The C-terminal Tails of the Bacterial Chaperonin GroEL Stimulate Protein Folding by Directly Altering the Conformation of a Substrate Protein

Many essential cellular proteins fold only with the assistance of chaperonin machines like the GroEL-GroES system of Escherichia coli. However, the mechanistic details of assisted protein folding by GroEL-GroES remain the subject of ongoing debate. We previously demonstrated that GroEL-GroES enhance...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 289; no. 33; pp. 23219 - 23232
Main Authors Weaver, Jeremy, Rye, Hays S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.08.2014
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many essential cellular proteins fold only with the assistance of chaperonin machines like the GroEL-GroES system of Escherichia coli. However, the mechanistic details of assisted protein folding by GroEL-GroES remain the subject of ongoing debate. We previously demonstrated that GroEL-GroES enhances the productive folding of a kinetically trapped substrate protein through unfolding, where both binding energy and the energy of ATP hydrolysis are used to disrupt the inhibitory misfolded states. Here, we show that the intrinsically disordered yet highly conserved C-terminal sequence of the GroEL subunits directly contributes to substrate protein unfolding. Interactions between the C terminus and the non-native substrate protein alter the binding position of the substrate protein on the GroEL apical surface. The C-terminal tails also impact the conformational state of the substrate protein during capture and encapsulation on the GroEL ring. Importantly, removal of the C termini results in slower overall folding, reducing the fraction of the substrate protein that commits quickly to a productive folding pathway and slowing several kinetically distinct folding transitions that occur inside the GroEL-GroES cavity. The conserved C-terminal tails of GroEL are thus important for protein folding from the beginning to the end of the chaperonin reaction cycle.
AbstractList Many essential cellular proteins fold only with the assistance of chaperonin machines like the GroEL-GroES system of Escherichia coli. However, the mechanistic details of assisted protein folding by GroEL-GroES remain the subject of ongoing debate. We previously demonstrated that GroEL-GroES enhances the productive folding of a kinetically trapped substrate protein through unfolding, where both binding energy and the energy of ATP hydrolysis are used to disrupt the inhibitory misfolded states. Here, we show that the intrinsically disordered yet highly conserved C-terminal sequence of the GroEL subunits directly contributes to substrate protein unfolding. Interactions between the C terminus and the non-native substrate protein alter the binding position of the substrate protein on the GroEL apical surface. The C-terminal tails also impact the conformational state of the substrate protein during capture and encapsulation on the GroEL ring. Importantly, removal of the C termini results in slower overall folding, reducing the fraction of the substrate protein that commits quickly to a productive folding pathway and slowing several kinetically distinct folding transitions that occur inside the GroEL-GroES cavity. The conserved C-terminal tails of GroEL are thus important for protein folding from the beginning to the end of the chaperonin reaction cycle.
Background: Chaperonins like GroEL-GroES are required for the folding of many proteins. Results: The GroEL C termini alter substrate protein conformation and accelerate folding. Conclusion: Optimal protein folding requires the partial unfolding of misfolded states, a process that involves the GroEL C terminus. Significance: Chaperonins can actively facilitate protein folding by altering the conformations of folding intermediates. Many essential cellular proteins fold only with the assistance of chaperonin machines like the GroEL-GroES system of Escherichia coli . However, the mechanistic details of assisted protein folding by GroEL-GroES remain the subject of ongoing debate. We previously demonstrated that GroEL-GroES enhances the productive folding of a kinetically trapped substrate protein through unfolding, where both binding energy and the energy of ATP hydrolysis are used to disrupt the inhibitory misfolded states. Here, we show that the intrinsically disordered yet highly conserved C-terminal sequence of the GroEL subunits directly contributes to substrate protein unfolding. Interactions between the C terminus and the non-native substrate protein alter the binding position of the substrate protein on the GroEL apical surface. The C-terminal tails also impact the conformational state of the substrate protein during capture and encapsulation on the GroEL ring. Importantly, removal of the C termini results in slower overall folding, reducing the fraction of the substrate protein that commits quickly to a productive folding pathway and slowing several kinetically distinct folding transitions that occur inside the GroEL-GroES cavity. The conserved C-terminal tails of GroEL are thus important for protein folding from the beginning to the end of the chaperonin reaction cycle.
Many essential cellular proteins fold only with the assistance of chaperonin machines like the GroEL-GroES system of Escherichia coli. However, the mechanistic details of assisted protein folding by GroEL-GroES remain the subject of ongoing debate. We previously demonstrated that GroEL-GroES enhances the productive folding of a kinetically trapped substrate protein through unfolding, where both binding energy and the energy of ATP hydrolysis are used to disrupt the inhibitory misfolded states. Here, we show that the intrinsically disordered yet highly conserved C-terminal sequence of the GroEL subunits directly contributes to substrate protein unfolding. Interactions between the C terminus and the non-native substrate protein alter the binding position of the substrate protein on the GroEL apical surface. The C-terminal tails also impact the conformational state of the substrate protein during capture and encapsulation on the GroEL ring. Importantly, removal of the C termini results in slower overall folding, reducing the fraction of the substrate protein that commits quickly to a productive folding pathway and slowing several kinetically distinct folding transitions that occur inside the GroEL-GroES cavity. The conserved C-terminal tails of GroEL are thus important for protein folding from the beginning to the end of the chaperonin reaction cycle.Many essential cellular proteins fold only with the assistance of chaperonin machines like the GroEL-GroES system of Escherichia coli. However, the mechanistic details of assisted protein folding by GroEL-GroES remain the subject of ongoing debate. We previously demonstrated that GroEL-GroES enhances the productive folding of a kinetically trapped substrate protein through unfolding, where both binding energy and the energy of ATP hydrolysis are used to disrupt the inhibitory misfolded states. Here, we show that the intrinsically disordered yet highly conserved C-terminal sequence of the GroEL subunits directly contributes to substrate protein unfolding. Interactions between the C terminus and the non-native substrate protein alter the binding position of the substrate protein on the GroEL apical surface. The C-terminal tails also impact the conformational state of the substrate protein during capture and encapsulation on the GroEL ring. Importantly, removal of the C termini results in slower overall folding, reducing the fraction of the substrate protein that commits quickly to a productive folding pathway and slowing several kinetically distinct folding transitions that occur inside the GroEL-GroES cavity. The conserved C-terminal tails of GroEL are thus important for protein folding from the beginning to the end of the chaperonin reaction cycle.
Author Rye, Hays S.
Weaver, Jeremy
Author_xml – sequence: 1
  givenname: Jeremy
  surname: Weaver
  fullname: Weaver, Jeremy
  organization: Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
– sequence: 2
  givenname: Hays S.
  surname: Rye
  fullname: Rye, Hays S.
  email: haysrye@tamu.edu
  organization: Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24970895$$D View this record in MEDLINE/PubMed
BookMark eNp1UU1rFDEYDlKx2-rZm-ToZbb5mOxMLkId2yqsKHQFbyGTeaebkknWJFvYH-F_NtttpQrNJfC8z0fyPifoyAcPCL2lZE5JU5_d9mb-ldJ6LpqGEfECzShpecUF_XmEZoQwWkkm2mN0ktItKaeW9BU6ZrVsSCvFDP1erQF3VYY4Wa8dXmnrEg4jzgX_qE0Z2AJ3a72BGLz1-CqGiyW-znbaOp0Bf48hQ8Evgxusv8H9Dn-yEUx2O3zu9voC7t264McQJ51t8PsEja-3fcrxiclr9HLULsGbh_sU_bi8WHWfq-W3qy_d-bIygshcUS4I7em4INQ0LeXAgZX_cy0aw2Qj-dCwVhJYaEaZkYwNjdZ8IQ3vR7PoNT9FHw6-m20_wWDAl2c4tYl20nGngrbq34m3a3UT7lRNOWupLAbvHwxi-LWFlNVkkwHntIewTYoKIRas5aIu1HdPs_6GPHZQCOJAMDGkFGFUxub7LZVo6xQlat-1Kl2rfdfq0HXRnf2ne7R-XiEPCii7vbMQVTIWvIHhvjA1BPus9g8SMMDW
CitedBy_id crossref_primary_10_1016_j_sbi_2015_08_009
crossref_primary_10_1093_jb_mvy061
crossref_primary_10_1038_s41598_017_17167_7
crossref_primary_10_3390_biomedicines9111649
crossref_primary_10_1021_acs_jpclett_8b01586
crossref_primary_10_1021_acs_biochem_8b00132
crossref_primary_10_1128_mBio_02167_20
crossref_primary_10_1016_j_tibs_2015_07_009
crossref_primary_10_1186_s13062_016_0149_y
crossref_primary_10_1021_acs_jpcb_8b07366
crossref_primary_10_1038_ncomms15934
crossref_primary_10_1093_nar_gkz730
crossref_primary_10_1021_acs_chemrev_5b00556
crossref_primary_10_1074_jbc_M114_633636
crossref_primary_10_1073_pnas_1716168115
crossref_primary_10_1073_pnas_2213170119
crossref_primary_10_1016_j_pep_2017_09_010
crossref_primary_10_1371_journal_pone_0117724
crossref_primary_10_1002_1873_3468_13844
crossref_primary_10_1126_science_aac4354
crossref_primary_10_2142_biophysics_11_93
crossref_primary_10_1146_annurev_biophys_082521_113418
crossref_primary_10_7554_eLife_56511
crossref_primary_10_1007_s00253_021_11686_0
crossref_primary_10_1126_sciadv_abl6293
crossref_primary_10_1016_j_abb_2015_09_022
crossref_primary_10_1016_j_mib_2024_102480
crossref_primary_10_1096_fj_14_1202ufm
crossref_primary_10_1016_j_isci_2021_103704
crossref_primary_10_1016_j_saa_2017_12_071
crossref_primary_10_1074_jbc_R117_796862
crossref_primary_10_1038_s41467_019_10781_1
crossref_primary_10_1017_S0033583519000143
crossref_primary_10_1073_pnas_2308933120
crossref_primary_10_1111_mmi_15109
Cites_doi 10.1074/jbc.271.45.28229
10.1006/jmbi.1998.1704
10.1371/journal.pcbi.1003269
10.1016/j.cell.2008.01.048
10.1016/S0092-8674(00)80742-4
10.1021/bi00061a013
10.1016/0092-8674(94)90533-9
10.1038/nsmb.1394
10.1073/pnas.1317702110
10.1073/pnas.94.4.1080
10.1038/emboj.2010.52
10.1111/j.1365-2958.1993.tb01096.x
10.1073/pnas.1318862110
10.1016/j.sbi.2007.01.003
10.1016/j.molcel.2004.09.003
10.1016/j.cell.2010.05.027
10.1073/pnas.0700820104
10.1074/jbc.M110.122101
10.1038/90443
10.1128/jb.176.22.6980-6985.1994
10.1126/science.181.4096.223
10.1074/jbc.M804090200
10.1110/ps.9.3.476
10.1038/nature10317
10.1063/1.1143328
10.1017/S0033583509004764
10.1093/gbe/evq045
10.1146/annurev.biochem.052308.114844
10.1074/jbc.M708002200
10.1016/S0092-8674(00)81293-3
10.1074/jbc.M802898200
10.1073/pnas.1204547109
10.1111/j.1574-6976.2009.00178.x
10.1016/0092-8674(95)90098-5
10.1016/S0092-8674(01)00517-7
10.1038/371614a0
10.1073/pnas.0807418105
10.1016/S0959-440X(00)00176-7
10.1016/j.cell.2006.04.027
10.1080/10409230600760382
10.1016/j.jmb.2013.06.028
10.1038/379420a0
10.1006/meth.2001.1188
10.1038/nature08009
10.1016/0014-5793(91)80878-7
10.1073/pnas.0809794105
10.1006/jmbi.1999.2591
10.1016/j.cell.2005.05.028
10.1038/371578a0
10.1126/science.7913555
10.1073/pnas.0710042105
10.1042/BJ20091845
10.1021/bi00016a001
10.1074/jbc.M113.480178
10.1038/41944
10.1007/s00018-009-0164-6
10.1038/42047
10.1016/j.celrep.2012.02.011
10.1073/pnas.93.9.4030
10.1038/10735
10.1038/nature02261
10.1006/jmbi.1995.0399
10.1016/j.cell.2013.04.052
10.1006/jmbi.1995.0285
10.1038/417398a
ContentType Journal Article
Copyright 2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
2014 by The American Society for Biochemistry and Molecular Biology, Inc.
2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014
Copyright_xml – notice: 2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
– notice: 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
– notice: 2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1074/jbc.M114.577205
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate GroEL C Termini Alter Substrate Protein Conformation
EISSN 1083-351X
EndPage 23232
ExternalDocumentID PMC4132819
24970895
10_1074_jbc_M114_577205
S0021925820331185
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM065421
– fundername: NIGMS NIH HHS
  grantid: R01 GM065421
– fundername: National Institutes of Health
  grantid: GM065421
GroupedDBID ---
-DZ
-ET
-~X
.55
.GJ
0R~
0SF
186
18M
29J
2WC
34G
39C
3O-
4.4
41~
53G
5BI
5GY
5RE
5VS
6I.
6TJ
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
AAYJJ
AAYOK
ABDNZ
ABFSI
ABOCM
ABPPZ
ABRJW
ABTAH
ACGFO
ACNCT
ACSFO
ACYGS
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFDAS
AFFNX
AFMIJ
AFOSN
AFPKN
AI.
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CJ0
CS3
DIK
DU5
E.L
E3Z
EBS
EJD
F20
F5P
FA8
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
J5H
KQ8
L7B
MVM
N9A
NHB
OHT
OK1
P-O
P0W
P2P
QZG
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
UQL
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XFK
XJT
XSW
Y6R
YQT
YSK
YWH
YYP
YZZ
ZA5
ZE2
ZGI
ZY4
~02
~KM
.7T
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
ADXHL
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKYEP
CITATION
H13
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c509t-13501b1f601c7813e3e27723a57c29793d72890e6a212c922d7aa369c3bfc6ba3
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 18:25:57 EDT 2025
Thu Jul 10 22:12:39 EDT 2025
Thu Apr 03 07:00:52 EDT 2025
Tue Jul 01 00:48:06 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
Sat Apr 20 15:59:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords Chaperonin
Protein Misfolding
Hsp60
GroEL
Chaperone
Molecular Chaperone
Protein Dynamic
Protein Folding
Language English
License This is an open access article under the CC BY license.
2014 by The American Society for Biochemistry and Molecular Biology, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-13501b1f601c7813e3e27723a57c29793d72890e6a212c922d7aa369c3bfc6ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1074/jbc.M114.577205
PMID 24970895
PQID 1555628354
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4132819
proquest_miscellaneous_1555628354
pubmed_primary_24970895
crossref_citationtrail_10_1074_jbc_M114_577205
crossref_primary_10_1074_jbc_M114_577205
elsevier_sciencedirect_doi_10_1074_jbc_M114_577205
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-15
PublicationDateYYYYMMDD 2014-08-15
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2014
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Anfinsen (bib2) 1973; 181
Braig, Otwinowski, Hegde, Boisvert, Joachimiak, Horwich, Sigler (bib11) 1994; 371
Todd, Lorimer, Thirumalai (bib30) 1996; 93
Sameshima, Iizuka, Ueno, Wada, Aoki, Shimamoto, Ohdomari, Tanii, Funatsu (bib53) 2010; 285
James, Siemiarczuk, Ware (bib48) 1992; 63
Goldberg, Zhang, Sondek, Matthews, Fox, Horwich (bib35) 1997; 94
Horwich, Fenton (bib8) 2009; 42
Suzuki, Ueno, Iizuka, Miura, Zako, Akahori, Miyake, Shimamoto, Aoki, Tanii, Ohdomari, Funatsu (bib49) 2008; 283
Rye, Burston, Fenton, Beechem, Xu, Sigler, Horwich (bib15) 1997; 388
Yifrach, Horovitz (bib52) 1995; 34
Kad, Ranson, Cliff, Clarke (bib66) 1998; 278
Chen, Madan, Weaver, Lin, Schröder, Chiu, Rye (bib46) 2013; 153
Jewett, Shea (bib10) 2010; 67
Chakraborty, Chatila, Sinha, Shi, Poschner, Sikor, Jiang, Lamb, Hartl, Hayer-Hartl (bib38) 2010; 142
Chen, Walter, Horwich, Smith (bib34) 2001; 8
Sameshima, Iizuka, Ueno, Funatsu (bib54) 2010; 427
Fares, Ruiz-González, Moya, Elena, Barrio (bib63) 2002; 417
Williams, Fares (bib61) 2010; 2
Brocchieri, Karlin (bib58) 2000; 9
Dobson (bib1) 2003; 426
Weissman, Hohl, Kovalenko, Kashi, Chen, Braig, Saibil, Fenton, Horwich (bib18) 1995; 83
Grason, Gresham, Lorimer (bib56) 2008; 105
Motojima, Motojima-Miyazaki, Yoshida (bib42) 2012; 109
Cetinbaş, Shakhnovich (bib62) 2013; 9
Farr, Fenton, Horwich (bib43) 2007; 104
Brinker, Pfeifer, Kerner, Naylor, Hartl, Hayer-Hartl (bib37) 2001; 107
Ye, Lorimer (bib28) 2013; 110
Brockwell, Radford (bib4) 2007; 17
Yang, Ye, Lorimer (bib55) 2013; 110
Coyle, Texter, Ashcroft, Masselos, Robinson, Radford (bib33) 1999; 6
Fenton, Kashi, Furtak, Horwich (bib12) 1994; 371
Tang, Chang, Roeben, Wischnewski, Wischnewski, Kerner, Hartl, Hayer-Hartl (bib39) 2006; 125
Horst, Fenton, Englander, Wüthrich, Horwich (bib32) 2007; 104
Lin, Puchalla, Shoup, Rye (bib21) 2013; 288
Rye (bib47) 2001; 24
Lin, Rye (bib9) 2006; 41
Xu, Horwich, Sigler (bib19) 1997; 388
Gray, Fersht (bib50) 1991; 292
Powers, Powers, Gierasch (bib7) 2012; 1
Burnett, Horwich, Low (bib57) 1994; 176
Burston, Ranson, Clarke (bib24) 1995; 249
Lin, Rye (bib36) 2004; 16
Fujiwara, Ishihama, Nakahigashi, Soga, Taguchi (bib14) 2010; 29
Ranson, Dunster, Burston, Clarke (bib27) 1995; 250
Jackson, Staniforth, Halsall, Atkinson, Holbrook, Clarke, Burston (bib51) 1993; 32
Rye, Roseman, Chen, Furtak, Fenton, Saibil, Horwich (bib20) 1999; 97
Powers, Morimoto, Dillin, Kelly, Balch (bib5) 2009; 78
Mayhew, da Silva, Martin, Erdjument-Bromage, Tempst, Hartl (bib17) 1996; 379
Weissman, Kashi, Fenton, Horwich (bib26) 1994; 78
Weissman, Rye, Fenton, Beechem, Horwich (bib16) 1996; 84
Betancourt, Thirumalai (bib31) 1999; 287
Grantcharova, Alm, Baker, Horwich (bib3) 2001; 11
Tokuriki, Tawfik (bib59) 2009; 459
Hartl, Bracher, Hayer-Hartl (bib6) 2011; 475
McLennan, Girshovich, Lissin, Charters, Masters (bib44) 1993; 7
Lin, Madan, Rye (bib23) 2008; 15
Machida, Kono-Okada, Hongo, Mizobata, Kawata (bib45) 2008; 283
Tang, Chang, Chakraborty, Hartl, Hayer-Hartl (bib40) 2008; 27
Apetri, Horwich (bib29) 2008; 105
Wyganowski, Kaltenbach, Tokuriki (bib60) 2013; 425
Lund (bib64) 2009; 33
Todd, Viitanen, Lorimer (bib25) 1994; 265
Madan, Lin, Rye (bib22) 2008; 283
Murai, Makino, Yoshida (bib65) 1996; 271
Kerner, Naylor, Ishihama, Maier, Chang, Stines, Georgopoulos, Frishman, Hayer-Hartl, Mann, Hartl (bib13) 2005; 122
Sharma, Chakraborty, Müller, Astola, Tang, Lamb, Hayer-Hartl, Hartl (bib41) 2008; 133
Murai (10.1074/jbc.M114.577205_bib65) 1996; 271
Weissman (10.1074/jbc.M114.577205_bib16) 1996; 84
Brinker (10.1074/jbc.M114.577205_bib37) 2001; 107
Grason (10.1074/jbc.M114.577205_bib56) 2008; 105
Tang (10.1074/jbc.M114.577205_bib39) 2006; 125
Yang (10.1074/jbc.M114.577205_bib55) 2013; 110
Braig (10.1074/jbc.M114.577205_bib11) 1994; 371
Chen (10.1074/jbc.M114.577205_bib46) 2013; 153
Fenton (10.1074/jbc.M114.577205_bib12) 1994; 371
Mayhew (10.1074/jbc.M114.577205_bib17) 1996; 379
McLennan (10.1074/jbc.M114.577205_bib44) 1993; 7
Chen (10.1074/jbc.M114.577205_bib34) 2001; 8
Williams (10.1074/jbc.M114.577205_bib61) 2010; 2
Horwich (10.1074/jbc.M114.577205_bib8) 2009; 42
Burston (10.1074/jbc.M114.577205_bib24) 1995; 249
Gray (10.1074/jbc.M114.577205_bib50) 1991; 292
Ranson (10.1074/jbc.M114.577205_bib27) 1995; 250
Coyle (10.1074/jbc.M114.577205_bib33) 1999; 6
James (10.1074/jbc.M114.577205_bib48) 1992; 63
Tokuriki (10.1074/jbc.M114.577205_bib59) 2009; 459
Xu (10.1074/jbc.M114.577205_bib19) 1997; 388
Sameshima (10.1074/jbc.M114.577205_bib54) 2010; 427
Weissman (10.1074/jbc.M114.577205_bib26) 1994; 78
Grantcharova (10.1074/jbc.M114.577205_bib3) 2001; 11
Lin (10.1074/jbc.M114.577205_bib9) 2006; 41
Jackson (10.1074/jbc.M114.577205_bib51) 1993; 32
Sharma (10.1074/jbc.M114.577205_bib41) 2008; 133
Suzuki (10.1074/jbc.M114.577205_bib49) 2008; 283
Lund (10.1074/jbc.M114.577205_bib64) 2009; 33
Jewett (10.1074/jbc.M114.577205_bib10) 2010; 67
Todd (10.1074/jbc.M114.577205_bib30) 1996; 93
Rye (10.1074/jbc.M114.577205_bib47) 2001; 24
Farr (10.1074/jbc.M114.577205_bib43) 2007; 104
Motojima (10.1074/jbc.M114.577205_bib42) 2012; 109
Hartl (10.1074/jbc.M114.577205_bib6) 2011; 475
Madan (10.1074/jbc.M114.577205_bib22) 2008; 283
Weissman (10.1074/jbc.M114.577205_bib18) 1995; 83
Anfinsen (10.1074/jbc.M114.577205_bib2) 1973; 181
Lin (10.1074/jbc.M114.577205_bib36) 2004; 16
Rye (10.1074/jbc.M114.577205_bib15) 1997; 388
Goldberg (10.1074/jbc.M114.577205_bib35) 1997; 94
Wyganowski (10.1074/jbc.M114.577205_bib60) 2013; 425
Betancourt (10.1074/jbc.M114.577205_bib31) 1999; 287
Cetinbaş (10.1074/jbc.M114.577205_bib62) 2013; 9
Fujiwara (10.1074/jbc.M114.577205_bib14) 2010; 29
Chakraborty (10.1074/jbc.M114.577205_bib38) 2010; 142
Burnett (10.1074/jbc.M114.577205_bib57) 1994; 176
Tang (10.1074/jbc.M114.577205_bib40) 2008; 27
Horst (10.1074/jbc.M114.577205_bib32) 2007; 104
Sameshima (10.1074/jbc.M114.577205_bib53) 2010; 285
Lin (10.1074/jbc.M114.577205_bib23) 2008; 15
Yifrach (10.1074/jbc.M114.577205_bib52) 1995; 34
Brockwell (10.1074/jbc.M114.577205_bib4) 2007; 17
Brocchieri (10.1074/jbc.M114.577205_bib58) 2000; 9
Fares (10.1074/jbc.M114.577205_bib63) 2002; 417
Dobson (10.1074/jbc.M114.577205_bib1) 2003; 426
Powers (10.1074/jbc.M114.577205_bib5) 2009; 78
Kerner (10.1074/jbc.M114.577205_bib13) 2005; 122
Kad (10.1074/jbc.M114.577205_bib66) 1998; 278
Powers (10.1074/jbc.M114.577205_bib7) 2012; 1
Machida (10.1074/jbc.M114.577205_bib45) 2008; 283
Rye (10.1074/jbc.M114.577205_bib20) 1999; 97
Todd (10.1074/jbc.M114.577205_bib25) 1994; 265
Apetri (10.1074/jbc.M114.577205_bib29) 2008; 105
Lin (10.1074/jbc.M114.577205_bib21) 2013; 288
Ye (10.1074/jbc.M114.577205_bib28) 2013; 110
References_xml – volume: 7
  start-page: 49
  year: 1993
  end-page: 58
  ident: bib44
  article-title: The strongly conserved carboxyl-terminus glycine-methionine motif of the
  publication-title: Mol. Microbiol
– volume: 104
  start-page: 5342
  year: 2007
  end-page: 5347
  ident: bib43
  article-title: Perturbed ATPase activity and not “close confinement” of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 105
  start-page: 17351
  year: 2008
  end-page: 17355
  ident: bib29
  article-title: Chaperonin chamber accelerates protein folding through passive action of preventing aggregation
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 110
  start-page: E4289
  year: 2013
  end-page: E4297
  ident: bib28
  article-title: Substrate protein switches GroE chaperonins from asymmetric to symmetric cycling by catalyzing nucleotide exchange
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 265
  start-page: 659
  year: 1994
  end-page: 666
  ident: bib25
  article-title: Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding
  publication-title: Science
– volume: 97
  start-page: 325
  year: 1999
  end-page: 338
  ident: bib20
  article-title: GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings
  publication-title: Cell
– volume: 6
  start-page: 683
  year: 1999
  end-page: 690
  ident: bib33
  article-title: GroEL accelerates the refolding of hen lysozyme without changing its folding mechanism
  publication-title: Nat. Struct. Biol
– volume: 283
  start-page: 32003
  year: 2008
  end-page: 32013
  ident: bib22
  article-title: Triggering protein folding within the GroEL-GroES complex
  publication-title: J. Biol. Chem
– volume: 15
  start-page: 303
  year: 2008
  end-page: 311
  ident: bib23
  article-title: GroEL stimulates protein folding through forced unfolding
  publication-title: Nat. Struct. Mol. Biol
– volume: 417
  start-page: 398
  year: 2002
  ident: bib63
  article-title: Endosymbiotic bacteria: groEL buffers against deleterious mutations
  publication-title: Nature
– volume: 388
  start-page: 792
  year: 1997
  end-page: 798
  ident: bib15
  article-title: Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL (see comments)
  publication-title: Nature
– volume: 9
  start-page: 476
  year: 2000
  end-page: 486
  ident: bib58
  article-title: Conservation among HSP60 sequences in relation to structure, function, and evolution
  publication-title: Protein Sci
– volume: 63
  start-page: 1710
  year: 1992
  end-page: 1716
  ident: bib48
  article-title: Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes
  publication-title: Rev. Sci. Instrum
– volume: 133
  start-page: 142
  year: 2008
  end-page: 153
  ident: bib41
  article-title: Monitoring protein conformation along the pathway of chaperonin-assisted folding
  publication-title: Cell
– volume: 278
  start-page: 267
  year: 1998
  end-page: 278
  ident: bib66
  article-title: Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings
  publication-title: J. Mol. Biol
– volume: 125
  start-page: 903
  year: 2006
  end-page: 914
  ident: bib39
  article-title: Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein
  publication-title: Cell
– volume: 27
  start-page: 1458
  year: 2008
  end-page: 1468
  ident: bib40
  article-title: Essential role of the chaperonin folding compartment
  publication-title: EMBO J
– volume: 9
  start-page: e1003269
  year: 2013
  ident: bib62
  article-title: Catalysis of protein folding by chaperones accelerates evolutionary dynamics in adapting cell populations
  publication-title: PLoS Comput. Biol
– volume: 109
  start-page: 15740
  year: 2012
  end-page: 15745
  ident: bib42
  article-title: Revisiting the contribution of negative charges on the chaperonin cage wall to the acceleration of protein folding
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 32
  start-page: 2554
  year: 1993
  end-page: 2563
  ident: bib51
  article-title: Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: implications for the mechanism of assisted protein folding
  publication-title: Biochemistry
– volume: 93
  start-page: 4030
  year: 1996
  end-page: 4035
  ident: bib30
  article-title: Chaperonin-facilitated protein folding: optimization of rate and yield by an iterative annealing mechanism
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 425
  start-page: 3403
  year: 2013
  end-page: 3414
  ident: bib60
  article-title: GroEL/ES buffering and compensatory mutations promote protein evolution by stabilizing folding intermediates
  publication-title: J. Mol. Biol
– volume: 142
  start-page: 112
  year: 2010
  end-page: 122
  ident: bib38
  article-title: Chaperonin-catalyzed rescue of kinetically trapped states in protein folding
  publication-title: Cell
– volume: 283
  start-page: 23931
  year: 2008
  end-page: 23939
  ident: bib49
  article-title: Effect of the C-terminal truncation on the functional cycle of chaperonin GroEL: implication that the C-terminal region facilitates the transition from the folding-arrested to the folding-competent state
  publication-title: J. Biol. Chem
– volume: 83
  start-page: 577
  year: 1995
  end-page: 587
  ident: bib18
  article-title: Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES
  publication-title: Cell
– volume: 285
  start-page: 23159
  year: 2010
  end-page: 23164
  ident: bib53
  article-title: Single-molecule study on the decay process of the football-shaped GroEL-GroES complex using zero-mode waveguides
  publication-title: J. Biol. Chem
– volume: 94
  start-page: 1080
  year: 1997
  end-page: 1085
  ident: bib35
  article-title: Native-like structure of a protein-folding intermediate bound to the chaperonin GroEL
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 459
  start-page: 668
  year: 2009
  end-page: 673
  ident: bib59
  article-title: Chaperonin overexpression promotes genetic variation and enzyme evolution
  publication-title: Nature
– volume: 16
  start-page: 23
  year: 2004
  end-page: 34
  ident: bib36
  article-title: Expansion and compression of a protein folding intermediate by GroEL
  publication-title: Mol. Cell
– volume: 271
  start-page: 28229
  year: 1996
  end-page: 28234
  ident: bib65
  article-title: GroEL locked in a closed conformation by an interdomain cross-link can bind ATP and polypeptide but cannot process further reaction steps
  publication-title: J. Biol. Chem
– volume: 388
  start-page: 741
  year: 1997
  end-page: 750
  ident: bib19
  article-title: The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex (see comments)
  publication-title: Nature
– volume: 250
  start-page: 581
  year: 1995
  end-page: 586
  ident: bib27
  article-title: Chaperonins can catalyse the reversal of early aggregation steps when a protein misfolds
  publication-title: J. Mol. Biol
– volume: 24
  start-page: 278
  year: 2001
  end-page: 288
  ident: bib47
  article-title: Application of fluorescence resonance energy transfer to the GroEL-GroES chaperonin reaction
  publication-title: Methods
– volume: 1
  start-page: 265
  year: 2012
  end-page: 276
  ident: bib7
  article-title: FoldEco: a model for proteostasis in
  publication-title: Cell Rep
– volume: 105
  start-page: 17339
  year: 2008
  end-page: 17344
  ident: bib56
  article-title: Setting the chaperonin timer: A two-stroke, two-speed, protein machine
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 426
  start-page: 884
  year: 2003
  end-page: 890
  ident: bib1
  article-title: Protein folding and misfolding
  publication-title: Nature
– volume: 78
  start-page: 693
  year: 1994
  end-page: 702
  ident: bib26
  article-title: GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms
  publication-title: Cell
– volume: 475
  start-page: 324
  year: 2011
  end-page: 332
  ident: bib6
  article-title: Molecular chaperones in protein folding and proteostasis
  publication-title: Nature
– volume: 371
  start-page: 578
  year: 1994
  end-page: 586
  ident: bib11
  article-title: The crystal structure of the bacterial chaperonin GroEL at 2.8 A
  publication-title: Nature
– volume: 379
  start-page: 420
  year: 1996
  end-page: 426
  ident: bib17
  article-title: Protein folding in the central cavity of the GroEL-GroES chaperonin complex
  publication-title: Nature
– volume: 427
  start-page: 247
  year: 2010
  end-page: 254
  ident: bib54
  article-title: Denatured proteins facilitate the formation of the football-shaped GroEL-(GroES)2 complex
  publication-title: Biochem. J
– volume: 181
  start-page: 223
  year: 1973
  end-page: 230
  ident: bib2
  article-title: Principles that govern the folding of protein chains
  publication-title: Science
– volume: 34
  start-page: 5303
  year: 1995
  end-page: 5308
  ident: bib52
  article-title: Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL
  publication-title: Biochemistry
– volume: 42
  start-page: 83
  year: 2009
  end-page: 116
  ident: bib8
  article-title: Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding
  publication-title: Q. Rev. Biophys
– volume: 2
  start-page: 609
  year: 2010
  end-page: 619
  ident: bib61
  article-title: The effect of chaperonin buffering on protein evolution
  publication-title: Genome Biol. Evol
– volume: 122
  start-page: 209
  year: 2005
  end-page: 220
  ident: bib13
  article-title: Proteome-wide analysis of chaperonin-dependent protein folding in
  publication-title: Cell
– volume: 8
  start-page: 721
  year: 2001
  end-page: 728
  ident: bib34
  article-title: Folding of malate dehydrogenase inside the GroEL-GroES cavity
  publication-title: Nat. Struct. Biol
– volume: 104
  start-page: 20788
  year: 2007
  end-page: 20792
  ident: bib32
  article-title: Folding trajectories of human dihydrofolate reductase inside the GroEL GroES chaperonin cavity and free in solution
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 84
  start-page: 481
  year: 1996
  end-page: 490
  ident: bib16
  article-title: Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction
  publication-title: Cell
– volume: 41
  start-page: 211
  year: 2006
  end-page: 239
  ident: bib9
  article-title: GroEL-mediated protein folding: making the impossible, possible
  publication-title: Crit. Rev. Biochem. Mol. Biol
– volume: 78
  start-page: 959
  year: 2009
  end-page: 991
  ident: bib5
  article-title: Biological and chemical approaches to diseases of proteostasis deficiency
  publication-title: Annu. Rev. Biochem
– volume: 29
  start-page: 1552
  year: 2010
  end-page: 1564
  ident: bib14
  article-title: A systematic survey of
  publication-title: EMBO J
– volume: 67
  start-page: 255
  year: 2010
  end-page: 276
  ident: bib10
  article-title: Reconciling theories of chaperonin accelerated folding with experimental evidence
  publication-title: Cell. Mol. Life Sci
– volume: 371
  start-page: 614
  year: 1994
  end-page: 619
  ident: bib12
  article-title: Residues in chaperonin GroEL required for polypeptide binding and release (see comments)
  publication-title: Nature
– volume: 17
  start-page: 30
  year: 2007
  end-page: 37
  ident: bib4
  article-title: Intermediates: ubiquitous species on folding energy landscapes?
  publication-title: Curr. Opin. Struct. Biol
– volume: 107
  start-page: 223
  year: 2001
  end-page: 233
  ident: bib37
  article-title: Dual function of protein confinement in chaperonin-assisted protein folding
  publication-title: Cell
– volume: 292
  start-page: 254
  year: 1991
  end-page: 258
  ident: bib50
  article-title: Cooperativity in ATP hydrolysis by GroEL is increased by GroES
  publication-title: FEBS Lett
– volume: 153
  start-page: 1354
  year: 2013
  end-page: 1365
  ident: bib46
  article-title: Visualizing GroEL/ES in the act of encapsulating a folding protein
  publication-title: Cell
– volume: 33
  start-page: 785
  year: 2009
  end-page: 800
  ident: bib64
  article-title: Multiple chaperonins in bacteria–“ why so many?
  publication-title: FEMS Microbiol. Rev
– volume: 287
  start-page: 627
  year: 1999
  end-page: 644
  ident: bib31
  article-title: Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity
  publication-title: J. Mol. Biol
– volume: 283
  start-page: 6886
  year: 2008
  end-page: 6896
  ident: bib45
  article-title: Hydrophilic residues
  publication-title: J. Biol. Chem
– volume: 288
  start-page: 30944
  year: 2013
  end-page: 30955
  ident: bib21
  article-title: Repetitive protein unfolding by the trans ring of the GroEL-GroES chaperonin complex stimulates folding
  publication-title: J. Biol. Chem
– volume: 249
  start-page: 138
  year: 1995
  end-page: 152
  ident: bib24
  article-title: The origins and consequences of asymmetry in the chaperonin reaction cycle
  publication-title: J. Mol. Biol
– volume: 110
  start-page: E4298
  year: 2013
  end-page: E4305
  ident: bib55
  article-title: Symmetric GroEL:GroES2 complexes are the protein-folding functional form of the chaperonin nanomachine
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 176
  start-page: 6980
  year: 1994
  end-page: 6985
  ident: bib57
  article-title: A carboxy-terminal deletion impairs the assembly of GroEL and confers a pleiotropic phenotype in
  publication-title: J. Bacteriol
– volume: 11
  start-page: 70
  year: 2001
  end-page: 82
  ident: bib3
  article-title: Mechanisms of protein folding
  publication-title: Curr. Opin. Struct. Biol
– volume: 271
  start-page: 28229
  year: 1996
  ident: 10.1074/jbc.M114.577205_bib65
  article-title: GroEL locked in a closed conformation by an interdomain cross-link can bind ATP and polypeptide but cannot process further reaction steps
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.271.45.28229
– volume: 278
  start-page: 267
  year: 1998
  ident: 10.1074/jbc.M114.577205_bib66
  article-title: Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings
  publication-title: J. Mol. Biol
  doi: 10.1006/jmbi.1998.1704
– volume: 9
  start-page: e1003269
  year: 2013
  ident: 10.1074/jbc.M114.577205_bib62
  article-title: Catalysis of protein folding by chaperones accelerates evolutionary dynamics in adapting cell populations
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1003269
– volume: 133
  start-page: 142
  year: 2008
  ident: 10.1074/jbc.M114.577205_bib41
  article-title: Monitoring protein conformation along the pathway of chaperonin-assisted folding
  publication-title: Cell
  doi: 10.1016/j.cell.2008.01.048
– volume: 97
  start-page: 325
  year: 1999
  ident: 10.1074/jbc.M114.577205_bib20
  article-title: GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80742-4
– volume: 32
  start-page: 2554
  year: 1993
  ident: 10.1074/jbc.M114.577205_bib51
  article-title: Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: implications for the mechanism of assisted protein folding
  publication-title: Biochemistry
  doi: 10.1021/bi00061a013
– volume: 78
  start-page: 693
  year: 1994
  ident: 10.1074/jbc.M114.577205_bib26
  article-title: GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90533-9
– volume: 15
  start-page: 303
  year: 2008
  ident: 10.1074/jbc.M114.577205_bib23
  article-title: GroEL stimulates protein folding through forced unfolding
  publication-title: Nat. Struct. Mol. Biol
  doi: 10.1038/nsmb.1394
– volume: 27
  start-page: 1458
  year: 2008
  ident: 10.1074/jbc.M114.577205_bib40
  article-title: Essential role of the chaperonin folding compartment in vivo
  publication-title: EMBO J
– volume: 110
  start-page: E4289
  year: 2013
  ident: 10.1074/jbc.M114.577205_bib28
  article-title: Substrate protein switches GroE chaperonins from asymmetric to symmetric cycling by catalyzing nucleotide exchange
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1317702110
– volume: 94
  start-page: 1080
  year: 1997
  ident: 10.1074/jbc.M114.577205_bib35
  article-title: Native-like structure of a protein-folding intermediate bound to the chaperonin GroEL
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.94.4.1080
– volume: 29
  start-page: 1552
  year: 2010
  ident: 10.1074/jbc.M114.577205_bib14
  article-title: A systematic survey of in vivo obligate chaperonin-dependent substrates
  publication-title: EMBO J
  doi: 10.1038/emboj.2010.52
– volume: 7
  start-page: 49
  year: 1993
  ident: 10.1074/jbc.M114.577205_bib44
  article-title: The strongly conserved carboxyl-terminus glycine-methionine motif of the Escherichia coli GroEL chaperonin is dispensable
  publication-title: Mol. Microbiol
  doi: 10.1111/j.1365-2958.1993.tb01096.x
– volume: 110
  start-page: E4298
  year: 2013
  ident: 10.1074/jbc.M114.577205_bib55
  article-title: Symmetric GroEL:GroES2 complexes are the protein-folding functional form of the chaperonin nanomachine
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1318862110
– volume: 17
  start-page: 30
  year: 2007
  ident: 10.1074/jbc.M114.577205_bib4
  article-title: Intermediates: ubiquitous species on folding energy landscapes?
  publication-title: Curr. Opin. Struct. Biol
  doi: 10.1016/j.sbi.2007.01.003
– volume: 16
  start-page: 23
  year: 2004
  ident: 10.1074/jbc.M114.577205_bib36
  article-title: Expansion and compression of a protein folding intermediate by GroEL
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2004.09.003
– volume: 142
  start-page: 112
  year: 2010
  ident: 10.1074/jbc.M114.577205_bib38
  article-title: Chaperonin-catalyzed rescue of kinetically trapped states in protein folding
  publication-title: Cell
  doi: 10.1016/j.cell.2010.05.027
– volume: 104
  start-page: 5342
  year: 2007
  ident: 10.1074/jbc.M114.577205_bib43
  article-title: Perturbed ATPase activity and not “close confinement” of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.0700820104
– volume: 285
  start-page: 23159
  year: 2010
  ident: 10.1074/jbc.M114.577205_bib53
  article-title: Single-molecule study on the decay process of the football-shaped GroEL-GroES complex using zero-mode waveguides
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M110.122101
– volume: 8
  start-page: 721
  year: 2001
  ident: 10.1074/jbc.M114.577205_bib34
  article-title: Folding of malate dehydrogenase inside the GroEL-GroES cavity
  publication-title: Nat. Struct. Biol
  doi: 10.1038/90443
– volume: 176
  start-page: 6980
  year: 1994
  ident: 10.1074/jbc.M114.577205_bib57
  article-title: A carboxy-terminal deletion impairs the assembly of GroEL and confers a pleiotropic phenotype in Escherichia coli K-12
  publication-title: J. Bacteriol
  doi: 10.1128/jb.176.22.6980-6985.1994
– volume: 181
  start-page: 223
  year: 1973
  ident: 10.1074/jbc.M114.577205_bib2
  article-title: Principles that govern the folding of protein chains
  publication-title: Science
  doi: 10.1126/science.181.4096.223
– volume: 283
  start-page: 23931
  year: 2008
  ident: 10.1074/jbc.M114.577205_bib49
  article-title: Effect of the C-terminal truncation on the functional cycle of chaperonin GroEL: implication that the C-terminal region facilitates the transition from the folding-arrested to the folding-competent state
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M804090200
– volume: 9
  start-page: 476
  year: 2000
  ident: 10.1074/jbc.M114.577205_bib58
  article-title: Conservation among HSP60 sequences in relation to structure, function, and evolution
  publication-title: Protein Sci
  doi: 10.1110/ps.9.3.476
– volume: 475
  start-page: 324
  year: 2011
  ident: 10.1074/jbc.M114.577205_bib6
  article-title: Molecular chaperones in protein folding and proteostasis
  publication-title: Nature
  doi: 10.1038/nature10317
– volume: 63
  start-page: 1710
  year: 1992
  ident: 10.1074/jbc.M114.577205_bib48
  article-title: Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes
  publication-title: Rev. Sci. Instrum
  doi: 10.1063/1.1143328
– volume: 42
  start-page: 83
  year: 2009
  ident: 10.1074/jbc.M114.577205_bib8
  article-title: Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding
  publication-title: Q. Rev. Biophys
  doi: 10.1017/S0033583509004764
– volume: 2
  start-page: 609
  year: 2010
  ident: 10.1074/jbc.M114.577205_bib61
  article-title: The effect of chaperonin buffering on protein evolution
  publication-title: Genome Biol. Evol
  doi: 10.1093/gbe/evq045
– volume: 78
  start-page: 959
  year: 2009
  ident: 10.1074/jbc.M114.577205_bib5
  article-title: Biological and chemical approaches to diseases of proteostasis deficiency
  publication-title: Annu. Rev. Biochem
  doi: 10.1146/annurev.biochem.052308.114844
– volume: 283
  start-page: 6886
  year: 2008
  ident: 10.1074/jbc.M114.577205_bib45
  article-title: Hydrophilic residues 526KNDAAD531 in the flexible C-terminal region of the chaperonin GroEL are critical for substrate protein folding within the central cavity
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M708002200
– volume: 84
  start-page: 481
  year: 1996
  ident: 10.1074/jbc.M114.577205_bib16
  article-title: Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81293-3
– volume: 283
  start-page: 32003
  year: 2008
  ident: 10.1074/jbc.M114.577205_bib22
  article-title: Triggering protein folding within the GroEL-GroES complex
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M802898200
– volume: 109
  start-page: 15740
  year: 2012
  ident: 10.1074/jbc.M114.577205_bib42
  article-title: Revisiting the contribution of negative charges on the chaperonin cage wall to the acceleration of protein folding
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1204547109
– volume: 33
  start-page: 785
  year: 2009
  ident: 10.1074/jbc.M114.577205_bib64
  article-title: Multiple chaperonins in bacteria–“ why so many?
  publication-title: FEMS Microbiol. Rev
  doi: 10.1111/j.1574-6976.2009.00178.x
– volume: 83
  start-page: 577
  year: 1995
  ident: 10.1074/jbc.M114.577205_bib18
  article-title: Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90098-5
– volume: 107
  start-page: 223
  year: 2001
  ident: 10.1074/jbc.M114.577205_bib37
  article-title: Dual function of protein confinement in chaperonin-assisted protein folding
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00517-7
– volume: 371
  start-page: 614
  year: 1994
  ident: 10.1074/jbc.M114.577205_bib12
  article-title: Residues in chaperonin GroEL required for polypeptide binding and release (see comments)
  publication-title: Nature
  doi: 10.1038/371614a0
– volume: 105
  start-page: 17339
  year: 2008
  ident: 10.1074/jbc.M114.577205_bib56
  article-title: Setting the chaperonin timer: A two-stroke, two-speed, protein machine
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.0807418105
– volume: 11
  start-page: 70
  year: 2001
  ident: 10.1074/jbc.M114.577205_bib3
  article-title: Mechanisms of protein folding
  publication-title: Curr. Opin. Struct. Biol
  doi: 10.1016/S0959-440X(00)00176-7
– volume: 125
  start-page: 903
  year: 2006
  ident: 10.1074/jbc.M114.577205_bib39
  article-title: Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein
  publication-title: Cell
  doi: 10.1016/j.cell.2006.04.027
– volume: 41
  start-page: 211
  year: 2006
  ident: 10.1074/jbc.M114.577205_bib9
  article-title: GroEL-mediated protein folding: making the impossible, possible
  publication-title: Crit. Rev. Biochem. Mol. Biol
  doi: 10.1080/10409230600760382
– volume: 425
  start-page: 3403
  year: 2013
  ident: 10.1074/jbc.M114.577205_bib60
  article-title: GroEL/ES buffering and compensatory mutations promote protein evolution by stabilizing folding intermediates
  publication-title: J. Mol. Biol
  doi: 10.1016/j.jmb.2013.06.028
– volume: 379
  start-page: 420
  year: 1996
  ident: 10.1074/jbc.M114.577205_bib17
  article-title: Protein folding in the central cavity of the GroEL-GroES chaperonin complex
  publication-title: Nature
  doi: 10.1038/379420a0
– volume: 24
  start-page: 278
  year: 2001
  ident: 10.1074/jbc.M114.577205_bib47
  article-title: Application of fluorescence resonance energy transfer to the GroEL-GroES chaperonin reaction
  publication-title: Methods
  doi: 10.1006/meth.2001.1188
– volume: 459
  start-page: 668
  year: 2009
  ident: 10.1074/jbc.M114.577205_bib59
  article-title: Chaperonin overexpression promotes genetic variation and enzyme evolution
  publication-title: Nature
  doi: 10.1038/nature08009
– volume: 292
  start-page: 254
  year: 1991
  ident: 10.1074/jbc.M114.577205_bib50
  article-title: Cooperativity in ATP hydrolysis by GroEL is increased by GroES
  publication-title: FEBS Lett
  doi: 10.1016/0014-5793(91)80878-7
– volume: 105
  start-page: 17351
  year: 2008
  ident: 10.1074/jbc.M114.577205_bib29
  article-title: Chaperonin chamber accelerates protein folding through passive action of preventing aggregation
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.0809794105
– volume: 287
  start-page: 627
  year: 1999
  ident: 10.1074/jbc.M114.577205_bib31
  article-title: Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity
  publication-title: J. Mol. Biol
  doi: 10.1006/jmbi.1999.2591
– volume: 122
  start-page: 209
  year: 2005
  ident: 10.1074/jbc.M114.577205_bib13
  article-title: Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli
  publication-title: Cell
  doi: 10.1016/j.cell.2005.05.028
– volume: 371
  start-page: 578
  year: 1994
  ident: 10.1074/jbc.M114.577205_bib11
  article-title: The crystal structure of the bacterial chaperonin GroEL at 2.8 A
  publication-title: Nature
  doi: 10.1038/371578a0
– volume: 265
  start-page: 659
  year: 1994
  ident: 10.1074/jbc.M114.577205_bib25
  article-title: Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding
  publication-title: Science
  doi: 10.1126/science.7913555
– volume: 104
  start-page: 20788
  year: 2007
  ident: 10.1074/jbc.M114.577205_bib32
  article-title: Folding trajectories of human dihydrofolate reductase inside the GroEL GroES chaperonin cavity and free in solution
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.0710042105
– volume: 427
  start-page: 247
  year: 2010
  ident: 10.1074/jbc.M114.577205_bib54
  article-title: Denatured proteins facilitate the formation of the football-shaped GroEL-(GroES)2 complex
  publication-title: Biochem. J
  doi: 10.1042/BJ20091845
– volume: 34
  start-page: 5303
  year: 1995
  ident: 10.1074/jbc.M114.577205_bib52
  article-title: Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL
  publication-title: Biochemistry
  doi: 10.1021/bi00016a001
– volume: 288
  start-page: 30944
  year: 2013
  ident: 10.1074/jbc.M114.577205_bib21
  article-title: Repetitive protein unfolding by the trans ring of the GroEL-GroES chaperonin complex stimulates folding
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M113.480178
– volume: 388
  start-page: 741
  year: 1997
  ident: 10.1074/jbc.M114.577205_bib19
  article-title: The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex (see comments)
  publication-title: Nature
  doi: 10.1038/41944
– volume: 67
  start-page: 255
  year: 2010
  ident: 10.1074/jbc.M114.577205_bib10
  article-title: Reconciling theories of chaperonin accelerated folding with experimental evidence
  publication-title: Cell. Mol. Life Sci
  doi: 10.1007/s00018-009-0164-6
– volume: 388
  start-page: 792
  year: 1997
  ident: 10.1074/jbc.M114.577205_bib15
  article-title: Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL (see comments)
  publication-title: Nature
  doi: 10.1038/42047
– volume: 1
  start-page: 265
  year: 2012
  ident: 10.1074/jbc.M114.577205_bib7
  article-title: FoldEco: a model for proteostasis in E. coli
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.02.011
– volume: 93
  start-page: 4030
  year: 1996
  ident: 10.1074/jbc.M114.577205_bib30
  article-title: Chaperonin-facilitated protein folding: optimization of rate and yield by an iterative annealing mechanism
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.93.9.4030
– volume: 6
  start-page: 683
  year: 1999
  ident: 10.1074/jbc.M114.577205_bib33
  article-title: GroEL accelerates the refolding of hen lysozyme without changing its folding mechanism
  publication-title: Nat. Struct. Biol
  doi: 10.1038/10735
– volume: 426
  start-page: 884
  year: 2003
  ident: 10.1074/jbc.M114.577205_bib1
  article-title: Protein folding and misfolding
  publication-title: Nature
  doi: 10.1038/nature02261
– volume: 250
  start-page: 581
  year: 1995
  ident: 10.1074/jbc.M114.577205_bib27
  article-title: Chaperonins can catalyse the reversal of early aggregation steps when a protein misfolds
  publication-title: J. Mol. Biol
  doi: 10.1006/jmbi.1995.0399
– volume: 153
  start-page: 1354
  year: 2013
  ident: 10.1074/jbc.M114.577205_bib46
  article-title: Visualizing GroEL/ES in the act of encapsulating a folding protein
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.052
– volume: 249
  start-page: 138
  year: 1995
  ident: 10.1074/jbc.M114.577205_bib24
  article-title: The origins and consequences of asymmetry in the chaperonin reaction cycle
  publication-title: J. Mol. Biol
  doi: 10.1006/jmbi.1995.0285
– volume: 417
  start-page: 398
  year: 2002
  ident: 10.1074/jbc.M114.577205_bib63
  article-title: Endosymbiotic bacteria: groEL buffers against deleterious mutations
  publication-title: Nature
  doi: 10.1038/417398a
SSID ssj0000491
Score 2.3329122
Snippet Many essential cellular proteins fold only with the assistance of chaperonin machines like the GroEL-GroES system of Escherichia coli. However, the mechanistic...
Background: Chaperonins like GroEL-GroES are required for the folding of many proteins. Results: The GroEL C termini alter substrate protein conformation and...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 23219
SubjectTerms Chaperonin 10 - chemistry
Chaperonin 10 - genetics
Chaperonin 10 - metabolism
Chaperonin 60 - chemistry
Chaperonin 60 - genetics
Chaperonin 60 - metabolism
Escherichia coli - chemistry
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Oligopeptides
Protein Binding
Protein Folding
Protein Structure and Folding
Protein Structure, Tertiary
Title The C-terminal Tails of the Bacterial Chaperonin GroEL Stimulate Protein Folding by Directly Altering the Conformation of a Substrate Protein
URI https://dx.doi.org/10.1074/jbc.M114.577205
https://www.ncbi.nlm.nih.gov/pubmed/24970895
https://www.proquest.com/docview/1555628354
https://pubmed.ncbi.nlm.nih.gov/PMC4132819
Volume 289
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIAXBBuXcpOREEKqEhI7l-axqjaqwZCATupb5DiOVqlLUJc-lP_AE3-Yc-w4STcqwV6iNnWcpOez_flcCXkbRF6Rw0Lo8EgIJ4gEDKlxAsMdVjtexH6Qa4vp2Zdodh6cLsLFYPC757W0qTNX_vxrXMltpArnQK4YJfsfkm07hRPwGeQLR5AwHP9ZxlOn8WdZjeZiaXIha6O_ScOMuoELgdnAMYvqx3V1_BkI5vISq3YpDBPAapejE2ODQi5q5sDVdjRBO7oNpsLAQBvmaEIqccbRmW1tJ32a2wWcaaprMj2ZXCS2wFxnEhKNE-mpWqsuvuLbVqtaZ2J7Nfru9pUTfoDaVhOeaTRmNmpmx6nTuIUwk7LdVWbiBSqIUQWL_szMTHWhBoKc9ydabqdaZb8bPemNJQE4Ei4JmXTPYO_nhrCd8MJu9Wt9EtFs7eNTMY9z2HaFd8hdBo1x8vz0tUtBD1sqU4axeQmbLyoOPly7yT6qc3Mrc90jt0dx5g_Jg0ZgdGKA9ogMVHlIjialqKvLLX1HtbewNsMckntTK8gj8gvETTscUo1DWhUUkENbHNIOh1TjkLY4pA2EaINDmm2pxSG1ONS99XGIdxC0xaHt5DE5PzmeT2dOU-bDkcBWa8dH23bmF5Hny3iMWnml_3cRxpIlsH7kMVrDVSSAZsmEsTwWgkeJ5Fkho0zwJ-SgrEr1jNCceRE0yCQWHWB5BotTyDGrG2y8o5yJIXGtRFLZ5MDHUiyrVPtixEEKIkxRhKkR4ZC8by_4YdK_7G_KrIjThr0aVpoCEvdf9MaCIQWhobFOlKraXKXA82FrgmrZIXlqwNE-AQuS2BsncHW8A5u2AeaM3_2lXF7o3PHAWdF0_vw2D_uC3O_G-EtyUK836hVQ8jp7rYfIHwyf4Z0
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+C-terminal+Tails+of+the+Bacterial+Chaperonin+GroEL+Stimulate+Protein+Folding+by+Directly+Altering+the+Conformation+of+a+Substrate+Protein&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Weaver%2C+Jeremy&rft.au=Rye%2C+Hays+S.&rft.date=2014-08-15&rft.pub=Elsevier+Inc&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=289&rft.issue=33&rft.spage=23219&rft.epage=23232&rft_id=info:doi/10.1074%2Fjbc.M114.577205&rft.externalDocID=S0021925820331185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon