Simulated night shift work induces circadian misalignment of the human peripheral blood mononuclear cell transcriptome
Misalignment of the endogenous circadian timing system leads to disruption of physiological rhythms and may contribute to the development of the deleterious health effects associated with night shift work. However, the molecular underpinnings remain to be elucidated. Here, we investigated the effect...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 21; pp. 5540 - 5545 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
22.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Misalignment of the endogenous circadian timing system leads to disruption of physiological rhythms and may contribute to the development of the deleterious health effects associated with night shift work. However, the molecular underpinnings remain to be elucidated. Here, we investigated the effect of a 4-day simulated night shift work protocol on the circadian regulation of the human transcriptome. Repeated blood samples were collected over two 24-hour measurement periods from eight healthy subjects under highly controlled laboratory conditions before and 4 days after a 10-hour delay of their habitual sleep period. RNA was extracted from peripheral blood mononuclear cells to obtain transcriptomic data. Cosinor analysis revealed a marked reduction of significantly rhythmic transcripts in the night shift condition compared with baseline at group and individual levels. Subsequent analysis using a mixed-effects model selection approach indicated that this decrease is mainly due to dampened rhythms rather than to a complete loss of rhythmicity: 73% of transcripts rhythmically expressed at baseline remained rhythmic during the night shift condition with a similar phase relative to habitual bedtimes, but with lower amplitudes. Functional analysis revealed that key biological processes are affected by the night shift protocol, most notably the natural killer cell-mediated immune response and Jun/AP1 and STAT pathways. These results show that 4 days of simulated night shifts leads to a loss in temporal coordination between the human circadian transcriptome and the external environment and impacts biological processes related to the adverse health effects associated to night shift work. |
---|---|
AbstractList | Misalignment of the endogenous circadian timing system leads to disruption of physiological rhythms and may contribute to the development of the deleterious health effects associated with night shift work. However, the molecular underpinnings remain to be elucidated. Here, we investigated the effect of a 4-day simulated night shift work protocol on the circadian regulation of the human transcriptome. Repeated blood samples were collected over two 24-hour measurement periods from eight healthy subjects under highly controlled laboratory conditions before and 4 days after a 10-hour delay of their habitual sleep period. RNA was extracted from peripheral blood mononuclear cells to obtain transcriptomic data. Cosinor analysis revealed a marked reduction of significantly rhythmic transcripts in the night shift condition compared with baseline at group and individual levels. Subsequent analysis using a mixed-effects model selection approach indicated that this decrease is mainly due to dampened rhythms rather than to a complete loss of rhythmicity: 73% of transcripts rhythmically expressed at baseline remained rhythmic during the night shift condition with a similar phase relative to habitual bedtimes, but with lower amplitudes. Functional analysis revealed that key biological processes are affected by the night shift protocol, most notably the natural killer cell-mediated immune response and Jun/AP1 and STAT pathways. These results show that 4 days of simulated night shifts leads to a loss in temporal coordination between the human circadian transcriptome and the external environment and impacts biological processes related to the adverse health effects associated to night shift work. Night shift work is associated with adverse health effects, including diabetes, cardiovascular disease, and cancer. Understanding the molecular mechanisms that underlie this association is instrumental in advancing the diagnosis, prevention, and treatment of shift work-related health concerns. We characterized the effect on genome-wide gene expression levels of a 4-day protocol simulating night shifts in healthy human subjects under highly controlled laboratory conditions. We demonstrate that this night shift protocol leads to a dampening of gene expression rhythms and a desynchrony between rhythmic transcripts and the shifted sleep/wake cycle. Moreover, we uncovered key biological processes and regulatory molecules that are altered during this night shift protocol and that may contribute to the development of health problems on the long term. Misalignment of the endogenous circadian timing system leads to disruption of physiological rhythms and may contribute to the development of the deleterious health effects associated with night shift work. However, the molecular underpinnings remain to be elucidated. Here, we investigated the effect of a 4-day simulated night shift work protocol on the circadian regulation of the human transcriptome. Repeated blood samples were collected over two 24-hour measurement periods from eight healthy subjects under highly controlled laboratory conditions before and 4 days after a 10-hour delay of their habitual sleep period. RNA was extracted from peripheral blood mononuclear cells to obtain transcriptomic data. Cosinor analysis revealed a marked reduction of significantly rhythmic transcripts in the night shift condition compared with baseline at group and individual levels. Subsequent analysis using a mixed-effects model selection approach indicated that this decrease is mainly due to dampened rhythms rather than to a complete loss of rhythmicity: 73% of transcripts rhythmically expressed at baseline remained rhythmic during the night shift condition with a similar phase relative to habitual bedtimes, but with lower amplitudes. Functional analysis revealed that key biological processes are affected by the night shift protocol, most notably the natural killer cell-mediated immune response and Jun/AP1 and STAT pathways. These results show that 4 days of simulated night shifts leads to a loss in temporal coordination between the human circadian transcriptome and the external environment and impacts biological processes related to the adverse health effects associated to night shift work. Misalignment of the endogenous circadian timing system leads to disruption of physiological rhythms and may contribute to the development of the deleterious health effects associated with night shift work. However, the molecular underpinnings remain to be elucidated. Here, we investigated the effect of a 4-day simulated night shift work protocol on the circadian regulation of the human transcriptome. Repeated blood samples were collected over two 24-hour measurement periods from eight healthy subjects under highly controlled laboratory conditions before and 4 days after a 10-hour delay of their habitual sleep period. RNA was extracted from peripheral blood mononuclear cells to obtain transcriptomic data. Cosinor analysis revealed a marked reduction of significantly rhythmic transcripts in the night shift condition compared with baseline at group and individual levels. Subsequent analysis using a mixed-effects model selection approach indicated that this decrease is mainly due to dampened rhythms rather than to a complete loss of rhythmicity: 73% of transcripts rhythmically expressed at baseline remained rhythmic during the night shift condition with a similar phase relative to habitual bedtimes, but with lower amplitudes. Functional analysis revealed that key biological processes are affected by the night shift protocol, most notably the natural killer cell-mediated immune response and Jun/AP1 and STAT pathways. These results show that 4 days of simulated night shifts leads to a loss in temporal coordination between the human circadian transcriptome and the external environment and impacts biological processes related to the adverse health effects associated to night shift work.Misalignment of the endogenous circadian timing system leads to disruption of physiological rhythms and may contribute to the development of the deleterious health effects associated with night shift work. However, the molecular underpinnings remain to be elucidated. Here, we investigated the effect of a 4-day simulated night shift work protocol on the circadian regulation of the human transcriptome. Repeated blood samples were collected over two 24-hour measurement periods from eight healthy subjects under highly controlled laboratory conditions before and 4 days after a 10-hour delay of their habitual sleep period. RNA was extracted from peripheral blood mononuclear cells to obtain transcriptomic data. Cosinor analysis revealed a marked reduction of significantly rhythmic transcripts in the night shift condition compared with baseline at group and individual levels. Subsequent analysis using a mixed-effects model selection approach indicated that this decrease is mainly due to dampened rhythms rather than to a complete loss of rhythmicity: 73% of transcripts rhythmically expressed at baseline remained rhythmic during the night shift condition with a similar phase relative to habitual bedtimes, but with lower amplitudes. Functional analysis revealed that key biological processes are affected by the night shift protocol, most notably the natural killer cell-mediated immune response and Jun/AP1 and STAT pathways. These results show that 4 days of simulated night shifts leads to a loss in temporal coordination between the human circadian transcriptome and the external environment and impacts biological processes related to the adverse health effects associated to night shift work. |
Author | Cermakian, Nicolas Cuesta, Marc Kervezee, Laura Boivin, Diane B. |
Author_xml | – sequence: 1 givenname: Laura surname: Kervezee fullname: Kervezee, Laura organization: Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada H4H 1R3 – sequence: 2 givenname: Marc surname: Cuesta fullname: Cuesta, Marc organization: Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada H4H 1R3 – sequence: 3 givenname: Nicolas surname: Cermakian fullname: Cermakian, Nicolas organization: Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada H4H 1R3 – sequence: 4 givenname: Diane B. surname: Boivin fullname: Boivin, Diane B. organization: Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada H4H 1R3 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29735673$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kb1v1TAUxS1URF8LMxPIEgtL2ms7juMFCVV8SZUYgNlyHOfFj8QOtlPEf4-jV1rowOTh_s71OfecoRMfvEXoOYELAoJdLl6nCyIoCCIJ4Y_QjoAkVVNLOEE7ACqqtqb1KTpL6QAAkrfwBJ1SKRhvBNuhmy9uXiedbY-9248Zp9ENGf8M8Tt2vl-NTdi4aHTvtMezS3pyez9bn3EYcB4tHte5TBYb3TLaqCfcTSH0eA7F6momqyM2dppwjtonU6gcZvsUPR70lOyz2_ccfXv_7uvVx-r684dPV2-vK8NB5orwToqOGi5IDQ3ppDS65TVoLYGBkNS0hGlKOsYaKhkzNZiubhspYJBSM3aO3hz3Lms3294U38WiWqKbdfylgnbq34l3o9qHG9UAME7qsuD17YIYfqw2ZVVusOXR3oY1KQrlZ2CspgV99QA9hDX6Ek9RAtAWu2KjXv7t6M7Kn0oKcHkETAwpRTvcIQTUVrraSlf3pRcFf6AwLuvswhbJTf_RvTjqDimHeO-kKbdvuWC_AU10vBc |
CitedBy_id | crossref_primary_10_1080_07420528_2021_1994984 crossref_primary_10_3389_fendo_2023_987208 crossref_primary_10_1172_JCI170998 crossref_primary_10_15690_vramn16011 crossref_primary_10_12688_f1000research_136998_1 crossref_primary_10_1093_sleep_zsae214 crossref_primary_10_1177_0748730419826694 crossref_primary_10_12688_f1000research_136998_2 crossref_primary_10_1038_s41398_019_0671_7 crossref_primary_10_12688_f1000research_136998_3 crossref_primary_10_1186_s41983_022_00468_8 crossref_primary_10_1007_s00018_019_03183_5 crossref_primary_10_1111_jpi_12654 crossref_primary_10_1038_s42255_024_01027_6 crossref_primary_10_1038_s42255_024_01051_6 crossref_primary_10_1186_s13073_021_00863_5 crossref_primary_10_1016_j_csbj_2020_07_002 crossref_primary_10_1111_apha_13703 crossref_primary_10_1002_jbio_201900102 crossref_primary_10_7180_kmj_22_014 crossref_primary_10_1111_febs_16095 crossref_primary_10_1093_sleep_zsae100 crossref_primary_10_1080_07420528_2021_1881108 crossref_primary_10_3389_fnins_2024_1330695 crossref_primary_10_1002_adbi_202200292 crossref_primary_10_1177_07487304211064218 crossref_primary_10_1177_07487304221132088 crossref_primary_10_1177_07487304231179595 crossref_primary_10_1038_s41574_022_00747_7 crossref_primary_10_1016_j_isci_2024_109331 crossref_primary_10_3389_fimmu_2022_1000951 crossref_primary_10_1016_j_taap_2022_115863 crossref_primary_10_1111_jpi_12726 crossref_primary_10_1111_apha_13281 crossref_primary_10_1111_jne_12886 crossref_primary_10_1172_JCI148282 crossref_primary_10_1016_j_isci_2021_103144 crossref_primary_10_1055_s_0043_1772810 crossref_primary_10_1016_j_jtos_2021_02_001 crossref_primary_10_1080_07420528_2021_1977654 crossref_primary_10_1016_j_sleh_2023_09_005 crossref_primary_10_1016_j_isci_2024_109684 crossref_primary_10_1016_j_autrev_2022_103236 crossref_primary_10_1007_s00281_021_00904_6 crossref_primary_10_1038_s41598_021_87029_w crossref_primary_10_1111_ejn_16428 crossref_primary_10_1038_s41598_024_67297_y crossref_primary_10_1016_j_jsmc_2018_04_003 crossref_primary_10_2486_indhealth_SW_5 crossref_primary_10_1371_journal_pbio_3000303 crossref_primary_10_1038_s41467_019_11400_9 crossref_primary_10_3390_ijms232213722 crossref_primary_10_1080_07420528_2022_2131562 crossref_primary_10_1371_journal_pone_0217368 crossref_primary_10_2486_indhealth_SW_2 crossref_primary_10_1016_j_smrv_2020_101336 crossref_primary_10_1007_s00420_023_02037_9 crossref_primary_10_1007_s11606_024_08946_w crossref_primary_10_1080_07420528_2024_2353857 crossref_primary_10_3390_ijms25168659 crossref_primary_10_1155_2018_7925219 crossref_primary_10_1021_acs_jproteome_3c00418 crossref_primary_10_1002_oby_22830 crossref_primary_10_1096_fj_202302261RR crossref_primary_10_1177_0748730418821776 crossref_primary_10_1096_fj_201801889R crossref_primary_10_1371_journal_pone_0223212 crossref_primary_10_3390_ijerph182413158 crossref_primary_10_1186_s40560_024_00769_5 crossref_primary_10_3389_fimmu_2022_776917 crossref_primary_10_3390_nu14112202 crossref_primary_10_3390_biomedicines12071496 crossref_primary_10_1371_journal_pdig_0000439 crossref_primary_10_1186_s12864_018_5401_7 crossref_primary_10_1177_07487304221134160 crossref_primary_10_1016_j_molmed_2019_04_013 crossref_primary_10_1111_ejn_14216 crossref_primary_10_1111_jan_15962 crossref_primary_10_3389_fimmu_2020_599547 crossref_primary_10_3390_healthcare7010001 crossref_primary_10_1111_ejn_14255 crossref_primary_10_1136_bmjopen_2021_059677 crossref_primary_10_1093_annweh_wxac004 crossref_primary_10_1016_j_heliyon_2024_e28240 crossref_primary_10_1093_jncics_pkz106 crossref_primary_10_1111_jpi_70017 crossref_primary_10_3389_fimmu_2022_939829 crossref_primary_10_1093_sleep_zsad023 crossref_primary_10_1177_0748730420987669 crossref_primary_10_1002_pchj_252 crossref_primary_10_1038_s41420_024_01960_1 crossref_primary_10_1016_j_coph_2020_11_007 crossref_primary_10_1016_j_yjmcc_2024_12_008 crossref_primary_10_1111_ped_14992 |
Cites_doi | 10.1080/07420528.2017.1316732 10.1093/sleep/zsx068 10.1038/nri3581 10.1002/mnfr.201100685 10.1186/1742-4682-11-16 10.3109/07853890.2014.914808 10.1371/journal.pone.0010995 10.1101/sqb.2015.80.027490 10.1177/0748730414553029 10.1038/nrg.2016.150 10.1002/bies.201400193 10.1093/bioinformatics/btw405 10.1073/pnas.1412021111 10.1016/j.bbi.2005.10.002 10.2217/14622416.7.2.187 10.5665/sleep.4064 10.4049/jimmunol.1502422 10.1210/jc.2015-3924 10.1038/s41598-017-16429-8 10.1073/pnas.1515308112 10.1016/j.patbio.2014.08.001 10.1371/journal.pone.0070813 10.1136/bmj.i5210 10.1177/0748730417728663 10.1002/ajim.22108 10.1111/j.1365-2796.2007.01766.x 10.1038/nri.2015.9 10.4049/jimmunol.1102715 10.1038/nrc1072 10.1080/07420520802106835 10.1371/journal.pone.0037150 10.1073/pnas.1316335111 10.1677/joe.0.1710557 10.1177/0748730416631895 10.1007/s00421-011-1923-2 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences May 22, 2018 2018 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences May 22, 2018 – notice: 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1720719115 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 5545 |
ExternalDocumentID | PMC6003514 29735673 10_1073_pnas_1720719115 26509857 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CIHR grantid: MOP-102724 – fundername: Gouvernement du Canada | Canadian Institutes of Health Research (CIHR) grantid: MOP-102724 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-15b97b2c5714061b99ca8540aa9030792c813a21b3362933c40cb486970f99a33 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:35:15 EDT 2025 Fri Jul 11 03:37:33 EDT 2025 Sat Aug 23 13:10:35 EDT 2025 Thu Apr 03 07:06:42 EDT 2025 Tue Jul 01 03:19:49 EDT 2025 Thu Apr 24 23:12:40 EDT 2025 Fri May 30 11:17:16 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | transcriptomics night shift work chronobiology circadian rhythms |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-15b97b2c5714061b99ca8540aa9030792c813a21b3362933c40cb486970f99a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: N.C. and D.B.B. designed research; L.K. and M.C. performed research; L.K. analyzed data; and L.K., M.C., N.C., and D.B.B. wrote the paper. Edited by Joseph S. Takahashi, Howard Hughes Medical Institute and University of Texas Southwestern Medical Center, Dallas, TX, and approved April 6, 2018 (received for review December 3, 2017) |
ORCID | 0000-0002-6062-9164 |
OpenAccessLink | https://www.pnas.org/content/pnas/115/21/5540.full.pdf |
PMID | 29735673 |
PQID | 2100879272 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6003514 proquest_miscellaneous_2036203342 proquest_journals_2100879272 pubmed_primary_29735673 crossref_primary_10_1073_pnas_1720719115 crossref_citationtrail_10_1073_pnas_1720719115 jstor_primary_26509857 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-22 |
PublicationDateYYYYMMDD | 2018-05-22 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2018 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 Cuesta M (e_1_3_4_36_2) 2017; 7 Ivashkiv LB (e_1_3_4_28_2) 2014; 14 Arnardottir ES (e_1_3_4_13_2) 2014; 37 Laing EE (e_1_3_4_14_2) 2015; 37 Cuesta M (e_1_3_4_29_2) 2016; 196 Archer SN (e_1_3_4_7_2) 2014; 111 Lee S (e_1_3_4_26_2) 2010; 5 Morris CJ (e_1_3_4_11_2) 2016; 101 Atger F (e_1_3_4_21_2) 2015; 112 Hughes ME (e_1_3_4_20_2) 2017; 32 Lund J (e_1_3_4_10_2) 2001; 171 Wu G (e_1_3_4_38_2) 2014; 3 Wu G (e_1_3_4_18_2) 2016; 32 Takahashi JS (e_1_3_4_6_2) 2016; 18 Möller-Levet CS (e_1_3_4_8_2) 2013; 110 McHill AW (e_1_3_4_30_2) 2014; 111 de Mello VD (e_1_3_4_35_2) 2012; 56 Alterman T (e_1_3_4_2_2) 2013; 56 Husse J (e_1_3_4_16_2) 2017; 40 Fu L (e_1_3_4_25_2) 2003; 3 Thaben PF (e_1_3_4_19_2) 2014; 29 Burczynski ME (e_1_3_4_33_2) 2006; 7 Kettner NM (e_1_3_4_27_2) 2014; 46 Zhang R (e_1_3_4_15_2) 2016; 31 Folkard S (e_1_3_4_31_2) 2008; 25 Schibler U (e_1_3_4_5_2) 2015; 80 Logan RW (e_1_3_4_23_2) 2012; 188 Arjona A (e_1_3_4_24_2) 2006; 20 Boudreau P (e_1_3_4_32_2) 2013; 8 Boivin DB (e_1_3_4_4_2) 2014; 62 Carlson LA (e_1_3_4_34_2) 2011; 111 Sookoian S (e_1_3_4_9_2) 2007; 261 Cerwenka A (e_1_3_4_22_2) 2016; 16 Cornelissen G (e_1_3_4_37_2) 2014; 11 Kecklund G (e_1_3_4_1_2) 2016; 355 Barclay JL (e_1_3_4_17_2) 2012; 7 Wirth MD (e_1_3_4_12_2) 2017; 34 |
References_xml | – volume: 34 start-page: 721 year: 2017 ident: e_1_3_4_12_2 article-title: Association of shiftwork and immune cells among police officers from the Buffalo Cardio-Metabolic Occupational Police Stress study publication-title: Chronobiol Int doi: 10.1080/07420528.2017.1316732 – volume: 40 year: 2017 ident: e_1_3_4_16_2 article-title: Tissue-specific dissociation of diurnal transcriptome rhythms during sleep restriction in mice publication-title: Sleep doi: 10.1093/sleep/zsx068 – volume: 14 start-page: 36 year: 2014 ident: e_1_3_4_28_2 article-title: Regulation of type I interferon responses publication-title: Nat Rev Immunol doi: 10.1038/nri3581 – volume: 56 start-page: 1160 year: 2012 ident: e_1_3_4_35_2 article-title: Gene expression of peripheral blood mononuclear cells as a tool in dietary intervention studies: What do we know so far? publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.201100685 – volume: 11 start-page: 16 year: 2014 ident: e_1_3_4_37_2 article-title: Cosinor-based rhythmometry publication-title: Theor Biol Med Model doi: 10.1186/1742-4682-11-16 – volume: 46 start-page: 208 year: 2014 ident: e_1_3_4_27_2 article-title: Circadian gene variants in cancer publication-title: Ann Med doi: 10.3109/07853890.2014.914808 – volume: 5 start-page: e10995 year: 2010 ident: e_1_3_4_26_2 article-title: Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice publication-title: PLoS One doi: 10.1371/journal.pone.0010995 – volume: 80 start-page: 223 year: 2015 ident: e_1_3_4_5_2 article-title: Clock-Talk: Interactions between central and peripheral circadian oscillators in mammals publication-title: Cold Spring Harb Symp Quant Biol doi: 10.1101/sqb.2015.80.027490 – volume: 29 start-page: 391 year: 2014 ident: e_1_3_4_19_2 article-title: Detecting rhythms in time series with RAIN publication-title: J Biol Rhythms doi: 10.1177/0748730414553029 – volume: 3 start-page: 146 year: 2014 ident: e_1_3_4_38_2 article-title: ReactomeFIViz: A Cytoscape app for pathway and network-based data analysis publication-title: F1000 Res – ident: e_1_3_4_3_2 – volume: 18 start-page: 164 year: 2016 ident: e_1_3_4_6_2 article-title: Transcriptional architecture of the mammalian circadian clock publication-title: Nat Rev Genet doi: 10.1038/nrg.2016.150 – volume: 37 start-page: 544 year: 2015 ident: e_1_3_4_14_2 article-title: Exploiting human and mouse transcriptomic data: Identification of circadian genes and pathways influencing health publication-title: BioEssays doi: 10.1002/bies.201400193 – volume: 32 start-page: 3351 year: 2016 ident: e_1_3_4_18_2 article-title: MetaCycle: An integrated R package to evaluate periodicity in large scale data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw405 – volume: 111 start-page: 17302 year: 2014 ident: e_1_3_4_30_2 article-title: Impact of circadian misalignment on energy metabolism during simulated nightshift work publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1412021111 – volume: 20 start-page: 469 year: 2006 ident: e_1_3_4_24_2 article-title: Evidence supporting a circadian control of natural killer cell function publication-title: Brain Behav Immun doi: 10.1016/j.bbi.2005.10.002 – volume: 7 start-page: 187 year: 2006 ident: e_1_3_4_33_2 article-title: Transcriptional profiling of peripheral blood cells in clinical pharmacogenomic studies publication-title: Pharmacogenomics doi: 10.2217/14622416.7.2.187 – volume: 37 start-page: 1589 year: 2014 ident: e_1_3_4_13_2 article-title: Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to sleep deprivation publication-title: Sleep doi: 10.5665/sleep.4064 – volume: 196 start-page: 2466 year: 2016 ident: e_1_3_4_29_2 article-title: Simulated night shift disrupts circadian rhythms of immune functions in humans publication-title: J Immunol doi: 10.4049/jimmunol.1502422 – volume: 101 start-page: 1066 year: 2016 ident: e_1_3_4_11_2 article-title: Effects of the internal circadian system and circadian misalignment on glucose tolerance in chronic shift workers publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2015-3924 – volume: 7 start-page: 16310 year: 2017 ident: e_1_3_4_36_2 article-title: Rapid resetting of human peripheral clocks by phototherapy during simulated night shift work publication-title: Sci Rep doi: 10.1038/s41598-017-16429-8 – volume: 112 start-page: E6579 year: 2015 ident: e_1_3_4_21_2 article-title: Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1515308112 – volume: 62 start-page: 292 year: 2014 ident: e_1_3_4_4_2 article-title: Impacts of shift work on sleep and circadian rhythms publication-title: Pathol Biol (Paris) doi: 10.1016/j.patbio.2014.08.001 – volume: 8 start-page: e70813 year: 2013 ident: e_1_3_4_32_2 article-title: Circadian adaptation to night shift work influences sleep, performance, mood and the autonomic modulation of the heart publication-title: PLoS One doi: 10.1371/journal.pone.0070813 – volume: 355 start-page: i5210 year: 2016 ident: e_1_3_4_1_2 article-title: Health consequences of shift work and insufficient sleep publication-title: BMJ doi: 10.1136/bmj.i5210 – volume: 110 start-page: E1132 year: 2013 ident: e_1_3_4_8_2 article-title: Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome publication-title: Proc Natl Acad Sci USA – volume: 32 start-page: 380 year: 2017 ident: e_1_3_4_20_2 article-title: Guidelines for genome-scale analysis of biological rhythms publication-title: J Biol Rhythms doi: 10.1177/0748730417728663 – volume: 56 start-page: 647 year: 2013 ident: e_1_3_4_2_2 article-title: Prevalence rates of work organization characteristics among workers in the U.S.: Data from the 2010 National Health Interview Survey publication-title: Am J Ind Med doi: 10.1002/ajim.22108 – volume: 261 start-page: 285 year: 2007 ident: e_1_3_4_9_2 article-title: Effects of rotating shift work on biomarkers of metabolic syndrome and inflammation publication-title: J Intern Med doi: 10.1111/j.1365-2796.2007.01766.x – volume: 16 start-page: 112 year: 2016 ident: e_1_3_4_22_2 article-title: Natural killer cell memory in infection, inflammation and cancer publication-title: Nat Rev Immunol doi: 10.1038/nri.2015.9 – volume: 188 start-page: 2583 year: 2012 ident: e_1_3_4_23_2 article-title: Chronic shift-lag alters the circadian clock of NK cells and promotes lung cancer growth in rats publication-title: J Immunol doi: 10.4049/jimmunol.1102715 – volume: 3 start-page: 350 year: 2003 ident: e_1_3_4_25_2 article-title: The circadian clock: Pacemaker and tumour suppressor publication-title: Nat Rev Cancer doi: 10.1038/nrc1072 – volume: 25 start-page: 215 year: 2008 ident: e_1_3_4_31_2 article-title: Do permanent night workers show circadian adjustment? A review based on the endogenous melatonin rhythm publication-title: Chronobiol Int doi: 10.1080/07420520802106835 – volume: 7 start-page: e37150 year: 2012 ident: e_1_3_4_17_2 article-title: Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork publication-title: PLoS One doi: 10.1371/journal.pone.0037150 – volume: 111 start-page: E682 year: 2014 ident: e_1_3_4_7_2 article-title: Mistimed sleep disrupts circadian regulation of the human transcriptome publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1316335111 – volume: 171 start-page: 557 year: 2001 ident: e_1_3_4_10_2 article-title: Postprandial hormone and metabolic responses amongst shift workers in Antarctica publication-title: J Endocrinol doi: 10.1677/joe.0.1710557 – volume: 31 start-page: 244 year: 2016 ident: e_1_3_4_15_2 article-title: Discovering biology in periodic data through phase set enrichment analysis (PSEA) publication-title: J Biol Rhythms doi: 10.1177/0748730416631895 – volume: 111 start-page: 2919 year: 2011 ident: e_1_3_4_34_2 article-title: Changes in transcriptional output of human peripheral blood mononuclear cells following resistance exercise publication-title: Eur J Appl Physiol doi: 10.1007/s00421-011-1923-2 |
SSID | ssj0009580 |
Score | 2.5492685 |
Snippet | Misalignment of the endogenous circadian timing system leads to disruption of physiological rhythms and may contribute to the development of the deleterious... Night shift work is associated with adverse health effects, including diabetes, cardiovascular disease, and cancer. Understanding the molecular mechanisms that... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5540 |
SubjectTerms | Adolescent Adult Biological activity Biological Sciences Blood Cardiovascular disease Circadian rhythm Circadian Rhythm - physiology Circadian rhythms Computer Simulation Data processing Environmental impact Female Functional analysis Gene expression Health risks Humans Immune response Immune response (cell-mediated) Immune system Leukocytes (mononuclear) Leukocytes, Mononuclear - metabolism Male Misalignment Natural killer cells Nervous system Night shifts Nighttime Peripheral blood mononuclear cells Ribonucleic acid RNA Shift work Shift Work Schedule Sleep Sleep - physiology Sleep Disorders, Circadian Rhythm - genetics Sleep Disorders, Circadian Rhythm - physiopathology Transcription factors Transcriptome Young Adult |
Title | Simulated night shift work induces circadian misalignment of the human peripheral blood mononuclear cell transcriptome |
URI | https://www.jstor.org/stable/26509857 https://www.ncbi.nlm.nih.gov/pubmed/29735673 https://www.proquest.com/docview/2100879272 https://www.proquest.com/docview/2036203342 https://pubmed.ncbi.nlm.nih.gov/PMC6003514 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKuHBBDBiUDWQkDkNRShK7iX2c-KEJRDWJTdotctyERdvSqWl32H-z_5T3bMdpq04CLlGUOI6S78vzs_Pe9wj5MNU4KHAkb1yEvEyrUFWShUxURamE0JGJzfk5SY_P-Pfz8flgcL8StbRcFCN9tzWv5H9QhWOAK2bJ_gOyvlM4APuAL2wBYdj-Fca_6musvoV_8HGOHbQXdbUw1V8CmGovMdhK13Nt5QcAUPC5f_u__-hx2gp9KHZs1AWubBx7AA8wa1DoWM0DXNnHQhKNtS8b4gYnfvxruz4n3fLiUZ-s4ixIG4TByaQvffwDwy3vbCgQJmj3UUM4WCmXS6T9URxFLmu7ZGsorPpF_ll9a-UQvkCD0hWTdssZscA_8TYzeVRaEwweTJhyW0TU22ib8-nIaHOqnckFfyjaOhaA8cICxo1qR-ClgSslXS8rzLi5NtTAAl7j1NZU2ZDf7k49Io8TmImwbkHI6zqLqFOMytinjbuh1LS7fs3vsaGv2yY1m7G5K87O6TPy1M1S6JGl3C4ZlM1zstuhSA-dWPnHF-TWc5AaDlLDQYocpI6D1HOQrnKQzioKfKGGg7TnIDUcpCscpMhBusbBl-Ts29fTz8ehq-URanBJF2E8LmRWJHqMApFpXEiplQDklJI4zMhEi5ipJC4YeFSSMc0jXXCRyiyqpFSM7ZEduG35mtAqVgL84EhPBeeJUgVXaTXlaVQqCV3GQzLq3nSundA91lu5yk3ARcZyRCnvURqSQ3_BjdV4ebjpnoHOt0tQgVKMsyE56LDMnYVo8wSVs-DZsmRI3vvT8KrxtcG3MFtCG3QhI8Y4tHlloe87d9wZkmyNFL4BasOvn2nqC6MRn5oQAf7mwT73yZP-8zsgO4v5snwL_vWieGcY_gcMOdUm |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulated+night+shift+work+induces+circadian+misalignment+of+the+human+peripheral+blood+mononuclear+cell+transcriptome&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kervezee%2C+Laura&rft.au=Cuesta%2C+Marc&rft.au=Cermakian%2C+Nicolas&rft.au=Boivin%2C+Diane+B&rft.date=2018-05-22&rft.eissn=1091-6490&rft.volume=115&rft.issue=21&rft.spage=5540&rft_id=info:doi/10.1073%2Fpnas.1720719115&rft_id=info%3Apmid%2F29735673&rft.externalDocID=29735673 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |