Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil

Cd, Pb and As stand as the most prominent contaminants prevailing in Chinese soils. In the present study, biochars derived from water hyacinth (BCW) and rice straw (BCR) were investigated regarding their applicability and durability in soil Cd, Pb, and As immobilization under acid precipitation. Tot...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 152; pp. 196 - 206
Main Authors Yin, Daixia, Wang, Xin, Chen, Can, Peng, Bo, Tan, Changyin, Li, Hailong
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cd, Pb and As stand as the most prominent contaminants prevailing in Chinese soils. In the present study, biochars derived from water hyacinth (BCW) and rice straw (BCR) were investigated regarding their applicability and durability in soil Cd, Pb, and As immobilization under acid precipitation. Total Cd, Pb, and As in both BCs were below the maximum allowed threshold according to biochar toxicity standard recommended by International Biochar Initiative. To evaluate BCs effect on Cd, Pb, As bioavailability and mobility, CaCl2, KH2PO4 and SPLP extractions were firstly carried out. In neutral extraction with CaCl2 and KH2PO4, significantly reduced Cd/Pb concentrations in CaCl2 extract along with elevated KH2PO4-extractable As were recorded with either BC at 2% or 5%. In SPLP with simulated acid rainwater as extractant, comparable Cd, Pb and As levels were determined in SPLP extract with 2% BCW, while slight to significant increase in SPLP-Cd, Pb or As was recorded with other treatments. Longer-term leaching column test further confirmed the high durability of 2% BCW in Cd immobilization under continuous acid exposure. In parallel, little increase in As concentrations in eluate was determined with 2% BCW compared to no-biochar control, indicating a lowered risk of As mobilization with acid input. However, remarkably higher Pb in leachate from both BCW-only control and 2% BCW-amended soils were noticed at the initial stage of acid leaching, indicating a higher acid-solubility of Pb minerals in BCW (most probably PbO) than in tested soil (PbO2, PbAs2O6). Taken together, BCW exhibited important potential for soil Cd sequestration with little effect on As mobilization under acid precipitation. But it may simultaneously load highly acid-soluble Pb minerals into soils, resulting in elevated Pb mobility upon acid exposure. Therefore, more stringent threshold for Pb content in biochar need to be put forward to secure biochar application in soils subject to anthropogenic acidification. [Display omitted] •Prolonged Cd immobilization was achieved with BCW under acid precipitation.•BCW application increased soil Pb leachability upon acid exposure.•Higher KH2PO4-extractable As was obtained with BCW addition.•BCW incorporation induced little increase in As mobilization with acid input.•More stringent Pb threshold allowed in biochar need to be proposed.
AbstractList Cd, Pb and As stand as the most prominent contaminants prevailing in Chinese soils. In the present study, biochars derived from water hyacinth (BCW) and rice straw (BCR) were investigated regarding their applicability and durability in soil Cd, Pb, and As immobilization under acid precipitation. Total Cd, Pb, and As in both BCs were below the maximum allowed threshold according to biochar toxicity standard recommended by International Biochar Initiative. To evaluate BCs effect on Cd, Pb, As bioavailability and mobility, CaCl2, KH2PO4 and SPLP extractions were firstly carried out. In neutral extraction with CaCl2 and KH2PO4, significantly reduced Cd/Pb concentrations in CaCl2 extract along with elevated KH2PO4-extractable As were recorded with either BC at 2% or 5%. In SPLP with simulated acid rainwater as extractant, comparable Cd, Pb and As levels were determined in SPLP extract with 2% BCW, while slight to significant increase in SPLP-Cd, Pb or As was recorded with other treatments. Longer-term leaching column test further confirmed the high durability of 2% BCW in Cd immobilization under continuous acid exposure. In parallel, little increase in As concentrations in eluate was determined with 2% BCW compared to no-biochar control, indicating a lowered risk of As mobilization with acid input. However, remarkably higher Pb in leachate from both BCW-only control and 2% BCW-amended soils were noticed at the initial stage of acid leaching, indicating a higher acid-solubility of Pb minerals in BCW (most probably PbO) than in tested soil (PbO2, PbAs2O6). Taken together, BCW exhibited important potential for soil Cd sequestration with little effect on As mobilization under acid precipitation. But it may simultaneously load highly acid-soluble Pb minerals into soils, resulting in elevated Pb mobility upon acid exposure. Therefore, more stringent threshold for Pb content in biochar need to be put forward to secure biochar application in soils subject to anthropogenic acidification.Cd, Pb and As stand as the most prominent contaminants prevailing in Chinese soils. In the present study, biochars derived from water hyacinth (BCW) and rice straw (BCR) were investigated regarding their applicability and durability in soil Cd, Pb, and As immobilization under acid precipitation. Total Cd, Pb, and As in both BCs were below the maximum allowed threshold according to biochar toxicity standard recommended by International Biochar Initiative. To evaluate BCs effect on Cd, Pb, As bioavailability and mobility, CaCl2, KH2PO4 and SPLP extractions were firstly carried out. In neutral extraction with CaCl2 and KH2PO4, significantly reduced Cd/Pb concentrations in CaCl2 extract along with elevated KH2PO4-extractable As were recorded with either BC at 2% or 5%. In SPLP with simulated acid rainwater as extractant, comparable Cd, Pb and As levels were determined in SPLP extract with 2% BCW, while slight to significant increase in SPLP-Cd, Pb or As was recorded with other treatments. Longer-term leaching column test further confirmed the high durability of 2% BCW in Cd immobilization under continuous acid exposure. In parallel, little increase in As concentrations in eluate was determined with 2% BCW compared to no-biochar control, indicating a lowered risk of As mobilization with acid input. However, remarkably higher Pb in leachate from both BCW-only control and 2% BCW-amended soils were noticed at the initial stage of acid leaching, indicating a higher acid-solubility of Pb minerals in BCW (most probably PbO) than in tested soil (PbO2, PbAs2O6). Taken together, BCW exhibited important potential for soil Cd sequestration with little effect on As mobilization under acid precipitation. But it may simultaneously load highly acid-soluble Pb minerals into soils, resulting in elevated Pb mobility upon acid exposure. Therefore, more stringent threshold for Pb content in biochar need to be put forward to secure biochar application in soils subject to anthropogenic acidification.
Cd, Pb and As stand as the most prominent contaminants prevailing in Chinese soils. In the present study, biochars derived from water hyacinth (BCW) and rice straw (BCR) were investigated regarding their applicability and durability in soil Cd, Pb, and As immobilization under acid precipitation. Total Cd, Pb, and As in both BCs were below the maximum allowed threshold according to biochar toxicity standard recommended by International Biochar Initiative. To evaluate BCs effect on Cd, Pb, As bioavailability and mobility, CaCl2, KH2PO4 and SPLP extractions were firstly carried out. In neutral extraction with CaCl2 and KH2PO4, significantly reduced Cd/Pb concentrations in CaCl2 extract along with elevated KH2PO4-extractable As were recorded with either BC at 2% or 5%. In SPLP with simulated acid rainwater as extractant, comparable Cd, Pb and As levels were determined in SPLP extract with 2% BCW, while slight to significant increase in SPLP-Cd, Pb or As was recorded with other treatments. Longer-term leaching column test further confirmed the high durability of 2% BCW in Cd immobilization under continuous acid exposure. In parallel, little increase in As concentrations in eluate was determined with 2% BCW compared to no-biochar control, indicating a lowered risk of As mobilization with acid input. However, remarkably higher Pb in leachate from both BCW-only control and 2% BCW-amended soils were noticed at the initial stage of acid leaching, indicating a higher acid-solubility of Pb minerals in BCW (most probably PbO) than in tested soil (PbO2, PbAs2O6). Taken together, BCW exhibited important potential for soil Cd sequestration with little effect on As mobilization under acid precipitation. But it may simultaneously load highly acid-soluble Pb minerals into soils, resulting in elevated Pb mobility upon acid exposure. Therefore, more stringent threshold for Pb content in biochar need to be put forward to secure biochar application in soils subject to anthropogenic acidification.
Cd, Pb and As stand as the most prominent contaminants prevailing in Chinese soils. In the present study, biochars derived from water hyacinth (BCW) and rice straw (BCR) were investigated regarding their applicability and durability in soil Cd, Pb, and As immobilization under acid precipitation. Total Cd, Pb, and As in both BCs were below the maximum allowed threshold according to biochar toxicity standard recommended by International Biochar Initiative. To evaluate BCs effect on Cd, Pb, As bioavailability and mobility, CaCl2, KH2PO4 and SPLP extractions were firstly carried out. In neutral extraction with CaCl2 and KH2PO4, significantly reduced Cd/Pb concentrations in CaCl2 extract along with elevated KH2PO4-extractable As were recorded with either BC at 2% or 5%. In SPLP with simulated acid rainwater as extractant, comparable Cd, Pb and As levels were determined in SPLP extract with 2% BCW, while slight to significant increase in SPLP-Cd, Pb or As was recorded with other treatments. Longer-term leaching column test further confirmed the high durability of 2% BCW in Cd immobilization under continuous acid exposure. In parallel, little increase in As concentrations in eluate was determined with 2% BCW compared to no-biochar control, indicating a lowered risk of As mobilization with acid input. However, remarkably higher Pb in leachate from both BCW-only control and 2% BCW-amended soils were noticed at the initial stage of acid leaching, indicating a higher acid-solubility of Pb minerals in BCW (most probably PbO) than in tested soil (PbO2, PbAs2O6). Taken together, BCW exhibited important potential for soil Cd sequestration with little effect on As mobilization under acid precipitation. But it may simultaneously load highly acid-soluble Pb minerals into soils, resulting in elevated Pb mobility upon acid exposure. Therefore, more stringent threshold for Pb content in biochar need to be put forward to secure biochar application in soils subject to anthropogenic acidification. [Display omitted] •Prolonged Cd immobilization was achieved with BCW under acid precipitation.•BCW application increased soil Pb leachability upon acid exposure.•Higher KH2PO4-extractable As was obtained with BCW addition.•BCW incorporation induced little increase in As mobilization with acid input.•More stringent Pb threshold allowed in biochar need to be proposed.
Author Yin, Daixia
Tan, Changyin
Li, Hailong
Wang, Xin
Chen, Can
Peng, Bo
Author_xml – sequence: 1
  givenname: Daixia
  surname: Yin
  fullname: Yin, Daixia
  organization: College of Resources and Environmental Science, Hunan Normal University, Changsha, Hunan, 410081, China
– sequence: 2
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  email: hdwangxin2005@yahoo.com.cn
  organization: College of Resources and Environmental Science, Hunan Normal University, Changsha, Hunan, 410081, China
– sequence: 3
  givenname: Can
  surname: Chen
  fullname: Chen, Can
  organization: Hunan Research Academy of Environmental Science, Changsha, Hunan, 410004, China
– sequence: 4
  givenname: Bo
  surname: Peng
  fullname: Peng, Bo
  organization: College of Resources and Environmental Science, Hunan Normal University, Changsha, Hunan, 410081, China
– sequence: 5
  givenname: Changyin
  surname: Tan
  fullname: Tan, Changyin
  organization: College of Resources and Environmental Science, Hunan Normal University, Changsha, Hunan, 410081, China
– sequence: 6
  givenname: Hailong
  surname: Li
  fullname: Li, Hailong
  organization: School of Energy Science and Engineering, Central South University, Changsha, Hunan, 410083, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26971172$$D View this record in MEDLINE/PubMed
BookMark eNqNkcGKFDEQhoOsuLOrryDx5sFuU92dTnKSZVhdYUEP6kkI6aTaydCdjElmYd7eHmYXxItzKii--gv-74pchBiQkDfAamDQv9_WdoNzzLsNJqybZVUzqFnXPSMrkEJV0Ch5QVaMdbzqecsvyVXOW8YWkqsX5LLplQAQzYr8_GHSwYdfFMcRbaFxpIOPdmMSjYGu3Tv6daAmOHqT6RwHP_lyoD5QQ-f9VHw1YzETtTEUM_tgCjq6M84daI5-ekmej2bK-OpxXpPvH2-_re-q-y-fPq9v7ivLmSoVWBTKScPAGNF21ill7YCjssgG4YzDERG4NLxvuRLSIDQd9gYYgrRCttfk7Sl3l-LvPeaiZ58tTpMJGPdZN9CClH3X_h8FIXnTAe_EGaiQggnOj6mvH9H9MKPTu-TnpVf91PMCfDgBNsWcE47a-mKKX3pLxk8amD6a1Vv9l1l9NKsZ6MXskqD-SXh6cs7t-nSLi4QHj0ln6zFYdD4t0rWL_oyUPwd8xM0
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_175889
crossref_primary_10_3390_pr13020345
crossref_primary_10_1016_j_biteb_2023_101585
crossref_primary_10_1021_acsomega_3c07433
crossref_primary_10_1016_j_envpol_2020_114449
crossref_primary_10_1016_j_jclepro_2020_125605
crossref_primary_10_1016_j_scitotenv_2024_177303
crossref_primary_10_1007_s11356_018_2918_x
crossref_primary_10_1016_j_chemosphere_2019_01_149
crossref_primary_10_1016_j_psep_2022_02_061
crossref_primary_10_1016_j_chemosphere_2022_134970
crossref_primary_10_1016_j_chemosphere_2019_125152
crossref_primary_10_1007_s42773_019_00002_9
crossref_primary_10_1007_s11104_024_06827_z
crossref_primary_10_1007_s11356_020_10083_w
crossref_primary_10_1016_j_plaphy_2018_09_019
crossref_primary_10_1016_j_scitotenv_2017_05_086
crossref_primary_10_1016_j_watres_2024_122066
crossref_primary_10_1016_j_jes_2017_08_004
crossref_primary_10_1111_gcbb_13083
crossref_primary_10_1080_09506608_2021_1922047
crossref_primary_10_1007_s11356_017_1048_1
crossref_primary_10_1016_j_scitotenv_2022_154018
crossref_primary_10_1016_j_envpol_2020_114217
crossref_primary_10_1016_j_jhazmat_2022_128668
crossref_primary_10_1016_j_chemosphere_2021_130116
crossref_primary_10_1016_j_jhazmat_2024_135065
crossref_primary_10_1007_s10967_020_07160_2
crossref_primary_10_1002_ldr_3726
crossref_primary_10_1016_j_scitotenv_2021_146536
crossref_primary_10_1016_j_envint_2019_03_019
crossref_primary_10_1007_s12665_018_7299_4
crossref_primary_10_1007_s00267_021_01530_6
crossref_primary_10_1016_j_scitotenv_2022_159730
crossref_primary_10_1007_s11104_024_06559_0
crossref_primary_10_1016_j_chemosphere_2017_04_081
crossref_primary_10_1016_j_jhazmat_2024_135863
crossref_primary_10_1016_j_envpol_2020_114069
crossref_primary_10_1016_j_jscs_2021_101232
crossref_primary_10_1016_j_psep_2024_04_089
crossref_primary_10_1016_j_jes_2021_02_002
crossref_primary_10_1080_15226514_2019_1678108
crossref_primary_10_1016_j_ecoenv_2017_11_063
crossref_primary_10_1016_j_envpol_2021_118645
crossref_primary_10_1016_j_jhazmat_2024_133966
crossref_primary_10_3390_ijerph17030827
crossref_primary_10_1016_j_envpol_2018_06_005
crossref_primary_10_1016_j_jhazmat_2018_09_034
crossref_primary_10_1016_j_eti_2020_101015
crossref_primary_10_1007_s11783_022_1579_7
crossref_primary_10_1016_j_eti_2021_101976
crossref_primary_10_1016_j_ecoenv_2025_117784
crossref_primary_10_1016_j_jhazmat_2019_121349
crossref_primary_10_1021_acs_est_0c07206
crossref_primary_10_3390_su16135565
crossref_primary_10_1016_j_scitotenv_2021_149136
crossref_primary_10_1016_j_scitotenv_2022_154880
crossref_primary_10_1039_D0RA09358K
crossref_primary_10_3389_fenvs_2023_1240633
crossref_primary_10_1016_j_jclepro_2020_124691
crossref_primary_10_1016_j_jes_2021_09_039
crossref_primary_10_1007_s12649_020_01272_2
crossref_primary_10_1080_15320383_2023_2208673
crossref_primary_10_3390_pr10050818
crossref_primary_10_3390_informatics8020038
crossref_primary_10_1016_j_envpol_2019_113761
crossref_primary_10_1080_15226514_2024_2380039
crossref_primary_10_1016_j_jhazmat_2021_126292
crossref_primary_10_1002_EXP_20210052
crossref_primary_10_1071_CP21726
crossref_primary_10_1007_s11356_025_36140_w
crossref_primary_10_1016_j_scitotenv_2021_150531
crossref_primary_10_1021_acs_energyfuels_2c01201
crossref_primary_10_1007_s10653_020_00564_9
crossref_primary_10_1016_j_scitotenv_2018_12_419
crossref_primary_10_1186_s12302_022_00650_y
crossref_primary_10_1016_j_scitotenv_2021_148614
crossref_primary_10_1016_j_jenvman_2022_114792
crossref_primary_10_1016_j_chemosphere_2017_07_126
crossref_primary_10_1016_j_scitotenv_2017_10_121
crossref_primary_10_1080_10807039_2018_1429250
crossref_primary_10_1016_j_cej_2022_136225
crossref_primary_10_1016_j_ecoenv_2018_06_065
crossref_primary_10_1016_j_jenvman_2017_10_035
crossref_primary_10_1016_j_chemosphere_2021_132082
crossref_primary_10_1080_03650340_2019_1694145
crossref_primary_10_1016_j_ecoenv_2018_08_057
crossref_primary_10_1016_j_scitotenv_2016_04_079
crossref_primary_10_1016_j_jenvman_2019_109525
crossref_primary_10_1007_s11356_024_34223_8
crossref_primary_10_1007_s11356_021_17968_4
crossref_primary_10_1016_j_chemosphere_2017_02_112
crossref_primary_10_1007_s42398_021_00185_7
crossref_primary_10_1016_j_chemosphere_2021_130606
crossref_primary_10_1016_j_jenvman_2023_119775
crossref_primary_10_1016_j_envpol_2024_123360
crossref_primary_10_2139_ssrn_4200081
crossref_primary_10_1016_j_envpol_2020_114887
crossref_primary_10_1016_j_chemosphere_2019_124706
crossref_primary_10_1080_10643389_2019_1642832
crossref_primary_10_1016_j_envres_2023_116098
crossref_primary_10_1016_j_eti_2022_102687
crossref_primary_10_1007_s12665_024_12069_0
crossref_primary_10_1080_09593330_2018_1449900
crossref_primary_10_1080_02757540_2017_1404992
crossref_primary_10_1016_j_envpol_2024_123636
crossref_primary_10_1007_s42773_019_00023_4
crossref_primary_10_3390_pr12122802
crossref_primary_10_1016_j_chemosphere_2017_08_173
crossref_primary_10_1016_j_ecoenv_2020_111261
crossref_primary_10_1016_j_jhazmat_2018_01_044
crossref_primary_10_1016_j_envpol_2020_114098
crossref_primary_10_1007_s10661_019_7561_6
crossref_primary_10_1016_j_ecoenv_2020_110294
crossref_primary_10_1016_j_jhazmat_2022_128903
crossref_primary_10_1016_j_envpol_2020_114816
crossref_primary_10_1080_15226514_2023_2199876
crossref_primary_10_1016_j_jclepro_2023_140136
crossref_primary_10_1016_j_jenvman_2023_118552
crossref_primary_10_1016_j_chemosphere_2021_133427
crossref_primary_10_1016_j_envpol_2019_113252
crossref_primary_10_1016_j_ecoenv_2020_110218
crossref_primary_10_1016_j_scitotenv_2020_139060
crossref_primary_10_2116_analsci_19SBP01
crossref_primary_10_1016_j_microc_2019_104030
crossref_primary_10_1016_j_scitotenv_2024_178046
crossref_primary_10_1016_j_ibiod_2024_105787
crossref_primary_10_1016_j_envpol_2022_120143
crossref_primary_10_1007_s11356_020_10713_3
crossref_primary_10_1016_j_ecoenv_2019_109432
crossref_primary_10_1016_j_envpol_2021_117199
crossref_primary_10_1080_09593330_2020_1733101
crossref_primary_10_1016_j_pedsph_2022_06_030
crossref_primary_10_1080_03067319_2020_1776861
crossref_primary_10_1007_s42773_024_00313_6
crossref_primary_10_1016_j_ecoenv_2024_117092
crossref_primary_10_1021_acs_est_8b00672
crossref_primary_10_1016_j_scitotenv_2018_02_185
crossref_primary_10_1007_s11356_018_04079_w
crossref_primary_10_1007_s11356_019_05501_7
crossref_primary_10_1007_s11356_022_20704_1
crossref_primary_10_1080_26395940_2020_1714487
crossref_primary_10_3390_agronomy14061302
crossref_primary_10_1016_j_envpol_2022_120937
crossref_primary_10_2139_ssrn_3967449
crossref_primary_10_1016_j_jes_2022_05_025
crossref_primary_10_1016_j_biortech_2017_06_023
crossref_primary_10_1007_s12517_018_4006_4
crossref_primary_10_3390_environments7070053
crossref_primary_10_3390_su10124440
crossref_primary_10_1007_s13762_022_04452_w
crossref_primary_10_1016_j_rser_2021_111791
crossref_primary_10_1016_j_jhazmat_2020_124954
crossref_primary_10_1016_j_jece_2019_103064
crossref_primary_10_1016_j_scitotenv_2018_04_072
crossref_primary_10_3390_su152316161
crossref_primary_10_1080_10934529_2017_1401396
crossref_primary_10_1016_j_jenvman_2020_110576
crossref_primary_10_1016_j_jenvman_2022_114973
crossref_primary_10_1016_j_scitotenv_2023_164012
crossref_primary_10_1016_j_jenvman_2019_109610
crossref_primary_10_1007_s11356_017_0495_z
crossref_primary_10_1007_s10653_021_00829_x
crossref_primary_10_1016_j_jclepro_2019_119579
crossref_primary_10_1155_2021_9964562
crossref_primary_10_1016_j_envres_2023_116640
crossref_primary_10_1016_j_eti_2024_103649
crossref_primary_10_1039_C9EM00570F
crossref_primary_10_1007_s11356_018_2780_x
crossref_primary_10_1016_j_ecoenv_2023_114820
crossref_primary_10_1016_j_jenvman_2019_02_047
crossref_primary_10_1016_j_crsust_2023_100226
crossref_primary_10_1016_j_eti_2023_103105
crossref_primary_10_1007_s11270_020_04496_z
crossref_primary_10_1007_s11356_024_35318_y
crossref_primary_10_1016_j_plaphy_2019_03_030
crossref_primary_10_1016_j_ecoenv_2017_02_028
crossref_primary_10_1016_j_scitotenv_2019_135126
crossref_primary_10_1007_s11356_021_18116_8
crossref_primary_10_1016_j_envint_2019_03_031
crossref_primary_10_1007_s12517_018_3974_8
crossref_primary_10_1016_j_envpol_2016_09_095
crossref_primary_10_1016_j_scienta_2019_108930
crossref_primary_10_1016_j_chemosphere_2022_136388
crossref_primary_10_1016_j_scitotenv_2020_137108
Cites_doi 10.1007/s11270-011-0882-x
10.1016/j.ecoleng.2013.07.031
10.1016/j.biortech.2010.06.088
10.1016/j.biombioe.2013.07.019
10.1016/j.envpol.2013.11.026
10.1016/j.geoderma.2011.04.021
10.1016/j.envpol.2009.07.021
10.1016/j.chemosphere.2013.10.071
10.1016/j.biortech.2012.01.072
10.1016/j.jhazmat.2014.03.017
10.2134/jeq2008.0239
10.1016/0016-7037(74)90062-3
10.1007/s00477-012-0589-6
10.1016/j.chemosphere.2014.05.086
10.1016/j.ecoenv.2014.12.025
10.2136/sssaj2005.0383
10.1016/j.envpol.2010.02.003
10.1007/s11356-014-4065-3
10.1111/j.1469-8137.2008.02716.x
10.1016/j.chemosphere.2012.05.008
10.1016/j.chemosphere.2008.07.013
10.1016/j.biortech.2010.02.052
10.1093/femsec/fiu007
10.1016/j.energy.2010.09.031
10.1007/s10653-009-9248-3
10.1016/S0045-6535(00)00205-8
10.1021/es802412r
10.1023/B:PLSO.0000037031.21561.34
10.1016/j.envpol.2011.07.023
10.1007/s11356-012-0873-5
10.5194/bg-11-6613-2014
10.1021/ac50043a017
10.1021/jf9044217
10.1016/j.scitotenv.2013.08.090
10.1016/j.chemosphere.2013.03.055
10.1021/es5047099
10.1007/s11104-010-0464-5
10.1016/j.watres.2011.11.058
10.2136/sssaj2001.653849x
10.1016/j.geoderma.2006.10.012
10.1007/s10533-008-9248-x
10.1016/j.envint.2004.01.003
10.1016/S0168-1656(02)00218-3
10.1071/SR10049
10.1080/10807039.2014.890479
10.2136/sssaj1975.03615995003900050020x
10.1016/j.scitotenv.2011.11.003
10.5194/se-5-65-2014
10.1016/S0165-9936(02)00603-9
10.2134/jeq2001.1940
10.15376/biores.6.3.2605-2618
10.1016/S1003-6326(09)60139-4
10.1016/j.gca.2007.06.055
10.1021/es103752u
10.1016/j.envpol.2009.05.011
10.1016/j.envpol.2009.09.029
10.1016/j.envpol.2010.10.016
10.1126/science.1182570
10.1016/j.chemosphere.2014.12.058
ContentType Journal Article
Copyright 2016
Copyright © 2016. Published by Elsevier Ltd.
Copyright_xml – notice: 2016
– notice: Copyright © 2016. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7ST
7TV
7U7
C1K
SOI
7S9
L.6
DOI 10.1016/j.chemosphere.2016.01.044
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Environment Abstracts
Pollution Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Pollution Abstracts
Toxicology Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Pollution Abstracts
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
EndPage 206
ExternalDocumentID 26971172
10_1016_j_chemosphere_2016_01_044
S0045653516300431
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7ST
7TV
7U7
C1K
SOI
7S9
L.6
ID FETCH-LOGICAL-c509t-1ce79d8a01aa734cd99ccbef9ce0b7dadefee158a5635978ae124e6a10e18c783
IEDL.DBID .~1
ISSN 0045-6535
1879-1298
IngestDate Fri Jul 11 06:03:11 EDT 2025
Fri Jul 11 16:48:24 EDT 2025
Fri Jul 11 04:46:14 EDT 2025
Mon Jul 21 06:04:49 EDT 2025
Thu Apr 24 22:53:14 EDT 2025
Tue Jul 01 00:45:21 EDT 2025
Fri Feb 23 02:20:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mobility
Acid leaching
Biochar
Multi-metal contamination
SPLP
Language English
License Copyright © 2016. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-1ce79d8a01aa734cd99ccbef9ce0b7dadefee158a5635978ae124e6a10e18c783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26971172
PQID 1778707558
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2131886438
proquest_miscellaneous_1785241547
proquest_miscellaneous_1778707558
pubmed_primary_26971172
crossref_citationtrail_10_1016_j_chemosphere_2016_01_044
crossref_primary_10_1016_j_chemosphere_2016_01_044
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2016_01_044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2016
2016-06-00
2016-Jun
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: June 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tessier, Campbell, Bisson (bib55) 1979; 51
Uchimiya, Lima, Thomas Klasson, Chang, Wartelle, Rodgers (bib56) 2010; 58
Li, Ma, van der Kuijp, Yuan, Huang (bib35) 2014; 468
Paz-Ferreiro, Lu, Fu, Méndez, Gascó (bib49) 2014; 5
Kettler, Doran, Gilbert (bib32) 2001; 65
Nguyen, Lehmann, Kinyangi, Smernik, Riha, Engelhard (bib46) 2009; 92
Williams, Lei, Sun, Huang, Lu, Deacon, Meharg, Zhu (bib59) 2009; 43
Alam, Tokunaga, Maekawa (bib3) 2001; 43
Drahota, Filippi, Ettler, Rohovec, Mihaljevič, Šebek (bib17) 2012; 414
Liang, Lehmann, Solomon, Kinyangi, Grossman, O'neill, Skjemstad, Thies, Luizão, Petersen, Neves (bib36) 2006; 70
Shiowatana, McLaren, Chanmekha, Samphao (bib51) 2001; 30
Houben, Evrard, Sonnet (bib27) 2013; 92
Namgay, Singh (bib44) 2010
Zhao, Ma, Zhu, Tang, McGrath (bib65) 2015; 49
Cui, Zhu, Zhai, Chen, Huang, Qiu, Liang (bib16) 2004; 30
Gleyzes, Tellier, Astruc (bib23) 2002; 21
Yolcubal, Akyol (bib62) 2008; 73
Santillan-Medrano, Jurinak (bib50) 1975; 39
García-Salgado, García-Casillas, Quijano-Nieto, Bonilla-Simón (bib21) 2012; 223
Beesley, Moreno-Jimenez, Clemente, Lepp, Dickinson (bib8) 2010; 158
McBride, Richards, Steenhuis (bib41) 2004; 262
Beesley, Marmiroli (bib10) 2011; 159
Houben, Evrard, Sonnet (bib26) 2013; 57
Li, Lin, Cheng, Duan, Lei (bib34) 2015; 113
Namgay, Singh, Singh (bib45) 2010; 48
Zhuang, Zou, Li, Li (bib67) 2009; 31
Zhang, Wang, Yin, Peng, Tan, Liu, Tan, Wu (bib63) 2015; 153
Beesley, Inneh, Norton, Moreno-Jimenez, Pardo, Clemente, Dawson (bib6) 2014; 186
Beesley, Moreno-Jiménez, Gomez-Eyles, Harris, Robinson, Sizmur (bib9) 2011; 159
Cao, Ma, Liang, Gao, Harris (bib14) 2011; 45
International Biochar Initiative (bib28) 2012
Nriagu (bib47) 1974; 38
Xu, Cao, Zhao, Wang, Yu, Gao (bib61) 2013; 20
Liu, Luo, Gao, Li, Lin, Wu, Li (bib37) 2010; 158
Signes-Pastor, Burló, Mitra, Carbonell-Barrachina (bib52) 2007; 137
Alexandratos, Elzinga, Reeder (bib4) 2007; 71
Klitzke, Lang (bib33) 2009; 38
María, Beesley, Moreno-Jimenez, Manuel (bib39) 2015
Inyang, Gao, Yao, Xue, Zimmerman, Pullammanappallil, Cao (bib30) 2012; 110
Wei, Chen, Song, Luo, Han, Li, Dong (bib58) 2015; 21
Gaskin, Speir, Morris, Ogden, Harris, Lee, Das (bib22) 2007
Cui, Li, Mail, Pan (bib15) 2011; 6
Guo, Liu, Zhang, Shen, Han, Zhang, Christie, Goulding, Vitousek, Zhang (bib24) 2010; 327
Epelde, Lanzén, Blanco, Urich, Garbisu (bib19) 2015; 91
Hartley, Dickinson, Riby, Lepp (bib25) 2009; 157
Sun, Li, Ji, Yang, Wang, Li (bib53) 2010; 20
Tan, Liu, Zeng, Wang, Hu, Gu, Yang (bib54) 2015; 125
Zheng, Cai, Liang, Huang, Chen, Huang, Arp, Sun (bib66) 2012; 89
Abdelhafez, Li, Abbas (bib1) 2014; 117
Patnaik (bib48) 2003; vol. 28
Bian, Joseph, Cui, Pan, Li, Liu, Zhang, Rutlidge, Wong, Chia, Marjo, Gong, Munroe, Donne (bib12) 2014; 272
Inyang, Gao, Pullammanappallil, Ding, Zimmerman (bib29) 2010; 101
Bian, Chen, Liu, Cui, Li, Pan, Xie, Zheng, Zhang, Zheng, Chang (bib11) 2013; 58
Wu, Wang, Chen, Zhang, Xu, Zhuang (bib60) 2015
Ahmad, Rajapaksha, Lim, Zhang, Bolan, Mohan, Vithanage, Lee, Ok (bib2) 2014; 99
Cao, Harris (bib13) 2010; 101
Zhao, Ma, Meharg, McGrath (bib64) 2009; 181
Atkinson, Fitzgerald, Hipps (bib5) 2010; 337
Melo, Puga, Coscione, Beesley, Abreu, Camargo (bib42) 2015
Mukherjee, Zimmerman, Harris (bib43) 2011; 163
Jindo, Mizumoto, Sawada, Sanchez-Monedero, Sonoki (bib31) 2014; 11
Du, Fang, Xu, Shi (bib18) 2013; 27
Beesley, Jiménez, Eyles (bib7) 2010; 158
Matovic (bib40) 2011; 36
Lu, Zhang, Yang, Huang, Wang, Qiu (bib38) 2012; 46
Wang, Peng, Tan, Ma, Rathinasabapathi (bib57) 2015; 22
Fitz, Wenzel (bib20) 2002; 99
Beesley (10.1016/j.chemosphere.2016.01.044_bib6) 2014; 186
Mukherjee (10.1016/j.chemosphere.2016.01.044_bib43) 2011; 163
Li (10.1016/j.chemosphere.2016.01.044_bib35) 2014; 468
Zhao (10.1016/j.chemosphere.2016.01.044_bib65) 2015; 49
Santillan-Medrano (10.1016/j.chemosphere.2016.01.044_bib50) 1975; 39
Houben (10.1016/j.chemosphere.2016.01.044_bib27) 2013; 92
Zhang (10.1016/j.chemosphere.2016.01.044_bib63) 2015; 153
Wu (10.1016/j.chemosphere.2016.01.044_bib60) 2015
Alexandratos (10.1016/j.chemosphere.2016.01.044_bib4) 2007; 71
Liang (10.1016/j.chemosphere.2016.01.044_bib36) 2006; 70
Melo (10.1016/j.chemosphere.2016.01.044_bib42) 2015
Zhuang (10.1016/j.chemosphere.2016.01.044_bib67) 2009; 31
Abdelhafez (10.1016/j.chemosphere.2016.01.044_bib1) 2014; 117
Gleyzes (10.1016/j.chemosphere.2016.01.044_bib23) 2002; 21
McBride (10.1016/j.chemosphere.2016.01.044_bib41) 2004; 262
Nriagu (10.1016/j.chemosphere.2016.01.044_bib47) 1974; 38
Fitz (10.1016/j.chemosphere.2016.01.044_bib20) 2002; 99
Hartley (10.1016/j.chemosphere.2016.01.044_bib25) 2009; 157
Patnaik (10.1016/j.chemosphere.2016.01.044_bib48) 2003; vol. 28
Beesley (10.1016/j.chemosphere.2016.01.044_bib10) 2011; 159
Du (10.1016/j.chemosphere.2016.01.044_bib18) 2013; 27
Klitzke (10.1016/j.chemosphere.2016.01.044_bib33) 2009; 38
Beesley (10.1016/j.chemosphere.2016.01.044_bib9) 2011; 159
Alam (10.1016/j.chemosphere.2016.01.044_bib3) 2001; 43
Wang (10.1016/j.chemosphere.2016.01.044_bib57) 2015; 22
Beesley (10.1016/j.chemosphere.2016.01.044_bib7) 2010; 158
Inyang (10.1016/j.chemosphere.2016.01.044_bib30) 2012; 110
Namgay (10.1016/j.chemosphere.2016.01.044_bib44) 2010
Bian (10.1016/j.chemosphere.2016.01.044_bib12) 2014; 272
Xu (10.1016/j.chemosphere.2016.01.044_bib61) 2013; 20
Tan (10.1016/j.chemosphere.2016.01.044_bib54) 2015; 125
International Biochar Initiative (10.1016/j.chemosphere.2016.01.044_bib28) 2012
Jindo (10.1016/j.chemosphere.2016.01.044_bib31) 2014; 11
Kettler (10.1016/j.chemosphere.2016.01.044_bib32) 2001; 65
Shiowatana (10.1016/j.chemosphere.2016.01.044_bib51) 2001; 30
Williams (10.1016/j.chemosphere.2016.01.044_bib59) 2009; 43
Guo (10.1016/j.chemosphere.2016.01.044_bib24) 2010; 327
María (10.1016/j.chemosphere.2016.01.044_bib39) 2015
Yolcubal (10.1016/j.chemosphere.2016.01.044_bib62) 2008; 73
Signes-Pastor (10.1016/j.chemosphere.2016.01.044_bib52) 2007; 137
Wei (10.1016/j.chemosphere.2016.01.044_bib58) 2015; 21
García-Salgado (10.1016/j.chemosphere.2016.01.044_bib21) 2012; 223
Beesley (10.1016/j.chemosphere.2016.01.044_bib8) 2010; 158
Gaskin (10.1016/j.chemosphere.2016.01.044_bib22) 2007
Namgay (10.1016/j.chemosphere.2016.01.044_bib45) 2010; 48
Bian (10.1016/j.chemosphere.2016.01.044_bib11) 2013; 58
Atkinson (10.1016/j.chemosphere.2016.01.044_bib5) 2010; 337
Liu (10.1016/j.chemosphere.2016.01.044_bib37) 2010; 158
Nguyen (10.1016/j.chemosphere.2016.01.044_bib46) 2009; 92
Cao (10.1016/j.chemosphere.2016.01.044_bib14) 2011; 45
Epelde (10.1016/j.chemosphere.2016.01.044_bib19) 2015; 91
Drahota (10.1016/j.chemosphere.2016.01.044_bib17) 2012; 414
Uchimiya (10.1016/j.chemosphere.2016.01.044_bib56) 2010; 58
Cui (10.1016/j.chemosphere.2016.01.044_bib16) 2004; 30
Tessier (10.1016/j.chemosphere.2016.01.044_bib55) 1979; 51
Inyang (10.1016/j.chemosphere.2016.01.044_bib29) 2010; 101
Ahmad (10.1016/j.chemosphere.2016.01.044_bib2) 2014; 99
Houben (10.1016/j.chemosphere.2016.01.044_bib26) 2013; 57
Li (10.1016/j.chemosphere.2016.01.044_bib34) 2015; 113
Zhao (10.1016/j.chemosphere.2016.01.044_bib64) 2009; 181
Cao (10.1016/j.chemosphere.2016.01.044_bib13) 2010; 101
Paz-Ferreiro (10.1016/j.chemosphere.2016.01.044_bib49) 2014; 5
Matovic (10.1016/j.chemosphere.2016.01.044_bib40) 2011; 36
Sun (10.1016/j.chemosphere.2016.01.044_bib53) 2010; 20
Zheng (10.1016/j.chemosphere.2016.01.044_bib66) 2012; 89
Cui (10.1016/j.chemosphere.2016.01.044_bib15) 2011; 6
Lu (10.1016/j.chemosphere.2016.01.044_bib38) 2012; 46
References_xml – volume: 45
  start-page: 4884
  year: 2011
  end-page: 4889
  ident: bib14
  article-title: Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar
  publication-title: Environ. Sci. Technol.
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib42
  article-title: Sorption and desorption of cadmium and zinc in two tropical soils amended with sugarcane-straw-derived biochar
  publication-title: J. Soils Sediment.
– volume: 158
  start-page: 2282
  year: 2010
  end-page: 2287
  ident: bib7
  article-title: Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic andorganic contaminants in a multi-element polluted soil
  publication-title: Environ. Pollut.
– volume: 101
  start-page: 5222
  year: 2010
  end-page: 5228
  ident: bib13
  article-title: Properties of dairy-manure-derived biochar pertinent to its potential use in remediation
  publication-title: Bioresour. Technol.
– volume: 65
  start-page: 849
  year: 2001
  end-page: 852
  ident: bib32
  article-title: Simplified method for soil particle-size determination to accompany soil-quality analyses
  publication-title: Soil Sci. Soc. Am. J.
– volume: 46
  start-page: 854
  year: 2012
  end-page: 862
  ident: bib38
  article-title: Relative distribution of Pb
  publication-title: Water Res.
– volume: 5
  start-page: 65
  year: 2014
  end-page: 75
  ident: bib49
  article-title: Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review
  publication-title: Solid Earth
– volume: 36
  start-page: 2011
  year: 2011
  end-page: 2016
  ident: bib40
  article-title: Biochar as a viable carbon sequestration option: global and Canadian perspective
  publication-title: Energy
– volume: 51
  start-page: 844
  year: 1979
  end-page: 851
  ident: bib55
  article-title: Sequential extraction procedure for the speciation of particulate trace metals
  publication-title: Anal. Chem.
– volume: 21
  start-page: 863
  year: 2015
  end-page: 881
  ident: bib58
  article-title: Assessment of human health risk for an area impacted by a large-scale metallurgical refinery complex in Hunan, China
  publication-title: Hum. Ecol. Risk Assess. An Int. J.
– volume: 181
  start-page: 777
  year: 2009
  end-page: 794
  ident: bib64
  article-title: Arsenic uptake and metabolism in plants
  publication-title: New Phytol.
– volume: 110
  start-page: 50
  year: 2012
  end-page: 56
  ident: bib30
  article-title: Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass
  publication-title: Bioresour. Technol.
– volume: 58
  start-page: 378
  year: 2013
  end-page: 383
  ident: bib11
  article-title: Biochar soil amendment as a solution to prevent Cd-tainted rice from China: results from a cross-site field experiment
  publication-title: Ecol. Eng.
– volume: 125
  start-page: 70
  year: 2015
  end-page: 85
  ident: bib54
  article-title: Application of biochar for the removal of pollutants from aqueous solutions
  publication-title: Chemosphere
– volume: 223
  start-page: 559
  year: 2012
  end-page: 572
  ident: bib21
  article-title: Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities
  publication-title: Water, Air, & Soil Pollut.
– volume: 30
  start-page: 1940
  year: 2001
  end-page: 1949
  ident: bib51
  article-title: Fractionation of arsenic in soil by a continuous-flow sequential extraction method
  publication-title: J. Environ. Qual.
– volume: 22
  start-page: 5742
  year: 2015
  end-page: 5750
  ident: bib57
  article-title: Recent advances in arsenic bioavailability, transport, and speciation in rice
  publication-title: Environ. Sci. Pollut. Res.
– volume: 43
  start-page: 1035
  year: 2001
  end-page: 1041
  ident: bib3
  article-title: Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate
  publication-title: Chemosphere
– volume: 92
  start-page: 163
  year: 2009
  end-page: 176
  ident: bib46
  article-title: Long-term black carbon dynamics in cultivated soil
  publication-title: Biogeochemistry
– volume: 262
  start-page: 71
  year: 2004
  end-page: 84
  ident: bib41
  article-title: Bioavailability and crop uptake of trace elements in soil columns amended with sewage sludge products
  publication-title: Plant Soil
– year: 2007
  ident: bib22
  article-title: Potential for Pyrolysis Char to Affect Soil Moisture and Nutrient Status of a Loamy Sand Soil
– volume: 21
  start-page: 451
  year: 2002
  end-page: 467
  ident: bib23
  article-title: Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures
  publication-title: Trac Trends Anal. Chem.
– volume: 43
  start-page: 637
  year: 2009
  end-page: 642
  ident: bib59
  article-title: Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China
  publication-title: Environ. Sci. Technol.
– volume: 186
  start-page: 195
  year: 2014
  end-page: 202
  ident: bib6
  article-title: Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil
  publication-title: Environ. Pollut.
– volume: 30
  start-page: 785
  year: 2004
  end-page: 791
  ident: bib16
  article-title: Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China
  publication-title: Environ. Int.
– year: 2015
  ident: bib60
  article-title: Characterization of Biochar Derived from Water Hyacinth, Rice Straw and Sewage Sludge and Their Environmental Implications
– year: 2012
  ident: bib28
  article-title: Standardized Product Definition and Product Testing Guidelines for Biochar That is Used in Soil
– volume: 157
  start-page: 2654
  year: 2009
  end-page: 2662
  ident: bib25
  article-title: Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus
  publication-title: Environ. Pollut.
– volume: 31
  start-page: 707
  year: 2009
  end-page: 715
  ident: bib67
  article-title: Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: implication for human health
  publication-title: Environ. Geochem. Health
– year: 2015
  ident: bib39
  article-title: Automatic flow-through dynamic extraction: a fast tool to evaluate char-based remediation of multi-element contaminated mine soils
  publication-title: Talanta
– volume: 327
  start-page: 1008
  year: 2010
  end-page: 1010
  ident: bib24
  article-title: Significant acidification in major Chinese croplands
  publication-title: Science
– volume: 113
  start-page: 391
  year: 2015
  end-page: 399
  ident: bib34
  article-title: Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 137
  start-page: 504
  year: 2007
  end-page: 510
  ident: bib52
  article-title: Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil
  publication-title: Geoderma
– volume: 58
  start-page: 5538
  year: 2010
  end-page: 5544
  ident: bib56
  article-title: Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil
  publication-title: J. Agric. Food Chem.
– volume: 57
  start-page: 196
  year: 2013
  end-page: 204
  ident: bib26
  article-title: Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.)
  publication-title: Biomass Bioenergy
– volume: 11
  start-page: 6613
  year: 2014
  end-page: 6621
  ident: bib31
  article-title: Physical and chemical characterization of biochars derived from different agricultural residues
  publication-title: Biogeosciences
– volume: 48
  start-page: 638
  year: 2010
  end-page: 647
  ident: bib45
  article-title: Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.)
  publication-title: Soil Res.
– volume: 337
  start-page: 1
  year: 2010
  end-page: 18
  ident: bib5
  article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review
  publication-title: Plant Soil
– volume: 89
  start-page: 856
  year: 2012
  end-page: 862
  ident: bib66
  article-title: The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, as in rice (Oryza sativa L.) seedlings
  publication-title: Chemosphere
– volume: 272
  start-page: 121
  year: 2014
  end-page: 128
  ident: bib12
  article-title: A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment
  publication-title: J. Hazard. Mater.
– volume: 117
  start-page: 66
  year: 2014
  end-page: 71
  ident: bib1
  article-title: Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil
  publication-title: Chemosphere
– volume: 158
  start-page: 820
  year: 2010
  end-page: 826
  ident: bib37
  article-title: Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China
  publication-title: Environ. Pollut.
– volume: 27
  start-page: 377
  year: 2013
  end-page: 387
  ident: bib18
  article-title: Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 159
  start-page: 3269
  year: 2011
  end-page: 3282
  ident: bib9
  article-title: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils
  publication-title: Environ. Pollut.
– volume: 73
  start-page: 1300
  year: 2008
  end-page: 1307
  ident: bib62
  article-title: Adsorption and transport of arsenate in carbonate-rich soils: coupled effects of nonlinear and rate-limited sorption
  publication-title: Chemosphere
– volume: 20
  start-page: 308
  year: 2010
  end-page: 314
  ident: bib53
  article-title: Environmental contamination and health hazard of lead and cadmium around Chatian mercury mining deposit in western Hunan Province, China
  publication-title: Trans. Nonferrous Metals Soc. China
– volume: 71
  start-page: 4172
  year: 2007
  end-page: 4187
  ident: bib4
  article-title: Arsenate uptake by calcite: macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms
  publication-title: Geochim. Cosmochim. Acta
– volume: 39
  start-page: 851
  year: 1975
  end-page: 856
  ident: bib50
  article-title: The chemistry of lead and cadmium in soil: solid phase formation
  publication-title: Soil Sci. Soc. Am. J.
– volume: 468
  start-page: 843
  year: 2014
  end-page: 853
  ident: bib35
  article-title: A review of soil heavy metal pollution from mines in China: pollution and health risk assessment
  publication-title: Sci. Total Environ.
– volume: 158
  start-page: 155
  year: 2010
  end-page: 160
  ident: bib8
  article-title: Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction
  publication-title: Environ. Pollut.
– volume: 101
  start-page: 8868
  year: 2010
  end-page: 8872
  ident: bib29
  article-title: Biochar from anaerobically digested sugarcane bagasse
  publication-title: Bioresour. Technol.
– volume: 99
  start-page: 19
  year: 2014
  end-page: 33
  ident: bib2
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
– volume: 414
  start-page: 546
  year: 2012
  end-page: 555
  ident: bib17
  article-title: Natural attenuation of arsenic in soils near a highly contaminated historical mine waste dump
  publication-title: Sci. Total Environ.
– volume: 49
  start-page: 750
  year: 2015
  end-page: 759
  ident: bib65
  article-title: Soil contamination in China: current status and mitigation strategies
  publication-title: Environ. Sci. Technol.
– volume: 70
  start-page: 1719
  year: 2006
  end-page: 1730
  ident: bib36
  article-title: Black carbon increases cation exchange capacity in soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 38
  start-page: 887
  year: 1974
  end-page: 898
  ident: bib47
  article-title: Lead orthophosphates—IV Formation and stability in the environment
  publication-title: Geochim. Cosmochim. Acta
– volume: 6
  start-page: 2605
  year: 2011
  end-page: 2618
  ident: bib15
  article-title: Biochar amendment greatly reduces rice Cd uptake in a contaminated paddy soil: a two-year field experiment
  publication-title: Bioresources
– volume: 99
  start-page: 259
  year: 2002
  end-page: 278
  ident: bib20
  article-title: Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation
  publication-title: J. Biotechnol.
– volume: 153
  start-page: 68
  year: 2015
  end-page: 73
  ident: bib63
  article-title: Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes)
  publication-title: J. Environ. Manag.
– volume: 91
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib19
  article-title: Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine
  publication-title: Fems Microbiol. Ecol.
– year: 2010
  ident: bib44
  article-title: Plant Availability of Arsenic and Cadmium as Influenced by Biochar Application to Soil
– volume: 92
  start-page: 1450
  year: 2013
  end-page: 1457
  ident: bib27
  article-title: Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar
  publication-title: Chemosphere
– volume: 38
  start-page: 933
  year: 2009
  end-page: 939
  ident: bib33
  article-title: Mobilization of soluble and dispersible lead, arsenic, and antimony in a polluted, organic-rich soil–effects of pH increase and counterion valency
  publication-title: J. Environ. Qual.
– volume: vol. 28
  start-page: 453
  year: 2003
  end-page: 475
  ident: bib48
  publication-title: Handbook of Inorganic Chemicals
– volume: 159
  start-page: 474
  year: 2011
  end-page: 480
  ident: bib10
  article-title: The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar
  publication-title: Environ. Pollut.
– volume: 163
  start-page: 247
  year: 2011
  end-page: 255
  ident: bib43
  article-title: Surface chemistry variations among a series of laboratory-produced biochars
  publication-title: Geoderma
– volume: 20
  start-page: 358
  year: 2013
  end-page: 368
  ident: bib61
  article-title: Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar
  publication-title: Environ. Sci. Pollut. Res.
– volume: 223
  start-page: 559
  issue: 2
  year: 2012
  ident: 10.1016/j.chemosphere.2016.01.044_bib21
  article-title: Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities
  publication-title: Water, Air, & Soil Pollut.
  doi: 10.1007/s11270-011-0882-x
– volume: 58
  start-page: 378
  year: 2013
  ident: 10.1016/j.chemosphere.2016.01.044_bib11
  article-title: Biochar soil amendment as a solution to prevent Cd-tainted rice from China: results from a cross-site field experiment
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2013.07.031
– volume: vol. 28
  start-page: 453
  year: 2003
  ident: 10.1016/j.chemosphere.2016.01.044_bib48
– volume: 101
  start-page: 8868
  issue: 22
  year: 2010
  ident: 10.1016/j.chemosphere.2016.01.044_bib29
  article-title: Biochar from anaerobically digested sugarcane bagasse
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.06.088
– volume: 57
  start-page: 196
  year: 2013
  ident: 10.1016/j.chemosphere.2016.01.044_bib26
  article-title: Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.)
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2013.07.019
– volume: 153
  start-page: 68
  year: 2015
  ident: 10.1016/j.chemosphere.2016.01.044_bib63
  article-title: Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes)
  publication-title: J. Environ. Manag.
– volume: 186
  start-page: 195
  year: 2014
  ident: 10.1016/j.chemosphere.2016.01.044_bib6
  article-title: Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2013.11.026
– volume: 163
  start-page: 247
  issue: 3
  year: 2011
  ident: 10.1016/j.chemosphere.2016.01.044_bib43
  article-title: Surface chemistry variations among a series of laboratory-produced biochars
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.04.021
– volume: 158
  start-page: 155
  issue: 1
  year: 2010
  ident: 10.1016/j.chemosphere.2016.01.044_bib8
  article-title: Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2009.07.021
– volume: 99
  start-page: 19
  year: 2014
  ident: 10.1016/j.chemosphere.2016.01.044_bib2
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.10.071
– volume: 110
  start-page: 50
  year: 2012
  ident: 10.1016/j.chemosphere.2016.01.044_bib30
  article-title: Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.072
– volume: 272
  start-page: 121
  year: 2014
  ident: 10.1016/j.chemosphere.2016.01.044_bib12
  article-title: A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.03.017
– volume: 38
  start-page: 933
  issue: 3
  year: 2009
  ident: 10.1016/j.chemosphere.2016.01.044_bib33
  article-title: Mobilization of soluble and dispersible lead, arsenic, and antimony in a polluted, organic-rich soil–effects of pH increase and counterion valency
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2008.0239
– volume: 38
  start-page: 887
  issue: 6
  year: 1974
  ident: 10.1016/j.chemosphere.2016.01.044_bib47
  article-title: Lead orthophosphates—IV Formation and stability in the environment
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(74)90062-3
– volume: 27
  start-page: 377
  issue: 2
  year: 2013
  ident: 10.1016/j.chemosphere.2016.01.044_bib18
  article-title: Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-012-0589-6
– volume: 117
  start-page: 66
  year: 2014
  ident: 10.1016/j.chemosphere.2016.01.044_bib1
  article-title: Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.05.086
– volume: 113
  start-page: 391
  year: 2015
  ident: 10.1016/j.chemosphere.2016.01.044_bib34
  article-title: Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2014.12.025
– volume: 70
  start-page: 1719
  issue: 5
  year: 2006
  ident: 10.1016/j.chemosphere.2016.01.044_bib36
  article-title: Black carbon increases cation exchange capacity in soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0383
– volume: 158
  start-page: 2282
  year: 2010
  ident: 10.1016/j.chemosphere.2016.01.044_bib7
  article-title: Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic andorganic contaminants in a multi-element polluted soil
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2010.02.003
– volume: 22
  start-page: 5742
  issue: 8
  year: 2015
  ident: 10.1016/j.chemosphere.2016.01.044_bib57
  article-title: Recent advances in arsenic bioavailability, transport, and speciation in rice
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-4065-3
– volume: 181
  start-page: 777
  issue: 4
  year: 2009
  ident: 10.1016/j.chemosphere.2016.01.044_bib64
  article-title: Arsenic uptake and metabolism in plants
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02716.x
– year: 2015
  ident: 10.1016/j.chemosphere.2016.01.044_bib60
– year: 2015
  ident: 10.1016/j.chemosphere.2016.01.044_bib39
  article-title: Automatic flow-through dynamic extraction: a fast tool to evaluate char-based remediation of multi-element contaminated mine soils
  publication-title: Talanta
– year: 2007
  ident: 10.1016/j.chemosphere.2016.01.044_bib22
– volume: 89
  start-page: 856
  issue: 7
  year: 2012
  ident: 10.1016/j.chemosphere.2016.01.044_bib66
  article-title: The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, as in rice (Oryza sativa L.) seedlings
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.05.008
– volume: 73
  start-page: 1300
  issue: 8
  year: 2008
  ident: 10.1016/j.chemosphere.2016.01.044_bib62
  article-title: Adsorption and transport of arsenate in carbonate-rich soils: coupled effects of nonlinear and rate-limited sorption
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.07.013
– start-page: 1
  year: 2015
  ident: 10.1016/j.chemosphere.2016.01.044_bib42
  article-title: Sorption and desorption of cadmium and zinc in two tropical soils amended with sugarcane-straw-derived biochar
  publication-title: J. Soils Sediment.
– volume: 101
  start-page: 5222
  issue: 14
  year: 2010
  ident: 10.1016/j.chemosphere.2016.01.044_bib13
  article-title: Properties of dairy-manure-derived biochar pertinent to its potential use in remediation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.02.052
– volume: 91
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.chemosphere.2016.01.044_bib19
  article-title: Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine
  publication-title: Fems Microbiol. Ecol.
  doi: 10.1093/femsec/fiu007
– volume: 36
  start-page: 2011
  issue: 4
  year: 2011
  ident: 10.1016/j.chemosphere.2016.01.044_bib40
  article-title: Biochar as a viable carbon sequestration option: global and Canadian perspective
  publication-title: Energy
  doi: 10.1016/j.energy.2010.09.031
– volume: 31
  start-page: 707
  issue: 6
  year: 2009
  ident: 10.1016/j.chemosphere.2016.01.044_bib67
  article-title: Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: implication for human health
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-009-9248-3
– volume: 43
  start-page: 1035
  issue: 8
  year: 2001
  ident: 10.1016/j.chemosphere.2016.01.044_bib3
  article-title: Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(00)00205-8
– volume: 43
  start-page: 637
  issue: 3
  year: 2009
  ident: 10.1016/j.chemosphere.2016.01.044_bib59
  article-title: Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es802412r
– volume: 262
  start-page: 71
  issue: 1–2
  year: 2004
  ident: 10.1016/j.chemosphere.2016.01.044_bib41
  article-title: Bioavailability and crop uptake of trace elements in soil columns amended with sewage sludge products
  publication-title: Plant Soil
  doi: 10.1023/B:PLSO.0000037031.21561.34
– volume: 159
  start-page: 3269
  issue: 12
  year: 2011
  ident: 10.1016/j.chemosphere.2016.01.044_bib9
  article-title: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.07.023
– volume: 20
  start-page: 358
  issue: 1
  year: 2013
  ident: 10.1016/j.chemosphere.2016.01.044_bib61
  article-title: Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-012-0873-5
– volume: 11
  start-page: 6613
  issue: 23
  year: 2014
  ident: 10.1016/j.chemosphere.2016.01.044_bib31
  article-title: Physical and chemical characterization of biochars derived from different agricultural residues
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-6613-2014
– volume: 51
  start-page: 844
  issue: 7
  year: 1979
  ident: 10.1016/j.chemosphere.2016.01.044_bib55
  article-title: Sequential extraction procedure for the speciation of particulate trace metals
  publication-title: Anal. Chem.
  doi: 10.1021/ac50043a017
– volume: 58
  start-page: 5538
  issue: 9
  year: 2010
  ident: 10.1016/j.chemosphere.2016.01.044_bib56
  article-title: Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf9044217
– volume: 468
  start-page: 843
  year: 2014
  ident: 10.1016/j.chemosphere.2016.01.044_bib35
  article-title: A review of soil heavy metal pollution from mines in China: pollution and health risk assessment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.08.090
– volume: 92
  start-page: 1450
  issue: 11
  year: 2013
  ident: 10.1016/j.chemosphere.2016.01.044_bib27
  article-title: Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.03.055
– volume: 49
  start-page: 750
  issue: 2
  year: 2015
  ident: 10.1016/j.chemosphere.2016.01.044_bib65
  article-title: Soil contamination in China: current status and mitigation strategies
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5047099
– volume: 337
  start-page: 1
  issue: 1–2
  year: 2010
  ident: 10.1016/j.chemosphere.2016.01.044_bib5
  article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0464-5
– volume: 46
  start-page: 854
  issue: 3
  year: 2012
  ident: 10.1016/j.chemosphere.2016.01.044_bib38
  article-title: Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.11.058
– volume: 65
  start-page: 849
  issue: 3
  year: 2001
  ident: 10.1016/j.chemosphere.2016.01.044_bib32
  article-title: Simplified method for soil particle-size determination to accompany soil-quality analyses
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.653849x
– volume: 137
  start-page: 504
  issue: 3
  year: 2007
  ident: 10.1016/j.chemosphere.2016.01.044_bib52
  article-title: Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2006.10.012
– volume: 92
  start-page: 163
  issue: 1–2
  year: 2009
  ident: 10.1016/j.chemosphere.2016.01.044_bib46
  article-title: Long-term black carbon dynamics in cultivated soil
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-008-9248-x
– volume: 30
  start-page: 785
  issue: 6
  year: 2004
  ident: 10.1016/j.chemosphere.2016.01.044_bib16
  article-title: Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2004.01.003
– volume: 99
  start-page: 259
  issue: 3
  year: 2002
  ident: 10.1016/j.chemosphere.2016.01.044_bib20
  article-title: Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation
  publication-title: J. Biotechnol.
  doi: 10.1016/S0168-1656(02)00218-3
– year: 2010
  ident: 10.1016/j.chemosphere.2016.01.044_bib44
– volume: 48
  start-page: 638
  issue: 7
  year: 2010
  ident: 10.1016/j.chemosphere.2016.01.044_bib45
  article-title: Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.)
  publication-title: Soil Res.
  doi: 10.1071/SR10049
– volume: 21
  start-page: 863
  issue: 4
  year: 2015
  ident: 10.1016/j.chemosphere.2016.01.044_bib58
  article-title: Assessment of human health risk for an area impacted by a large-scale metallurgical refinery complex in Hunan, China
  publication-title: Hum. Ecol. Risk Assess. An Int. J.
  doi: 10.1080/10807039.2014.890479
– year: 2012
  ident: 10.1016/j.chemosphere.2016.01.044_bib28
– volume: 39
  start-page: 851
  issue: 5
  year: 1975
  ident: 10.1016/j.chemosphere.2016.01.044_bib50
  article-title: The chemistry of lead and cadmium in soil: solid phase formation
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1975.03615995003900050020x
– volume: 414
  start-page: 546
  issue: 1
  year: 2012
  ident: 10.1016/j.chemosphere.2016.01.044_bib17
  article-title: Natural attenuation of arsenic in soils near a highly contaminated historical mine waste dump
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2011.11.003
– volume: 5
  start-page: 65
  issue: 1
  year: 2014
  ident: 10.1016/j.chemosphere.2016.01.044_bib49
  article-title: Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review
  publication-title: Solid Earth
  doi: 10.5194/se-5-65-2014
– volume: 21
  start-page: 451
  issue: 6
  year: 2002
  ident: 10.1016/j.chemosphere.2016.01.044_bib23
  article-title: Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures
  publication-title: Trac Trends Anal. Chem.
  doi: 10.1016/S0165-9936(02)00603-9
– volume: 30
  start-page: 1940
  issue: 6
  year: 2001
  ident: 10.1016/j.chemosphere.2016.01.044_bib51
  article-title: Fractionation of arsenic in soil by a continuous-flow sequential extraction method
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2001.1940
– volume: 6
  start-page: 2605
  issue: 3
  year: 2011
  ident: 10.1016/j.chemosphere.2016.01.044_bib15
  article-title: Biochar amendment greatly reduces rice Cd uptake in a contaminated paddy soil: a two-year field experiment
  publication-title: Bioresources
  doi: 10.15376/biores.6.3.2605-2618
– volume: 20
  start-page: 308
  issue: 2
  year: 2010
  ident: 10.1016/j.chemosphere.2016.01.044_bib53
  article-title: Environmental contamination and health hazard of lead and cadmium around Chatian mercury mining deposit in western Hunan Province, China
  publication-title: Trans. Nonferrous Metals Soc. China
  doi: 10.1016/S1003-6326(09)60139-4
– volume: 71
  start-page: 4172
  issue: 17
  year: 2007
  ident: 10.1016/j.chemosphere.2016.01.044_bib4
  article-title: Arsenate uptake by calcite: macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2007.06.055
– volume: 45
  start-page: 4884
  issue: 11
  year: 2011
  ident: 10.1016/j.chemosphere.2016.01.044_bib14
  article-title: Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es103752u
– volume: 157
  start-page: 2654
  issue: 10
  year: 2009
  ident: 10.1016/j.chemosphere.2016.01.044_bib25
  article-title: Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2009.05.011
– volume: 158
  start-page: 820
  issue: 3
  year: 2010
  ident: 10.1016/j.chemosphere.2016.01.044_bib37
  article-title: Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2009.09.029
– volume: 159
  start-page: 474
  issue: 2
  year: 2011
  ident: 10.1016/j.chemosphere.2016.01.044_bib10
  article-title: The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2010.10.016
– volume: 327
  start-page: 1008
  issue: 5968
  year: 2010
  ident: 10.1016/j.chemosphere.2016.01.044_bib24
  article-title: Significant acidification in major Chinese croplands
  publication-title: Science
  doi: 10.1126/science.1182570
– volume: 125
  start-page: 70
  year: 2015
  ident: 10.1016/j.chemosphere.2016.01.044_bib54
  article-title: Application of biochar for the removal of pollutants from aqueous solutions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.12.058
SSID ssj0001659
Score 2.5773306
Snippet Cd, Pb and As stand as the most prominent contaminants prevailing in Chinese soils. In the present study, biochars derived from water hyacinth (BCW) and rice...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 196
SubjectTerms acid deposition
Acid leaching
Acid Rain - analysis
acidification
arsenic
Arsenic - analysis
Arsenic - chemistry
bioavailability
Biochar
cadmium
Cadmium - analysis
Cadmium - chemistry
calcium chloride
Charcoal - chemistry
China
durability
Eichhornia crassipes
leachates
leaching
lead
Lead - analysis
Lead - chemistry
minerals
Mobility
Multi-metal contamination
Oryza - growth & development
paddy soils
potassium dihydrogen phosphate
rain
rice straw
risk
Soil - chemistry
Soil Pollutants - analysis
Solubility
SPLP
toxicity
Title Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil
URI https://dx.doi.org/10.1016/j.chemosphere.2016.01.044
https://www.ncbi.nlm.nih.gov/pubmed/26971172
https://www.proquest.com/docview/1778707558
https://www.proquest.com/docview/1785241547
https://www.proquest.com/docview/2131886438
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBUhpW0uJU0_kuaDCfRYNytbsmToZVkSti0NPTQlh4KQJRlcsvaS3Rz20t_eGdlO0sOWQI42GmO_kWae8JsRY--rzNusEjxB7pDjBiXkSSFKnsi8Clp7V1pB1cjfzvPphfhyKS832GSohSFZZR_7u5geo3V_56RH82Re11TjS2wkkzx2jYq11EIomuUf_9zJPHguOwosZEKjn7HjO40X4jJrF1S_Tx0zeR47eAqxLket46AxF51tsxc9iYRx954v2UZodtjzyXB22w57ehqbUa9esV8_7TVVMkEn3IC2grJuqdYK2gYm_gN8L8E2HsYLmLVRKbuCugELUWqYzAKycyBBuyXRDPJTmGOwWsGira9es4uz0x-TadKfqJA4JAbLhLugCq_tiFurMuF8UThXhqpwYVQqb32oQuBSW4k8BPeXNmD6D7nlo8C1Uzp7wzabtgm7DCwael8ohE0JdFaRuaxKRSlEldK63mN6wNC4vt04nXpxZQZd2W9zD35D8JsRNwj_HktvTeddz42HGH0aHGX-mUAGc8NDzI8H5xr0Ff01sU1obxaGK4ppSkr9vzFaEhUSav2YlGP41EgA8Tlvu9lz-3VpXiiOVPLd4z5in23RVadkO2Cby-ubcIicaVkexUVxxJ6MP3-dnv8Ft9kX2w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB3Chja9lCb9Stu0CvRYk5UtWTL0siwJmyZZekhKDgUhSzI4ZO0luznsv--MPzbtYUOgV1tjrBlp9ITePAF8LRJvk0LwCLFDihuUkEaZyHkk0yJo7V1uBVUjX0zTyZX4cS2vt2Dc18IQrbLL_W1Ob7J19-So8-bRvCypxpfQSCJ5oxpFtdTbpE4lB7A9Oj2bTNcJmaeyRcFCRmTwHA4faF7omlm9oBJ-Es3kaSPiKcSmZWoTDG2Wo5NX8LLDkWzU_uoubIVqD3bG_fVte_DsuNGjXr2G37_sHRUzsZa7weqC5WVN5VasrtjYf2M_c2Yrz0YLNqsbsuyKlRWzrGEbRrOAAJ0Rp90SbwYhKptjvlqxRV3evoGrk-PL8STqLlWIHGKDZcRdUJnXdsitVYlwPsucy0ORuTDMlbc-FCFwqa1EKIJbTBsQAYTU8mHg2imdvIVBVVfhPTCLht5nCt2mBMYrS1xSxCIXoohpau-D7n1oXKc4Thdf3JqeWnZj_nK_IfebITfo_n2I16bzVnbjKUbf-0CZf8aQweXhKeaHfXANxooOTmwV6vuF4YrSmpJSP9ZGS0JDQm1uE3PMoBoxIH7nXTt61r2L00xxRJMf_q8TX2Bncnlxbs5Pp2cf4QW9aYltn2CwvLsPBwihlvnnbor8ATrEGow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Varying+effect+of+biochar+on+Cd%2C+Pb+and+As+mobility+in+a+multi-metal+contaminated+paddy+soil&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Yin%2C+Daixia&rft.au=Wang%2C+Xin&rft.au=Chen%2C+Can&rft.au=Peng%2C+Bo&rft.date=2016-06-01&rft.issn=0045-6535&rft.volume=152&rft.spage=196&rft.epage=206&rft_id=info:doi/10.1016%2Fj.chemosphere.2016.01.044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemosphere_2016_01_044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon