 5 year: 2017 ident: ref_71 article-title: NDT Method for Thin Plate Damage Based on Laser Vibrometer publication-title: Nondestruct. Test. – volume: 140 start-page: 106694 year: 2020 ident: ref_74 article-title: Spatio-temporal undersampling: Recovering ultrasonic guided wavefields from incomplete data with compressive sensing publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.106694 – volume: 13 start-page: 671 year: 2012 ident: ref_107 article-title: A study on quantitative lamb wave tomogram via modified RAPID algorithm with shape factor optimization publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-012-0087-2 – volume: 44 start-page: 1075 year: 2018 ident: ref_33 article-title: Comparison of Imaging Quality of Compact Rectangular Arrays Based on Laser and Piezoelectric Transducers publication-title: J. Beijing Univ. Technol. – volume: 75 start-page: 2777 year: 2022 ident: ref_51 article-title: Research on the fk Domain Multimodal Damage Detection Imaging Fusion Method in Metal Plate publication-title: Trans. Indian Inst. Met. doi: 10.1007/s12666-022-02653-y – volume: 24 start-page: 105019 year: 2015 ident: ref_57 article-title: Guided wave imaging for detection and evaluation of impact-induced delamination in composites publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/10/105019 – ident: ref_6 – volume: 20 start-page: 2813 year: 2020 ident: ref_87 article-title: Noncontact laser vibrometry-based fence-like arrays with wavefield filtering-assisted adaptive imaging algorithms for detecting multiple pits in a compact cluster publication-title: Struct. Health Monit. doi: 10.1177/1475921720976926 – ident: ref_72 doi: 10.3390/app12062894 – volume: 110 start-page: 1203 year: 2020 ident: ref_31 article-title: Additively manufactured integrated slit mask for laser ultrasonic guided wave inspection publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-020-05946-y – volume: 55 start-page: 2254 year: 2008 ident: ref_115 article-title: Defect characterization using an ultrasonic array to measure the scattering coefficient matrix publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control. doi: 10.1109/TUFFC.924 – volume: Volume 8347 start-page: 271 year: 2012 ident: ref_85 article-title: Experimental comparison of 2D arrays topologies for SHM of planar structures publication-title: Proceedings of the Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2012 – volume: 106 start-page: 107466 year: 2022 ident: ref_7 article-title: Identification and imaging of multi-defects on a complicated composite structure by ultrasonic guided wave publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2021.107466 – volume: 13 start-page: 261 year: 2004 ident: ref_27 article-title: Structural health monitoring using scanning laser vibrometry: II. Lamb waves for damage detection publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/13/2/003 – volume: 67 start-page: 94 year: 2016 ident: ref_76 article-title: Sparse wavefield reconstruction and source detection using compressed sensing publication-title: Ultrasonics doi: 10.1016/j.ultras.2015.12.014 – volume: 15 start-page: 65 year: 2016 ident: ref_100 article-title: Lamb wave-based subwavelength damage imaging using the DORT-MUSIC technique in metallic plates publication-title: Struct. Health Monit. doi: 10.1177/1475921715623359 – volume: 214 start-page: 234 year: 2014 ident: ref_91 article-title: Multiple damage detection on aircraft composite structures using near-field MUSIC algorithm publication-title: Sensors Actuators A Phys. doi: 10.1016/j.sna.2014.04.027 – volume: 26 start-page: 400 year: 2015 ident: ref_90 article-title: Two-dimensional near-field multiple signal classification algorithm–based impact localization publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X14529026 – ident: ref_119 doi: 10.3390/s22010406 – volume: 128 start-page: 217 year: 2014 ident: ref_125 article-title: 2-D defect profile reconstruction from ultrasonic guided wave signals based on QGA-kernelized ELM publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.11.053 – volume: 78 start-page: 103013 year: 2021 ident: ref_3 article-title: The effects of geometric detail on the vibratory responses of complex ship-like thin-walled structures publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2021.103013 – ident: ref_36 – volume: 54 start-page: 2015 year: 2014 ident: ref_112 article-title: Tomographic reconstruction of damage images in hollow cylinders using Lamb waves publication-title: Ultrasonics doi: 10.1016/j.ultras.2014.05.011 – volume: 297 start-page: 115971 year: 2022 ident: ref_47 article-title: Contactless inspection of CFRP artificial disbonds using combined laser thermography and laser ultrasonics with optical microphone publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2022.115971 – ident: ref_22 – volume: 37 start-page: 721 year: 2022 ident: ref_81 article-title: Damage Imaging of Lamb Wave in Isotropic Plate Using Phased Array Delay and Sum Based on Frequency-domain Inverse Scattering Model publication-title: Nondestruct. Test. Eval. doi: 10.1080/10589759.2022.2045292 – volume: 53 start-page: 330 year: 2012 ident: ref_110 article-title: Non-contact guided waves tomographic imaging of plate-like structures using a probabilistic algorithm publication-title: Mater. Trans. doi: 10.2320/matertrans.I-M2011853 – volume: 129 start-page: 021101 year: 2021 ident: ref_67 article-title: Nonlinear ultrasonic guided waves—Principles for nondestructive evaluation publication-title: J. Appl. Phys. doi: 10.1063/5.0038340 – ident: ref_49 – volume: 147 start-page: 107107 year: 2021 ident: ref_123 article-title: Damage localization in plate-like structures using time-varying feature and one-dimensional convolutional neural network publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107107 – volume: 21 start-page: 147592172110239 year: 2021 ident: ref_126 article-title: Damage imaging in skin-stringer composite aircraft panel by ultrasonic-guided waves using deep learning with convolutional neural network publication-title: Struct. Health Monit. – volume: 22 start-page: 025022 year: 2013 ident: ref_64 article-title: Complete noncontact laser ultrasonic imaging for automated crack visualization in a plate publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/2/025022 – volume: 163 start-page: 108154 year: 2022 ident: ref_97 article-title: Ameliorated-multiple signal classification (Am-MUSIC) for damage imaging using a sparse sensor network publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108154 – volume: 204 start-page: 395 year: 2018 ident: ref_140 article-title: Composite repair patch evaluation using pulse-echo laser ultrasonic correlation mapping method publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.07.124 – volume: 44 start-page: 428 year: 2012 ident: ref_1 article-title: Laser ultrasonic anomalous wave propagation imaging method with adjacent wave subtraction: Application to actual damages in composite wing publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2011.08.007 – volume: 25 start-page: 124304 year: 2016 ident: ref_113 article-title: Quantitative damage imaging using Lamb wave diffraction tomography publication-title: Chin. Phys. B doi: 10.1088/1674-1056/25/12/124304 – volume: 25 start-page: 085042 year: 2016 ident: ref_135 article-title: Rapid guided wave delamination detection and quantification in composites using global-local sensing publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/8/085042 – ident: ref_93 doi: 10.1109/FENDT50467.2020.9337534 – ident: ref_127 – volume: 69 start-page: 248 year: 2016 ident: ref_14 article-title: Numerical simulation of damage detection using laser-generated ultrasound publication-title: Ultrasonics doi: 10.1016/j.ultras.2016.03.013 – volume: 26 start-page: 2283 year: 2015 ident: ref_84 article-title: Efficient tool for designing 2D phased arrays in lamb waves imaging of isotropic structures publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X14545389 – volume: 24 start-page: 105021 year: 2015 ident: ref_98 article-title: A single frequency component-based re-estimated MUSIC algorithm for impact localization on complex composite structures publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/10/105021 – volume: 49 start-page: 167 year: 2011 ident: ref_37 article-title: Laser ultrasonic propagation imaging method in the frequency domain based on wavelet transformation publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2010.07.008 – volume: 22 start-page: 075028 year: 2013 ident: ref_60 article-title: Fast damage imaging using the time-reversal technique in the frequency–wavenumber domain publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/7/075028 – ident: ref_23 – volume: 237 start-page: 107769 year: 2022 ident: ref_29 article-title: Non-contact microcrack detection via nonlinear Lamb wave mixing and laser line arrays publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2022.107769 – ident: ref_122 doi: 10.3390/s20061790 – ident: ref_35 doi: 10.1115/SMASIS2020-2288 – volume: 1806 start-page: 050012 year: 2017 ident: ref_63 article-title: Lamb wave-based BVID imaging for a curved composite sandwich panel publication-title: Aip Conf. Proc. doi: 10.1063/1.4974606 – volume: 20 start-page: 128 year: 2022 ident: ref_8 article-title: Multi-scale investigation on local strain and damage evolution of Al1050/steel/Al1050 clad sheet publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.07.056 – volume: 62 start-page: 1373 year: 2015 ident: ref_73 article-title: Compressive sensing of full wave field data for structural health monitoring applications publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2014.006925 – ident: ref_120 doi: 10.1063/1.5099819 – volume: 19 start-page: 605 year: 2012 ident: ref_41 article-title: Composite aircraft debonding visualization by laser ultrasonic scanning excitation and integrated piezoelectric sensing publication-title: Struct. Control. Health Monit. doi: 10.1002/stc.1504 – volume: 16 start-page: 2116 year: 2007 ident: ref_50 article-title: Frequency–wavenumber domain filtering for improved damage visualization publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/16/6/014 – volume: 58 start-page: 2319001 year: 2021 ident: ref_40 article-title: Study of Lamb Wave Dispersion Characterization Using Multiplexed Two-Wave Mixing Interferometer publication-title: Laser Optoelectron. Prog. – ident: ref_2 doi: 10.1109/MetroAeroSpace51421.2021.9511673 – ident: ref_17 – volume: 65 start-page: 269 year: 2017 ident: ref_75 article-title: Full wavefield analysis and damage imaging through compressive sensing in lamb wave inspections publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control. doi: 10.1109/TUFFC.2017.2780901 – volume: 59 start-page: 9591 year: 2020 ident: ref_16 article-title: Investigation of the mechanism and influence of laser wavelength and energy on laser opto-ultrasonic dual detection publication-title: Appl. Opt. doi: 10.1364/AO.405453 – volume: 52 start-page: 1111 year: 2012 ident: ref_48 article-title: A fully non-contact ultrasonic propagation imaging system for closed surface crack evaluation publication-title: Exp. Mech. doi: 10.1007/s11340-011-9567-z – volume: 116 start-page: 102344 year: 2020 ident: ref_133 article-title: Super-resolution visualization of subwavelength defects via deep learning-enhanced ultrasonic beamforming: A proof-of- principle study publication-title: NDT E Int. doi: 10.1016/j.ndteint.2020.102344 – volume: 44 start-page: 5695 year: 2019 ident: ref_28 article-title: Design of a new optical system to generate narrowband guided waves with an application for evaluating the health status of rail material publication-title: Opt. Lett. doi: 10.1364/OL.44.005695 – ident: ref_96 doi: 10.3390/s20051265 – volume: 115 start-page: 106451 year: 2021 ident: ref_138 article-title: Combined two-level damage identification strategy using ultrasonic guided waves and physical knowledge assisted machine learning publication-title: Ultrasonics doi: 10.1016/j.ultras.2021.106451 – volume: 34 start-page: 404 year: 2021 ident: ref_86 article-title: Total Focusing Method Damage Imaging in Frequency Domain Using Laser-Ultrasonic Lamb Wave Based on Time-domain Filtering in Multi-band publication-title: Acta Mech. Solida Sin. doi: 10.1007/s10338-021-00216-0 – volume: 63 start-page: 737 year: 2016 ident: ref_117 article-title: Guided wave tomography based on full waveform inversion publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control. doi: 10.1109/TUFFC.2016.2536144 – volume: 1 start-page: 107 year: 2019 ident: ref_9 article-title: Damage assessment of smart composite structures via machine learning: A review publication-title: JMST Adv. doi: 10.1007/s42791-019-0012-2 – ident: ref_61 doi: 10.3390/s20113035 – volume: 173 start-page: 109010 year: 2022 ident: ref_80 article-title: Sign coherence factor-based search algorithm for defect localization with laser generated Lamb waves publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109010 – ident: ref_11 doi: 10.3390/s21030811 – ident: ref_20 doi: 10.1063/1.1711602 – volume: 21 start-page: 751 year: 2018 ident: ref_88 article-title: Full non-contact laser-based Lamb waves phased array inspection of aluminum plate publication-title: J. Vis. doi: 10.1007/s12650-018-0497-z – volume: 42 start-page: 149 year: 2021 ident: ref_130 article-title: Laser ultrasonic surface defects detection method based on 2D-CNN publication-title: J. Appl. Opt. doi: 10.5768/JAO202142.0107002 – volume: 25 start-page: 053001 year: 2016 ident: ref_12 article-title: Guided wave based structural health monitoring: A review publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/5/053001 – volume: Volume 10972 start-page: 422 year: 2019 ident: ref_32 article-title: Lamb wave defect detection and evaluation using a fully non-contact laser system publication-title: Proceedings of the Health Monitoring of Structural and Biological Systems XIII – volume: 116 start-page: 106486 year: 2021 ident: ref_59 article-title: Multi-frequency localized wave energy for delamination identification using laser ultrasonic guided wave publication-title: Ultrasonics doi: 10.1016/j.ultras.2021.106486 – volume: 94 start-page: 411 year: 2019 ident: ref_141 article-title: Detection of disbonds in multi-layer bonded structures using the laser ultrasonic pulse-echo mode publication-title: Ultrasonics doi: 10.1016/j.ultras.2018.06.005 – volume: 59 start-page: 1900006 year: 2022 ident: ref_25 article-title: New Progress in Application of Laser Doppler Vibration Measurement Technology publication-title: Laser Optoelectron. Prog. – ident: ref_54 – volume: 93 start-page: 122 year: 2019 ident: ref_78 article-title: Amplitude modified sparse imaging for damage detection in quasi-isotropic composite laminates using non-contact laser induced Lamb waves publication-title: Ultrasonics doi: 10.1016/j.ultras.2018.10.008 – volume: 116 start-page: 102366 year: 2020 ident: ref_137 article-title: Multi-resolution non-contact damage detection in complex-shaped composite laminates using ultrasound publication-title: NDT E Int. doi: 10.1016/j.ndteint.2020.102366 – volume: 1096 start-page: 604 year: 2009 ident: ref_52 article-title: Incident wave removal through frequency-wavenumber filtering of full wavefield data publication-title: Aip Conf. Proc. doi: 10.1063/1.3114311 – volume: 54 start-page: 336 year: 2015 ident: ref_92 article-title: Time–frequency beamforming for nondestructive evaluations of plate using ultrasonic Lamb wave publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2014.09.008 – volume: 105 start-page: 106114 year: 2020 ident: ref_34 article-title: Environmental and operational conditions effects on Lamb wave based structural health monitoring systems: A review publication-title: Ultrasonics doi: 10.1016/j.ultras.2020.106114 – ident: ref_128 doi: 10.36001/ijphm.2022.v13i1.3107 – volume: 167 start-page: 114189 year: 2021 ident: ref_129 article-title: Ultrasonic guided wave based structural damage detection and localization using model assisted convolutional and recurrent neural networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114189 – volume: 43 start-page: 2898 year: 2012 ident: ref_66 article-title: Radome health management based on synthesized impact detection, laser ultrasonic spectral imaging, and wavelet-transformed ultrasonic propagation imaging methods publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2012.07.033 |
SSID | ssj0023338 |
Score | 2.5009801 |
SecondaryResourceType | review_article |
Snippet | Thin-walled structures, like aircraft skins and ship shells, are often several meters in size but only a few millimeters thick. By utilizing the laser... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3183 |
SubjectTerms | Ablation Aircraft Aluminum damage imaging algorithm Energy laser ultrasonic detection Lasers Methods nondestructive testing Review thin-walled structures ultrasonic lamb wave Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqnugBUVogtFSmqgSXqIkfsXNc-lCFaC-0ouJi-SmQ2ixit_x-ZpxstFGReuGaTCJnPJP5vsT-hpCj5EUUzjelE0BRBFO21E6KMiXdolxbjB53I19eNRc34vOtvF1r9YVrwnp54N5xx157WwUXNKSDaFjroP423FdOS6-aNquXQs1bkamBanFgXr2OEAdSf7xAoI3RO6k-WaT_8at4rRZN10muFZ7zF-T5gBjprB_pNtmI3UuytaYjuEO-z2j_jZ_OE_0Cdek3vbmDey1Q9xYO3Dv6zf6J9NTew-uDnsZlXoDV0cvcP3pBAblS7OBZ4nf1GOjXrCr7AFR8l1yfn12fXJRD04TSQ-1floxpa5kT0SXrweNeRiWdkCKx2HKhkkg6AM6ItuY6JlW5KnHtEsCA4H3kr8hmN-_iG0LrWoUqMBYcwDovgw1Jy4wxQxTKuYJ8XPnS-EFQHPta3BkgFuh2M7q9IIej6a9eReNfRp9wQkYDFL7OByAczBAO5qlwKMgHnE6D6QmD8XbYZQCPhEJXZoYEjAOsUwXZX824GfJ2YZgC-sqblsNo3o-nIePwN4rt4vwh27C2UgxtXvcBMo4ZLm1rgIAF0ZPQmTzU9Ez380dW9a5xX7CSzdv_4YY98oxBFuBiubrZJ5sQNfEdoKelO8iJ8hccOhht priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAKK8GCjIICS5REz9i54SWlqpClAutWHGJ_IRKbVKaLb-fGSebbgTiGk8iP2bG3zjjbwh5E50IwroqtwJCFMGUybWVIo9R10jXFoLD28jHX6qjU_FpKZfjgVs_plWufWJy1L5zeEa-xxQEFryC-Pv95a8cq0bh39WxhMZtcgepyzClSy1vAi4O8dfAJsQhtN_rEW6jDs_2oETV_7dD3tiR5tmSG9vP4QNyf8SNdDEs9Da5FdqH5N4Gm-Aj8n1Bh5N-2kX6GXanK3p6Dt_qkf0WHlxY-s38DvTAXIAToQdhldKwWnqcqkj3FPArxTqeOZ6uB0-_Jm7ZawjIH5OTw48n-0f5WDohd4AAVjlj2hhmRbDROJh3J4OSVkgRWai5UFFE7QFtBFNyHaIqbBG5thHAgHcu8Cdkq-3asENoWSpfeMa8BXDnpDc-apmQpg9CWZuRd-u5bNxIK47VLc4bCC9w2ptp2jPyehK9HLg0_iX0ARdkEkD66_Sgu_rRjNbUOO1M4a3X4CNFxWoLoKzirrBaOlXVMiNvcTkbNFLojDPjXQMYEtJdNQsMwziAO5WR3fWKN6P19s2NrmXk1dQMdoc_U0wbuuskw-pCMZR5OijI1Gd4tS4BCGZEz1RnNqh5S3v2M3F7l3g7WMnq2f_79Zzcxbr3mAxXVrtkC_QhvAB0tLIvkwn8AWtVEIw priority: 102 providerName: ProQuest |
Title | A Review of Laser Ultrasonic Lamb Wave Damage Detection Methods for Thin-Walled Structures |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36991893 https://www.proquest.com/docview/2791736933 https://www.proquest.com/docview/2792907233 https://pubmed.ncbi.nlm.nih.gov/PMC10057756 https://doaj.org/article/c8ca0dbd80884629b15963c0b85c7695 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9NAEB71IaFyQLwJlGhBSHAx2Ou1d31AKKUNFSIVgkZEvVj7bJFSB5IUwb9nxnGsWJSLD-uRteuZ2flmH98AvAhWeGFsHhmBKYrgUkfKZCIKQRVE1-a9pdvIo5P8eCw-TrLJFqxrbDY_cHFtakf1pMbz6evfP_-8Q4d_SxknpuxvFgSjyTa3YRcDkiT_HIl2M4GnmIatSIW64ntwI80RH6ki7USlmrz_3yl6I0Z1z09uBKThbbjVIEk2WKn-Dmz56i7c3OAXvAdnA7Za-2ezwD5hvJqz8RS_tSA-XGy4NOyb_uXZob7EaYUd-mV9MKtio7qu9IIhomVU2TOi9Xbv2NeabfYKU_T7cDo8On1_HDXFFCKLmGAZca605kZ4E7RFTdjMy8yITATui1TIIIJyiD-8TlLlg4xNHFJlAsIDZ61PH8BONav8I2BJIl3sOHcG4Z7NnHZBZTX2dF5IY3rwav0vS9sQjVO9i2mJCQdpoGw10IPnreiPFbvGdUIHpJBWgAix64bZ_Lxs_Ku0yurYGadw1hQ5LwzCtDy1sVGZlXmR9eAlqbMkQ8LOWN3cPsAhEQFWOaDELEW4J3uwv9Z4uTbHkktMa9FYUuzNs_Y1eiJtr-jKz65qGV7EkpPMw5WBtH1e21kPVMd0OoPqvqm-X9Rs3wndF5ZZ_vi_H30CexytnE7GJfk-7KAp-KcIlZamD9tyIvGphh_6sHtwdPL5S79edujXLvIXc00WLg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAAYNAcImaOE7sHBBaWKot3e2FrVhxsfxskdqkdLcgfhT_kZkkm-4KxK1XZ2I59ry-2P6GkJfBcs-NLWLDAaJwJnQsTc7jEGSJdG3eW7yNPNkvRgf80yyfbZDfy7sweKxy6RMbR-1qi__It5kAYJEVgL_fnX6PsWoU7q4uS2i0arHnf_0EyDZ_uzuE9X3F2M7H6YdR3FUViC0Ex0XMmNSaGe5N0BaGZHMvcsNzHpgvMy4CD9JBIPY6zaQPIjFJyKQJECedtT6Dbq-QqxB3EzQoMbvAdxnAvZa8KMvKZHuO2T2azFrIayoD_O3_VwLg-uHMlWi3c4vc7NJUOmj16jbZ8NUdcmOFvPAu-Tqg7cYCrQMdQzA8owfH0NccyXah4cTQL_qHp0N9Aj6LDv2iOfVV0UlTtHpOIV2mWDY0xp_53tHPDZXtOeD_e2R6GXN6n2xWdeUfEpqmwiWOMWcgl7S50y7IvElsnefCmIi8Wc6lsh2LORbTOFaAZnDaVT_tEXnRi5621B3_EnqPC9ILINt201CfHarOeJWVVifOOAkumResNJADFplNjMytKMo8Iq9xORX6BBiM1d3VBvgkZNdSA0R9GeSSIiJbyxVXnbOYqwvVjsjz_jGYOe7d6MrX540MKxPBUOZBqyD9mOHVMoW8MyJyTXXWPmr9SfXtqKEST_EyssiLR_8f1zNybTSdjNV4d3_vMbnOQNfxHF5abJFN0A3_BBKzhXnamAMl6pLN7w-MN08B |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG8CBQwCwSXaxLFj54DQwlK19CEkWrHqxfITkNps2WxB_DT-HTNJdrsrELdek0nk2PP4Jh5_Q8jz6Hjg1pWp5ZCicCZNqqzgaYyqQrq2EByeRt7bL7cO-YexGK-R3_OzMFhWOfeJraP2E4f_yAdMQmJRlJB_D2JfFvFxtPnm9HuKHaRwp3XeTqNTkZ3w6yekb83r7RGs9QvGNt8fvNtK-w4DqYNAOUsZU8Ywy4ONxsHwnAhSWC54ZKEquIw8Kg9BOZi8UCHKzGaxUDZCzPTOhQJee4lcloXI0cTk-DzXKyD164iMiqLKBg0ifTSflfDXdgn4OxYsBcPVQs2lyLd5g1zvISsddjp2k6yF-ha5tkRkeJscDWm3yUAnke5CYJzSw2N4V4PEu3DhxNLP5kegI3MC_ouOwqytAKvpXtvAuqEAnSm2EE3xx37w9FNLa3s2Dc0dcnARc3qXrNeTOtwnNM-lzzxj3gKudMIbH5VoQa4PXFqbkFfzudSuZzTHxhrHGjIbnHa9mPaEPFuInnY0Hv8SeosLshBA5u32wmT6RfeGrJ1yJvPWK3DPvGSVBTxYFi6zSjhZViIhL3E5NfoHGIwz_TEH-CRk2tJDzAALwJUyIRvzFde942j0uZon5OniNpg87uOYOkzOWhlWZZKhzL1OQRZjhkerHDBoQtSK6qx81Oqd-tvXllY8x4PJUpQP_j-uJ-QKGJ7e3d7feUiuMlB1LMnLyw2yDqoRHgFGm9nHrTVQoi_Y-v4A6TVTNw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Laser+Ultrasonic+Lamb+Wave+Damage+Detection+Methods+for+Thin-Walled+Structures&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zheng%2C+Shanpu&rft.au=Luo%2C+Ying&rft.au=Xu%2C+Chenguang&rft.au=Xu%2C+Guidong&rft.date=2023-03-16&rft.eissn=1424-8220&rft.volume=23&rft.issue=6&rft_id=info:doi/10.3390%2Fs23063183&rft_id=info%3Apmid%2F36991893&rft.externalDocID=36991893 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |