Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil
Cd, Pb and As stand as the most prominent contaminants prevailing in Chinese soils. In the present study, biochars derived from water hyacinth (BCW) and rice straw (BCR) were investigated regarding their applicability and durability in soil Cd, Pb, and As immobilization under acid precipitation. Tot...
Saved in:
Published in | Chemosphere (Oxford) Vol. 152; pp. 196 - 206 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cd, Pb and As stand as the most prominent contaminants prevailing in Chinese soils. In the present study, biochars derived from water hyacinth (BCW) and rice straw (BCR) were investigated regarding their applicability and durability in soil Cd, Pb, and As immobilization under acid precipitation. Total Cd, Pb, and As in both BCs were below the maximum allowed threshold according to biochar toxicity standard recommended by International Biochar Initiative. To evaluate BCs effect on Cd, Pb, As bioavailability and mobility, CaCl2, KH2PO4 and SPLP extractions were firstly carried out. In neutral extraction with CaCl2 and KH2PO4, significantly reduced Cd/Pb concentrations in CaCl2 extract along with elevated KH2PO4-extractable As were recorded with either BC at 2% or 5%. In SPLP with simulated acid rainwater as extractant, comparable Cd, Pb and As levels were determined in SPLP extract with 2% BCW, while slight to significant increase in SPLP-Cd, Pb or As was recorded with other treatments. Longer-term leaching column test further confirmed the high durability of 2% BCW in Cd immobilization under continuous acid exposure. In parallel, little increase in As concentrations in eluate was determined with 2% BCW compared to no-biochar control, indicating a lowered risk of As mobilization with acid input. However, remarkably higher Pb in leachate from both BCW-only control and 2% BCW-amended soils were noticed at the initial stage of acid leaching, indicating a higher acid-solubility of Pb minerals in BCW (most probably PbO) than in tested soil (PbO2, PbAs2O6). Taken together, BCW exhibited important potential for soil Cd sequestration with little effect on As mobilization under acid precipitation. But it may simultaneously load highly acid-soluble Pb minerals into soils, resulting in elevated Pb mobility upon acid exposure. Therefore, more stringent threshold for Pb content in biochar need to be put forward to secure biochar application in soils subject to anthropogenic acidification.
[Display omitted]
•Prolonged Cd immobilization was achieved with BCW under acid precipitation.•BCW application increased soil Pb leachability upon acid exposure.•Higher KH2PO4-extractable As was obtained with BCW addition.•BCW incorporation induced little increase in As mobilization with acid input.•More stringent Pb threshold allowed in biochar need to be proposed. |
---|---|
AbstractList | Cd, Pb and As stand as the most prominent contaminants prevailing in Chinese soils. In the present study, biochars derived from water hyacinth (BCW) and rice straw (BCR) were investigated regarding their applicability and durability in soil Cd, Pb, and As immobilization under acid precipitation. Total Cd, Pb, and As in both BCs were below the maximum allowed threshold according to biochar toxicity standard recommended by International Biochar Initiative. To evaluate BCs effect on Cd, Pb, As bioavailability and mobility, CaCl2, KH2PO4 and SPLP extractions were firstly carried out. In neutral extraction with CaCl2 and KH2PO4, significantly reduced Cd/Pb concentrations in CaCl2 extract along with elevated KH2PO4-extractable As were recorded with either BC at 2% or 5%. In SPLP with simulated acid rainwater as extractant, comparable Cd, Pb and As levels were determined in SPLP extract with 2% BCW, while slight to significant increase in SPLP-Cd, Pb or As was recorded with other treatments. Longer-term leaching column test further confirmed the high durability of 2% BCW in Cd immobilization under continuous acid exposure. In parallel, little increase in As concentrations in eluate was determined with 2% BCW compared to no-biochar control, indicating a lowered risk of As mobilization with acid input. However, remarkably higher Pb in leachate from both BCW-only control and 2% BCW-amended soils were noticed at the initial stage of acid leaching, indicating a higher acid-solubility of Pb minerals in BCW (most probably PbO) than in tested soil (PbO2, PbAs2O6). Taken together, BCW exhibited important potential for soil Cd sequestration with little effect on As mobilization under acid precipitation. But it may simultaneously load highly acid-soluble Pb minerals into soils, resulting in elevated Pb mobility upon acid exposure. Therefore, more stringent threshold for Pb content in biochar need to be put forward to secure biochar application in soils subject to anthropogenic acidification.Cd, Pb and As stand as the most prominent contaminants prevailing in Chinese soils. In the present study, biochars derived from water hyacinth (BCW) and rice straw (BCR) were investigated regarding their applicability and durability in soil Cd, Pb, and As immobilization under acid precipitation. Total Cd, Pb, and As in both BCs were below the maximum allowed threshold according to biochar toxicity standard recommended by International Biochar Initiative. To evaluate BCs effect on Cd, Pb, As bioavailability and mobility, CaCl2, KH2PO4 and SPLP extractions were firstly carried out. In neutral extraction with CaCl2 and KH2PO4, significantly reduced Cd/Pb concentrations in CaCl2 extract along with elevated KH2PO4-extractable As were recorded with either BC at 2% or 5%. In SPLP with simulated acid rainwater as extractant, comparable Cd, Pb and As levels were determined in SPLP extract with 2% BCW, while slight to significant increase in SPLP-Cd, Pb or As was recorded with other treatments. Longer-term leaching column test further confirmed the high durability of 2% BCW in Cd immobilization under continuous acid exposure. In parallel, little increase in As concentrations in eluate was determined with 2% BCW compared to no-biochar control, indicating a lowered risk of As mobilization with acid input. However, remarkably higher Pb in leachate from both BCW-only control and 2% BCW-amended soils were noticed at the initial stage of acid leaching, indicating a higher acid-solubility of Pb minerals in BCW (most probably PbO) than in tested soil (PbO2, PbAs2O6). Taken together, BCW exhibited important potential for soil Cd sequestration with little effect on As mobilization under acid precipitation. But it may simultaneously load highly acid-soluble Pb minerals into soils, resulting in elevated Pb mobility upon acid exposure. Therefore, more stringent threshold for Pb content in biochar need to be put forward to secure biochar application in soils subject to anthropogenic acidification. Cd, Pb and As stand as the most prominent contaminants prevailing in Chinese soils. In the present study, biochars derived from water hyacinth (BCW) and rice straw (BCR) were investigated regarding their applicability and durability in soil Cd, Pb, and As immobilization under acid precipitation. Total Cd, Pb, and As in both BCs were below the maximum allowed threshold according to biochar toxicity standard recommended by International Biochar Initiative. To evaluate BCs effect on Cd, Pb, As bioavailability and mobility, CaCl2, KH2PO4 and SPLP extractions were firstly carried out. In neutral extraction with CaCl2 and KH2PO4, significantly reduced Cd/Pb concentrations in CaCl2 extract along with elevated KH2PO4-extractable As were recorded with either BC at 2% or 5%. In SPLP with simulated acid rainwater as extractant, comparable Cd, Pb and As levels were determined in SPLP extract with 2% BCW, while slight to significant increase in SPLP-Cd, Pb or As was recorded with other treatments. Longer-term leaching column test further confirmed the high durability of 2% BCW in Cd immobilization under continuous acid exposure. In parallel, little increase in As concentrations in eluate was determined with 2% BCW compared to no-biochar control, indicating a lowered risk of As mobilization with acid input. However, remarkably higher Pb in leachate from both BCW-only control and 2% BCW-amended soils were noticed at the initial stage of acid leaching, indicating a higher acid-solubility of Pb minerals in BCW (most probably PbO) than in tested soil (PbO2, PbAs2O6). Taken together, BCW exhibited important potential for soil Cd sequestration with little effect on As mobilization under acid precipitation. But it may simultaneously load highly acid-soluble Pb minerals into soils, resulting in elevated Pb mobility upon acid exposure. Therefore, more stringent threshold for Pb content in biochar need to be put forward to secure biochar application in soils subject to anthropogenic acidification. Cd, Pb and As stand as the most prominent contaminants prevailing in Chinese soils. In the present study, biochars derived from water hyacinth (BCW) and rice straw (BCR) were investigated regarding their applicability and durability in soil Cd, Pb, and As immobilization under acid precipitation. Total Cd, Pb, and As in both BCs were below the maximum allowed threshold according to biochar toxicity standard recommended by International Biochar Initiative. To evaluate BCs effect on Cd, Pb, As bioavailability and mobility, CaCl2, KH2PO4 and SPLP extractions were firstly carried out. In neutral extraction with CaCl2 and KH2PO4, significantly reduced Cd/Pb concentrations in CaCl2 extract along with elevated KH2PO4-extractable As were recorded with either BC at 2% or 5%. In SPLP with simulated acid rainwater as extractant, comparable Cd, Pb and As levels were determined in SPLP extract with 2% BCW, while slight to significant increase in SPLP-Cd, Pb or As was recorded with other treatments. Longer-term leaching column test further confirmed the high durability of 2% BCW in Cd immobilization under continuous acid exposure. In parallel, little increase in As concentrations in eluate was determined with 2% BCW compared to no-biochar control, indicating a lowered risk of As mobilization with acid input. However, remarkably higher Pb in leachate from both BCW-only control and 2% BCW-amended soils were noticed at the initial stage of acid leaching, indicating a higher acid-solubility of Pb minerals in BCW (most probably PbO) than in tested soil (PbO2, PbAs2O6). Taken together, BCW exhibited important potential for soil Cd sequestration with little effect on As mobilization under acid precipitation. But it may simultaneously load highly acid-soluble Pb minerals into soils, resulting in elevated Pb mobility upon acid exposure. Therefore, more stringent threshold for Pb content in biochar need to be put forward to secure biochar application in soils subject to anthropogenic acidification. [Display omitted] •Prolonged Cd immobilization was achieved with BCW under acid precipitation.•BCW application increased soil Pb leachability upon acid exposure.•Higher KH2PO4-extractable As was obtained with BCW addition.•BCW incorporation induced little increase in As mobilization with acid input.•More stringent Pb threshold allowed in biochar need to be proposed. |
Author | Yin, Daixia Tan, Changyin Li, Hailong Wang, Xin Chen, Can Peng, Bo |
Author_xml | – sequence: 1 givenname: Daixia surname: Yin fullname: Yin, Daixia organization: College of Resources and Environmental Science, Hunan Normal University, Changsha, Hunan, 410081, China – sequence: 2 givenname: Xin surname: Wang fullname: Wang, Xin email: hdwangxin2005@yahoo.com.cn organization: College of Resources and Environmental Science, Hunan Normal University, Changsha, Hunan, 410081, China – sequence: 3 givenname: Can surname: Chen fullname: Chen, Can organization: Hunan Research Academy of Environmental Science, Changsha, Hunan, 410004, China – sequence: 4 givenname: Bo surname: Peng fullname: Peng, Bo organization: College of Resources and Environmental Science, Hunan Normal University, Changsha, Hunan, 410081, China – sequence: 5 givenname: Changyin surname: Tan fullname: Tan, Changyin organization: College of Resources and Environmental Science, Hunan Normal University, Changsha, Hunan, 410081, China – sequence: 6 givenname: Hailong surname: Li fullname: Li, Hailong organization: School of Energy Science and Engineering, Central South University, Changsha, Hunan, 410083, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26971172$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcGKFDEQhoOsuLOrryDx5sFuU92dTnKSZVhdYUEP6kkI6aTaydCdjElmYd7eHmYXxItzKii--gv-74pchBiQkDfAamDQv9_WdoNzzLsNJqybZVUzqFnXPSMrkEJV0Ch5QVaMdbzqecsvyVXOW8YWkqsX5LLplQAQzYr8_GHSwYdfFMcRbaFxpIOPdmMSjYGu3Tv6daAmOHqT6RwHP_lyoD5QQ-f9VHw1YzETtTEUM_tgCjq6M84daI5-ekmej2bK-OpxXpPvH2-_re-q-y-fPq9v7ivLmSoVWBTKScPAGNF21ill7YCjssgG4YzDERG4NLxvuRLSIDQd9gYYgrRCttfk7Sl3l-LvPeaiZ58tTpMJGPdZN9CClH3X_h8FIXnTAe_EGaiQggnOj6mvH9H9MKPTu-TnpVf91PMCfDgBNsWcE47a-mKKX3pLxk8amD6a1Vv9l1l9NKsZ6MXskqD-SXh6cs7t-nSLi4QHj0ln6zFYdD4t0rWL_oyUPwd8xM0 |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_175889 crossref_primary_10_3390_pr13020345 crossref_primary_10_1016_j_biteb_2023_101585 crossref_primary_10_1021_acsomega_3c07433 crossref_primary_10_1016_j_envpol_2020_114449 crossref_primary_10_1016_j_jclepro_2020_125605 crossref_primary_10_1016_j_scitotenv_2024_177303 crossref_primary_10_1007_s11356_018_2918_x crossref_primary_10_1016_j_chemosphere_2019_01_149 crossref_primary_10_1016_j_psep_2022_02_061 crossref_primary_10_1016_j_chemosphere_2022_134970 crossref_primary_10_1016_j_chemosphere_2019_125152 crossref_primary_10_1007_s42773_019_00002_9 crossref_primary_10_1007_s11104_024_06827_z crossref_primary_10_1007_s11356_020_10083_w crossref_primary_10_1016_j_plaphy_2018_09_019 crossref_primary_10_1016_j_scitotenv_2017_05_086 crossref_primary_10_1016_j_watres_2024_122066 crossref_primary_10_1016_j_jes_2017_08_004 crossref_primary_10_1111_gcbb_13083 crossref_primary_10_1080_09506608_2021_1922047 crossref_primary_10_1007_s11356_017_1048_1 crossref_primary_10_1016_j_scitotenv_2022_154018 crossref_primary_10_1016_j_envpol_2020_114217 crossref_primary_10_1016_j_jhazmat_2022_128668 crossref_primary_10_1016_j_chemosphere_2021_130116 crossref_primary_10_1016_j_jhazmat_2024_135065 crossref_primary_10_1007_s10967_020_07160_2 crossref_primary_10_1002_ldr_3726 crossref_primary_10_1016_j_scitotenv_2021_146536 crossref_primary_10_1016_j_envint_2019_03_019 crossref_primary_10_1007_s12665_018_7299_4 crossref_primary_10_1007_s00267_021_01530_6 crossref_primary_10_1016_j_scitotenv_2022_159730 crossref_primary_10_1007_s11104_024_06559_0 crossref_primary_10_1016_j_chemosphere_2017_04_081 crossref_primary_10_1016_j_jhazmat_2024_135863 crossref_primary_10_1016_j_envpol_2020_114069 crossref_primary_10_1016_j_jscs_2021_101232 crossref_primary_10_1016_j_psep_2024_04_089 crossref_primary_10_1016_j_jes_2021_02_002 crossref_primary_10_1080_15226514_2019_1678108 crossref_primary_10_1016_j_ecoenv_2017_11_063 crossref_primary_10_1016_j_envpol_2021_118645 crossref_primary_10_1016_j_jhazmat_2024_133966 crossref_primary_10_3390_ijerph17030827 crossref_primary_10_1016_j_envpol_2018_06_005 crossref_primary_10_1016_j_jhazmat_2018_09_034 crossref_primary_10_1016_j_eti_2020_101015 crossref_primary_10_1007_s11783_022_1579_7 crossref_primary_10_1016_j_eti_2021_101976 crossref_primary_10_1016_j_ecoenv_2025_117784 crossref_primary_10_1016_j_jhazmat_2019_121349 crossref_primary_10_1021_acs_est_0c07206 crossref_primary_10_3390_su16135565 crossref_primary_10_1016_j_scitotenv_2021_149136 crossref_primary_10_1016_j_scitotenv_2022_154880 crossref_primary_10_1039_D0RA09358K crossref_primary_10_3389_fenvs_2023_1240633 crossref_primary_10_1016_j_jclepro_2020_124691 crossref_primary_10_1016_j_jes_2021_09_039 crossref_primary_10_1007_s12649_020_01272_2 crossref_primary_10_1080_15320383_2023_2208673 crossref_primary_10_3390_pr10050818 crossref_primary_10_3390_informatics8020038 crossref_primary_10_1016_j_envpol_2019_113761 crossref_primary_10_1080_15226514_2024_2380039 crossref_primary_10_1016_j_jhazmat_2021_126292 crossref_primary_10_1002_EXP_20210052 crossref_primary_10_1071_CP21726 crossref_primary_10_1007_s11356_025_36140_w crossref_primary_10_1016_j_scitotenv_2021_150531 crossref_primary_10_1021_acs_energyfuels_2c01201 crossref_primary_10_1007_s10653_020_00564_9 crossref_primary_10_1016_j_scitotenv_2018_12_419 crossref_primary_10_1186_s12302_022_00650_y crossref_primary_10_1016_j_scitotenv_2021_148614 crossref_primary_10_1016_j_jenvman_2022_114792 crossref_primary_10_1016_j_chemosphere_2017_07_126 crossref_primary_10_1016_j_scitotenv_2017_10_121 crossref_primary_10_1080_10807039_2018_1429250 crossref_primary_10_1016_j_cej_2022_136225 crossref_primary_10_1016_j_ecoenv_2018_06_065 crossref_primary_10_1016_j_jenvman_2017_10_035 crossref_primary_10_1016_j_chemosphere_2021_132082 crossref_primary_10_1080_03650340_2019_1694145 crossref_primary_10_1016_j_ecoenv_2018_08_057 crossref_primary_10_1016_j_scitotenv_2016_04_079 crossref_primary_10_1016_j_jenvman_2019_109525 crossref_primary_10_1007_s11356_024_34223_8 crossref_primary_10_1007_s11356_021_17968_4 crossref_primary_10_1016_j_chemosphere_2017_02_112 crossref_primary_10_1007_s42398_021_00185_7 crossref_primary_10_1016_j_chemosphere_2021_130606 crossref_primary_10_1016_j_jenvman_2023_119775 crossref_primary_10_1016_j_envpol_2024_123360 crossref_primary_10_2139_ssrn_4200081 crossref_primary_10_1016_j_envpol_2020_114887 crossref_primary_10_1016_j_chemosphere_2019_124706 crossref_primary_10_1080_10643389_2019_1642832 crossref_primary_10_1016_j_envres_2023_116098 crossref_primary_10_1016_j_eti_2022_102687 crossref_primary_10_1007_s12665_024_12069_0 crossref_primary_10_1080_09593330_2018_1449900 crossref_primary_10_1080_02757540_2017_1404992 crossref_primary_10_1016_j_envpol_2024_123636 crossref_primary_10_1007_s42773_019_00023_4 crossref_primary_10_3390_pr12122802 crossref_primary_10_1016_j_chemosphere_2017_08_173 crossref_primary_10_1016_j_ecoenv_2020_111261 crossref_primary_10_1016_j_jhazmat_2018_01_044 crossref_primary_10_1016_j_envpol_2020_114098 crossref_primary_10_1007_s10661_019_7561_6 crossref_primary_10_1016_j_ecoenv_2020_110294 crossref_primary_10_1016_j_jhazmat_2022_128903 crossref_primary_10_1016_j_envpol_2020_114816 crossref_primary_10_1080_15226514_2023_2199876 crossref_primary_10_1016_j_jclepro_2023_140136 crossref_primary_10_1016_j_jenvman_2023_118552 crossref_primary_10_1016_j_chemosphere_2021_133427 crossref_primary_10_1016_j_envpol_2019_113252 crossref_primary_10_1016_j_ecoenv_2020_110218 crossref_primary_10_1016_j_scitotenv_2020_139060 crossref_primary_10_2116_analsci_19SBP01 crossref_primary_10_1016_j_microc_2019_104030 crossref_primary_10_1016_j_scitotenv_2024_178046 crossref_primary_10_1016_j_ibiod_2024_105787 crossref_primary_10_1016_j_envpol_2022_120143 crossref_primary_10_1007_s11356_020_10713_3 crossref_primary_10_1016_j_ecoenv_2019_109432 crossref_primary_10_1016_j_envpol_2021_117199 crossref_primary_10_1080_09593330_2020_1733101 crossref_primary_10_1016_j_pedsph_2022_06_030 crossref_primary_10_1080_03067319_2020_1776861 crossref_primary_10_1007_s42773_024_00313_6 crossref_primary_10_1016_j_ecoenv_2024_117092 crossref_primary_10_1021_acs_est_8b00672 crossref_primary_10_1016_j_scitotenv_2018_02_185 crossref_primary_10_1007_s11356_018_04079_w crossref_primary_10_1007_s11356_019_05501_7 crossref_primary_10_1007_s11356_022_20704_1 crossref_primary_10_1080_26395940_2020_1714487 crossref_primary_10_3390_agronomy14061302 crossref_primary_10_1016_j_envpol_2022_120937 crossref_primary_10_2139_ssrn_3967449 crossref_primary_10_1016_j_jes_2022_05_025 crossref_primary_10_1016_j_biortech_2017_06_023 crossref_primary_10_1007_s12517_018_4006_4 crossref_primary_10_3390_environments7070053 crossref_primary_10_3390_su10124440 crossref_primary_10_1007_s13762_022_04452_w crossref_primary_10_1016_j_rser_2021_111791 crossref_primary_10_1016_j_jhazmat_2020_124954 crossref_primary_10_1016_j_jece_2019_103064 crossref_primary_10_1016_j_scitotenv_2018_04_072 crossref_primary_10_3390_su152316161 crossref_primary_10_1080_10934529_2017_1401396 crossref_primary_10_1016_j_jenvman_2020_110576 crossref_primary_10_1016_j_jenvman_2022_114973 crossref_primary_10_1016_j_scitotenv_2023_164012 crossref_primary_10_1016_j_jenvman_2019_109610 crossref_primary_10_1007_s11356_017_0495_z crossref_primary_10_1007_s10653_021_00829_x crossref_primary_10_1016_j_jclepro_2019_119579 crossref_primary_10_1155_2021_9964562 crossref_primary_10_1016_j_envres_2023_116640 crossref_primary_10_1016_j_eti_2024_103649 crossref_primary_10_1039_C9EM00570F crossref_primary_10_1007_s11356_018_2780_x crossref_primary_10_1016_j_ecoenv_2023_114820 crossref_primary_10_1016_j_jenvman_2019_02_047 crossref_primary_10_1016_j_crsust_2023_100226 crossref_primary_10_1016_j_eti_2023_103105 crossref_primary_10_1007_s11270_020_04496_z crossref_primary_10_1007_s11356_024_35318_y crossref_primary_10_1016_j_plaphy_2019_03_030 crossref_primary_10_1016_j_ecoenv_2017_02_028 crossref_primary_10_1016_j_scitotenv_2019_135126 crossref_primary_10_1007_s11356_021_18116_8 crossref_primary_10_1016_j_envint_2019_03_031 crossref_primary_10_1007_s12517_018_3974_8 crossref_primary_10_1016_j_envpol_2016_09_095 crossref_primary_10_1016_j_scienta_2019_108930 crossref_primary_10_1016_j_chemosphere_2022_136388 crossref_primary_10_1016_j_scitotenv_2020_137108 |
Cites_doi | 10.1007/s11270-011-0882-x 10.1016/j.ecoleng.2013.07.031 10.1016/j.biortech.2010.06.088 10.1016/j.biombioe.2013.07.019 10.1016/j.envpol.2013.11.026 10.1016/j.geoderma.2011.04.021 10.1016/j.envpol.2009.07.021 10.1016/j.chemosphere.2013.10.071 10.1016/j.biortech.2012.01.072 10.1016/j.jhazmat.2014.03.017 10.2134/jeq2008.0239 10.1016/0016-7037(74)90062-3 10.1007/s00477-012-0589-6 10.1016/j.chemosphere.2014.05.086 10.1016/j.ecoenv.2014.12.025 10.2136/sssaj2005.0383 10.1016/j.envpol.2010.02.003 10.1007/s11356-014-4065-3 10.1111/j.1469-8137.2008.02716.x 10.1016/j.chemosphere.2012.05.008 10.1016/j.chemosphere.2008.07.013 10.1016/j.biortech.2010.02.052 10.1093/femsec/fiu007 10.1016/j.energy.2010.09.031 10.1007/s10653-009-9248-3 10.1016/S0045-6535(00)00205-8 10.1021/es802412r 10.1023/B:PLSO.0000037031.21561.34 10.1016/j.envpol.2011.07.023 10.1007/s11356-012-0873-5 10.5194/bg-11-6613-2014 10.1021/ac50043a017 10.1021/jf9044217 10.1016/j.scitotenv.2013.08.090 10.1016/j.chemosphere.2013.03.055 10.1021/es5047099 10.1007/s11104-010-0464-5 10.1016/j.watres.2011.11.058 10.2136/sssaj2001.653849x 10.1016/j.geoderma.2006.10.012 10.1007/s10533-008-9248-x 10.1016/j.envint.2004.01.003 10.1016/S0168-1656(02)00218-3 10.1071/SR10049 10.1080/10807039.2014.890479 10.2136/sssaj1975.03615995003900050020x 10.1016/j.scitotenv.2011.11.003 10.5194/se-5-65-2014 10.1016/S0165-9936(02)00603-9 10.2134/jeq2001.1940 10.15376/biores.6.3.2605-2618 10.1016/S1003-6326(09)60139-4 10.1016/j.gca.2007.06.055 10.1021/es103752u 10.1016/j.envpol.2009.05.011 10.1016/j.envpol.2009.09.029 10.1016/j.envpol.2010.10.016 10.1126/science.1182570 10.1016/j.chemosphere.2014.12.058 |
ContentType | Journal Article |
Copyright | 2016 Copyright © 2016. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2016 – notice: Copyright © 2016. Published by Elsevier Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7ST 7TV 7U7 C1K SOI 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2016.01.044 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Environment Abstracts Pollution Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Pollution Abstracts Toxicology Abstracts Environment Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Pollution Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
EndPage | 206 |
ExternalDocumentID | 26971172 10_1016_j_chemosphere_2016_01_044 S0045653516300431 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7ST 7TV 7U7 C1K SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c509t-1ce79d8a01aa734cd99ccbef9ce0b7dadefee158a5635978ae124e6a10e18c783 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Fri Jul 11 06:03:11 EDT 2025 Fri Jul 11 16:48:24 EDT 2025 Fri Jul 11 04:46:14 EDT 2025 Mon Jul 21 06:04:49 EDT 2025 Thu Apr 24 22:53:14 EDT 2025 Tue Jul 01 00:45:21 EDT 2025 Fri Feb 23 02:20:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mobility Acid leaching Biochar Multi-metal contamination SPLP |
Language | English |
License | Copyright © 2016. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-1ce79d8a01aa734cd99ccbef9ce0b7dadefee158a5635978ae124e6a10e18c783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26971172 |
PQID | 1778707558 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2131886438 proquest_miscellaneous_1785241547 proquest_miscellaneous_1778707558 pubmed_primary_26971172 crossref_citationtrail_10_1016_j_chemosphere_2016_01_044 crossref_primary_10_1016_j_chemosphere_2016_01_044 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2016_01_044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2016 2016-06-00 2016-Jun 20160601 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: June 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Tessier, Campbell, Bisson (bib55) 1979; 51 Uchimiya, Lima, Thomas Klasson, Chang, Wartelle, Rodgers (bib56) 2010; 58 Li, Ma, van der Kuijp, Yuan, Huang (bib35) 2014; 468 Paz-Ferreiro, Lu, Fu, Méndez, Gascó (bib49) 2014; 5 Kettler, Doran, Gilbert (bib32) 2001; 65 Nguyen, Lehmann, Kinyangi, Smernik, Riha, Engelhard (bib46) 2009; 92 Williams, Lei, Sun, Huang, Lu, Deacon, Meharg, Zhu (bib59) 2009; 43 Alam, Tokunaga, Maekawa (bib3) 2001; 43 Drahota, Filippi, Ettler, Rohovec, Mihaljevič, Šebek (bib17) 2012; 414 Liang, Lehmann, Solomon, Kinyangi, Grossman, O'neill, Skjemstad, Thies, Luizão, Petersen, Neves (bib36) 2006; 70 Shiowatana, McLaren, Chanmekha, Samphao (bib51) 2001; 30 Houben, Evrard, Sonnet (bib27) 2013; 92 Namgay, Singh (bib44) 2010 Zhao, Ma, Zhu, Tang, McGrath (bib65) 2015; 49 Cui, Zhu, Zhai, Chen, Huang, Qiu, Liang (bib16) 2004; 30 Gleyzes, Tellier, Astruc (bib23) 2002; 21 Yolcubal, Akyol (bib62) 2008; 73 Santillan-Medrano, Jurinak (bib50) 1975; 39 García-Salgado, García-Casillas, Quijano-Nieto, Bonilla-Simón (bib21) 2012; 223 Beesley, Moreno-Jimenez, Clemente, Lepp, Dickinson (bib8) 2010; 158 McBride, Richards, Steenhuis (bib41) 2004; 262 Beesley, Marmiroli (bib10) 2011; 159 Houben, Evrard, Sonnet (bib26) 2013; 57 Li, Lin, Cheng, Duan, Lei (bib34) 2015; 113 Namgay, Singh, Singh (bib45) 2010; 48 Zhuang, Zou, Li, Li (bib67) 2009; 31 Zhang, Wang, Yin, Peng, Tan, Liu, Tan, Wu (bib63) 2015; 153 Beesley, Inneh, Norton, Moreno-Jimenez, Pardo, Clemente, Dawson (bib6) 2014; 186 Beesley, Moreno-Jiménez, Gomez-Eyles, Harris, Robinson, Sizmur (bib9) 2011; 159 Cao, Ma, Liang, Gao, Harris (bib14) 2011; 45 International Biochar Initiative (bib28) 2012 Nriagu (bib47) 1974; 38 Xu, Cao, Zhao, Wang, Yu, Gao (bib61) 2013; 20 Liu, Luo, Gao, Li, Lin, Wu, Li (bib37) 2010; 158 Signes-Pastor, Burló, Mitra, Carbonell-Barrachina (bib52) 2007; 137 Alexandratos, Elzinga, Reeder (bib4) 2007; 71 Klitzke, Lang (bib33) 2009; 38 María, Beesley, Moreno-Jimenez, Manuel (bib39) 2015 Inyang, Gao, Yao, Xue, Zimmerman, Pullammanappallil, Cao (bib30) 2012; 110 Wei, Chen, Song, Luo, Han, Li, Dong (bib58) 2015; 21 Gaskin, Speir, Morris, Ogden, Harris, Lee, Das (bib22) 2007 Cui, Li, Mail, Pan (bib15) 2011; 6 Guo, Liu, Zhang, Shen, Han, Zhang, Christie, Goulding, Vitousek, Zhang (bib24) 2010; 327 Epelde, Lanzén, Blanco, Urich, Garbisu (bib19) 2015; 91 Hartley, Dickinson, Riby, Lepp (bib25) 2009; 157 Sun, Li, Ji, Yang, Wang, Li (bib53) 2010; 20 Tan, Liu, Zeng, Wang, Hu, Gu, Yang (bib54) 2015; 125 Zheng, Cai, Liang, Huang, Chen, Huang, Arp, Sun (bib66) 2012; 89 Abdelhafez, Li, Abbas (bib1) 2014; 117 Patnaik (bib48) 2003; vol. 28 Bian, Joseph, Cui, Pan, Li, Liu, Zhang, Rutlidge, Wong, Chia, Marjo, Gong, Munroe, Donne (bib12) 2014; 272 Inyang, Gao, Pullammanappallil, Ding, Zimmerman (bib29) 2010; 101 Bian, Chen, Liu, Cui, Li, Pan, Xie, Zheng, Zhang, Zheng, Chang (bib11) 2013; 58 Wu, Wang, Chen, Zhang, Xu, Zhuang (bib60) 2015 Ahmad, Rajapaksha, Lim, Zhang, Bolan, Mohan, Vithanage, Lee, Ok (bib2) 2014; 99 Cao, Harris (bib13) 2010; 101 Zhao, Ma, Meharg, McGrath (bib64) 2009; 181 Atkinson, Fitzgerald, Hipps (bib5) 2010; 337 Melo, Puga, Coscione, Beesley, Abreu, Camargo (bib42) 2015 Mukherjee, Zimmerman, Harris (bib43) 2011; 163 Jindo, Mizumoto, Sawada, Sanchez-Monedero, Sonoki (bib31) 2014; 11 Du, Fang, Xu, Shi (bib18) 2013; 27 Beesley, Jiménez, Eyles (bib7) 2010; 158 Matovic (bib40) 2011; 36 Lu, Zhang, Yang, Huang, Wang, Qiu (bib38) 2012; 46 Wang, Peng, Tan, Ma, Rathinasabapathi (bib57) 2015; 22 Fitz, Wenzel (bib20) 2002; 99 Beesley (10.1016/j.chemosphere.2016.01.044_bib6) 2014; 186 Mukherjee (10.1016/j.chemosphere.2016.01.044_bib43) 2011; 163 Li (10.1016/j.chemosphere.2016.01.044_bib35) 2014; 468 Zhao (10.1016/j.chemosphere.2016.01.044_bib65) 2015; 49 Santillan-Medrano (10.1016/j.chemosphere.2016.01.044_bib50) 1975; 39 Houben (10.1016/j.chemosphere.2016.01.044_bib27) 2013; 92 Zhang (10.1016/j.chemosphere.2016.01.044_bib63) 2015; 153 Wu (10.1016/j.chemosphere.2016.01.044_bib60) 2015 Alexandratos (10.1016/j.chemosphere.2016.01.044_bib4) 2007; 71 Liang (10.1016/j.chemosphere.2016.01.044_bib36) 2006; 70 Melo (10.1016/j.chemosphere.2016.01.044_bib42) 2015 Zhuang (10.1016/j.chemosphere.2016.01.044_bib67) 2009; 31 Abdelhafez (10.1016/j.chemosphere.2016.01.044_bib1) 2014; 117 Gleyzes (10.1016/j.chemosphere.2016.01.044_bib23) 2002; 21 McBride (10.1016/j.chemosphere.2016.01.044_bib41) 2004; 262 Nriagu (10.1016/j.chemosphere.2016.01.044_bib47) 1974; 38 Fitz (10.1016/j.chemosphere.2016.01.044_bib20) 2002; 99 Hartley (10.1016/j.chemosphere.2016.01.044_bib25) 2009; 157 Patnaik (10.1016/j.chemosphere.2016.01.044_bib48) 2003; vol. 28 Beesley (10.1016/j.chemosphere.2016.01.044_bib10) 2011; 159 Du (10.1016/j.chemosphere.2016.01.044_bib18) 2013; 27 Klitzke (10.1016/j.chemosphere.2016.01.044_bib33) 2009; 38 Beesley (10.1016/j.chemosphere.2016.01.044_bib9) 2011; 159 Alam (10.1016/j.chemosphere.2016.01.044_bib3) 2001; 43 Wang (10.1016/j.chemosphere.2016.01.044_bib57) 2015; 22 Beesley (10.1016/j.chemosphere.2016.01.044_bib7) 2010; 158 Inyang (10.1016/j.chemosphere.2016.01.044_bib30) 2012; 110 Namgay (10.1016/j.chemosphere.2016.01.044_bib44) 2010 Bian (10.1016/j.chemosphere.2016.01.044_bib12) 2014; 272 Xu (10.1016/j.chemosphere.2016.01.044_bib61) 2013; 20 Tan (10.1016/j.chemosphere.2016.01.044_bib54) 2015; 125 International Biochar Initiative (10.1016/j.chemosphere.2016.01.044_bib28) 2012 Jindo (10.1016/j.chemosphere.2016.01.044_bib31) 2014; 11 Kettler (10.1016/j.chemosphere.2016.01.044_bib32) 2001; 65 Shiowatana (10.1016/j.chemosphere.2016.01.044_bib51) 2001; 30 Williams (10.1016/j.chemosphere.2016.01.044_bib59) 2009; 43 Guo (10.1016/j.chemosphere.2016.01.044_bib24) 2010; 327 María (10.1016/j.chemosphere.2016.01.044_bib39) 2015 Yolcubal (10.1016/j.chemosphere.2016.01.044_bib62) 2008; 73 Signes-Pastor (10.1016/j.chemosphere.2016.01.044_bib52) 2007; 137 Wei (10.1016/j.chemosphere.2016.01.044_bib58) 2015; 21 García-Salgado (10.1016/j.chemosphere.2016.01.044_bib21) 2012; 223 Beesley (10.1016/j.chemosphere.2016.01.044_bib8) 2010; 158 Gaskin (10.1016/j.chemosphere.2016.01.044_bib22) 2007 Namgay (10.1016/j.chemosphere.2016.01.044_bib45) 2010; 48 Bian (10.1016/j.chemosphere.2016.01.044_bib11) 2013; 58 Atkinson (10.1016/j.chemosphere.2016.01.044_bib5) 2010; 337 Liu (10.1016/j.chemosphere.2016.01.044_bib37) 2010; 158 Nguyen (10.1016/j.chemosphere.2016.01.044_bib46) 2009; 92 Cao (10.1016/j.chemosphere.2016.01.044_bib14) 2011; 45 Epelde (10.1016/j.chemosphere.2016.01.044_bib19) 2015; 91 Drahota (10.1016/j.chemosphere.2016.01.044_bib17) 2012; 414 Uchimiya (10.1016/j.chemosphere.2016.01.044_bib56) 2010; 58 Cui (10.1016/j.chemosphere.2016.01.044_bib16) 2004; 30 Tessier (10.1016/j.chemosphere.2016.01.044_bib55) 1979; 51 Inyang (10.1016/j.chemosphere.2016.01.044_bib29) 2010; 101 Ahmad (10.1016/j.chemosphere.2016.01.044_bib2) 2014; 99 Houben (10.1016/j.chemosphere.2016.01.044_bib26) 2013; 57 Li (10.1016/j.chemosphere.2016.01.044_bib34) 2015; 113 Zhao (10.1016/j.chemosphere.2016.01.044_bib64) 2009; 181 Cao (10.1016/j.chemosphere.2016.01.044_bib13) 2010; 101 Paz-Ferreiro (10.1016/j.chemosphere.2016.01.044_bib49) 2014; 5 Matovic (10.1016/j.chemosphere.2016.01.044_bib40) 2011; 36 Sun (10.1016/j.chemosphere.2016.01.044_bib53) 2010; 20 Zheng (10.1016/j.chemosphere.2016.01.044_bib66) 2012; 89 Cui (10.1016/j.chemosphere.2016.01.044_bib15) 2011; 6 Lu (10.1016/j.chemosphere.2016.01.044_bib38) 2012; 46 |
References_xml | – volume: 45 start-page: 4884 year: 2011 end-page: 4889 ident: bib14 article-title: Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar publication-title: Environ. Sci. Technol. – start-page: 1 year: 2015 end-page: 9 ident: bib42 article-title: Sorption and desorption of cadmium and zinc in two tropical soils amended with sugarcane-straw-derived biochar publication-title: J. Soils Sediment. – volume: 158 start-page: 2282 year: 2010 end-page: 2287 ident: bib7 article-title: Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic andorganic contaminants in a multi-element polluted soil publication-title: Environ. Pollut. – volume: 101 start-page: 5222 year: 2010 end-page: 5228 ident: bib13 article-title: Properties of dairy-manure-derived biochar pertinent to its potential use in remediation publication-title: Bioresour. Technol. – volume: 65 start-page: 849 year: 2001 end-page: 852 ident: bib32 article-title: Simplified method for soil particle-size determination to accompany soil-quality analyses publication-title: Soil Sci. Soc. Am. J. – volume: 46 start-page: 854 year: 2012 end-page: 862 ident: bib38 article-title: Relative distribution of Pb publication-title: Water Res. – volume: 5 start-page: 65 year: 2014 end-page: 75 ident: bib49 article-title: Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review publication-title: Solid Earth – volume: 36 start-page: 2011 year: 2011 end-page: 2016 ident: bib40 article-title: Biochar as a viable carbon sequestration option: global and Canadian perspective publication-title: Energy – volume: 51 start-page: 844 year: 1979 end-page: 851 ident: bib55 article-title: Sequential extraction procedure for the speciation of particulate trace metals publication-title: Anal. Chem. – volume: 21 start-page: 863 year: 2015 end-page: 881 ident: bib58 article-title: Assessment of human health risk for an area impacted by a large-scale metallurgical refinery complex in Hunan, China publication-title: Hum. Ecol. Risk Assess. An Int. J. – volume: 181 start-page: 777 year: 2009 end-page: 794 ident: bib64 article-title: Arsenic uptake and metabolism in plants publication-title: New Phytol. – volume: 110 start-page: 50 year: 2012 end-page: 56 ident: bib30 article-title: Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass publication-title: Bioresour. Technol. – volume: 58 start-page: 378 year: 2013 end-page: 383 ident: bib11 article-title: Biochar soil amendment as a solution to prevent Cd-tainted rice from China: results from a cross-site field experiment publication-title: Ecol. Eng. – volume: 125 start-page: 70 year: 2015 end-page: 85 ident: bib54 article-title: Application of biochar for the removal of pollutants from aqueous solutions publication-title: Chemosphere – volume: 223 start-page: 559 year: 2012 end-page: 572 ident: bib21 article-title: Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities publication-title: Water, Air, & Soil Pollut. – volume: 30 start-page: 1940 year: 2001 end-page: 1949 ident: bib51 article-title: Fractionation of arsenic in soil by a continuous-flow sequential extraction method publication-title: J. Environ. Qual. – volume: 22 start-page: 5742 year: 2015 end-page: 5750 ident: bib57 article-title: Recent advances in arsenic bioavailability, transport, and speciation in rice publication-title: Environ. Sci. Pollut. Res. – volume: 43 start-page: 1035 year: 2001 end-page: 1041 ident: bib3 article-title: Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate publication-title: Chemosphere – volume: 92 start-page: 163 year: 2009 end-page: 176 ident: bib46 article-title: Long-term black carbon dynamics in cultivated soil publication-title: Biogeochemistry – volume: 262 start-page: 71 year: 2004 end-page: 84 ident: bib41 article-title: Bioavailability and crop uptake of trace elements in soil columns amended with sewage sludge products publication-title: Plant Soil – year: 2007 ident: bib22 article-title: Potential for Pyrolysis Char to Affect Soil Moisture and Nutrient Status of a Loamy Sand Soil – volume: 21 start-page: 451 year: 2002 end-page: 467 ident: bib23 article-title: Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures publication-title: Trac Trends Anal. Chem. – volume: 43 start-page: 637 year: 2009 end-page: 642 ident: bib59 article-title: Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China publication-title: Environ. Sci. Technol. – volume: 186 start-page: 195 year: 2014 end-page: 202 ident: bib6 article-title: Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil publication-title: Environ. Pollut. – volume: 30 start-page: 785 year: 2004 end-page: 791 ident: bib16 article-title: Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China publication-title: Environ. Int. – year: 2015 ident: bib60 article-title: Characterization of Biochar Derived from Water Hyacinth, Rice Straw and Sewage Sludge and Their Environmental Implications – year: 2012 ident: bib28 article-title: Standardized Product Definition and Product Testing Guidelines for Biochar That is Used in Soil – volume: 157 start-page: 2654 year: 2009 end-page: 2662 ident: bib25 article-title: Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus publication-title: Environ. Pollut. – volume: 31 start-page: 707 year: 2009 end-page: 715 ident: bib67 article-title: Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: implication for human health publication-title: Environ. Geochem. Health – year: 2015 ident: bib39 article-title: Automatic flow-through dynamic extraction: a fast tool to evaluate char-based remediation of multi-element contaminated mine soils publication-title: Talanta – volume: 327 start-page: 1008 year: 2010 end-page: 1010 ident: bib24 article-title: Significant acidification in major Chinese croplands publication-title: Science – volume: 113 start-page: 391 year: 2015 end-page: 399 ident: bib34 article-title: Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China publication-title: Ecotoxicol. Environ. Saf. – volume: 137 start-page: 504 year: 2007 end-page: 510 ident: bib52 article-title: Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil publication-title: Geoderma – volume: 58 start-page: 5538 year: 2010 end-page: 5544 ident: bib56 article-title: Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil publication-title: J. Agric. Food Chem. – volume: 57 start-page: 196 year: 2013 end-page: 204 ident: bib26 article-title: Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.) publication-title: Biomass Bioenergy – volume: 11 start-page: 6613 year: 2014 end-page: 6621 ident: bib31 article-title: Physical and chemical characterization of biochars derived from different agricultural residues publication-title: Biogeosciences – volume: 48 start-page: 638 year: 2010 end-page: 647 ident: bib45 article-title: Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.) publication-title: Soil Res. – volume: 337 start-page: 1 year: 2010 end-page: 18 ident: bib5 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review publication-title: Plant Soil – volume: 89 start-page: 856 year: 2012 end-page: 862 ident: bib66 article-title: The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, as in rice (Oryza sativa L.) seedlings publication-title: Chemosphere – volume: 272 start-page: 121 year: 2014 end-page: 128 ident: bib12 article-title: A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment publication-title: J. Hazard. Mater. – volume: 117 start-page: 66 year: 2014 end-page: 71 ident: bib1 article-title: Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil publication-title: Chemosphere – volume: 158 start-page: 820 year: 2010 end-page: 826 ident: bib37 article-title: Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China publication-title: Environ. Pollut. – volume: 27 start-page: 377 year: 2013 end-page: 387 ident: bib18 article-title: Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China publication-title: Stoch. Environ. Res. Risk Assess. – volume: 159 start-page: 3269 year: 2011 end-page: 3282 ident: bib9 article-title: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils publication-title: Environ. Pollut. – volume: 73 start-page: 1300 year: 2008 end-page: 1307 ident: bib62 article-title: Adsorption and transport of arsenate in carbonate-rich soils: coupled effects of nonlinear and rate-limited sorption publication-title: Chemosphere – volume: 20 start-page: 308 year: 2010 end-page: 314 ident: bib53 article-title: Environmental contamination and health hazard of lead and cadmium around Chatian mercury mining deposit in western Hunan Province, China publication-title: Trans. Nonferrous Metals Soc. China – volume: 71 start-page: 4172 year: 2007 end-page: 4187 ident: bib4 article-title: Arsenate uptake by calcite: macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms publication-title: Geochim. Cosmochim. Acta – volume: 39 start-page: 851 year: 1975 end-page: 856 ident: bib50 article-title: The chemistry of lead and cadmium in soil: solid phase formation publication-title: Soil Sci. Soc. Am. J. – volume: 468 start-page: 843 year: 2014 end-page: 853 ident: bib35 article-title: A review of soil heavy metal pollution from mines in China: pollution and health risk assessment publication-title: Sci. Total Environ. – volume: 158 start-page: 155 year: 2010 end-page: 160 ident: bib8 article-title: Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction publication-title: Environ. Pollut. – volume: 101 start-page: 8868 year: 2010 end-page: 8872 ident: bib29 article-title: Biochar from anaerobically digested sugarcane bagasse publication-title: Bioresour. Technol. – volume: 99 start-page: 19 year: 2014 end-page: 33 ident: bib2 article-title: Biochar as a sorbent for contaminant management in soil and water: a review publication-title: Chemosphere – volume: 414 start-page: 546 year: 2012 end-page: 555 ident: bib17 article-title: Natural attenuation of arsenic in soils near a highly contaminated historical mine waste dump publication-title: Sci. Total Environ. – volume: 49 start-page: 750 year: 2015 end-page: 759 ident: bib65 article-title: Soil contamination in China: current status and mitigation strategies publication-title: Environ. Sci. Technol. – volume: 70 start-page: 1719 year: 2006 end-page: 1730 ident: bib36 article-title: Black carbon increases cation exchange capacity in soils publication-title: Soil Sci. Soc. Am. J. – volume: 38 start-page: 887 year: 1974 end-page: 898 ident: bib47 article-title: Lead orthophosphates—IV Formation and stability in the environment publication-title: Geochim. Cosmochim. Acta – volume: 6 start-page: 2605 year: 2011 end-page: 2618 ident: bib15 article-title: Biochar amendment greatly reduces rice Cd uptake in a contaminated paddy soil: a two-year field experiment publication-title: Bioresources – volume: 99 start-page: 259 year: 2002 end-page: 278 ident: bib20 article-title: Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation publication-title: J. Biotechnol. – volume: 153 start-page: 68 year: 2015 end-page: 73 ident: bib63 article-title: Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) publication-title: J. Environ. Manag. – volume: 91 start-page: 1 year: 2015 end-page: 11 ident: bib19 article-title: Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine publication-title: Fems Microbiol. Ecol. – year: 2010 ident: bib44 article-title: Plant Availability of Arsenic and Cadmium as Influenced by Biochar Application to Soil – volume: 92 start-page: 1450 year: 2013 end-page: 1457 ident: bib27 article-title: Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar publication-title: Chemosphere – volume: 38 start-page: 933 year: 2009 end-page: 939 ident: bib33 article-title: Mobilization of soluble and dispersible lead, arsenic, and antimony in a polluted, organic-rich soil–effects of pH increase and counterion valency publication-title: J. Environ. Qual. – volume: vol. 28 start-page: 453 year: 2003 end-page: 475 ident: bib48 publication-title: Handbook of Inorganic Chemicals – volume: 159 start-page: 474 year: 2011 end-page: 480 ident: bib10 article-title: The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar publication-title: Environ. Pollut. – volume: 163 start-page: 247 year: 2011 end-page: 255 ident: bib43 article-title: Surface chemistry variations among a series of laboratory-produced biochars publication-title: Geoderma – volume: 20 start-page: 358 year: 2013 end-page: 368 ident: bib61 article-title: Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar publication-title: Environ. Sci. Pollut. Res. – volume: 223 start-page: 559 issue: 2 year: 2012 ident: 10.1016/j.chemosphere.2016.01.044_bib21 article-title: Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities publication-title: Water, Air, & Soil Pollut. doi: 10.1007/s11270-011-0882-x – volume: 58 start-page: 378 year: 2013 ident: 10.1016/j.chemosphere.2016.01.044_bib11 article-title: Biochar soil amendment as a solution to prevent Cd-tainted rice from China: results from a cross-site field experiment publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2013.07.031 – volume: vol. 28 start-page: 453 year: 2003 ident: 10.1016/j.chemosphere.2016.01.044_bib48 – volume: 101 start-page: 8868 issue: 22 year: 2010 ident: 10.1016/j.chemosphere.2016.01.044_bib29 article-title: Biochar from anaerobically digested sugarcane bagasse publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.06.088 – volume: 57 start-page: 196 year: 2013 ident: 10.1016/j.chemosphere.2016.01.044_bib26 article-title: Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.) publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.07.019 – volume: 153 start-page: 68 year: 2015 ident: 10.1016/j.chemosphere.2016.01.044_bib63 article-title: Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes) publication-title: J. Environ. Manag. – volume: 186 start-page: 195 year: 2014 ident: 10.1016/j.chemosphere.2016.01.044_bib6 article-title: Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.11.026 – volume: 163 start-page: 247 issue: 3 year: 2011 ident: 10.1016/j.chemosphere.2016.01.044_bib43 article-title: Surface chemistry variations among a series of laboratory-produced biochars publication-title: Geoderma doi: 10.1016/j.geoderma.2011.04.021 – volume: 158 start-page: 155 issue: 1 year: 2010 ident: 10.1016/j.chemosphere.2016.01.044_bib8 article-title: Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2009.07.021 – volume: 99 start-page: 19 year: 2014 ident: 10.1016/j.chemosphere.2016.01.044_bib2 article-title: Biochar as a sorbent for contaminant management in soil and water: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.10.071 – volume: 110 start-page: 50 year: 2012 ident: 10.1016/j.chemosphere.2016.01.044_bib30 article-title: Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.01.072 – volume: 272 start-page: 121 year: 2014 ident: 10.1016/j.chemosphere.2016.01.044_bib12 article-title: A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.03.017 – volume: 38 start-page: 933 issue: 3 year: 2009 ident: 10.1016/j.chemosphere.2016.01.044_bib33 article-title: Mobilization of soluble and dispersible lead, arsenic, and antimony in a polluted, organic-rich soil–effects of pH increase and counterion valency publication-title: J. Environ. Qual. doi: 10.2134/jeq2008.0239 – volume: 38 start-page: 887 issue: 6 year: 1974 ident: 10.1016/j.chemosphere.2016.01.044_bib47 article-title: Lead orthophosphates—IV Formation and stability in the environment publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(74)90062-3 – volume: 27 start-page: 377 issue: 2 year: 2013 ident: 10.1016/j.chemosphere.2016.01.044_bib18 article-title: Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-012-0589-6 – volume: 117 start-page: 66 year: 2014 ident: 10.1016/j.chemosphere.2016.01.044_bib1 article-title: Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.05.086 – volume: 113 start-page: 391 year: 2015 ident: 10.1016/j.chemosphere.2016.01.044_bib34 article-title: Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2014.12.025 – volume: 70 start-page: 1719 issue: 5 year: 2006 ident: 10.1016/j.chemosphere.2016.01.044_bib36 article-title: Black carbon increases cation exchange capacity in soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0383 – volume: 158 start-page: 2282 year: 2010 ident: 10.1016/j.chemosphere.2016.01.044_bib7 article-title: Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic andorganic contaminants in a multi-element polluted soil publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2010.02.003 – volume: 22 start-page: 5742 issue: 8 year: 2015 ident: 10.1016/j.chemosphere.2016.01.044_bib57 article-title: Recent advances in arsenic bioavailability, transport, and speciation in rice publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-4065-3 – volume: 181 start-page: 777 issue: 4 year: 2009 ident: 10.1016/j.chemosphere.2016.01.044_bib64 article-title: Arsenic uptake and metabolism in plants publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02716.x – year: 2015 ident: 10.1016/j.chemosphere.2016.01.044_bib60 – year: 2015 ident: 10.1016/j.chemosphere.2016.01.044_bib39 article-title: Automatic flow-through dynamic extraction: a fast tool to evaluate char-based remediation of multi-element contaminated mine soils publication-title: Talanta – year: 2007 ident: 10.1016/j.chemosphere.2016.01.044_bib22 – volume: 89 start-page: 856 issue: 7 year: 2012 ident: 10.1016/j.chemosphere.2016.01.044_bib66 article-title: The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, as in rice (Oryza sativa L.) seedlings publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.05.008 – volume: 73 start-page: 1300 issue: 8 year: 2008 ident: 10.1016/j.chemosphere.2016.01.044_bib62 article-title: Adsorption and transport of arsenate in carbonate-rich soils: coupled effects of nonlinear and rate-limited sorption publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.07.013 – start-page: 1 year: 2015 ident: 10.1016/j.chemosphere.2016.01.044_bib42 article-title: Sorption and desorption of cadmium and zinc in two tropical soils amended with sugarcane-straw-derived biochar publication-title: J. Soils Sediment. – volume: 101 start-page: 5222 issue: 14 year: 2010 ident: 10.1016/j.chemosphere.2016.01.044_bib13 article-title: Properties of dairy-manure-derived biochar pertinent to its potential use in remediation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.02.052 – volume: 91 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.chemosphere.2016.01.044_bib19 article-title: Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine publication-title: Fems Microbiol. Ecol. doi: 10.1093/femsec/fiu007 – volume: 36 start-page: 2011 issue: 4 year: 2011 ident: 10.1016/j.chemosphere.2016.01.044_bib40 article-title: Biochar as a viable carbon sequestration option: global and Canadian perspective publication-title: Energy doi: 10.1016/j.energy.2010.09.031 – volume: 31 start-page: 707 issue: 6 year: 2009 ident: 10.1016/j.chemosphere.2016.01.044_bib67 article-title: Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: implication for human health publication-title: Environ. Geochem. Health doi: 10.1007/s10653-009-9248-3 – volume: 43 start-page: 1035 issue: 8 year: 2001 ident: 10.1016/j.chemosphere.2016.01.044_bib3 article-title: Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate publication-title: Chemosphere doi: 10.1016/S0045-6535(00)00205-8 – volume: 43 start-page: 637 issue: 3 year: 2009 ident: 10.1016/j.chemosphere.2016.01.044_bib59 article-title: Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China publication-title: Environ. Sci. Technol. doi: 10.1021/es802412r – volume: 262 start-page: 71 issue: 1–2 year: 2004 ident: 10.1016/j.chemosphere.2016.01.044_bib41 article-title: Bioavailability and crop uptake of trace elements in soil columns amended with sewage sludge products publication-title: Plant Soil doi: 10.1023/B:PLSO.0000037031.21561.34 – volume: 159 start-page: 3269 issue: 12 year: 2011 ident: 10.1016/j.chemosphere.2016.01.044_bib9 article-title: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.07.023 – volume: 20 start-page: 358 issue: 1 year: 2013 ident: 10.1016/j.chemosphere.2016.01.044_bib61 article-title: Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-012-0873-5 – volume: 11 start-page: 6613 issue: 23 year: 2014 ident: 10.1016/j.chemosphere.2016.01.044_bib31 article-title: Physical and chemical characterization of biochars derived from different agricultural residues publication-title: Biogeosciences doi: 10.5194/bg-11-6613-2014 – volume: 51 start-page: 844 issue: 7 year: 1979 ident: 10.1016/j.chemosphere.2016.01.044_bib55 article-title: Sequential extraction procedure for the speciation of particulate trace metals publication-title: Anal. Chem. doi: 10.1021/ac50043a017 – volume: 58 start-page: 5538 issue: 9 year: 2010 ident: 10.1016/j.chemosphere.2016.01.044_bib56 article-title: Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil publication-title: J. Agric. Food Chem. doi: 10.1021/jf9044217 – volume: 468 start-page: 843 year: 2014 ident: 10.1016/j.chemosphere.2016.01.044_bib35 article-title: A review of soil heavy metal pollution from mines in China: pollution and health risk assessment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.08.090 – volume: 92 start-page: 1450 issue: 11 year: 2013 ident: 10.1016/j.chemosphere.2016.01.044_bib27 article-title: Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.03.055 – volume: 49 start-page: 750 issue: 2 year: 2015 ident: 10.1016/j.chemosphere.2016.01.044_bib65 article-title: Soil contamination in China: current status and mitigation strategies publication-title: Environ. Sci. Technol. doi: 10.1021/es5047099 – volume: 337 start-page: 1 issue: 1–2 year: 2010 ident: 10.1016/j.chemosphere.2016.01.044_bib5 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review publication-title: Plant Soil doi: 10.1007/s11104-010-0464-5 – volume: 46 start-page: 854 issue: 3 year: 2012 ident: 10.1016/j.chemosphere.2016.01.044_bib38 article-title: Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar publication-title: Water Res. doi: 10.1016/j.watres.2011.11.058 – volume: 65 start-page: 849 issue: 3 year: 2001 ident: 10.1016/j.chemosphere.2016.01.044_bib32 article-title: Simplified method for soil particle-size determination to accompany soil-quality analyses publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.653849x – volume: 137 start-page: 504 issue: 3 year: 2007 ident: 10.1016/j.chemosphere.2016.01.044_bib52 article-title: Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil publication-title: Geoderma doi: 10.1016/j.geoderma.2006.10.012 – volume: 92 start-page: 163 issue: 1–2 year: 2009 ident: 10.1016/j.chemosphere.2016.01.044_bib46 article-title: Long-term black carbon dynamics in cultivated soil publication-title: Biogeochemistry doi: 10.1007/s10533-008-9248-x – volume: 30 start-page: 785 issue: 6 year: 2004 ident: 10.1016/j.chemosphere.2016.01.044_bib16 article-title: Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China publication-title: Environ. Int. doi: 10.1016/j.envint.2004.01.003 – volume: 99 start-page: 259 issue: 3 year: 2002 ident: 10.1016/j.chemosphere.2016.01.044_bib20 article-title: Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation publication-title: J. Biotechnol. doi: 10.1016/S0168-1656(02)00218-3 – year: 2010 ident: 10.1016/j.chemosphere.2016.01.044_bib44 – volume: 48 start-page: 638 issue: 7 year: 2010 ident: 10.1016/j.chemosphere.2016.01.044_bib45 article-title: Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.) publication-title: Soil Res. doi: 10.1071/SR10049 – volume: 21 start-page: 863 issue: 4 year: 2015 ident: 10.1016/j.chemosphere.2016.01.044_bib58 article-title: Assessment of human health risk for an area impacted by a large-scale metallurgical refinery complex in Hunan, China publication-title: Hum. Ecol. Risk Assess. An Int. J. doi: 10.1080/10807039.2014.890479 – year: 2012 ident: 10.1016/j.chemosphere.2016.01.044_bib28 – volume: 39 start-page: 851 issue: 5 year: 1975 ident: 10.1016/j.chemosphere.2016.01.044_bib50 article-title: The chemistry of lead and cadmium in soil: solid phase formation publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1975.03615995003900050020x – volume: 414 start-page: 546 issue: 1 year: 2012 ident: 10.1016/j.chemosphere.2016.01.044_bib17 article-title: Natural attenuation of arsenic in soils near a highly contaminated historical mine waste dump publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2011.11.003 – volume: 5 start-page: 65 issue: 1 year: 2014 ident: 10.1016/j.chemosphere.2016.01.044_bib49 article-title: Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review publication-title: Solid Earth doi: 10.5194/se-5-65-2014 – volume: 21 start-page: 451 issue: 6 year: 2002 ident: 10.1016/j.chemosphere.2016.01.044_bib23 article-title: Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures publication-title: Trac Trends Anal. Chem. doi: 10.1016/S0165-9936(02)00603-9 – volume: 30 start-page: 1940 issue: 6 year: 2001 ident: 10.1016/j.chemosphere.2016.01.044_bib51 article-title: Fractionation of arsenic in soil by a continuous-flow sequential extraction method publication-title: J. Environ. Qual. doi: 10.2134/jeq2001.1940 – volume: 6 start-page: 2605 issue: 3 year: 2011 ident: 10.1016/j.chemosphere.2016.01.044_bib15 article-title: Biochar amendment greatly reduces rice Cd uptake in a contaminated paddy soil: a two-year field experiment publication-title: Bioresources doi: 10.15376/biores.6.3.2605-2618 – volume: 20 start-page: 308 issue: 2 year: 2010 ident: 10.1016/j.chemosphere.2016.01.044_bib53 article-title: Environmental contamination and health hazard of lead and cadmium around Chatian mercury mining deposit in western Hunan Province, China publication-title: Trans. Nonferrous Metals Soc. China doi: 10.1016/S1003-6326(09)60139-4 – volume: 71 start-page: 4172 issue: 17 year: 2007 ident: 10.1016/j.chemosphere.2016.01.044_bib4 article-title: Arsenate uptake by calcite: macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2007.06.055 – volume: 45 start-page: 4884 issue: 11 year: 2011 ident: 10.1016/j.chemosphere.2016.01.044_bib14 article-title: Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar publication-title: Environ. Sci. Technol. doi: 10.1021/es103752u – volume: 157 start-page: 2654 issue: 10 year: 2009 ident: 10.1016/j.chemosphere.2016.01.044_bib25 article-title: Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2009.05.011 – volume: 158 start-page: 820 issue: 3 year: 2010 ident: 10.1016/j.chemosphere.2016.01.044_bib37 article-title: Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2009.09.029 – volume: 159 start-page: 474 issue: 2 year: 2011 ident: 10.1016/j.chemosphere.2016.01.044_bib10 article-title: The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2010.10.016 – volume: 327 start-page: 1008 issue: 5968 year: 2010 ident: 10.1016/j.chemosphere.2016.01.044_bib24 article-title: Significant acidification in major Chinese croplands publication-title: Science doi: 10.1126/science.1182570 – volume: 125 start-page: 70 year: 2015 ident: 10.1016/j.chemosphere.2016.01.044_bib54 article-title: Application of biochar for the removal of pollutants from aqueous solutions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.12.058 |
SSID | ssj0001659 |
Score | 2.5773306 |
Snippet | Cd, Pb and As stand as the most prominent contaminants prevailing in Chinese soils. In the present study, biochars derived from water hyacinth (BCW) and rice... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 196 |
SubjectTerms | acid deposition Acid leaching Acid Rain - analysis acidification arsenic Arsenic - analysis Arsenic - chemistry bioavailability Biochar cadmium Cadmium - analysis Cadmium - chemistry calcium chloride Charcoal - chemistry China durability Eichhornia crassipes leachates leaching lead Lead - analysis Lead - chemistry minerals Mobility Multi-metal contamination Oryza - growth & development paddy soils potassium dihydrogen phosphate rain rice straw risk Soil - chemistry Soil Pollutants - analysis Solubility SPLP toxicity |
Title | Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil |
URI | https://dx.doi.org/10.1016/j.chemosphere.2016.01.044 https://www.ncbi.nlm.nih.gov/pubmed/26971172 https://www.proquest.com/docview/1778707558 https://www.proquest.com/docview/1785241547 https://www.proquest.com/docview/2131886438 |
Volume | 152 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBUhpW0uJU0_kuaDCfRYNytbsmToZVkSti0NPTQlh4KQJRlcsvaS3Rz20t_eGdlO0sOWQI42GmO_kWae8JsRY--rzNusEjxB7pDjBiXkSSFKnsi8Clp7V1pB1cjfzvPphfhyKS832GSohSFZZR_7u5geo3V_56RH82Re11TjS2wkkzx2jYq11EIomuUf_9zJPHguOwosZEKjn7HjO40X4jJrF1S_Tx0zeR47eAqxLket46AxF51tsxc9iYRx954v2UZodtjzyXB22w57ehqbUa9esV8_7TVVMkEn3IC2grJuqdYK2gYm_gN8L8E2HsYLmLVRKbuCugELUWqYzAKycyBBuyXRDPJTmGOwWsGira9es4uz0x-TadKfqJA4JAbLhLugCq_tiFurMuF8UThXhqpwYVQqb32oQuBSW4k8BPeXNmD6D7nlo8C1Uzp7wzabtgm7DCwael8ohE0JdFaRuaxKRSlEldK63mN6wNC4vt04nXpxZQZd2W9zD35D8JsRNwj_HktvTeddz42HGH0aHGX-mUAGc8NDzI8H5xr0Ff01sU1obxaGK4ppSkr9vzFaEhUSav2YlGP41EgA8Tlvu9lz-3VpXiiOVPLd4z5in23RVadkO2Cby-ubcIicaVkexUVxxJ6MP3-dnv8Ft9kX2w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB3Chja9lCb9Stu0CvRYk5UtWTL0siwJmyZZekhKDgUhSzI4ZO0luznsv--MPzbtYUOgV1tjrBlp9ITePAF8LRJvk0LwCLFDihuUkEaZyHkk0yJo7V1uBVUjX0zTyZX4cS2vt2Dc18IQrbLL_W1Ob7J19-So8-bRvCypxpfQSCJ5oxpFtdTbpE4lB7A9Oj2bTNcJmaeyRcFCRmTwHA4faF7omlm9oBJ-Es3kaSPiKcSmZWoTDG2Wo5NX8LLDkWzU_uoubIVqD3bG_fVte_DsuNGjXr2G37_sHRUzsZa7weqC5WVN5VasrtjYf2M_c2Yrz0YLNqsbsuyKlRWzrGEbRrOAAJ0Rp90SbwYhKptjvlqxRV3evoGrk-PL8STqLlWIHGKDZcRdUJnXdsitVYlwPsucy0ORuTDMlbc-FCFwqa1EKIJbTBsQAYTU8mHg2imdvIVBVVfhPTCLht5nCt2mBMYrS1xSxCIXoohpau-D7n1oXKc4Thdf3JqeWnZj_nK_IfebITfo_n2I16bzVnbjKUbf-0CZf8aQweXhKeaHfXANxooOTmwV6vuF4YrSmpJSP9ZGS0JDQm1uE3PMoBoxIH7nXTt61r2L00xxRJMf_q8TX2Bncnlxbs5Pp2cf4QW9aYltn2CwvLsPBwihlvnnbor8ATrEGow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Varying+effect+of+biochar+on+Cd%2C+Pb+and+As+mobility+in+a+multi-metal+contaminated+paddy+soil&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Yin%2C+Daixia&rft.au=Wang%2C+Xin&rft.au=Chen%2C+Can&rft.au=Peng%2C+Bo&rft.date=2016-06-01&rft.issn=0045-6535&rft.volume=152&rft.spage=196&rft.epage=206&rft_id=info:doi/10.1016%2Fj.chemosphere.2016.01.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemosphere_2016_01_044 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |