Intelligent Fault Diagnosis of Liquid Rocket Engine via Interpretable LSTM with Multisensory Data

Fault diagnosis is essential for high energy systems such as liquid rocket engines (LREs) due to harsh thermal and mechanical working environment. In this study, a novel method based on one-dimension Convolutional Neural Network (1D-CNN) and interpretable bidirectional Long Short-term Memory (LSTM)...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 12; p. 5636
Main Authors Zhang, Xiaoguang, Hua, Xuanhao, Zhu, Junjie, Ma, Meng
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 16.06.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fault diagnosis is essential for high energy systems such as liquid rocket engines (LREs) due to harsh thermal and mechanical working environment. In this study, a novel method based on one-dimension Convolutional Neural Network (1D-CNN) and interpretable bidirectional Long Short-term Memory (LSTM) is proposed for intelligent fault diagnosis of LREs. 1D-CNN is responsible for extracting sequential signals collected from multi sensors. Then the interpretable LSTM is developed to model the extracted features, which contributes to modeling the temporal information. The proposed method was executed for fault diagnosis using the simulated measurement data of the LRE mathematical model. The results demonstrate the proposed algorithm outperforms other methods in terms of accuracy of fault diagnosis. Through experimental verification, the method proposed in this paper was compared with CNN, 1DCNN-SVM and CNN-LSTM in terms of LRE startup transient fault recognition performance. The model proposed in this paper had the highest fault recognition accuracy (97.39%).
AbstractList Fault diagnosis is essential for high energy systems such as liquid rocket engines (LREs) due to harsh thermal and mechanical working environment. In this study, a novel method based on one-dimension Convolutional Neural Network (1D-CNN) and interpretable bidirectional Long Short-term Memory (LSTM) is proposed for intelligent fault diagnosis of LREs. 1D-CNN is responsible for extracting sequential signals collected from multi sensors. Then the interpretable LSTM is developed to model the extracted features, which contributes to modeling the temporal information. The proposed method was executed for fault diagnosis using the simulated measurement data of the LRE mathematical model. The results demonstrate the proposed algorithm outperforms other methods in terms of accuracy of fault diagnosis. Through experimental verification, the method proposed in this paper was compared with CNN, 1DCNN-SVM and CNN-LSTM in terms of LRE startup transient fault recognition performance. The model proposed in this paper had the highest fault recognition accuracy (97.39%).
Fault diagnosis is essential for high energy systems such as liquid rocket engines (LREs) due to harsh thermal and mechanical working environment. In this study, a novel method based on one-dimension Convolutional Neural Network (1D-CNN) and interpretable bidirectional Long Short-term Memory (LSTM) is proposed for intelligent fault diagnosis of LREs. 1D-CNN is responsible for extracting sequential signals collected from multi sensors. Then the interpretable LSTM is developed to model the extracted features, which contributes to modeling the temporal information. The proposed method was executed for fault diagnosis using the simulated measurement data of the LRE mathematical model. The results demonstrate the proposed algorithm outperforms other methods in terms of accuracy of fault diagnosis. Through experimental verification, the method proposed in this paper was compared with CNN, 1DCNN-SVM and CNN-LSTM in terms of LRE startup transient fault recognition performance. The model proposed in this paper had the highest fault recognition accuracy (97.39%).Fault diagnosis is essential for high energy systems such as liquid rocket engines (LREs) due to harsh thermal and mechanical working environment. In this study, a novel method based on one-dimension Convolutional Neural Network (1D-CNN) and interpretable bidirectional Long Short-term Memory (LSTM) is proposed for intelligent fault diagnosis of LREs. 1D-CNN is responsible for extracting sequential signals collected from multi sensors. Then the interpretable LSTM is developed to model the extracted features, which contributes to modeling the temporal information. The proposed method was executed for fault diagnosis using the simulated measurement data of the LRE mathematical model. The results demonstrate the proposed algorithm outperforms other methods in terms of accuracy of fault diagnosis. Through experimental verification, the method proposed in this paper was compared with CNN, 1DCNN-SVM and CNN-LSTM in terms of LRE startup transient fault recognition performance. The model proposed in this paper had the highest fault recognition accuracy (97.39%).
Audience Academic
Author Hua, Xuanhao
Ma, Meng
Zhang, Xiaoguang
Zhu, Junjie
AuthorAffiliation 2 School of Future Technology, Xi’an Jiaotong University, Xi’an 710049, China
1 Xi’an Aerospace Propulsion Institute, Xi’an 710100, China; zhangxiaoguang0522@163.com
3 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; zjj_appreciate@stu.xjtu.edu.cn (J.Z.); meng_ma@xjtu.edu.cn (M.M.)
AuthorAffiliation_xml – name: 1 Xi’an Aerospace Propulsion Institute, Xi’an 710100, China; zhangxiaoguang0522@163.com
– name: 2 School of Future Technology, Xi’an Jiaotong University, Xi’an 710049, China
– name: 3 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; zjj_appreciate@stu.xjtu.edu.cn (J.Z.); meng_ma@xjtu.edu.cn (M.M.)
Author_xml – sequence: 1
  givenname: Xiaoguang
  surname: Zhang
  fullname: Zhang, Xiaoguang
– sequence: 2
  givenname: Xuanhao
  surname: Hua
  fullname: Hua, Xuanhao
– sequence: 3
  givenname: Junjie
  surname: Zhu
  fullname: Zhu, Junjie
– sequence: 4
  givenname: Meng
  surname: Ma
  fullname: Ma, Meng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37420802$$D View this record in MEDLINE/PubMed
BookMark eNplkk1v3CAQhq0qVfPRHvoHKqRe2sMmfBiDT1WUr660UaU2PaMxBoetFzaAU-Xfl80mUZKKA2h45h3mZfarHR-8qaqPBB8y1uKjRBmhvGHNm2qP1LSeSUrxzrPzbrWf0hJjyhiT76pdJmqKJaZ7Fcx9NuPoBuMzOodpzOjUweBDcgkFixbuZnI9-hn0H5PRmR-cN-jWAdrkxXU0GbrRoMWvq0v01-VrdFkkXDI-hXiHTiHD--qthTGZDw_7QfX7_Ozq5Pts8eNifnK8mGmO2zwjwAUnmpDGdp0kzBAuwfZE18LahvUdEcbYtsMUbCM146zu61oSTRsuiBHsoJpvdfsAS7WObgXxTgVw6j4Q4qAgZqdHo3Av245YA13b112NJRSnhOkls8AbaYvWt63WeupWptfFnAjjC9GXN95dqyHcKoIZZozzovDlQSGGm8mkrFYu6eI0eBOmpKhknApZahf08yt0Gaboi1eFoq0sFGkLdbilBigdOG9DKazL6s3K6TIP1pX4seCyllRQXBI-Pe_h6fGPf1-Aoy2gY0gpGqu0y5Bd2LTkxtKL2kyXepqukvH1Vcaj6P_sP607zc4
CitedBy_id crossref_primary_10_1016_j_ast_2024_109756
crossref_primary_10_1016_j_apenergy_2024_123773
crossref_primary_10_1016_j_measurement_2024_115965
crossref_primary_10_1016_j_measurement_2024_115035
crossref_primary_10_3390_math12091304
crossref_primary_10_3390_s24092798
crossref_primary_10_1088_1361_6501_ad4ab3
crossref_primary_10_3390_jmse12112046
crossref_primary_10_3390_aerospace11030239
Cites_doi 10.17706/jsw.14.8.380-387
10.1016/j.neucom.2020.04.110
10.3390/s16010115
10.1109/ASRU.2013.6707742
10.1109/MCS.1986.1105095
10.1109/TGRS.2016.2520487
10.1016/j.measurement.2021.110242
10.3795/KSME-B.2018.42.8.519
10.1155/2022/5266054
10.3390/electronics10172076
10.2514/6.2002-3758
10.1016/j.ast.2017.07.038
10.2514/6.2004-3912
10.1109/TIE.2017.2774777
10.3390/s17020273
10.1016/j.actaastro.2018.03.001
10.1016/j.neunet.2005.06.042
10.1177/09544100231157139
10.37965/jdmd.2022.54
10.3390/s21124024
10.1016/j.actaastro.2020.08.019
10.5923/j.safety.20140301.03
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23125636
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
PubMed


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_0d89b1feab9d4b408a1427ed83fa568f
PMC10303355
A758482720
37420802
10_3390_s23125636
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 2021M702634
– fundername: National Natural Science Foundation of China
  grantid: 52205124
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c509t-1a5751c116fbb813e158afd1c47ff63db17eef9b02af68c3534d4481c26571e73
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:21:54 EDT 2025
Thu Aug 21 18:37:48 EDT 2025
Mon Jul 21 09:46:29 EDT 2025
Fri Jul 25 20:25:33 EDT 2025
Tue Jun 10 21:27:32 EDT 2025
Thu Apr 03 07:00:14 EDT 2025
Thu Apr 24 23:10:44 EDT 2025
Tue Jul 01 01:20:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords data fusion
interpretable
fault simulation
bidirectional LSTM
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-1a5751c116fbb813e158afd1c47ff63db17eef9b02af68c3534d4481c26571e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23125636
PMID 37420802
PQID 2829878419
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_0d89b1feab9d4b408a1427ed83fa568f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10303355
proquest_miscellaneous_2835278408
proquest_journals_2829878419
gale_infotracacademiconefile_A758482720
pubmed_primary_37420802
crossref_citationtrail_10_3390_s23125636
crossref_primary_10_3390_s23125636
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230616
PublicationDateYYYYMMDD 2023-06-16
PublicationDate_xml – month: 6
  year: 2023
  text: 20230616
  day: 16
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Flora (ref_11) 2020; 79
Liu (ref_12) 2012; 27
Li (ref_13) 2019; 14
Wang (ref_40) 2022; 1
Whitacker (ref_24) 2017; 70
ref_35
Wang (ref_39) 2021; 1
Chen (ref_28) 2021; 43
Yan (ref_19) 2013; 605–607
Graves (ref_30) 2005; 18
Wang (ref_16) 2023; 2
Pan (ref_36) 2018; 64
ref_38
ref_15
ref_37
Wen (ref_14) 2018; 65
Lee (ref_17) 2018; 150
Ren (ref_32) 2021; 41
Cikanek (ref_2) 1986; 6
Pule (ref_9) 2022; 2022
Ding (ref_33) 2020; 403
Granzotto (ref_8) 2014; 3
Liu (ref_10) 2007; 28
Passricha (ref_29) 2020; 29
ref_23
Zhang (ref_21) 2021; 8
ref_22
ref_44
ref_43
Shi (ref_31) 2015; 28
ref_42
ref_1
Zheng (ref_20) 2021; 42
Zhang (ref_34) 2022; 187
ref_3
Liu (ref_18) 2003; 24
ref_27
Lee (ref_25) 2018; 42
ref_26
Liu (ref_6) 2022; 42
Refice (ref_7) 2016; 54
ref_5
Park (ref_41) 2020; 177
ref_4
References_xml – volume: 28
  start-page: 802
  year: 2015
  ident: ref_31
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 14
  start-page: 380
  year: 2019
  ident: ref_13
  article-title: Fault Detection in Liquid-propellant Rocket Engines Based on Improved PSO-BP Neural Network
  publication-title: J. Softw.
  doi: 10.17706/jsw.14.8.380-387
– volume: 28
  start-page: 1660
  year: 2007
  ident: ref_10
  article-title: Research of Real-time Fault Detection Method for Liquid Propellant Rocket Engines in Ground Test
  publication-title: J. Astronaut.
– volume: 42
  start-page: 1761
  year: 2021
  ident: ref_20
  article-title: Transient Characteristics of High-Thrust Oxygen/Hydrogen Rocket Engine
  publication-title: J. Propuls. Technol.
– volume: 403
  start-page: 348
  year: 2020
  ident: ref_33
  article-title: Interpretable spatio-temporal attention LSTM model for flood forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.110
– ident: ref_42
  doi: 10.3390/s16010115
– ident: ref_3
– volume: 29
  start-page: 1261
  year: 2020
  ident: ref_29
  article-title: A Hybrid of Deep CNN and Bidirectional LSTM for Automatic Speech Recognition
  publication-title: J. Intell. Syst.
– volume: 42
  start-page: 289
  year: 2022
  ident: ref_6
  article-title: Fault Diagnosis of Liquid Rocket Engine Based on Hierarchical Bayesian Network Variational Inference
  publication-title: Trans. Beijing Inst. Technol.
– ident: ref_26
  doi: 10.1109/ASRU.2013.6707742
– volume: 64
  start-page: 443
  year: 2018
  ident: ref_36
  article-title: An improved bearing fault diagnosis method using one-dimensional CNN and LSTM
  publication-title: J. Mech. Eng.
– ident: ref_37
– ident: ref_1
– ident: ref_44
– volume: 6
  start-page: 13
  year: 1986
  ident: ref_2
  article-title: Space shuttle main engine failure detection
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/MCS.1986.1105095
– volume: 54
  start-page: 3612
  year: 2016
  ident: ref_7
  article-title: A bayesian network for flood detection combining SAR imagery and ancillary data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2520487
– volume: 43
  start-page: 370
  year: 2021
  ident: ref_28
  article-title: Research advances on deep learning recommendation based on attention mechanism
  publication-title: Comput. Eng. Sci.
– ident: ref_23
– volume: 187
  start-page: 110242
  year: 2022
  ident: ref_34
  article-title: Fault diagnosis for small samples based on attention mechanism
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110242
– volume: 42
  start-page: 519
  year: 2018
  ident: ref_25
  article-title: Experimental Investigation of the Turbine in a Turbopump for a Liquid Rocket Engine with a 75-ton Force Thrust
  publication-title: Trans. Korean Soc. Mech. Eng. B
  doi: 10.3795/KSME-B.2018.42.8.519
– volume: 2022
  start-page: 5266054
  year: 2022
  ident: ref_9
  article-title: Application of PCA and SVM in Fault Detection and Diagnosis of Bearings with Varying Speed
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2022/5266054
– ident: ref_38
  doi: 10.3390/electronics10172076
– volume: 79
  start-page: 1024
  year: 2020
  ident: ref_11
  article-title: Sensor Failure Management in Liquid Rocket Engine using Artificial Neural Network
  publication-title: J. Sci. Ind. Res. India
– ident: ref_4
  doi: 10.2514/6.2002-3758
– volume: 605–607
  start-page: 679
  year: 2013
  ident: ref_19
  article-title: System Dynamic Characteristic Simulation of Spacecraft Propulsion System Based on AMESim
  publication-title: Adv. Mater. Res.
– volume: 70
  start-page: 55
  year: 2017
  ident: ref_24
  article-title: An evaluation of the tip clearance effects on turbine efficiency for space propulsion applications considering liquid rocket engine using turbopumps
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2017.07.038
– ident: ref_5
  doi: 10.2514/6.2004-3912
– volume: 8
  start-page: 389
  year: 2021
  ident: ref_21
  article-title: Fault Simulation and Experimental Study on High-Thrust LOX/LH2 Rocket Engine
  publication-title: J. Deep. Space Explor.
– volume: 24
  start-page: 401
  year: 2003
  ident: ref_18
  article-title: Modularization modeling and simulation for the transients of liquid propellant rocket engines
  publication-title: J. Propuls. Technol.
– volume: 1
  start-page: 148
  year: 2022
  ident: ref_40
  article-title: Long-range Dependencies Learning Based on Non-Local 1D-Convolutional Neural Network for Rolling Bearing Fault Diagnosis
  publication-title: J. Dyn. Monit. Diagn.
– volume: 65
  start-page: 5990
  year: 2018
  ident: ref_14
  article-title: A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2774777
– ident: ref_27
  doi: 10.3390/s17020273
– volume: 2
  start-page: 30
  year: 2023
  ident: ref_16
  article-title: Intelligent Fault Diagnosis for Planetary Gearbox Using Transferable Deep Q Network Under Variable Conditions with Small Training Data
  publication-title: J. Dyn. Monit. Diagn.
– volume: 150
  start-page: 15
  year: 2018
  ident: ref_17
  article-title: Fault detection and diagnosis algorithms for an open-cycle liquid propellant rocket engine using the kalman filter and fault factor methods
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2018.03.001
– volume: 18
  start-page: 602
  year: 2005
  ident: ref_30
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2005.06.042
– volume: 1
  start-page: 2
  year: 2021
  ident: ref_39
  article-title: Residual Convolution Long Short-Term Memory Network for Machines Remaining Useful Life Prediction and Uncertainty Quantification
  publication-title: J. Dyn. Monit. Diagn.
– ident: ref_43
– ident: ref_22
  doi: 10.1177/09544100231157139
– ident: ref_15
  doi: 10.37965/jdmd.2022.54
– ident: ref_35
  doi: 10.3390/s21124024
– volume: 41
  start-page: 1
  year: 2021
  ident: ref_32
  article-title: Review of attention mechanism
  publication-title: J. Computer Appl.
– volume: 177
  start-page: 714
  year: 2020
  ident: ref_41
  article-title: Deep neural network approach for fault detection and diagnosis during startup transient of liquid-propellant rocket engine
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2020.08.019
– volume: 3
  start-page: 18
  year: 2014
  ident: ref_8
  article-title: Fault Detection and Diagnosis Using Support Vector Machines—A SVC and SVR Comparison
  publication-title: J. Saf. Eng.
  doi: 10.5923/j.safety.20140301.03
– volume: 27
  start-page: 2842
  year: 2012
  ident: ref_12
  article-title: Fault Diagnosis Method for Liquid-propellant Rocket Engines Based on the Dynamic Cloud-BP Neural Network
  publication-title: J. Aerosp. Power
SSID ssj0023338
Score 2.4493515
Snippet Fault diagnosis is essential for high energy systems such as liquid rocket engines (LREs) due to harsh thermal and mechanical working environment. In this...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5636
SubjectTerms Algorithms
Analysis
Artificial intelligence
bidirectional LSTM
data fusion
Deep learning
Efficiency
Fault diagnosis
fault simulation
Hydrogen
interpretable
Machine learning
Mathematical models
Neural networks
Power
Rockets
Simulation
Turbines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTnCoWqBtKFQuqtReIuzYSZwjrxVF0EMLEjfLTzXSKtuy2Ur998wk2bCrVuLCNZ5IznjGM19m_JmQT8Y7XwZVpKqKVYqESqkRkqURjMNEF73viLSvvxUXt_LyLr9bueoLe8J6euBecUfMq8ryGIytvLSSKcNlVgavRDR5oSLuvhDzlmBqgFoCkFfPIyQA1B_NIYuB2N7xMD9Gn46k_9-teCUWrfdJrgSeySvycsgY6XE_09fkRWi2ydYKj-AOMV9HYs2WTsxi2tKzvoWuntNZpFf170Xt6XfY-0JL-1fpn9rQx5ZDOw306sfNNcUfs7Q7ljsHhDu7_0vPTGt2ye3k_Ob0Ih3uTkgdpABtyg0WVBznRbRWcRF4rkz03MkyxkJ4y8sQYmVZZmKhnMiF9IDUuMuKvOShFG_IRjNrwjtCK2t9qITPnAXs5JgROYuCS5cpH6LMEvJlqVPtBmJxvN9iqgFgoPr1qP6EHI6iv3o2jf8JneDCjAJIgN09ALPQg1nop8wiIZ9xWTW6KUzGmeG0AXwSEl7pY8BJyICasYTsL1deD_4711hfVliSrRLycRwGz8NyimnCbIEykLyCDFMJedsbyjhnUWLbAgPdqDUTWvuo9ZGm_tmxe-O9bwKywL3nUMN7spmBN2BvGy_2yUZ7vwgHkEW19kPnMA8jyh0o
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBMolUFIcIlqx3k4J1RaVgW1HKCV9hb5CZFWSbvJIvHvmUm82V0V9RpPJHs845nxjL8h5L2yxhZO5rEsfRkjoFKsRMpiD8KhvPHWDkDa59_z08v02zybhwu3LpRVrs_E4aC2rcE78kPM-ElMkpWfrq5j7BqF2dXQQuMuuYfQZVjSVcw3AZeA-GtEExIQ2h924MuAhR_QmDc2aIDqv3kgb1mk3WrJLfMze0QeBr-RHo0b_Zjccc0T8mALTfApUV8neM2eztRq0dOTsZCu7mjr6Vl9vaot_QEnoOvp-Cv9Uyu6KTzUC0fPfl6cU7yepcPj3A7i3Hb5l56oXj0jl7MvF8enceigEBtwBPqYK0yrGM5zr7XkwvFMKm-5SQvvc2E1L5zzpWaJ8rk0IhOphXiNmyTPCu4K8ZzsNW3jXhJaam1dKWxiNERQhimRMS94ahJpnU-TiHxc87QyAV4cu1wsKggzkP3VxP6IvJtIr0ZMjf8RfcaNmQgQBnv40C5_VUGrKmZlqbl3Spc21SmTiqdJ4awUXmW59BH5gNtaobLCZIwKbw5gSQh7VR1BtIQ4qAmLyP5656ugxV21kbmIvJ2GQf8wqaIa166QBlxYoGEyIi9GQZnmLAosXmDAG7kjQjuL2h1p6t8Dxjd2fxPgC766fV6vyf0E5Bxr13i-T_b65cq9AS-p1weDKvwDwBAT5w
  priority: 102
  providerName: ProQuest
Title Intelligent Fault Diagnosis of Liquid Rocket Engine via Interpretable LSTM with Multisensory Data
URI https://www.ncbi.nlm.nih.gov/pubmed/37420802
https://www.proquest.com/docview/2829878419
https://www.proquest.com/docview/2835278408
https://pubmed.ncbi.nlm.nih.gov/PMC10303355
https://doaj.org/article/0d89b1feab9d4b408a1427ed83fa568f
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9NAEB71IaFyQLwxlGhBSHAxeL1-rA8ItbShoKZCpZF6s_YJkaKEJg6i_54Zv0hEufhgjy3bM7Mz387uNwCvlDU2dzILZeGLkAiVQiWSKPRoHMobb21NpD06y07GyZfL9HILuh6b7Q9c3gjtqJ_UeDF9-_vq-gM6_HtCnAjZ3y0xR8HILbJt2MWAlJN_jpK-mBALhGENqdCm-B7cEjmVl9s5lS4q1eT9_w7RazFqc_3kWkAa3oU7bSbJDhrV34MtN7sPt9f4BR-A-twTblZsqFbTih01S-smSzb37HRytZpYdo5joqtYcyv7NVHs71JEPXXs9NvFiNGELau36y4R-c4X1-xIVeohjIfHFx9PwranQmgwNahCrqjQYjjPvNaSC8dTqbzlJsm9z4TVPHfOFzqKlc-kEalILCI4buIszbnLxSPYmc1n7gmwQmvrCmFjoxFTmUiJNPKCJyaW1vkkDuBN909L0xKOU9-LaYnAgzRR9poI4GUv-rNh2bhJ6JAU0wsQMXZ9Yr74XrZ-VkZWFpp7p3RhE51EUvEkzp2Vwqs0kz6A16TWkgwKX8aodhcCfhIRYZUHiJ-IGTWOAtjvNF92ZllS3VlSqbYI4EV_GT2Syixq5uYrksGkFmUiGcDjxlD6d-7sLQC5YUIbH7V5ZTb5UbN-Uz84gdnh0_8-9BnsxWjttLaBZ_uwUy1W7jmmTJUewHZ-meNRDj8NYPfw-Ozr-aCefhjUrvIHzAcZTg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcgAOiDeGAgsCwcWq1-vH-oBQIUQJTXqAVMrN3SdYiuI2cUD9U_xGZmzHSQTi1qs9ttaz8_TMfkPIa2m0Sa1IfJG5zEdAJV_yKPAdCId02hlTA2mPT5LBafRlGk_3yO_1WRhsq1zbxNpQm1LjP_JDrPgJLJJlH84vfJwahdXV9QiNRiyO7eUvSNmW74c92N83Ydj_PPk08NupAr4G51j5TGKpQTOWOKUE45bFQjrDdJQ6l3CjWGqty1QQSpcIzWMeGchhmA6TOGU25fDea-Q6ON4ANSqdbhI8Dvleg17EeRYcLiF2goiiRn_e-Lx6NMDfDmDLA-52Z265u_4dcruNU-lRI1h3yZ6d3yO3ttAL7xM57OA8K9qXq1lFe03jXrGkpaOj4mJVGPoVLK6taPMo_VlIuml0VDNLR98mY4q_g2l9GHgJeXW5uKQ9WckH5PRKePuQ7M_LuX1MaKaUsRk3oVaQselA8jhwnEU6FMa6KPTIuzVPc93CmeNUjVkOaQ2yP-_Y75FXHel5g-HxL6KPuDEdAcJu1xfKxfe81eI8MCJTzFmpMhOpKBCSRWFqjeBOxolwHnmL25qjcYDFaNmecYBPQpit_AiyM8RdDQOPHKx3Pm-txjLfyLhHXna3Qd-xiCPntlwhDYTMQBMIjzxqBKVbM0-xWSIA3ogdEdr5qN078-JHjSmO0-Y4xJ5P_r-uF-TGYDIe5aPhyfFTcjMEmce-OZYckP1qsbLPIEKr1PNaLSg5u2o9_ANtWFCE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIiE4IN4YCiwIBBcrXq8f6wNChRA1NK0QtFJuZp8QKbLbxAH1r_HrmPEriUDcerXH1np2np7Zbwh5KY02qRWJLzKX-Qio5EseBb4D4ZBOO2NqIO2j4-TgNPo0jac75Hd3FgbbKjubWBtqU2r8Rz7Aip_AIlk2cG1bxOfh6N3ZuY8TpLDS2o3TaETk0F78gvRt-XY8hL1-FYajjycfDvx2woCvwVFWPpNYdtCMJU4pwbhlsZDOMB2lziXcKJZa6zIVhNIlQvOYRwbyGabDJE6ZTTm89wq5mvKYoY6l03WyxyH3a5CMOM-CwRLiKIguaiTotf-rxwT87Qw2vOF2p-aG6xvdIjfbmJXuN0J2m-zY4g65sYFkeJfIcQ_tWdGRXM0rOmya-GZLWjo6mZ2vZoZ-AetrK9o8Sn_OJF03Paq5pZOvJ0cUfw3T-mDwEnLscnFBh7KS98jppfD2PtktysI-JDRTytiMm1AryN50IHkcOM4iHQpjXRR65E3H01y30OY4YWOeQ4qD7M979nvkRU961uB5_IvoPW5MT4AQ3PWFcvE9bzU6D4zIFHNWqsxEKgqEZFGYWiO4k3EinEde47bmaChgMVq25x3gkxByK9-HTA0xWMPAI3vdzuetBVnma3n3yPP-Nug-FnRkYcsV0kD4DDSB8MiDRlD6NfMUGycC4I3YEqGtj9q-U8x-1PjiOHmOQxz66P_rekaugQbmk_Hx4WNyPQSRxxY6luyR3Wqxsk8gWKvU01orKPl22Wr4B_aBVLo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Fault+Diagnosis+of+Liquid+Rocket+Engine+via+Interpretable+LSTM+with+Multisensory+Data&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Xiaoguang&rft.au=Hua%2C+Xuanhao&rft.au=Zhu%2C+Junjie&rft.au=Ma%2C+Meng&rft.date=2023-06-16&rft.eissn=1424-8220&rft.volume=23&rft.issue=12&rft_id=info:doi/10.3390%2Fs23125636&rft_id=info%3Apmid%2F37420802&rft.externalDocID=37420802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon