Simulated night shift work induces circadian misalignment of the human peripheral blood mononuclear cell transcriptome

Misalignment of the endogenous circadian timing system leads to disruption of physiological rhythms and may contribute to the development of the deleterious health effects associated with night shift work. However, the molecular underpinnings remain to be elucidated. Here, we investigated the effect...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 21; pp. 5540 - 5545
Main Authors Kervezee, Laura, Cuesta, Marc, Cermakian, Nicolas, Boivin, Diane B.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 22.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Misalignment of the endogenous circadian timing system leads to disruption of physiological rhythms and may contribute to the development of the deleterious health effects associated with night shift work. However, the molecular underpinnings remain to be elucidated. Here, we investigated the effect of a 4-day simulated night shift work protocol on the circadian regulation of the human transcriptome. Repeated blood samples were collected over two 24-hour measurement periods from eight healthy subjects under highly controlled laboratory conditions before and 4 days after a 10-hour delay of their habitual sleep period. RNA was extracted from peripheral blood mononuclear cells to obtain transcriptomic data. Cosinor analysis revealed a marked reduction of significantly rhythmic transcripts in the night shift condition compared with baseline at group and individual levels. Subsequent analysis using a mixed-effects model selection approach indicated that this decrease is mainly due to dampened rhythms rather than to a complete loss of rhythmicity: 73% of transcripts rhythmically expressed at baseline remained rhythmic during the night shift condition with a similar phase relative to habitual bedtimes, but with lower amplitudes. Functional analysis revealed that key biological processes are affected by the night shift protocol, most notably the natural killer cell-mediated immune response and Jun/AP1 and STAT pathways. These results show that 4 days of simulated night shifts leads to a loss in temporal coordination between the human circadian transcriptome and the external environment and impacts biological processes related to the adverse health effects associated to night shift work.
AbstractList Misalignment of the endogenous circadian timing system leads to disruption of physiological rhythms and may contribute to the development of the deleterious health effects associated with night shift work. However, the molecular underpinnings remain to be elucidated. Here, we investigated the effect of a 4-day simulated night shift work protocol on the circadian regulation of the human transcriptome. Repeated blood samples were collected over two 24-hour measurement periods from eight healthy subjects under highly controlled laboratory conditions before and 4 days after a 10-hour delay of their habitual sleep period. RNA was extracted from peripheral blood mononuclear cells to obtain transcriptomic data. Cosinor analysis revealed a marked reduction of significantly rhythmic transcripts in the night shift condition compared with baseline at group and individual levels. Subsequent analysis using a mixed-effects model selection approach indicated that this decrease is mainly due to dampened rhythms rather than to a complete loss of rhythmicity: 73% of transcripts rhythmically expressed at baseline remained rhythmic during the night shift condition with a similar phase relative to habitual bedtimes, but with lower amplitudes. Functional analysis revealed that key biological processes are affected by the night shift protocol, most notably the natural killer cell-mediated immune response and Jun/AP1 and STAT pathways. These results show that 4 days of simulated night shifts leads to a loss in temporal coordination between the human circadian transcriptome and the external environment and impacts biological processes related to the adverse health effects associated to night shift work.
Night shift work is associated with adverse health effects, including diabetes, cardiovascular disease, and cancer. Understanding the molecular mechanisms that underlie this association is instrumental in advancing the diagnosis, prevention, and treatment of shift work-related health concerns. We characterized the effect on genome-wide gene expression levels of a 4-day protocol simulating night shifts in healthy human subjects under highly controlled laboratory conditions. We demonstrate that this night shift protocol leads to a dampening of gene expression rhythms and a desynchrony between rhythmic transcripts and the shifted sleep/wake cycle. Moreover, we uncovered key biological processes and regulatory molecules that are altered during this night shift protocol and that may contribute to the development of health problems on the long term. Misalignment of the endogenous circadian timing system leads to disruption of physiological rhythms and may contribute to the development of the deleterious health effects associated with night shift work. However, the molecular underpinnings remain to be elucidated. Here, we investigated the effect of a 4-day simulated night shift work protocol on the circadian regulation of the human transcriptome. Repeated blood samples were collected over two 24-hour measurement periods from eight healthy subjects under highly controlled laboratory conditions before and 4 days after a 10-hour delay of their habitual sleep period. RNA was extracted from peripheral blood mononuclear cells to obtain transcriptomic data. Cosinor analysis revealed a marked reduction of significantly rhythmic transcripts in the night shift condition compared with baseline at group and individual levels. Subsequent analysis using a mixed-effects model selection approach indicated that this decrease is mainly due to dampened rhythms rather than to a complete loss of rhythmicity: 73% of transcripts rhythmically expressed at baseline remained rhythmic during the night shift condition with a similar phase relative to habitual bedtimes, but with lower amplitudes. Functional analysis revealed that key biological processes are affected by the night shift protocol, most notably the natural killer cell-mediated immune response and Jun/AP1 and STAT pathways. These results show that 4 days of simulated night shifts leads to a loss in temporal coordination between the human circadian transcriptome and the external environment and impacts biological processes related to the adverse health effects associated to night shift work.
Misalignment of the endogenous circadian timing system leads to disruption of physiological rhythms and may contribute to the development of the deleterious health effects associated with night shift work. However, the molecular underpinnings remain to be elucidated. Here, we investigated the effect of a 4-day simulated night shift work protocol on the circadian regulation of the human transcriptome. Repeated blood samples were collected over two 24-hour measurement periods from eight healthy subjects under highly controlled laboratory conditions before and 4 days after a 10-hour delay of their habitual sleep period. RNA was extracted from peripheral blood mononuclear cells to obtain transcriptomic data. Cosinor analysis revealed a marked reduction of significantly rhythmic transcripts in the night shift condition compared with baseline at group and individual levels. Subsequent analysis using a mixed-effects model selection approach indicated that this decrease is mainly due to dampened rhythms rather than to a complete loss of rhythmicity: 73% of transcripts rhythmically expressed at baseline remained rhythmic during the night shift condition with a similar phase relative to habitual bedtimes, but with lower amplitudes. Functional analysis revealed that key biological processes are affected by the night shift protocol, most notably the natural killer cell-mediated immune response and Jun/AP1 and STAT pathways. These results show that 4 days of simulated night shifts leads to a loss in temporal coordination between the human circadian transcriptome and the external environment and impacts biological processes related to the adverse health effects associated to night shift work.Misalignment of the endogenous circadian timing system leads to disruption of physiological rhythms and may contribute to the development of the deleterious health effects associated with night shift work. However, the molecular underpinnings remain to be elucidated. Here, we investigated the effect of a 4-day simulated night shift work protocol on the circadian regulation of the human transcriptome. Repeated blood samples were collected over two 24-hour measurement periods from eight healthy subjects under highly controlled laboratory conditions before and 4 days after a 10-hour delay of their habitual sleep period. RNA was extracted from peripheral blood mononuclear cells to obtain transcriptomic data. Cosinor analysis revealed a marked reduction of significantly rhythmic transcripts in the night shift condition compared with baseline at group and individual levels. Subsequent analysis using a mixed-effects model selection approach indicated that this decrease is mainly due to dampened rhythms rather than to a complete loss of rhythmicity: 73% of transcripts rhythmically expressed at baseline remained rhythmic during the night shift condition with a similar phase relative to habitual bedtimes, but with lower amplitudes. Functional analysis revealed that key biological processes are affected by the night shift protocol, most notably the natural killer cell-mediated immune response and Jun/AP1 and STAT pathways. These results show that 4 days of simulated night shifts leads to a loss in temporal coordination between the human circadian transcriptome and the external environment and impacts biological processes related to the adverse health effects associated to night shift work.
Author Cermakian, Nicolas
Cuesta, Marc
Kervezee, Laura
Boivin, Diane B.
Author_xml – sequence: 1
  givenname: Laura
  surname: Kervezee
  fullname: Kervezee, Laura
  organization: Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada H4H 1R3
– sequence: 2
  givenname: Marc
  surname: Cuesta
  fullname: Cuesta, Marc
  organization: Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada H4H 1R3
– sequence: 3
  givenname: Nicolas
  surname: Cermakian
  fullname: Cermakian, Nicolas
  organization: Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada H4H 1R3
– sequence: 4
  givenname: Diane B.
  surname: Boivin
  fullname: Boivin, Diane B.
  organization: Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada H4H 1R3
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29735673$$D View this record in MEDLINE/PubMed
BookMark eNp9kb1v1TAUxS1URF8LMxPIEgtL2ms7juMFCVV8SZUYgNlyHOfFj8QOtlPEf4-jV1rowOTh_s71OfecoRMfvEXoOYELAoJdLl6nCyIoCCIJ4Y_QjoAkVVNLOEE7ACqqtqb1KTpL6QAAkrfwBJ1SKRhvBNuhmy9uXiedbY-9248Zp9ENGf8M8Tt2vl-NTdi4aHTvtMezS3pyez9bn3EYcB4tHte5TBYb3TLaqCfcTSH0eA7F6momqyM2dppwjtonU6gcZvsUPR70lOyz2_ccfXv_7uvVx-r684dPV2-vK8NB5orwToqOGi5IDQ3ppDS65TVoLYGBkNS0hGlKOsYaKhkzNZiubhspYJBSM3aO3hz3Lms3294U38WiWqKbdfylgnbq34l3o9qHG9UAME7qsuD17YIYfqw2ZVVusOXR3oY1KQrlZ2CspgV99QA9hDX6Ek9RAtAWu2KjXv7t6M7Kn0oKcHkETAwpRTvcIQTUVrraSlf3pRcFf6AwLuvswhbJTf_RvTjqDimHeO-kKbdvuWC_AU10vBc
CitedBy_id crossref_primary_10_1080_07420528_2021_1994984
crossref_primary_10_3389_fendo_2023_987208
crossref_primary_10_1172_JCI170998
crossref_primary_10_15690_vramn16011
crossref_primary_10_12688_f1000research_136998_1
crossref_primary_10_1093_sleep_zsae214
crossref_primary_10_1177_0748730419826694
crossref_primary_10_12688_f1000research_136998_2
crossref_primary_10_1038_s41398_019_0671_7
crossref_primary_10_12688_f1000research_136998_3
crossref_primary_10_1186_s41983_022_00468_8
crossref_primary_10_1007_s00018_019_03183_5
crossref_primary_10_1111_jpi_12654
crossref_primary_10_1038_s42255_024_01027_6
crossref_primary_10_1038_s42255_024_01051_6
crossref_primary_10_1186_s13073_021_00863_5
crossref_primary_10_1016_j_csbj_2020_07_002
crossref_primary_10_1111_apha_13703
crossref_primary_10_1002_jbio_201900102
crossref_primary_10_7180_kmj_22_014
crossref_primary_10_1111_febs_16095
crossref_primary_10_1093_sleep_zsae100
crossref_primary_10_1080_07420528_2021_1881108
crossref_primary_10_3389_fnins_2024_1330695
crossref_primary_10_1002_adbi_202200292
crossref_primary_10_1177_07487304211064218
crossref_primary_10_1177_07487304221132088
crossref_primary_10_1177_07487304231179595
crossref_primary_10_1038_s41574_022_00747_7
crossref_primary_10_1016_j_isci_2024_109331
crossref_primary_10_3389_fimmu_2022_1000951
crossref_primary_10_1016_j_taap_2022_115863
crossref_primary_10_1111_jpi_12726
crossref_primary_10_1111_apha_13281
crossref_primary_10_1111_jne_12886
crossref_primary_10_1172_JCI148282
crossref_primary_10_1016_j_isci_2021_103144
crossref_primary_10_1055_s_0043_1772810
crossref_primary_10_1016_j_jtos_2021_02_001
crossref_primary_10_1080_07420528_2021_1977654
crossref_primary_10_1016_j_sleh_2023_09_005
crossref_primary_10_1016_j_isci_2024_109684
crossref_primary_10_1016_j_autrev_2022_103236
crossref_primary_10_1007_s00281_021_00904_6
crossref_primary_10_1038_s41598_021_87029_w
crossref_primary_10_1111_ejn_16428
crossref_primary_10_1038_s41598_024_67297_y
crossref_primary_10_1016_j_jsmc_2018_04_003
crossref_primary_10_2486_indhealth_SW_5
crossref_primary_10_1371_journal_pbio_3000303
crossref_primary_10_1038_s41467_019_11400_9
crossref_primary_10_3390_ijms232213722
crossref_primary_10_1080_07420528_2022_2131562
crossref_primary_10_1371_journal_pone_0217368
crossref_primary_10_2486_indhealth_SW_2
crossref_primary_10_1016_j_smrv_2020_101336
crossref_primary_10_1007_s00420_023_02037_9
crossref_primary_10_1007_s11606_024_08946_w
crossref_primary_10_1080_07420528_2024_2353857
crossref_primary_10_3390_ijms25168659
crossref_primary_10_1155_2018_7925219
crossref_primary_10_1021_acs_jproteome_3c00418
crossref_primary_10_1002_oby_22830
crossref_primary_10_1096_fj_202302261RR
crossref_primary_10_1177_0748730418821776
crossref_primary_10_1096_fj_201801889R
crossref_primary_10_1371_journal_pone_0223212
crossref_primary_10_3390_ijerph182413158
crossref_primary_10_1186_s40560_024_00769_5
crossref_primary_10_3389_fimmu_2022_776917
crossref_primary_10_3390_nu14112202
crossref_primary_10_3390_biomedicines12071496
crossref_primary_10_1371_journal_pdig_0000439
crossref_primary_10_1186_s12864_018_5401_7
crossref_primary_10_1177_07487304221134160
crossref_primary_10_1016_j_molmed_2019_04_013
crossref_primary_10_1111_ejn_14216
crossref_primary_10_1111_jan_15962
crossref_primary_10_3389_fimmu_2020_599547
crossref_primary_10_3390_healthcare7010001
crossref_primary_10_1111_ejn_14255
crossref_primary_10_1136_bmjopen_2021_059677
crossref_primary_10_1093_annweh_wxac004
crossref_primary_10_1016_j_heliyon_2024_e28240
crossref_primary_10_1093_jncics_pkz106
crossref_primary_10_1111_jpi_70017
crossref_primary_10_3389_fimmu_2022_939829
crossref_primary_10_1093_sleep_zsad023
crossref_primary_10_1177_0748730420987669
crossref_primary_10_1002_pchj_252
crossref_primary_10_1038_s41420_024_01960_1
crossref_primary_10_1016_j_coph_2020_11_007
crossref_primary_10_1016_j_yjmcc_2024_12_008
crossref_primary_10_1111_ped_14992
Cites_doi 10.1080/07420528.2017.1316732
10.1093/sleep/zsx068
10.1038/nri3581
10.1002/mnfr.201100685
10.1186/1742-4682-11-16
10.3109/07853890.2014.914808
10.1371/journal.pone.0010995
10.1101/sqb.2015.80.027490
10.1177/0748730414553029
10.1038/nrg.2016.150
10.1002/bies.201400193
10.1093/bioinformatics/btw405
10.1073/pnas.1412021111
10.1016/j.bbi.2005.10.002
10.2217/14622416.7.2.187
10.5665/sleep.4064
10.4049/jimmunol.1502422
10.1210/jc.2015-3924
10.1038/s41598-017-16429-8
10.1073/pnas.1515308112
10.1016/j.patbio.2014.08.001
10.1371/journal.pone.0070813
10.1136/bmj.i5210
10.1177/0748730417728663
10.1002/ajim.22108
10.1111/j.1365-2796.2007.01766.x
10.1038/nri.2015.9
10.4049/jimmunol.1102715
10.1038/nrc1072
10.1080/07420520802106835
10.1371/journal.pone.0037150
10.1073/pnas.1316335111
10.1677/joe.0.1710557
10.1177/0748730416631895
10.1007/s00421-011-1923-2
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences May 22, 2018
2018
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences May 22, 2018
– notice: 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1720719115
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts
MEDLINE
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 5545
ExternalDocumentID PMC6003514
29735673
10_1073_pnas_1720719115
26509857
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CIHR
  grantid: MOP-102724
– fundername: Gouvernement du Canada | Canadian Institutes of Health Research (CIHR)
  grantid: MOP-102724
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-15b97b2c5714061b99ca8540aa9030792c813a21b3362933c40cb486970f99a33
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:35:15 EDT 2025
Fri Jul 11 03:37:33 EDT 2025
Sat Aug 23 13:10:35 EDT 2025
Thu Apr 03 07:06:42 EDT 2025
Tue Jul 01 03:19:49 EDT 2025
Thu Apr 24 23:12:40 EDT 2025
Fri May 30 11:17:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords transcriptomics
night shift work
chronobiology
circadian rhythms
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-15b97b2c5714061b99ca8540aa9030792c813a21b3362933c40cb486970f99a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: N.C. and D.B.B. designed research; L.K. and M.C. performed research; L.K. analyzed data; and L.K., M.C., N.C., and D.B.B. wrote the paper.
Edited by Joseph S. Takahashi, Howard Hughes Medical Institute and University of Texas Southwestern Medical Center, Dallas, TX, and approved April 6, 2018 (received for review December 3, 2017)
ORCID 0000-0002-6062-9164
OpenAccessLink https://www.pnas.org/content/pnas/115/21/5540.full.pdf
PMID 29735673
PQID 2100879272
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6003514
proquest_miscellaneous_2036203342
proquest_journals_2100879272
pubmed_primary_29735673
crossref_primary_10_1073_pnas_1720719115
crossref_citationtrail_10_1073_pnas_1720719115
jstor_primary_26509857
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-22
PublicationDateYYYYMMDD 2018-05-22
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
Cuesta M (e_1_3_4_36_2) 2017; 7
Ivashkiv LB (e_1_3_4_28_2) 2014; 14
Arnardottir ES (e_1_3_4_13_2) 2014; 37
Laing EE (e_1_3_4_14_2) 2015; 37
Cuesta M (e_1_3_4_29_2) 2016; 196
Archer SN (e_1_3_4_7_2) 2014; 111
Lee S (e_1_3_4_26_2) 2010; 5
Morris CJ (e_1_3_4_11_2) 2016; 101
Atger F (e_1_3_4_21_2) 2015; 112
Hughes ME (e_1_3_4_20_2) 2017; 32
Lund J (e_1_3_4_10_2) 2001; 171
Wu G (e_1_3_4_38_2) 2014; 3
Wu G (e_1_3_4_18_2) 2016; 32
Takahashi JS (e_1_3_4_6_2) 2016; 18
Möller-Levet CS (e_1_3_4_8_2) 2013; 110
McHill AW (e_1_3_4_30_2) 2014; 111
de Mello VD (e_1_3_4_35_2) 2012; 56
Alterman T (e_1_3_4_2_2) 2013; 56
Husse J (e_1_3_4_16_2) 2017; 40
Fu L (e_1_3_4_25_2) 2003; 3
Thaben PF (e_1_3_4_19_2) 2014; 29
Burczynski ME (e_1_3_4_33_2) 2006; 7
Kettner NM (e_1_3_4_27_2) 2014; 46
Zhang R (e_1_3_4_15_2) 2016; 31
Folkard S (e_1_3_4_31_2) 2008; 25
Schibler U (e_1_3_4_5_2) 2015; 80
Logan RW (e_1_3_4_23_2) 2012; 188
Arjona A (e_1_3_4_24_2) 2006; 20
Boudreau P (e_1_3_4_32_2) 2013; 8
Boivin DB (e_1_3_4_4_2) 2014; 62
Carlson LA (e_1_3_4_34_2) 2011; 111
Sookoian S (e_1_3_4_9_2) 2007; 261
Cerwenka A (e_1_3_4_22_2) 2016; 16
Cornelissen G (e_1_3_4_37_2) 2014; 11
Kecklund G (e_1_3_4_1_2) 2016; 355
Barclay JL (e_1_3_4_17_2) 2012; 7
Wirth MD (e_1_3_4_12_2) 2017; 34
References_xml – volume: 34
  start-page: 721
  year: 2017
  ident: e_1_3_4_12_2
  article-title: Association of shiftwork and immune cells among police officers from the Buffalo Cardio-Metabolic Occupational Police Stress study
  publication-title: Chronobiol Int
  doi: 10.1080/07420528.2017.1316732
– volume: 40
  year: 2017
  ident: e_1_3_4_16_2
  article-title: Tissue-specific dissociation of diurnal transcriptome rhythms during sleep restriction in mice
  publication-title: Sleep
  doi: 10.1093/sleep/zsx068
– volume: 14
  start-page: 36
  year: 2014
  ident: e_1_3_4_28_2
  article-title: Regulation of type I interferon responses
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3581
– volume: 56
  start-page: 1160
  year: 2012
  ident: e_1_3_4_35_2
  article-title: Gene expression of peripheral blood mononuclear cells as a tool in dietary intervention studies: What do we know so far?
  publication-title: Mol Nutr Food Res
  doi: 10.1002/mnfr.201100685
– volume: 11
  start-page: 16
  year: 2014
  ident: e_1_3_4_37_2
  article-title: Cosinor-based rhythmometry
  publication-title: Theor Biol Med Model
  doi: 10.1186/1742-4682-11-16
– volume: 46
  start-page: 208
  year: 2014
  ident: e_1_3_4_27_2
  article-title: Circadian gene variants in cancer
  publication-title: Ann Med
  doi: 10.3109/07853890.2014.914808
– volume: 5
  start-page: e10995
  year: 2010
  ident: e_1_3_4_26_2
  article-title: Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0010995
– volume: 80
  start-page: 223
  year: 2015
  ident: e_1_3_4_5_2
  article-title: Clock-Talk: Interactions between central and peripheral circadian oscillators in mammals
  publication-title: Cold Spring Harb Symp Quant Biol
  doi: 10.1101/sqb.2015.80.027490
– volume: 29
  start-page: 391
  year: 2014
  ident: e_1_3_4_19_2
  article-title: Detecting rhythms in time series with RAIN
  publication-title: J Biol Rhythms
  doi: 10.1177/0748730414553029
– volume: 3
  start-page: 146
  year: 2014
  ident: e_1_3_4_38_2
  article-title: ReactomeFIViz: A Cytoscape app for pathway and network-based data analysis
  publication-title: F1000 Res
– ident: e_1_3_4_3_2
– volume: 18
  start-page: 164
  year: 2016
  ident: e_1_3_4_6_2
  article-title: Transcriptional architecture of the mammalian circadian clock
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2016.150
– volume: 37
  start-page: 544
  year: 2015
  ident: e_1_3_4_14_2
  article-title: Exploiting human and mouse transcriptomic data: Identification of circadian genes and pathways influencing health
  publication-title: BioEssays
  doi: 10.1002/bies.201400193
– volume: 32
  start-page: 3351
  year: 2016
  ident: e_1_3_4_18_2
  article-title: MetaCycle: An integrated R package to evaluate periodicity in large scale data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw405
– volume: 111
  start-page: 17302
  year: 2014
  ident: e_1_3_4_30_2
  article-title: Impact of circadian misalignment on energy metabolism during simulated nightshift work
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1412021111
– volume: 20
  start-page: 469
  year: 2006
  ident: e_1_3_4_24_2
  article-title: Evidence supporting a circadian control of natural killer cell function
  publication-title: Brain Behav Immun
  doi: 10.1016/j.bbi.2005.10.002
– volume: 7
  start-page: 187
  year: 2006
  ident: e_1_3_4_33_2
  article-title: Transcriptional profiling of peripheral blood cells in clinical pharmacogenomic studies
  publication-title: Pharmacogenomics
  doi: 10.2217/14622416.7.2.187
– volume: 37
  start-page: 1589
  year: 2014
  ident: e_1_3_4_13_2
  article-title: Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to sleep deprivation
  publication-title: Sleep
  doi: 10.5665/sleep.4064
– volume: 196
  start-page: 2466
  year: 2016
  ident: e_1_3_4_29_2
  article-title: Simulated night shift disrupts circadian rhythms of immune functions in humans
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1502422
– volume: 101
  start-page: 1066
  year: 2016
  ident: e_1_3_4_11_2
  article-title: Effects of the internal circadian system and circadian misalignment on glucose tolerance in chronic shift workers
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2015-3924
– volume: 7
  start-page: 16310
  year: 2017
  ident: e_1_3_4_36_2
  article-title: Rapid resetting of human peripheral clocks by phototherapy during simulated night shift work
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-16429-8
– volume: 112
  start-page: E6579
  year: 2015
  ident: e_1_3_4_21_2
  article-title: Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1515308112
– volume: 62
  start-page: 292
  year: 2014
  ident: e_1_3_4_4_2
  article-title: Impacts of shift work on sleep and circadian rhythms
  publication-title: Pathol Biol (Paris)
  doi: 10.1016/j.patbio.2014.08.001
– volume: 8
  start-page: e70813
  year: 2013
  ident: e_1_3_4_32_2
  article-title: Circadian adaptation to night shift work influences sleep, performance, mood and the autonomic modulation of the heart
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0070813
– volume: 355
  start-page: i5210
  year: 2016
  ident: e_1_3_4_1_2
  article-title: Health consequences of shift work and insufficient sleep
  publication-title: BMJ
  doi: 10.1136/bmj.i5210
– volume: 110
  start-page: E1132
  year: 2013
  ident: e_1_3_4_8_2
  article-title: Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome
  publication-title: Proc Natl Acad Sci USA
– volume: 32
  start-page: 380
  year: 2017
  ident: e_1_3_4_20_2
  article-title: Guidelines for genome-scale analysis of biological rhythms
  publication-title: J Biol Rhythms
  doi: 10.1177/0748730417728663
– volume: 56
  start-page: 647
  year: 2013
  ident: e_1_3_4_2_2
  article-title: Prevalence rates of work organization characteristics among workers in the U.S.: Data from the 2010 National Health Interview Survey
  publication-title: Am J Ind Med
  doi: 10.1002/ajim.22108
– volume: 261
  start-page: 285
  year: 2007
  ident: e_1_3_4_9_2
  article-title: Effects of rotating shift work on biomarkers of metabolic syndrome and inflammation
  publication-title: J Intern Med
  doi: 10.1111/j.1365-2796.2007.01766.x
– volume: 16
  start-page: 112
  year: 2016
  ident: e_1_3_4_22_2
  article-title: Natural killer cell memory in infection, inflammation and cancer
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2015.9
– volume: 188
  start-page: 2583
  year: 2012
  ident: e_1_3_4_23_2
  article-title: Chronic shift-lag alters the circadian clock of NK cells and promotes lung cancer growth in rats
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1102715
– volume: 3
  start-page: 350
  year: 2003
  ident: e_1_3_4_25_2
  article-title: The circadian clock: Pacemaker and tumour suppressor
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1072
– volume: 25
  start-page: 215
  year: 2008
  ident: e_1_3_4_31_2
  article-title: Do permanent night workers show circadian adjustment? A review based on the endogenous melatonin rhythm
  publication-title: Chronobiol Int
  doi: 10.1080/07420520802106835
– volume: 7
  start-page: e37150
  year: 2012
  ident: e_1_3_4_17_2
  article-title: Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0037150
– volume: 111
  start-page: E682
  year: 2014
  ident: e_1_3_4_7_2
  article-title: Mistimed sleep disrupts circadian regulation of the human transcriptome
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1316335111
– volume: 171
  start-page: 557
  year: 2001
  ident: e_1_3_4_10_2
  article-title: Postprandial hormone and metabolic responses amongst shift workers in Antarctica
  publication-title: J Endocrinol
  doi: 10.1677/joe.0.1710557
– volume: 31
  start-page: 244
  year: 2016
  ident: e_1_3_4_15_2
  article-title: Discovering biology in periodic data through phase set enrichment analysis (PSEA)
  publication-title: J Biol Rhythms
  doi: 10.1177/0748730416631895
– volume: 111
  start-page: 2919
  year: 2011
  ident: e_1_3_4_34_2
  article-title: Changes in transcriptional output of human peripheral blood mononuclear cells following resistance exercise
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-011-1923-2
SSID ssj0009580
Score 2.5492685
Snippet Misalignment of the endogenous circadian timing system leads to disruption of physiological rhythms and may contribute to the development of the deleterious...
Night shift work is associated with adverse health effects, including diabetes, cardiovascular disease, and cancer. Understanding the molecular mechanisms that...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5540
SubjectTerms Adolescent
Adult
Biological activity
Biological Sciences
Blood
Cardiovascular disease
Circadian rhythm
Circadian Rhythm - physiology
Circadian rhythms
Computer Simulation
Data processing
Environmental impact
Female
Functional analysis
Gene expression
Health risks
Humans
Immune response
Immune response (cell-mediated)
Immune system
Leukocytes (mononuclear)
Leukocytes, Mononuclear - metabolism
Male
Misalignment
Natural killer cells
Nervous system
Night shifts
Nighttime
Peripheral blood mononuclear cells
Ribonucleic acid
RNA
Shift work
Shift Work Schedule
Sleep
Sleep - physiology
Sleep Disorders, Circadian Rhythm - genetics
Sleep Disorders, Circadian Rhythm - physiopathology
Transcription factors
Transcriptome
Young Adult
Title Simulated night shift work induces circadian misalignment of the human peripheral blood mononuclear cell transcriptome
URI https://www.jstor.org/stable/26509857
https://www.ncbi.nlm.nih.gov/pubmed/29735673
https://www.proquest.com/docview/2100879272
https://www.proquest.com/docview/2036203342
https://pubmed.ncbi.nlm.nih.gov/PMC6003514
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKuHBBDBiUDWQkDkNRShK7iX2c-KEJRDWJTdotctyERdvSqWl32H-z_5T3bMdpq04CLlGUOI6S78vzs_Pe9wj5MNU4KHAkb1yEvEyrUFWShUxURamE0JGJzfk5SY_P-Pfz8flgcL8StbRcFCN9tzWv5H9QhWOAK2bJ_gOyvlM4APuAL2wBYdj-Fca_6musvoV_8HGOHbQXdbUw1V8CmGovMdhK13Nt5QcAUPC5f_u__-hx2gp9KHZs1AWubBx7AA8wa1DoWM0DXNnHQhKNtS8b4gYnfvxruz4n3fLiUZ-s4ixIG4TByaQvffwDwy3vbCgQJmj3UUM4WCmXS6T9URxFLmu7ZGsorPpF_ll9a-UQvkCD0hWTdssZscA_8TYzeVRaEwweTJhyW0TU22ib8-nIaHOqnckFfyjaOhaA8cICxo1qR-ClgSslXS8rzLi5NtTAAl7j1NZU2ZDf7k49Io8TmImwbkHI6zqLqFOMytinjbuh1LS7fs3vsaGv2yY1m7G5K87O6TPy1M1S6JGl3C4ZlM1zstuhSA-dWPnHF-TWc5AaDlLDQYocpI6D1HOQrnKQzioKfKGGg7TnIDUcpCscpMhBusbBl-Ts29fTz8ehq-URanBJF2E8LmRWJHqMApFpXEiplQDklJI4zMhEi5ipJC4YeFSSMc0jXXCRyiyqpFSM7ZEduG35mtAqVgL84EhPBeeJUgVXaTXlaVQqCV3GQzLq3nSundA91lu5yk3ARcZyRCnvURqSQ3_BjdV4ebjpnoHOt0tQgVKMsyE56LDMnYVo8wSVs-DZsmRI3vvT8KrxtcG3MFtCG3QhI8Y4tHlloe87d9wZkmyNFL4BasOvn2nqC6MRn5oQAf7mwT73yZP-8zsgO4v5snwL_vWieGcY_gcMOdUm
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulated+night+shift+work+induces+circadian+misalignment+of+the+human+peripheral+blood+mononuclear+cell+transcriptome&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kervezee%2C+Laura&rft.au=Cuesta%2C+Marc&rft.au=Cermakian%2C+Nicolas&rft.au=Boivin%2C+Diane+B&rft.date=2018-05-22&rft.eissn=1091-6490&rft.volume=115&rft.issue=21&rft.spage=5540&rft_id=info:doi/10.1073%2Fpnas.1720719115&rft_id=info%3Apmid%2F29735673&rft.externalDocID=29735673
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon