Intelligent Fault Diagnosis of Liquid Rocket Engine via Interpretable LSTM with Multisensory Data
Fault diagnosis is essential for high energy systems such as liquid rocket engines (LREs) due to harsh thermal and mechanical working environment. In this study, a novel method based on one-dimension Convolutional Neural Network (1D-CNN) and interpretable bidirectional Long Short-term Memory (LSTM)...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 12; p. 5636 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
16.06.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fault diagnosis is essential for high energy systems such as liquid rocket engines (LREs) due to harsh thermal and mechanical working environment. In this study, a novel method based on one-dimension Convolutional Neural Network (1D-CNN) and interpretable bidirectional Long Short-term Memory (LSTM) is proposed for intelligent fault diagnosis of LREs. 1D-CNN is responsible for extracting sequential signals collected from multi sensors. Then the interpretable LSTM is developed to model the extracted features, which contributes to modeling the temporal information. The proposed method was executed for fault diagnosis using the simulated measurement data of the LRE mathematical model. The results demonstrate the proposed algorithm outperforms other methods in terms of accuracy of fault diagnosis. Through experimental verification, the method proposed in this paper was compared with CNN, 1DCNN-SVM and CNN-LSTM in terms of LRE startup transient fault recognition performance. The model proposed in this paper had the highest fault recognition accuracy (97.39%). |
---|---|
AbstractList | Fault diagnosis is essential for high energy systems such as liquid rocket engines (LREs) due to harsh thermal and mechanical working environment. In this study, a novel method based on one-dimension Convolutional Neural Network (1D-CNN) and interpretable bidirectional Long Short-term Memory (LSTM) is proposed for intelligent fault diagnosis of LREs. 1D-CNN is responsible for extracting sequential signals collected from multi sensors. Then the interpretable LSTM is developed to model the extracted features, which contributes to modeling the temporal information. The proposed method was executed for fault diagnosis using the simulated measurement data of the LRE mathematical model. The results demonstrate the proposed algorithm outperforms other methods in terms of accuracy of fault diagnosis. Through experimental verification, the method proposed in this paper was compared with CNN, 1DCNN-SVM and CNN-LSTM in terms of LRE startup transient fault recognition performance. The model proposed in this paper had the highest fault recognition accuracy (97.39%). Fault diagnosis is essential for high energy systems such as liquid rocket engines (LREs) due to harsh thermal and mechanical working environment. In this study, a novel method based on one-dimension Convolutional Neural Network (1D-CNN) and interpretable bidirectional Long Short-term Memory (LSTM) is proposed for intelligent fault diagnosis of LREs. 1D-CNN is responsible for extracting sequential signals collected from multi sensors. Then the interpretable LSTM is developed to model the extracted features, which contributes to modeling the temporal information. The proposed method was executed for fault diagnosis using the simulated measurement data of the LRE mathematical model. The results demonstrate the proposed algorithm outperforms other methods in terms of accuracy of fault diagnosis. Through experimental verification, the method proposed in this paper was compared with CNN, 1DCNN-SVM and CNN-LSTM in terms of LRE startup transient fault recognition performance. The model proposed in this paper had the highest fault recognition accuracy (97.39%).Fault diagnosis is essential for high energy systems such as liquid rocket engines (LREs) due to harsh thermal and mechanical working environment. In this study, a novel method based on one-dimension Convolutional Neural Network (1D-CNN) and interpretable bidirectional Long Short-term Memory (LSTM) is proposed for intelligent fault diagnosis of LREs. 1D-CNN is responsible for extracting sequential signals collected from multi sensors. Then the interpretable LSTM is developed to model the extracted features, which contributes to modeling the temporal information. The proposed method was executed for fault diagnosis using the simulated measurement data of the LRE mathematical model. The results demonstrate the proposed algorithm outperforms other methods in terms of accuracy of fault diagnosis. Through experimental verification, the method proposed in this paper was compared with CNN, 1DCNN-SVM and CNN-LSTM in terms of LRE startup transient fault recognition performance. The model proposed in this paper had the highest fault recognition accuracy (97.39%). |
Audience | Academic |
Author | Hua, Xuanhao Ma, Meng Zhang, Xiaoguang Zhu, Junjie |
AuthorAffiliation | 2 School of Future Technology, Xi’an Jiaotong University, Xi’an 710049, China 1 Xi’an Aerospace Propulsion Institute, Xi’an 710100, China; zhangxiaoguang0522@163.com 3 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; zjj_appreciate@stu.xjtu.edu.cn (J.Z.); meng_ma@xjtu.edu.cn (M.M.) |
AuthorAffiliation_xml | – name: 1 Xi’an Aerospace Propulsion Institute, Xi’an 710100, China; zhangxiaoguang0522@163.com – name: 2 School of Future Technology, Xi’an Jiaotong University, Xi’an 710049, China – name: 3 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; zjj_appreciate@stu.xjtu.edu.cn (J.Z.); meng_ma@xjtu.edu.cn (M.M.) |
Author_xml | – sequence: 1 givenname: Xiaoguang surname: Zhang fullname: Zhang, Xiaoguang – sequence: 2 givenname: Xuanhao surname: Hua fullname: Hua, Xuanhao – sequence: 3 givenname: Junjie surname: Zhu fullname: Zhu, Junjie – sequence: 4 givenname: Meng surname: Ma fullname: Ma, Meng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37420802$$D View this record in MEDLINE/PubMed |
BookMark | eNplkk1v3CAQhq0qVfPRHvoHKqRe2sMmfBiDT1WUr660UaU2PaMxBoetFzaAU-Xfl80mUZKKA2h45h3mZfarHR-8qaqPBB8y1uKjRBmhvGHNm2qP1LSeSUrxzrPzbrWf0hJjyhiT76pdJmqKJaZ7Fcx9NuPoBuMzOodpzOjUweBDcgkFixbuZnI9-hn0H5PRmR-cN-jWAdrkxXU0GbrRoMWvq0v01-VrdFkkXDI-hXiHTiHD--qthTGZDw_7QfX7_Ozq5Pts8eNifnK8mGmO2zwjwAUnmpDGdp0kzBAuwfZE18LahvUdEcbYtsMUbCM146zu61oSTRsuiBHsoJpvdfsAS7WObgXxTgVw6j4Q4qAgZqdHo3Av245YA13b112NJRSnhOkls8AbaYvWt63WeupWptfFnAjjC9GXN95dqyHcKoIZZozzovDlQSGGm8mkrFYu6eI0eBOmpKhknApZahf08yt0Gaboi1eFoq0sFGkLdbilBigdOG9DKazL6s3K6TIP1pX4seCyllRQXBI-Pe_h6fGPf1-Aoy2gY0gpGqu0y5Bd2LTkxtKL2kyXepqukvH1Vcaj6P_sP607zc4 |
CitedBy_id | crossref_primary_10_1016_j_ast_2024_109756 crossref_primary_10_1016_j_apenergy_2024_123773 crossref_primary_10_1016_j_measurement_2024_115965 crossref_primary_10_1016_j_measurement_2024_115035 crossref_primary_10_3390_math12091304 crossref_primary_10_3390_s24092798 crossref_primary_10_1088_1361_6501_ad4ab3 crossref_primary_10_3390_jmse12112046 crossref_primary_10_3390_aerospace11030239 |
Cites_doi | 10.17706/jsw.14.8.380-387 10.1016/j.neucom.2020.04.110 10.3390/s16010115 10.1109/ASRU.2013.6707742 10.1109/MCS.1986.1105095 10.1109/TGRS.2016.2520487 10.1016/j.measurement.2021.110242 10.3795/KSME-B.2018.42.8.519 10.1155/2022/5266054 10.3390/electronics10172076 10.2514/6.2002-3758 10.1016/j.ast.2017.07.038 10.2514/6.2004-3912 10.1109/TIE.2017.2774777 10.3390/s17020273 10.1016/j.actaastro.2018.03.001 10.1016/j.neunet.2005.06.042 10.1177/09544100231157139 10.37965/jdmd.2022.54 10.3390/s21124024 10.1016/j.actaastro.2020.08.019 10.5923/j.safety.20140301.03 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23125636 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_0d89b1feab9d4b408a1427ed83fa568f PMC10303355 A758482720 37420802 10_3390_s23125636 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 2021M702634 – fundername: National Natural Science Foundation of China grantid: 52205124 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c509t-1a5751c116fbb813e158afd1c47ff63db17eef9b02af68c3534d4481c26571e73 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:21:54 EDT 2025 Thu Aug 21 18:37:48 EDT 2025 Mon Jul 21 09:46:29 EDT 2025 Fri Jul 25 20:25:33 EDT 2025 Tue Jun 10 21:27:32 EDT 2025 Thu Apr 03 07:00:14 EDT 2025 Thu Apr 24 23:10:44 EDT 2025 Tue Jul 01 01:20:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | data fusion interpretable fault simulation bidirectional LSTM |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-1a5751c116fbb813e158afd1c47ff63db17eef9b02af68c3534d4481c26571e73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23125636 |
PMID | 37420802 |
PQID | 2829878419 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0d89b1feab9d4b408a1427ed83fa568f pubmedcentral_primary_oai_pubmedcentral_nih_gov_10303355 proquest_miscellaneous_2835278408 proquest_journals_2829878419 gale_infotracacademiconefile_A758482720 pubmed_primary_37420802 crossref_citationtrail_10_3390_s23125636 crossref_primary_10_3390_s23125636 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230616 |
PublicationDateYYYYMMDD | 2023-06-16 |
PublicationDate_xml | – month: 6 year: 2023 text: 20230616 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Flora (ref_11) 2020; 79 Liu (ref_12) 2012; 27 Li (ref_13) 2019; 14 Wang (ref_40) 2022; 1 Whitacker (ref_24) 2017; 70 ref_35 Wang (ref_39) 2021; 1 Chen (ref_28) 2021; 43 Yan (ref_19) 2013; 605–607 Graves (ref_30) 2005; 18 Wang (ref_16) 2023; 2 Pan (ref_36) 2018; 64 ref_38 ref_15 ref_37 Wen (ref_14) 2018; 65 Lee (ref_17) 2018; 150 Ren (ref_32) 2021; 41 Cikanek (ref_2) 1986; 6 Pule (ref_9) 2022; 2022 Ding (ref_33) 2020; 403 Granzotto (ref_8) 2014; 3 Liu (ref_10) 2007; 28 Passricha (ref_29) 2020; 29 ref_23 Zhang (ref_21) 2021; 8 ref_22 ref_44 ref_43 Shi (ref_31) 2015; 28 ref_42 ref_1 Zheng (ref_20) 2021; 42 Zhang (ref_34) 2022; 187 ref_3 Liu (ref_18) 2003; 24 ref_27 Lee (ref_25) 2018; 42 ref_26 Liu (ref_6) 2022; 42 Refice (ref_7) 2016; 54 ref_5 Park (ref_41) 2020; 177 ref_4 |
References_xml | – volume: 28 start-page: 802 year: 2015 ident: ref_31 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Adv. Neural Inf. Process. Syst. – volume: 14 start-page: 380 year: 2019 ident: ref_13 article-title: Fault Detection in Liquid-propellant Rocket Engines Based on Improved PSO-BP Neural Network publication-title: J. Softw. doi: 10.17706/jsw.14.8.380-387 – volume: 28 start-page: 1660 year: 2007 ident: ref_10 article-title: Research of Real-time Fault Detection Method for Liquid Propellant Rocket Engines in Ground Test publication-title: J. Astronaut. – volume: 42 start-page: 1761 year: 2021 ident: ref_20 article-title: Transient Characteristics of High-Thrust Oxygen/Hydrogen Rocket Engine publication-title: J. Propuls. Technol. – volume: 403 start-page: 348 year: 2020 ident: ref_33 article-title: Interpretable spatio-temporal attention LSTM model for flood forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.110 – ident: ref_42 doi: 10.3390/s16010115 – ident: ref_3 – volume: 29 start-page: 1261 year: 2020 ident: ref_29 article-title: A Hybrid of Deep CNN and Bidirectional LSTM for Automatic Speech Recognition publication-title: J. Intell. Syst. – volume: 42 start-page: 289 year: 2022 ident: ref_6 article-title: Fault Diagnosis of Liquid Rocket Engine Based on Hierarchical Bayesian Network Variational Inference publication-title: Trans. Beijing Inst. Technol. – ident: ref_26 doi: 10.1109/ASRU.2013.6707742 – volume: 64 start-page: 443 year: 2018 ident: ref_36 article-title: An improved bearing fault diagnosis method using one-dimensional CNN and LSTM publication-title: J. Mech. Eng. – ident: ref_37 – ident: ref_1 – ident: ref_44 – volume: 6 start-page: 13 year: 1986 ident: ref_2 article-title: Space shuttle main engine failure detection publication-title: IEEE Control Syst. Mag. doi: 10.1109/MCS.1986.1105095 – volume: 54 start-page: 3612 year: 2016 ident: ref_7 article-title: A bayesian network for flood detection combining SAR imagery and ancillary data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2520487 – volume: 43 start-page: 370 year: 2021 ident: ref_28 article-title: Research advances on deep learning recommendation based on attention mechanism publication-title: Comput. Eng. Sci. – ident: ref_23 – volume: 187 start-page: 110242 year: 2022 ident: ref_34 article-title: Fault diagnosis for small samples based on attention mechanism publication-title: Measurement doi: 10.1016/j.measurement.2021.110242 – volume: 42 start-page: 519 year: 2018 ident: ref_25 article-title: Experimental Investigation of the Turbine in a Turbopump for a Liquid Rocket Engine with a 75-ton Force Thrust publication-title: Trans. Korean Soc. Mech. Eng. B doi: 10.3795/KSME-B.2018.42.8.519 – volume: 2022 start-page: 5266054 year: 2022 ident: ref_9 article-title: Application of PCA and SVM in Fault Detection and Diagnosis of Bearings with Varying Speed publication-title: Math. Probl. Eng. doi: 10.1155/2022/5266054 – ident: ref_38 doi: 10.3390/electronics10172076 – volume: 79 start-page: 1024 year: 2020 ident: ref_11 article-title: Sensor Failure Management in Liquid Rocket Engine using Artificial Neural Network publication-title: J. Sci. Ind. Res. India – ident: ref_4 doi: 10.2514/6.2002-3758 – volume: 605–607 start-page: 679 year: 2013 ident: ref_19 article-title: System Dynamic Characteristic Simulation of Spacecraft Propulsion System Based on AMESim publication-title: Adv. Mater. Res. – volume: 70 start-page: 55 year: 2017 ident: ref_24 article-title: An evaluation of the tip clearance effects on turbine efficiency for space propulsion applications considering liquid rocket engine using turbopumps publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2017.07.038 – ident: ref_5 doi: 10.2514/6.2004-3912 – volume: 8 start-page: 389 year: 2021 ident: ref_21 article-title: Fault Simulation and Experimental Study on High-Thrust LOX/LH2 Rocket Engine publication-title: J. Deep. Space Explor. – volume: 24 start-page: 401 year: 2003 ident: ref_18 article-title: Modularization modeling and simulation for the transients of liquid propellant rocket engines publication-title: J. Propuls. Technol. – volume: 1 start-page: 148 year: 2022 ident: ref_40 article-title: Long-range Dependencies Learning Based on Non-Local 1D-Convolutional Neural Network for Rolling Bearing Fault Diagnosis publication-title: J. Dyn. Monit. Diagn. – volume: 65 start-page: 5990 year: 2018 ident: ref_14 article-title: A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2774777 – ident: ref_27 doi: 10.3390/s17020273 – volume: 2 start-page: 30 year: 2023 ident: ref_16 article-title: Intelligent Fault Diagnosis for Planetary Gearbox Using Transferable Deep Q Network Under Variable Conditions with Small Training Data publication-title: J. Dyn. Monit. Diagn. – volume: 150 start-page: 15 year: 2018 ident: ref_17 article-title: Fault detection and diagnosis algorithms for an open-cycle liquid propellant rocket engine using the kalman filter and fault factor methods publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.03.001 – volume: 18 start-page: 602 year: 2005 ident: ref_30 article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures publication-title: Neural Netw. doi: 10.1016/j.neunet.2005.06.042 – volume: 1 start-page: 2 year: 2021 ident: ref_39 article-title: Residual Convolution Long Short-Term Memory Network for Machines Remaining Useful Life Prediction and Uncertainty Quantification publication-title: J. Dyn. Monit. Diagn. – ident: ref_43 – ident: ref_22 doi: 10.1177/09544100231157139 – ident: ref_15 doi: 10.37965/jdmd.2022.54 – ident: ref_35 doi: 10.3390/s21124024 – volume: 41 start-page: 1 year: 2021 ident: ref_32 article-title: Review of attention mechanism publication-title: J. Computer Appl. – volume: 177 start-page: 714 year: 2020 ident: ref_41 article-title: Deep neural network approach for fault detection and diagnosis during startup transient of liquid-propellant rocket engine publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2020.08.019 – volume: 3 start-page: 18 year: 2014 ident: ref_8 article-title: Fault Detection and Diagnosis Using Support Vector Machines—A SVC and SVR Comparison publication-title: J. Saf. Eng. doi: 10.5923/j.safety.20140301.03 – volume: 27 start-page: 2842 year: 2012 ident: ref_12 article-title: Fault Diagnosis Method for Liquid-propellant Rocket Engines Based on the Dynamic Cloud-BP Neural Network publication-title: J. Aerosp. Power |
SSID | ssj0023338 |
Score | 2.4493515 |
Snippet | Fault diagnosis is essential for high energy systems such as liquid rocket engines (LREs) due to harsh thermal and mechanical working environment. In this... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5636 |
SubjectTerms | Algorithms Analysis Artificial intelligence bidirectional LSTM data fusion Deep learning Efficiency Fault diagnosis fault simulation Hydrogen interpretable Machine learning Mathematical models Neural networks Power Rockets Simulation Turbines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTnCoWqBtKFQuqtReIuzYSZwjrxVF0EMLEjfLTzXSKtuy2Ur998wk2bCrVuLCNZ5IznjGM19m_JmQT8Y7XwZVpKqKVYqESqkRkqURjMNEF73viLSvvxUXt_LyLr9bueoLe8J6euBecUfMq8ryGIytvLSSKcNlVgavRDR5oSLuvhDzlmBqgFoCkFfPIyQA1B_NIYuB2N7xMD9Gn46k_9-teCUWrfdJrgSeySvycsgY6XE_09fkRWi2ydYKj-AOMV9HYs2WTsxi2tKzvoWuntNZpFf170Xt6XfY-0JL-1fpn9rQx5ZDOw306sfNNcUfs7Q7ljsHhDu7_0vPTGt2ye3k_Ob0Ih3uTkgdpABtyg0WVBznRbRWcRF4rkz03MkyxkJ4y8sQYmVZZmKhnMiF9IDUuMuKvOShFG_IRjNrwjtCK2t9qITPnAXs5JgROYuCS5cpH6LMEvJlqVPtBmJxvN9iqgFgoPr1qP6EHI6iv3o2jf8JneDCjAJIgN09ALPQg1nop8wiIZ9xWTW6KUzGmeG0AXwSEl7pY8BJyICasYTsL1deD_4711hfVliSrRLycRwGz8NyimnCbIEykLyCDFMJedsbyjhnUWLbAgPdqDUTWvuo9ZGm_tmxe-O9bwKywL3nUMN7spmBN2BvGy_2yUZ7vwgHkEW19kPnMA8jyh0o priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBMolUFIcIlqx3k4J1RaVgW1HKCV9hb5CZFWSbvJIvHvmUm82V0V9RpPJHs845nxjL8h5L2yxhZO5rEsfRkjoFKsRMpiD8KhvPHWDkDa59_z08v02zybhwu3LpRVrs_E4aC2rcE78kPM-ElMkpWfrq5j7BqF2dXQQuMuuYfQZVjSVcw3AZeA-GtEExIQ2h924MuAhR_QmDc2aIDqv3kgb1mk3WrJLfMze0QeBr-RHo0b_Zjccc0T8mALTfApUV8neM2eztRq0dOTsZCu7mjr6Vl9vaot_QEnoOvp-Cv9Uyu6KTzUC0fPfl6cU7yepcPj3A7i3Hb5l56oXj0jl7MvF8enceigEBtwBPqYK0yrGM5zr7XkwvFMKm-5SQvvc2E1L5zzpWaJ8rk0IhOphXiNmyTPCu4K8ZzsNW3jXhJaam1dKWxiNERQhimRMS94ahJpnU-TiHxc87QyAV4cu1wsKggzkP3VxP6IvJtIr0ZMjf8RfcaNmQgQBnv40C5_VUGrKmZlqbl3Spc21SmTiqdJ4awUXmW59BH5gNtaobLCZIwKbw5gSQh7VR1BtIQ4qAmLyP5656ugxV21kbmIvJ2GQf8wqaIa166QBlxYoGEyIi9GQZnmLAosXmDAG7kjQjuL2h1p6t8Dxjd2fxPgC766fV6vyf0E5Bxr13i-T_b65cq9AS-p1weDKvwDwBAT5w priority: 102 providerName: ProQuest |
Title | Intelligent Fault Diagnosis of Liquid Rocket Engine via Interpretable LSTM with Multisensory Data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37420802 https://www.proquest.com/docview/2829878419 https://www.proquest.com/docview/2835278408 https://pubmed.ncbi.nlm.nih.gov/PMC10303355 https://doaj.org/article/0d89b1feab9d4b408a1427ed83fa568f |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9NAEB71IaFyQLwxlGhBSHAxeL1-rA8ItbShoKZCpZF6s_YJkaKEJg6i_54Zv0hEufhgjy3bM7Mz387uNwCvlDU2dzILZeGLkAiVQiWSKPRoHMobb21NpD06y07GyZfL9HILuh6b7Q9c3gjtqJ_UeDF9-_vq-gM6_HtCnAjZ3y0xR8HILbJt2MWAlJN_jpK-mBALhGENqdCm-B7cEjmVl9s5lS4q1eT9_w7RazFqc_3kWkAa3oU7bSbJDhrV34MtN7sPt9f4BR-A-twTblZsqFbTih01S-smSzb37HRytZpYdo5joqtYcyv7NVHs71JEPXXs9NvFiNGELau36y4R-c4X1-xIVeohjIfHFx9PwranQmgwNahCrqjQYjjPvNaSC8dTqbzlJsm9z4TVPHfOFzqKlc-kEalILCI4buIszbnLxSPYmc1n7gmwQmvrCmFjoxFTmUiJNPKCJyaW1vkkDuBN909L0xKOU9-LaYnAgzRR9poI4GUv-rNh2bhJ6JAU0wsQMXZ9Yr74XrZ-VkZWFpp7p3RhE51EUvEkzp2Vwqs0kz6A16TWkgwKX8aodhcCfhIRYZUHiJ-IGTWOAtjvNF92ZllS3VlSqbYI4EV_GT2Syixq5uYrksGkFmUiGcDjxlD6d-7sLQC5YUIbH7V5ZTb5UbN-Uz84gdnh0_8-9BnsxWjttLaBZ_uwUy1W7jmmTJUewHZ-meNRDj8NYPfw-Ozr-aCefhjUrvIHzAcZTg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcgAOiDeGAgsCwcWq1-vH-oBQIUQJTXqAVMrN3SdYiuI2cUD9U_xGZmzHSQTi1qs9ttaz8_TMfkPIa2m0Sa1IfJG5zEdAJV_yKPAdCId02hlTA2mPT5LBafRlGk_3yO_1WRhsq1zbxNpQm1LjP_JDrPgJLJJlH84vfJwahdXV9QiNRiyO7eUvSNmW74c92N83Ydj_PPk08NupAr4G51j5TGKpQTOWOKUE45bFQjrDdJQ6l3CjWGqty1QQSpcIzWMeGchhmA6TOGU25fDea-Q6ON4ANSqdbhI8Dvleg17EeRYcLiF2goiiRn_e-Lx6NMDfDmDLA-52Z265u_4dcruNU-lRI1h3yZ6d3yO3ttAL7xM57OA8K9qXq1lFe03jXrGkpaOj4mJVGPoVLK6taPMo_VlIuml0VDNLR98mY4q_g2l9GHgJeXW5uKQ9WckH5PRKePuQ7M_LuX1MaKaUsRk3oVaQselA8jhwnEU6FMa6KPTIuzVPc93CmeNUjVkOaQ2yP-_Y75FXHel5g-HxL6KPuDEdAcJu1xfKxfe81eI8MCJTzFmpMhOpKBCSRWFqjeBOxolwHnmL25qjcYDFaNmecYBPQpit_AiyM8RdDQOPHKx3Pm-txjLfyLhHXna3Qd-xiCPntlwhDYTMQBMIjzxqBKVbM0-xWSIA3ogdEdr5qN078-JHjSmO0-Y4xJ5P_r-uF-TGYDIe5aPhyfFTcjMEmce-OZYckP1qsbLPIEKr1PNaLSg5u2o9_ANtWFCE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIiE4IN4YCiwIBBcrXq8f6wNChRA1NK0QtFJuZp8QKbLbxAH1r_HrmPEriUDcerXH1np2np7Zbwh5KY02qRWJLzKX-Qio5EseBb4D4ZBOO2NqIO2j4-TgNPo0jac75Hd3FgbbKjubWBtqU2r8Rz7Aip_AIlk2cG1bxOfh6N3ZuY8TpLDS2o3TaETk0F78gvRt-XY8hL1-FYajjycfDvx2woCvwVFWPpNYdtCMJU4pwbhlsZDOMB2lziXcKJZa6zIVhNIlQvOYRwbyGabDJE6ZTTm89wq5mvKYoY6l03WyxyH3a5CMOM-CwRLiKIguaiTotf-rxwT87Qw2vOF2p-aG6xvdIjfbmJXuN0J2m-zY4g65sYFkeJfIcQ_tWdGRXM0rOmya-GZLWjo6mZ2vZoZ-AetrK9o8Sn_OJF03Paq5pZOvJ0cUfw3T-mDwEnLscnFBh7KS98jppfD2PtktysI-JDRTytiMm1AryN50IHkcOM4iHQpjXRR65E3H01y30OY4YWOeQ4qD7M979nvkRU961uB5_IvoPW5MT4AQ3PWFcvE9bzU6D4zIFHNWqsxEKgqEZFGYWiO4k3EinEde47bmaChgMVq25x3gkxByK9-HTA0xWMPAI3vdzuetBVnma3n3yPP-Nug-FnRkYcsV0kD4DDSB8MiDRlD6NfMUGycC4I3YEqGtj9q-U8x-1PjiOHmOQxz66P_rekaugQbmk_Hx4WNyPQSRxxY6luyR3Wqxsk8gWKvU01orKPl22Wr4B_aBVLo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Fault+Diagnosis+of+Liquid+Rocket+Engine+via+Interpretable+LSTM+with+Multisensory+Data&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Xiaoguang&rft.au=Hua%2C+Xuanhao&rft.au=Zhu%2C+Junjie&rft.au=Ma%2C+Meng&rft.date=2023-06-16&rft.eissn=1424-8220&rft.volume=23&rft.issue=12&rft_id=info:doi/10.3390%2Fs23125636&rft_id=info%3Apmid%2F37420802&rft.externalDocID=37420802 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |