The C-terminal Tails of the Bacterial Chaperonin GroEL Stimulate Protein Folding by Directly Altering the Conformation of a Substrate Protein
Many essential cellular proteins fold only with the assistance of chaperonin machines like the GroEL-GroES system of Escherichia coli. However, the mechanistic details of assisted protein folding by GroEL-GroES remain the subject of ongoing debate. We previously demonstrated that GroEL-GroES enhance...
Saved in:
Published in | The Journal of biological chemistry Vol. 289; no. 33; pp. 23219 - 23232 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.08.2014
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many essential cellular proteins fold only with the assistance of chaperonin machines like the GroEL-GroES system of Escherichia coli. However, the mechanistic details of assisted protein folding by GroEL-GroES remain the subject of ongoing debate. We previously demonstrated that GroEL-GroES enhances the productive folding of a kinetically trapped substrate protein through unfolding, where both binding energy and the energy of ATP hydrolysis are used to disrupt the inhibitory misfolded states. Here, we show that the intrinsically disordered yet highly conserved C-terminal sequence of the GroEL subunits directly contributes to substrate protein unfolding. Interactions between the C terminus and the non-native substrate protein alter the binding position of the substrate protein on the GroEL apical surface. The C-terminal tails also impact the conformational state of the substrate protein during capture and encapsulation on the GroEL ring. Importantly, removal of the C termini results in slower overall folding, reducing the fraction of the substrate protein that commits quickly to a productive folding pathway and slowing several kinetically distinct folding transitions that occur inside the GroEL-GroES cavity. The conserved C-terminal tails of GroEL are thus important for protein folding from the beginning to the end of the chaperonin reaction cycle. |
---|---|
AbstractList | Many essential cellular proteins fold only with the assistance of chaperonin machines like the GroEL-GroES system of Escherichia coli. However, the mechanistic details of assisted protein folding by GroEL-GroES remain the subject of ongoing debate. We previously demonstrated that GroEL-GroES enhances the productive folding of a kinetically trapped substrate protein through unfolding, where both binding energy and the energy of ATP hydrolysis are used to disrupt the inhibitory misfolded states. Here, we show that the intrinsically disordered yet highly conserved C-terminal sequence of the GroEL subunits directly contributes to substrate protein unfolding. Interactions between the C terminus and the non-native substrate protein alter the binding position of the substrate protein on the GroEL apical surface. The C-terminal tails also impact the conformational state of the substrate protein during capture and encapsulation on the GroEL ring. Importantly, removal of the C termini results in slower overall folding, reducing the fraction of the substrate protein that commits quickly to a productive folding pathway and slowing several kinetically distinct folding transitions that occur inside the GroEL-GroES cavity. The conserved C-terminal tails of GroEL are thus important for protein folding from the beginning to the end of the chaperonin reaction cycle. Background: Chaperonins like GroEL-GroES are required for the folding of many proteins. Results: The GroEL C termini alter substrate protein conformation and accelerate folding. Conclusion: Optimal protein folding requires the partial unfolding of misfolded states, a process that involves the GroEL C terminus. Significance: Chaperonins can actively facilitate protein folding by altering the conformations of folding intermediates. Many essential cellular proteins fold only with the assistance of chaperonin machines like the GroEL-GroES system of Escherichia coli . However, the mechanistic details of assisted protein folding by GroEL-GroES remain the subject of ongoing debate. We previously demonstrated that GroEL-GroES enhances the productive folding of a kinetically trapped substrate protein through unfolding, where both binding energy and the energy of ATP hydrolysis are used to disrupt the inhibitory misfolded states. Here, we show that the intrinsically disordered yet highly conserved C-terminal sequence of the GroEL subunits directly contributes to substrate protein unfolding. Interactions between the C terminus and the non-native substrate protein alter the binding position of the substrate protein on the GroEL apical surface. The C-terminal tails also impact the conformational state of the substrate protein during capture and encapsulation on the GroEL ring. Importantly, removal of the C termini results in slower overall folding, reducing the fraction of the substrate protein that commits quickly to a productive folding pathway and slowing several kinetically distinct folding transitions that occur inside the GroEL-GroES cavity. The conserved C-terminal tails of GroEL are thus important for protein folding from the beginning to the end of the chaperonin reaction cycle. Many essential cellular proteins fold only with the assistance of chaperonin machines like the GroEL-GroES system of Escherichia coli. However, the mechanistic details of assisted protein folding by GroEL-GroES remain the subject of ongoing debate. We previously demonstrated that GroEL-GroES enhances the productive folding of a kinetically trapped substrate protein through unfolding, where both binding energy and the energy of ATP hydrolysis are used to disrupt the inhibitory misfolded states. Here, we show that the intrinsically disordered yet highly conserved C-terminal sequence of the GroEL subunits directly contributes to substrate protein unfolding. Interactions between the C terminus and the non-native substrate protein alter the binding position of the substrate protein on the GroEL apical surface. The C-terminal tails also impact the conformational state of the substrate protein during capture and encapsulation on the GroEL ring. Importantly, removal of the C termini results in slower overall folding, reducing the fraction of the substrate protein that commits quickly to a productive folding pathway and slowing several kinetically distinct folding transitions that occur inside the GroEL-GroES cavity. The conserved C-terminal tails of GroEL are thus important for protein folding from the beginning to the end of the chaperonin reaction cycle.Many essential cellular proteins fold only with the assistance of chaperonin machines like the GroEL-GroES system of Escherichia coli. However, the mechanistic details of assisted protein folding by GroEL-GroES remain the subject of ongoing debate. We previously demonstrated that GroEL-GroES enhances the productive folding of a kinetically trapped substrate protein through unfolding, where both binding energy and the energy of ATP hydrolysis are used to disrupt the inhibitory misfolded states. Here, we show that the intrinsically disordered yet highly conserved C-terminal sequence of the GroEL subunits directly contributes to substrate protein unfolding. Interactions between the C terminus and the non-native substrate protein alter the binding position of the substrate protein on the GroEL apical surface. The C-terminal tails also impact the conformational state of the substrate protein during capture and encapsulation on the GroEL ring. Importantly, removal of the C termini results in slower overall folding, reducing the fraction of the substrate protein that commits quickly to a productive folding pathway and slowing several kinetically distinct folding transitions that occur inside the GroEL-GroES cavity. The conserved C-terminal tails of GroEL are thus important for protein folding from the beginning to the end of the chaperonin reaction cycle. |
Author | Rye, Hays S. Weaver, Jeremy |
Author_xml | – sequence: 1 givenname: Jeremy surname: Weaver fullname: Weaver, Jeremy organization: Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 – sequence: 2 givenname: Hays S. surname: Rye fullname: Rye, Hays S. email: haysrye@tamu.edu organization: Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24970895$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1rFDEYDlKx2-rZm-ToZbb5mOxMLkId2yqsKHQFbyGTeaebkknWJFvYH-F_NtttpQrNJfC8z0fyPifoyAcPCL2lZE5JU5_d9mb-ldJ6LpqGEfECzShpecUF_XmEZoQwWkkm2mN0ktItKaeW9BU6ZrVsSCvFDP1erQF3VYY4Wa8dXmnrEg4jzgX_qE0Z2AJ3a72BGLz1-CqGiyW-znbaOp0Bf48hQ8Evgxusv8H9Dn-yEUx2O3zu9voC7t264McQJ51t8PsEja-3fcrxiclr9HLULsGbh_sU_bi8WHWfq-W3qy_d-bIygshcUS4I7em4INQ0LeXAgZX_cy0aw2Qj-dCwVhJYaEaZkYwNjdZ8IQ3vR7PoNT9FHw6-m20_wWDAl2c4tYl20nGngrbq34m3a3UT7lRNOWupLAbvHwxi-LWFlNVkkwHntIewTYoKIRas5aIu1HdPs_6GPHZQCOJAMDGkFGFUxub7LZVo6xQlat-1Kl2rfdfq0HXRnf2ne7R-XiEPCii7vbMQVTIWvIHhvjA1BPus9g8SMMDW |
CitedBy_id | crossref_primary_10_1016_j_sbi_2015_08_009 crossref_primary_10_1093_jb_mvy061 crossref_primary_10_1038_s41598_017_17167_7 crossref_primary_10_3390_biomedicines9111649 crossref_primary_10_1021_acs_jpclett_8b01586 crossref_primary_10_1021_acs_biochem_8b00132 crossref_primary_10_1128_mBio_02167_20 crossref_primary_10_1016_j_tibs_2015_07_009 crossref_primary_10_1186_s13062_016_0149_y crossref_primary_10_1021_acs_jpcb_8b07366 crossref_primary_10_1038_ncomms15934 crossref_primary_10_1093_nar_gkz730 crossref_primary_10_1021_acs_chemrev_5b00556 crossref_primary_10_1074_jbc_M114_633636 crossref_primary_10_1073_pnas_1716168115 crossref_primary_10_1073_pnas_2213170119 crossref_primary_10_1016_j_pep_2017_09_010 crossref_primary_10_1371_journal_pone_0117724 crossref_primary_10_1002_1873_3468_13844 crossref_primary_10_1126_science_aac4354 crossref_primary_10_2142_biophysics_11_93 crossref_primary_10_1146_annurev_biophys_082521_113418 crossref_primary_10_7554_eLife_56511 crossref_primary_10_1007_s00253_021_11686_0 crossref_primary_10_1126_sciadv_abl6293 crossref_primary_10_1016_j_abb_2015_09_022 crossref_primary_10_1016_j_mib_2024_102480 crossref_primary_10_1096_fj_14_1202ufm crossref_primary_10_1016_j_isci_2021_103704 crossref_primary_10_1016_j_saa_2017_12_071 crossref_primary_10_1074_jbc_R117_796862 crossref_primary_10_1038_s41467_019_10781_1 crossref_primary_10_1017_S0033583519000143 crossref_primary_10_1073_pnas_2308933120 crossref_primary_10_1111_mmi_15109 |
Cites_doi | 10.1074/jbc.271.45.28229 10.1006/jmbi.1998.1704 10.1371/journal.pcbi.1003269 10.1016/j.cell.2008.01.048 10.1016/S0092-8674(00)80742-4 10.1021/bi00061a013 10.1016/0092-8674(94)90533-9 10.1038/nsmb.1394 10.1073/pnas.1317702110 10.1073/pnas.94.4.1080 10.1038/emboj.2010.52 10.1111/j.1365-2958.1993.tb01096.x 10.1073/pnas.1318862110 10.1016/j.sbi.2007.01.003 10.1016/j.molcel.2004.09.003 10.1016/j.cell.2010.05.027 10.1073/pnas.0700820104 10.1074/jbc.M110.122101 10.1038/90443 10.1128/jb.176.22.6980-6985.1994 10.1126/science.181.4096.223 10.1074/jbc.M804090200 10.1110/ps.9.3.476 10.1038/nature10317 10.1063/1.1143328 10.1017/S0033583509004764 10.1093/gbe/evq045 10.1146/annurev.biochem.052308.114844 10.1074/jbc.M708002200 10.1016/S0092-8674(00)81293-3 10.1074/jbc.M802898200 10.1073/pnas.1204547109 10.1111/j.1574-6976.2009.00178.x 10.1016/0092-8674(95)90098-5 10.1016/S0092-8674(01)00517-7 10.1038/371614a0 10.1073/pnas.0807418105 10.1016/S0959-440X(00)00176-7 10.1016/j.cell.2006.04.027 10.1080/10409230600760382 10.1016/j.jmb.2013.06.028 10.1038/379420a0 10.1006/meth.2001.1188 10.1038/nature08009 10.1016/0014-5793(91)80878-7 10.1073/pnas.0809794105 10.1006/jmbi.1999.2591 10.1016/j.cell.2005.05.028 10.1038/371578a0 10.1126/science.7913555 10.1073/pnas.0710042105 10.1042/BJ20091845 10.1021/bi00016a001 10.1074/jbc.M113.480178 10.1038/41944 10.1007/s00018-009-0164-6 10.1038/42047 10.1016/j.celrep.2012.02.011 10.1073/pnas.93.9.4030 10.1038/10735 10.1038/nature02261 10.1006/jmbi.1995.0399 10.1016/j.cell.2013.04.052 10.1006/jmbi.1995.0285 10.1038/417398a |
ContentType | Journal Article |
Copyright | 2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. 2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014 |
Copyright_xml | – notice: 2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. – notice: 2014 by The American Society for Biochemistry and Molecular Biology, Inc. – notice: 2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1074/jbc.M114.577205 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | GroEL C Termini Alter Substrate Protein Conformation |
EISSN | 1083-351X |
EndPage | 23232 |
ExternalDocumentID | PMC4132819 24970895 10_1074_jbc_M114_577205 S0021925820331185 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM065421 – fundername: NIGMS NIH HHS grantid: R01 GM065421 – fundername: National Institutes of Health grantid: GM065421 |
GroupedDBID | --- -DZ -ET -~X .55 .GJ 0R~ 0SF 186 18M 29J 2WC 34G 39C 3O- 4.4 41~ 53G 5BI 5GY 5RE 5VS 6I. 6TJ 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO AAYJJ AAYOK ABDNZ ABFSI ABOCM ABPPZ ABRJW ABTAH ACGFO ACNCT ACSFO ACYGS ADBBV ADIYS ADNWM AENEX AEXQZ AFDAS AFFNX AFMIJ AFOSN AFPKN AI. AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CJ0 CS3 DIK DU5 E.L E3Z EBS EJD F20 F5P FA8 FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 J5H KQ8 L7B MVM N9A NHB OHT OK1 P-O P0W P2P QZG R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT UQL VH1 VQA W8F WH7 WHG WOQ X7M XFK XJT XSW Y6R YQT YSK YWH YYP YZZ ZA5 ZE2 ZGI ZY4 ~02 ~KM .7T AALRI AAYWO AAYXX ACVFH ADCNI ADVLN ADXHL AEUPX AFPUW AIGII AITUG AKBMS AKYEP CITATION H13 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c509t-13501b1f601c7813e3e27723a57c29793d72890e6a212c922d7aa369c3bfc6ba3 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 18:25:57 EDT 2025 Thu Jul 10 22:12:39 EDT 2025 Thu Apr 03 07:00:52 EDT 2025 Tue Jul 01 00:48:06 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 Sat Apr 20 15:59:14 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Keywords | Chaperonin Protein Misfolding Hsp60 GroEL Chaperone Molecular Chaperone Protein Dynamic Protein Folding |
Language | English |
License | This is an open access article under the CC BY license. 2014 by The American Society for Biochemistry and Molecular Biology, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-13501b1f601c7813e3e27723a57c29793d72890e6a212c922d7aa369c3bfc6ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1074/jbc.M114.577205 |
PMID | 24970895 |
PQID | 1555628354 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4132819 proquest_miscellaneous_1555628354 pubmed_primary_24970895 crossref_citationtrail_10_1074_jbc_M114_577205 crossref_primary_10_1074_jbc_M114_577205 elsevier_sciencedirect_doi_10_1074_jbc_M114_577205 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-15 |
PublicationDateYYYYMMDD | 2014-08-15 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2014 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Anfinsen (bib2) 1973; 181 Braig, Otwinowski, Hegde, Boisvert, Joachimiak, Horwich, Sigler (bib11) 1994; 371 Todd, Lorimer, Thirumalai (bib30) 1996; 93 Sameshima, Iizuka, Ueno, Wada, Aoki, Shimamoto, Ohdomari, Tanii, Funatsu (bib53) 2010; 285 James, Siemiarczuk, Ware (bib48) 1992; 63 Goldberg, Zhang, Sondek, Matthews, Fox, Horwich (bib35) 1997; 94 Horwich, Fenton (bib8) 2009; 42 Suzuki, Ueno, Iizuka, Miura, Zako, Akahori, Miyake, Shimamoto, Aoki, Tanii, Ohdomari, Funatsu (bib49) 2008; 283 Rye, Burston, Fenton, Beechem, Xu, Sigler, Horwich (bib15) 1997; 388 Yifrach, Horovitz (bib52) 1995; 34 Kad, Ranson, Cliff, Clarke (bib66) 1998; 278 Chen, Madan, Weaver, Lin, Schröder, Chiu, Rye (bib46) 2013; 153 Jewett, Shea (bib10) 2010; 67 Chakraborty, Chatila, Sinha, Shi, Poschner, Sikor, Jiang, Lamb, Hartl, Hayer-Hartl (bib38) 2010; 142 Chen, Walter, Horwich, Smith (bib34) 2001; 8 Sameshima, Iizuka, Ueno, Funatsu (bib54) 2010; 427 Fares, Ruiz-González, Moya, Elena, Barrio (bib63) 2002; 417 Williams, Fares (bib61) 2010; 2 Brocchieri, Karlin (bib58) 2000; 9 Dobson (bib1) 2003; 426 Weissman, Hohl, Kovalenko, Kashi, Chen, Braig, Saibil, Fenton, Horwich (bib18) 1995; 83 Grason, Gresham, Lorimer (bib56) 2008; 105 Motojima, Motojima-Miyazaki, Yoshida (bib42) 2012; 109 Cetinbaş, Shakhnovich (bib62) 2013; 9 Farr, Fenton, Horwich (bib43) 2007; 104 Brinker, Pfeifer, Kerner, Naylor, Hartl, Hayer-Hartl (bib37) 2001; 107 Ye, Lorimer (bib28) 2013; 110 Brockwell, Radford (bib4) 2007; 17 Yang, Ye, Lorimer (bib55) 2013; 110 Coyle, Texter, Ashcroft, Masselos, Robinson, Radford (bib33) 1999; 6 Fenton, Kashi, Furtak, Horwich (bib12) 1994; 371 Tang, Chang, Roeben, Wischnewski, Wischnewski, Kerner, Hartl, Hayer-Hartl (bib39) 2006; 125 Horst, Fenton, Englander, Wüthrich, Horwich (bib32) 2007; 104 Lin, Puchalla, Shoup, Rye (bib21) 2013; 288 Rye (bib47) 2001; 24 Lin, Rye (bib9) 2006; 41 Xu, Horwich, Sigler (bib19) 1997; 388 Gray, Fersht (bib50) 1991; 292 Powers, Powers, Gierasch (bib7) 2012; 1 Burnett, Horwich, Low (bib57) 1994; 176 Burston, Ranson, Clarke (bib24) 1995; 249 Lin, Rye (bib36) 2004; 16 Fujiwara, Ishihama, Nakahigashi, Soga, Taguchi (bib14) 2010; 29 Ranson, Dunster, Burston, Clarke (bib27) 1995; 250 Jackson, Staniforth, Halsall, Atkinson, Holbrook, Clarke, Burston (bib51) 1993; 32 Rye, Roseman, Chen, Furtak, Fenton, Saibil, Horwich (bib20) 1999; 97 Powers, Morimoto, Dillin, Kelly, Balch (bib5) 2009; 78 Mayhew, da Silva, Martin, Erdjument-Bromage, Tempst, Hartl (bib17) 1996; 379 Weissman, Kashi, Fenton, Horwich (bib26) 1994; 78 Weissman, Rye, Fenton, Beechem, Horwich (bib16) 1996; 84 Betancourt, Thirumalai (bib31) 1999; 287 Grantcharova, Alm, Baker, Horwich (bib3) 2001; 11 Tokuriki, Tawfik (bib59) 2009; 459 Hartl, Bracher, Hayer-Hartl (bib6) 2011; 475 McLennan, Girshovich, Lissin, Charters, Masters (bib44) 1993; 7 Lin, Madan, Rye (bib23) 2008; 15 Machida, Kono-Okada, Hongo, Mizobata, Kawata (bib45) 2008; 283 Tang, Chang, Chakraborty, Hartl, Hayer-Hartl (bib40) 2008; 27 Apetri, Horwich (bib29) 2008; 105 Wyganowski, Kaltenbach, Tokuriki (bib60) 2013; 425 Lund (bib64) 2009; 33 Todd, Viitanen, Lorimer (bib25) 1994; 265 Madan, Lin, Rye (bib22) 2008; 283 Murai, Makino, Yoshida (bib65) 1996; 271 Kerner, Naylor, Ishihama, Maier, Chang, Stines, Georgopoulos, Frishman, Hayer-Hartl, Mann, Hartl (bib13) 2005; 122 Sharma, Chakraborty, Müller, Astola, Tang, Lamb, Hayer-Hartl, Hartl (bib41) 2008; 133 Murai (10.1074/jbc.M114.577205_bib65) 1996; 271 Weissman (10.1074/jbc.M114.577205_bib16) 1996; 84 Brinker (10.1074/jbc.M114.577205_bib37) 2001; 107 Grason (10.1074/jbc.M114.577205_bib56) 2008; 105 Tang (10.1074/jbc.M114.577205_bib39) 2006; 125 Yang (10.1074/jbc.M114.577205_bib55) 2013; 110 Braig (10.1074/jbc.M114.577205_bib11) 1994; 371 Chen (10.1074/jbc.M114.577205_bib46) 2013; 153 Fenton (10.1074/jbc.M114.577205_bib12) 1994; 371 Mayhew (10.1074/jbc.M114.577205_bib17) 1996; 379 McLennan (10.1074/jbc.M114.577205_bib44) 1993; 7 Chen (10.1074/jbc.M114.577205_bib34) 2001; 8 Williams (10.1074/jbc.M114.577205_bib61) 2010; 2 Horwich (10.1074/jbc.M114.577205_bib8) 2009; 42 Burston (10.1074/jbc.M114.577205_bib24) 1995; 249 Gray (10.1074/jbc.M114.577205_bib50) 1991; 292 Ranson (10.1074/jbc.M114.577205_bib27) 1995; 250 Coyle (10.1074/jbc.M114.577205_bib33) 1999; 6 James (10.1074/jbc.M114.577205_bib48) 1992; 63 Tokuriki (10.1074/jbc.M114.577205_bib59) 2009; 459 Xu (10.1074/jbc.M114.577205_bib19) 1997; 388 Sameshima (10.1074/jbc.M114.577205_bib54) 2010; 427 Weissman (10.1074/jbc.M114.577205_bib26) 1994; 78 Grantcharova (10.1074/jbc.M114.577205_bib3) 2001; 11 Lin (10.1074/jbc.M114.577205_bib9) 2006; 41 Jackson (10.1074/jbc.M114.577205_bib51) 1993; 32 Sharma (10.1074/jbc.M114.577205_bib41) 2008; 133 Suzuki (10.1074/jbc.M114.577205_bib49) 2008; 283 Lund (10.1074/jbc.M114.577205_bib64) 2009; 33 Jewett (10.1074/jbc.M114.577205_bib10) 2010; 67 Todd (10.1074/jbc.M114.577205_bib30) 1996; 93 Rye (10.1074/jbc.M114.577205_bib47) 2001; 24 Farr (10.1074/jbc.M114.577205_bib43) 2007; 104 Motojima (10.1074/jbc.M114.577205_bib42) 2012; 109 Hartl (10.1074/jbc.M114.577205_bib6) 2011; 475 Madan (10.1074/jbc.M114.577205_bib22) 2008; 283 Weissman (10.1074/jbc.M114.577205_bib18) 1995; 83 Anfinsen (10.1074/jbc.M114.577205_bib2) 1973; 181 Lin (10.1074/jbc.M114.577205_bib36) 2004; 16 Rye (10.1074/jbc.M114.577205_bib15) 1997; 388 Goldberg (10.1074/jbc.M114.577205_bib35) 1997; 94 Wyganowski (10.1074/jbc.M114.577205_bib60) 2013; 425 Betancourt (10.1074/jbc.M114.577205_bib31) 1999; 287 Cetinbaş (10.1074/jbc.M114.577205_bib62) 2013; 9 Fujiwara (10.1074/jbc.M114.577205_bib14) 2010; 29 Chakraborty (10.1074/jbc.M114.577205_bib38) 2010; 142 Burnett (10.1074/jbc.M114.577205_bib57) 1994; 176 Tang (10.1074/jbc.M114.577205_bib40) 2008; 27 Horst (10.1074/jbc.M114.577205_bib32) 2007; 104 Sameshima (10.1074/jbc.M114.577205_bib53) 2010; 285 Lin (10.1074/jbc.M114.577205_bib23) 2008; 15 Yifrach (10.1074/jbc.M114.577205_bib52) 1995; 34 Brockwell (10.1074/jbc.M114.577205_bib4) 2007; 17 Brocchieri (10.1074/jbc.M114.577205_bib58) 2000; 9 Fares (10.1074/jbc.M114.577205_bib63) 2002; 417 Dobson (10.1074/jbc.M114.577205_bib1) 2003; 426 Powers (10.1074/jbc.M114.577205_bib5) 2009; 78 Kerner (10.1074/jbc.M114.577205_bib13) 2005; 122 Kad (10.1074/jbc.M114.577205_bib66) 1998; 278 Powers (10.1074/jbc.M114.577205_bib7) 2012; 1 Machida (10.1074/jbc.M114.577205_bib45) 2008; 283 Rye (10.1074/jbc.M114.577205_bib20) 1999; 97 Todd (10.1074/jbc.M114.577205_bib25) 1994; 265 Apetri (10.1074/jbc.M114.577205_bib29) 2008; 105 Lin (10.1074/jbc.M114.577205_bib21) 2013; 288 Ye (10.1074/jbc.M114.577205_bib28) 2013; 110 |
References_xml | – volume: 7 start-page: 49 year: 1993 end-page: 58 ident: bib44 article-title: The strongly conserved carboxyl-terminus glycine-methionine motif of the publication-title: Mol. Microbiol – volume: 104 start-page: 5342 year: 2007 end-page: 5347 ident: bib43 article-title: Perturbed ATPase activity and not “close confinement” of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 105 start-page: 17351 year: 2008 end-page: 17355 ident: bib29 article-title: Chaperonin chamber accelerates protein folding through passive action of preventing aggregation publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 110 start-page: E4289 year: 2013 end-page: E4297 ident: bib28 article-title: Substrate protein switches GroE chaperonins from asymmetric to symmetric cycling by catalyzing nucleotide exchange publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 265 start-page: 659 year: 1994 end-page: 666 ident: bib25 article-title: Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding publication-title: Science – volume: 97 start-page: 325 year: 1999 end-page: 338 ident: bib20 article-title: GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings publication-title: Cell – volume: 6 start-page: 683 year: 1999 end-page: 690 ident: bib33 article-title: GroEL accelerates the refolding of hen lysozyme without changing its folding mechanism publication-title: Nat. Struct. Biol – volume: 283 start-page: 32003 year: 2008 end-page: 32013 ident: bib22 article-title: Triggering protein folding within the GroEL-GroES complex publication-title: J. Biol. Chem – volume: 15 start-page: 303 year: 2008 end-page: 311 ident: bib23 article-title: GroEL stimulates protein folding through forced unfolding publication-title: Nat. Struct. Mol. Biol – volume: 417 start-page: 398 year: 2002 ident: bib63 article-title: Endosymbiotic bacteria: groEL buffers against deleterious mutations publication-title: Nature – volume: 388 start-page: 792 year: 1997 end-page: 798 ident: bib15 article-title: Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL (see comments) publication-title: Nature – volume: 9 start-page: 476 year: 2000 end-page: 486 ident: bib58 article-title: Conservation among HSP60 sequences in relation to structure, function, and evolution publication-title: Protein Sci – volume: 63 start-page: 1710 year: 1992 end-page: 1716 ident: bib48 article-title: Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes publication-title: Rev. Sci. Instrum – volume: 133 start-page: 142 year: 2008 end-page: 153 ident: bib41 article-title: Monitoring protein conformation along the pathway of chaperonin-assisted folding publication-title: Cell – volume: 278 start-page: 267 year: 1998 end-page: 278 ident: bib66 article-title: Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings publication-title: J. Mol. Biol – volume: 125 start-page: 903 year: 2006 end-page: 914 ident: bib39 article-title: Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein publication-title: Cell – volume: 27 start-page: 1458 year: 2008 end-page: 1468 ident: bib40 article-title: Essential role of the chaperonin folding compartment publication-title: EMBO J – volume: 9 start-page: e1003269 year: 2013 ident: bib62 article-title: Catalysis of protein folding by chaperones accelerates evolutionary dynamics in adapting cell populations publication-title: PLoS Comput. Biol – volume: 109 start-page: 15740 year: 2012 end-page: 15745 ident: bib42 article-title: Revisiting the contribution of negative charges on the chaperonin cage wall to the acceleration of protein folding publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 32 start-page: 2554 year: 1993 end-page: 2563 ident: bib51 article-title: Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: implications for the mechanism of assisted protein folding publication-title: Biochemistry – volume: 93 start-page: 4030 year: 1996 end-page: 4035 ident: bib30 article-title: Chaperonin-facilitated protein folding: optimization of rate and yield by an iterative annealing mechanism publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 425 start-page: 3403 year: 2013 end-page: 3414 ident: bib60 article-title: GroEL/ES buffering and compensatory mutations promote protein evolution by stabilizing folding intermediates publication-title: J. Mol. Biol – volume: 142 start-page: 112 year: 2010 end-page: 122 ident: bib38 article-title: Chaperonin-catalyzed rescue of kinetically trapped states in protein folding publication-title: Cell – volume: 283 start-page: 23931 year: 2008 end-page: 23939 ident: bib49 article-title: Effect of the C-terminal truncation on the functional cycle of chaperonin GroEL: implication that the C-terminal region facilitates the transition from the folding-arrested to the folding-competent state publication-title: J. Biol. Chem – volume: 83 start-page: 577 year: 1995 end-page: 587 ident: bib18 article-title: Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES publication-title: Cell – volume: 285 start-page: 23159 year: 2010 end-page: 23164 ident: bib53 article-title: Single-molecule study on the decay process of the football-shaped GroEL-GroES complex using zero-mode waveguides publication-title: J. Biol. Chem – volume: 94 start-page: 1080 year: 1997 end-page: 1085 ident: bib35 article-title: Native-like structure of a protein-folding intermediate bound to the chaperonin GroEL publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 459 start-page: 668 year: 2009 end-page: 673 ident: bib59 article-title: Chaperonin overexpression promotes genetic variation and enzyme evolution publication-title: Nature – volume: 16 start-page: 23 year: 2004 end-page: 34 ident: bib36 article-title: Expansion and compression of a protein folding intermediate by GroEL publication-title: Mol. Cell – volume: 271 start-page: 28229 year: 1996 end-page: 28234 ident: bib65 article-title: GroEL locked in a closed conformation by an interdomain cross-link can bind ATP and polypeptide but cannot process further reaction steps publication-title: J. Biol. Chem – volume: 388 start-page: 741 year: 1997 end-page: 750 ident: bib19 article-title: The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex (see comments) publication-title: Nature – volume: 250 start-page: 581 year: 1995 end-page: 586 ident: bib27 article-title: Chaperonins can catalyse the reversal of early aggregation steps when a protein misfolds publication-title: J. Mol. Biol – volume: 24 start-page: 278 year: 2001 end-page: 288 ident: bib47 article-title: Application of fluorescence resonance energy transfer to the GroEL-GroES chaperonin reaction publication-title: Methods – volume: 1 start-page: 265 year: 2012 end-page: 276 ident: bib7 article-title: FoldEco: a model for proteostasis in publication-title: Cell Rep – volume: 105 start-page: 17339 year: 2008 end-page: 17344 ident: bib56 article-title: Setting the chaperonin timer: A two-stroke, two-speed, protein machine publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 426 start-page: 884 year: 2003 end-page: 890 ident: bib1 article-title: Protein folding and misfolding publication-title: Nature – volume: 78 start-page: 693 year: 1994 end-page: 702 ident: bib26 article-title: GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms publication-title: Cell – volume: 475 start-page: 324 year: 2011 end-page: 332 ident: bib6 article-title: Molecular chaperones in protein folding and proteostasis publication-title: Nature – volume: 371 start-page: 578 year: 1994 end-page: 586 ident: bib11 article-title: The crystal structure of the bacterial chaperonin GroEL at 2.8 A publication-title: Nature – volume: 379 start-page: 420 year: 1996 end-page: 426 ident: bib17 article-title: Protein folding in the central cavity of the GroEL-GroES chaperonin complex publication-title: Nature – volume: 427 start-page: 247 year: 2010 end-page: 254 ident: bib54 article-title: Denatured proteins facilitate the formation of the football-shaped GroEL-(GroES)2 complex publication-title: Biochem. J – volume: 181 start-page: 223 year: 1973 end-page: 230 ident: bib2 article-title: Principles that govern the folding of protein chains publication-title: Science – volume: 34 start-page: 5303 year: 1995 end-page: 5308 ident: bib52 article-title: Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL publication-title: Biochemistry – volume: 42 start-page: 83 year: 2009 end-page: 116 ident: bib8 article-title: Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding publication-title: Q. Rev. Biophys – volume: 2 start-page: 609 year: 2010 end-page: 619 ident: bib61 article-title: The effect of chaperonin buffering on protein evolution publication-title: Genome Biol. Evol – volume: 122 start-page: 209 year: 2005 end-page: 220 ident: bib13 article-title: Proteome-wide analysis of chaperonin-dependent protein folding in publication-title: Cell – volume: 8 start-page: 721 year: 2001 end-page: 728 ident: bib34 article-title: Folding of malate dehydrogenase inside the GroEL-GroES cavity publication-title: Nat. Struct. Biol – volume: 104 start-page: 20788 year: 2007 end-page: 20792 ident: bib32 article-title: Folding trajectories of human dihydrofolate reductase inside the GroEL GroES chaperonin cavity and free in solution publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 84 start-page: 481 year: 1996 end-page: 490 ident: bib16 article-title: Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction publication-title: Cell – volume: 41 start-page: 211 year: 2006 end-page: 239 ident: bib9 article-title: GroEL-mediated protein folding: making the impossible, possible publication-title: Crit. Rev. Biochem. Mol. Biol – volume: 78 start-page: 959 year: 2009 end-page: 991 ident: bib5 article-title: Biological and chemical approaches to diseases of proteostasis deficiency publication-title: Annu. Rev. Biochem – volume: 29 start-page: 1552 year: 2010 end-page: 1564 ident: bib14 article-title: A systematic survey of publication-title: EMBO J – volume: 67 start-page: 255 year: 2010 end-page: 276 ident: bib10 article-title: Reconciling theories of chaperonin accelerated folding with experimental evidence publication-title: Cell. Mol. Life Sci – volume: 371 start-page: 614 year: 1994 end-page: 619 ident: bib12 article-title: Residues in chaperonin GroEL required for polypeptide binding and release (see comments) publication-title: Nature – volume: 17 start-page: 30 year: 2007 end-page: 37 ident: bib4 article-title: Intermediates: ubiquitous species on folding energy landscapes? publication-title: Curr. Opin. Struct. Biol – volume: 107 start-page: 223 year: 2001 end-page: 233 ident: bib37 article-title: Dual function of protein confinement in chaperonin-assisted protein folding publication-title: Cell – volume: 292 start-page: 254 year: 1991 end-page: 258 ident: bib50 article-title: Cooperativity in ATP hydrolysis by GroEL is increased by GroES publication-title: FEBS Lett – volume: 153 start-page: 1354 year: 2013 end-page: 1365 ident: bib46 article-title: Visualizing GroEL/ES in the act of encapsulating a folding protein publication-title: Cell – volume: 33 start-page: 785 year: 2009 end-page: 800 ident: bib64 article-title: Multiple chaperonins in bacteria–“ why so many? publication-title: FEMS Microbiol. Rev – volume: 287 start-page: 627 year: 1999 end-page: 644 ident: bib31 article-title: Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity publication-title: J. Mol. Biol – volume: 283 start-page: 6886 year: 2008 end-page: 6896 ident: bib45 article-title: Hydrophilic residues publication-title: J. Biol. Chem – volume: 288 start-page: 30944 year: 2013 end-page: 30955 ident: bib21 article-title: Repetitive protein unfolding by the trans ring of the GroEL-GroES chaperonin complex stimulates folding publication-title: J. Biol. Chem – volume: 249 start-page: 138 year: 1995 end-page: 152 ident: bib24 article-title: The origins and consequences of asymmetry in the chaperonin reaction cycle publication-title: J. Mol. Biol – volume: 110 start-page: E4298 year: 2013 end-page: E4305 ident: bib55 article-title: Symmetric GroEL:GroES2 complexes are the protein-folding functional form of the chaperonin nanomachine publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 176 start-page: 6980 year: 1994 end-page: 6985 ident: bib57 article-title: A carboxy-terminal deletion impairs the assembly of GroEL and confers a pleiotropic phenotype in publication-title: J. Bacteriol – volume: 11 start-page: 70 year: 2001 end-page: 82 ident: bib3 article-title: Mechanisms of protein folding publication-title: Curr. Opin. Struct. Biol – volume: 271 start-page: 28229 year: 1996 ident: 10.1074/jbc.M114.577205_bib65 article-title: GroEL locked in a closed conformation by an interdomain cross-link can bind ATP and polypeptide but cannot process further reaction steps publication-title: J. Biol. Chem doi: 10.1074/jbc.271.45.28229 – volume: 278 start-page: 267 year: 1998 ident: 10.1074/jbc.M114.577205_bib66 article-title: Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings publication-title: J. Mol. Biol doi: 10.1006/jmbi.1998.1704 – volume: 9 start-page: e1003269 year: 2013 ident: 10.1074/jbc.M114.577205_bib62 article-title: Catalysis of protein folding by chaperones accelerates evolutionary dynamics in adapting cell populations publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1003269 – volume: 133 start-page: 142 year: 2008 ident: 10.1074/jbc.M114.577205_bib41 article-title: Monitoring protein conformation along the pathway of chaperonin-assisted folding publication-title: Cell doi: 10.1016/j.cell.2008.01.048 – volume: 97 start-page: 325 year: 1999 ident: 10.1074/jbc.M114.577205_bib20 article-title: GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings publication-title: Cell doi: 10.1016/S0092-8674(00)80742-4 – volume: 32 start-page: 2554 year: 1993 ident: 10.1074/jbc.M114.577205_bib51 article-title: Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: implications for the mechanism of assisted protein folding publication-title: Biochemistry doi: 10.1021/bi00061a013 – volume: 78 start-page: 693 year: 1994 ident: 10.1074/jbc.M114.577205_bib26 article-title: GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms publication-title: Cell doi: 10.1016/0092-8674(94)90533-9 – volume: 15 start-page: 303 year: 2008 ident: 10.1074/jbc.M114.577205_bib23 article-title: GroEL stimulates protein folding through forced unfolding publication-title: Nat. Struct. Mol. Biol doi: 10.1038/nsmb.1394 – volume: 27 start-page: 1458 year: 2008 ident: 10.1074/jbc.M114.577205_bib40 article-title: Essential role of the chaperonin folding compartment in vivo publication-title: EMBO J – volume: 110 start-page: E4289 year: 2013 ident: 10.1074/jbc.M114.577205_bib28 article-title: Substrate protein switches GroE chaperonins from asymmetric to symmetric cycling by catalyzing nucleotide exchange publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1317702110 – volume: 94 start-page: 1080 year: 1997 ident: 10.1074/jbc.M114.577205_bib35 article-title: Native-like structure of a protein-folding intermediate bound to the chaperonin GroEL publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.94.4.1080 – volume: 29 start-page: 1552 year: 2010 ident: 10.1074/jbc.M114.577205_bib14 article-title: A systematic survey of in vivo obligate chaperonin-dependent substrates publication-title: EMBO J doi: 10.1038/emboj.2010.52 – volume: 7 start-page: 49 year: 1993 ident: 10.1074/jbc.M114.577205_bib44 article-title: The strongly conserved carboxyl-terminus glycine-methionine motif of the Escherichia coli GroEL chaperonin is dispensable publication-title: Mol. Microbiol doi: 10.1111/j.1365-2958.1993.tb01096.x – volume: 110 start-page: E4298 year: 2013 ident: 10.1074/jbc.M114.577205_bib55 article-title: Symmetric GroEL:GroES2 complexes are the protein-folding functional form of the chaperonin nanomachine publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1318862110 – volume: 17 start-page: 30 year: 2007 ident: 10.1074/jbc.M114.577205_bib4 article-title: Intermediates: ubiquitous species on folding energy landscapes? publication-title: Curr. Opin. Struct. Biol doi: 10.1016/j.sbi.2007.01.003 – volume: 16 start-page: 23 year: 2004 ident: 10.1074/jbc.M114.577205_bib36 article-title: Expansion and compression of a protein folding intermediate by GroEL publication-title: Mol. Cell doi: 10.1016/j.molcel.2004.09.003 – volume: 142 start-page: 112 year: 2010 ident: 10.1074/jbc.M114.577205_bib38 article-title: Chaperonin-catalyzed rescue of kinetically trapped states in protein folding publication-title: Cell doi: 10.1016/j.cell.2010.05.027 – volume: 104 start-page: 5342 year: 2007 ident: 10.1074/jbc.M114.577205_bib43 article-title: Perturbed ATPase activity and not “close confinement” of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0700820104 – volume: 285 start-page: 23159 year: 2010 ident: 10.1074/jbc.M114.577205_bib53 article-title: Single-molecule study on the decay process of the football-shaped GroEL-GroES complex using zero-mode waveguides publication-title: J. Biol. Chem doi: 10.1074/jbc.M110.122101 – volume: 8 start-page: 721 year: 2001 ident: 10.1074/jbc.M114.577205_bib34 article-title: Folding of malate dehydrogenase inside the GroEL-GroES cavity publication-title: Nat. Struct. Biol doi: 10.1038/90443 – volume: 176 start-page: 6980 year: 1994 ident: 10.1074/jbc.M114.577205_bib57 article-title: A carboxy-terminal deletion impairs the assembly of GroEL and confers a pleiotropic phenotype in Escherichia coli K-12 publication-title: J. Bacteriol doi: 10.1128/jb.176.22.6980-6985.1994 – volume: 181 start-page: 223 year: 1973 ident: 10.1074/jbc.M114.577205_bib2 article-title: Principles that govern the folding of protein chains publication-title: Science doi: 10.1126/science.181.4096.223 – volume: 283 start-page: 23931 year: 2008 ident: 10.1074/jbc.M114.577205_bib49 article-title: Effect of the C-terminal truncation on the functional cycle of chaperonin GroEL: implication that the C-terminal region facilitates the transition from the folding-arrested to the folding-competent state publication-title: J. Biol. Chem doi: 10.1074/jbc.M804090200 – volume: 9 start-page: 476 year: 2000 ident: 10.1074/jbc.M114.577205_bib58 article-title: Conservation among HSP60 sequences in relation to structure, function, and evolution publication-title: Protein Sci doi: 10.1110/ps.9.3.476 – volume: 475 start-page: 324 year: 2011 ident: 10.1074/jbc.M114.577205_bib6 article-title: Molecular chaperones in protein folding and proteostasis publication-title: Nature doi: 10.1038/nature10317 – volume: 63 start-page: 1710 year: 1992 ident: 10.1074/jbc.M114.577205_bib48 article-title: Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes publication-title: Rev. Sci. Instrum doi: 10.1063/1.1143328 – volume: 42 start-page: 83 year: 2009 ident: 10.1074/jbc.M114.577205_bib8 article-title: Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding publication-title: Q. Rev. Biophys doi: 10.1017/S0033583509004764 – volume: 2 start-page: 609 year: 2010 ident: 10.1074/jbc.M114.577205_bib61 article-title: The effect of chaperonin buffering on protein evolution publication-title: Genome Biol. Evol doi: 10.1093/gbe/evq045 – volume: 78 start-page: 959 year: 2009 ident: 10.1074/jbc.M114.577205_bib5 article-title: Biological and chemical approaches to diseases of proteostasis deficiency publication-title: Annu. Rev. Biochem doi: 10.1146/annurev.biochem.052308.114844 – volume: 283 start-page: 6886 year: 2008 ident: 10.1074/jbc.M114.577205_bib45 article-title: Hydrophilic residues 526KNDAAD531 in the flexible C-terminal region of the chaperonin GroEL are critical for substrate protein folding within the central cavity publication-title: J. Biol. Chem doi: 10.1074/jbc.M708002200 – volume: 84 start-page: 481 year: 1996 ident: 10.1074/jbc.M114.577205_bib16 article-title: Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction publication-title: Cell doi: 10.1016/S0092-8674(00)81293-3 – volume: 283 start-page: 32003 year: 2008 ident: 10.1074/jbc.M114.577205_bib22 article-title: Triggering protein folding within the GroEL-GroES complex publication-title: J. Biol. Chem doi: 10.1074/jbc.M802898200 – volume: 109 start-page: 15740 year: 2012 ident: 10.1074/jbc.M114.577205_bib42 article-title: Revisiting the contribution of negative charges on the chaperonin cage wall to the acceleration of protein folding publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1204547109 – volume: 33 start-page: 785 year: 2009 ident: 10.1074/jbc.M114.577205_bib64 article-title: Multiple chaperonins in bacteria–“ why so many? publication-title: FEMS Microbiol. Rev doi: 10.1111/j.1574-6976.2009.00178.x – volume: 83 start-page: 577 year: 1995 ident: 10.1074/jbc.M114.577205_bib18 article-title: Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES publication-title: Cell doi: 10.1016/0092-8674(95)90098-5 – volume: 107 start-page: 223 year: 2001 ident: 10.1074/jbc.M114.577205_bib37 article-title: Dual function of protein confinement in chaperonin-assisted protein folding publication-title: Cell doi: 10.1016/S0092-8674(01)00517-7 – volume: 371 start-page: 614 year: 1994 ident: 10.1074/jbc.M114.577205_bib12 article-title: Residues in chaperonin GroEL required for polypeptide binding and release (see comments) publication-title: Nature doi: 10.1038/371614a0 – volume: 105 start-page: 17339 year: 2008 ident: 10.1074/jbc.M114.577205_bib56 article-title: Setting the chaperonin timer: A two-stroke, two-speed, protein machine publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0807418105 – volume: 11 start-page: 70 year: 2001 ident: 10.1074/jbc.M114.577205_bib3 article-title: Mechanisms of protein folding publication-title: Curr. Opin. Struct. Biol doi: 10.1016/S0959-440X(00)00176-7 – volume: 125 start-page: 903 year: 2006 ident: 10.1074/jbc.M114.577205_bib39 article-title: Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein publication-title: Cell doi: 10.1016/j.cell.2006.04.027 – volume: 41 start-page: 211 year: 2006 ident: 10.1074/jbc.M114.577205_bib9 article-title: GroEL-mediated protein folding: making the impossible, possible publication-title: Crit. Rev. Biochem. Mol. Biol doi: 10.1080/10409230600760382 – volume: 425 start-page: 3403 year: 2013 ident: 10.1074/jbc.M114.577205_bib60 article-title: GroEL/ES buffering and compensatory mutations promote protein evolution by stabilizing folding intermediates publication-title: J. Mol. Biol doi: 10.1016/j.jmb.2013.06.028 – volume: 379 start-page: 420 year: 1996 ident: 10.1074/jbc.M114.577205_bib17 article-title: Protein folding in the central cavity of the GroEL-GroES chaperonin complex publication-title: Nature doi: 10.1038/379420a0 – volume: 24 start-page: 278 year: 2001 ident: 10.1074/jbc.M114.577205_bib47 article-title: Application of fluorescence resonance energy transfer to the GroEL-GroES chaperonin reaction publication-title: Methods doi: 10.1006/meth.2001.1188 – volume: 459 start-page: 668 year: 2009 ident: 10.1074/jbc.M114.577205_bib59 article-title: Chaperonin overexpression promotes genetic variation and enzyme evolution publication-title: Nature doi: 10.1038/nature08009 – volume: 292 start-page: 254 year: 1991 ident: 10.1074/jbc.M114.577205_bib50 article-title: Cooperativity in ATP hydrolysis by GroEL is increased by GroES publication-title: FEBS Lett doi: 10.1016/0014-5793(91)80878-7 – volume: 105 start-page: 17351 year: 2008 ident: 10.1074/jbc.M114.577205_bib29 article-title: Chaperonin chamber accelerates protein folding through passive action of preventing aggregation publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0809794105 – volume: 287 start-page: 627 year: 1999 ident: 10.1074/jbc.M114.577205_bib31 article-title: Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity publication-title: J. Mol. Biol doi: 10.1006/jmbi.1999.2591 – volume: 122 start-page: 209 year: 2005 ident: 10.1074/jbc.M114.577205_bib13 article-title: Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli publication-title: Cell doi: 10.1016/j.cell.2005.05.028 – volume: 371 start-page: 578 year: 1994 ident: 10.1074/jbc.M114.577205_bib11 article-title: The crystal structure of the bacterial chaperonin GroEL at 2.8 A publication-title: Nature doi: 10.1038/371578a0 – volume: 265 start-page: 659 year: 1994 ident: 10.1074/jbc.M114.577205_bib25 article-title: Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding publication-title: Science doi: 10.1126/science.7913555 – volume: 104 start-page: 20788 year: 2007 ident: 10.1074/jbc.M114.577205_bib32 article-title: Folding trajectories of human dihydrofolate reductase inside the GroEL GroES chaperonin cavity and free in solution publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0710042105 – volume: 427 start-page: 247 year: 2010 ident: 10.1074/jbc.M114.577205_bib54 article-title: Denatured proteins facilitate the formation of the football-shaped GroEL-(GroES)2 complex publication-title: Biochem. J doi: 10.1042/BJ20091845 – volume: 34 start-page: 5303 year: 1995 ident: 10.1074/jbc.M114.577205_bib52 article-title: Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL publication-title: Biochemistry doi: 10.1021/bi00016a001 – volume: 288 start-page: 30944 year: 2013 ident: 10.1074/jbc.M114.577205_bib21 article-title: Repetitive protein unfolding by the trans ring of the GroEL-GroES chaperonin complex stimulates folding publication-title: J. Biol. Chem doi: 10.1074/jbc.M113.480178 – volume: 388 start-page: 741 year: 1997 ident: 10.1074/jbc.M114.577205_bib19 article-title: The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex (see comments) publication-title: Nature doi: 10.1038/41944 – volume: 67 start-page: 255 year: 2010 ident: 10.1074/jbc.M114.577205_bib10 article-title: Reconciling theories of chaperonin accelerated folding with experimental evidence publication-title: Cell. Mol. Life Sci doi: 10.1007/s00018-009-0164-6 – volume: 388 start-page: 792 year: 1997 ident: 10.1074/jbc.M114.577205_bib15 article-title: Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL (see comments) publication-title: Nature doi: 10.1038/42047 – volume: 1 start-page: 265 year: 2012 ident: 10.1074/jbc.M114.577205_bib7 article-title: FoldEco: a model for proteostasis in E. coli publication-title: Cell Rep doi: 10.1016/j.celrep.2012.02.011 – volume: 93 start-page: 4030 year: 1996 ident: 10.1074/jbc.M114.577205_bib30 article-title: Chaperonin-facilitated protein folding: optimization of rate and yield by an iterative annealing mechanism publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.93.9.4030 – volume: 6 start-page: 683 year: 1999 ident: 10.1074/jbc.M114.577205_bib33 article-title: GroEL accelerates the refolding of hen lysozyme without changing its folding mechanism publication-title: Nat. Struct. Biol doi: 10.1038/10735 – volume: 426 start-page: 884 year: 2003 ident: 10.1074/jbc.M114.577205_bib1 article-title: Protein folding and misfolding publication-title: Nature doi: 10.1038/nature02261 – volume: 250 start-page: 581 year: 1995 ident: 10.1074/jbc.M114.577205_bib27 article-title: Chaperonins can catalyse the reversal of early aggregation steps when a protein misfolds publication-title: J. Mol. Biol doi: 10.1006/jmbi.1995.0399 – volume: 153 start-page: 1354 year: 2013 ident: 10.1074/jbc.M114.577205_bib46 article-title: Visualizing GroEL/ES in the act of encapsulating a folding protein publication-title: Cell doi: 10.1016/j.cell.2013.04.052 – volume: 249 start-page: 138 year: 1995 ident: 10.1074/jbc.M114.577205_bib24 article-title: The origins and consequences of asymmetry in the chaperonin reaction cycle publication-title: J. Mol. Biol doi: 10.1006/jmbi.1995.0285 – volume: 417 start-page: 398 year: 2002 ident: 10.1074/jbc.M114.577205_bib63 article-title: Endosymbiotic bacteria: groEL buffers against deleterious mutations publication-title: Nature doi: 10.1038/417398a |
SSID | ssj0000491 |
Score | 2.3329122 |
Snippet | Many essential cellular proteins fold only with the assistance of chaperonin machines like the GroEL-GroES system of Escherichia coli. However, the mechanistic... Background: Chaperonins like GroEL-GroES are required for the folding of many proteins. Results: The GroEL C termini alter substrate protein conformation and... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 23219 |
SubjectTerms | Chaperonin 10 - chemistry Chaperonin 10 - genetics Chaperonin 10 - metabolism Chaperonin 60 - chemistry Chaperonin 60 - genetics Chaperonin 60 - metabolism Escherichia coli - chemistry Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Oligopeptides Protein Binding Protein Folding Protein Structure and Folding Protein Structure, Tertiary |
Title | The C-terminal Tails of the Bacterial Chaperonin GroEL Stimulate Protein Folding by Directly Altering the Conformation of a Substrate Protein |
URI | https://dx.doi.org/10.1074/jbc.M114.577205 https://www.ncbi.nlm.nih.gov/pubmed/24970895 https://www.proquest.com/docview/1555628354 https://pubmed.ncbi.nlm.nih.gov/PMC4132819 |
Volume | 289 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIAXBBuXcpOREEKqEhI7l-axqjaqwZCATupb5DiOVqlLUJc-lP_AE3-Yc-w4STcqwV6iNnWcpOez_flcCXkbRF6Rw0Lo8EgIJ4gEDKlxAsMdVjtexH6Qa4vp2Zdodh6cLsLFYPC757W0qTNX_vxrXMltpArnQK4YJfsfkm07hRPwGeQLR5AwHP9ZxlOn8WdZjeZiaXIha6O_ScOMuoELgdnAMYvqx3V1_BkI5vISq3YpDBPAapejE2ODQi5q5sDVdjRBO7oNpsLAQBvmaEIqccbRmW1tJ32a2wWcaaprMj2ZXCS2wFxnEhKNE-mpWqsuvuLbVqtaZ2J7Nfru9pUTfoDaVhOeaTRmNmpmx6nTuIUwk7LdVWbiBSqIUQWL_szMTHWhBoKc9ydabqdaZb8bPemNJQE4Ei4JmXTPYO_nhrCd8MJu9Wt9EtFs7eNTMY9z2HaFd8hdBo1x8vz0tUtBD1sqU4axeQmbLyoOPly7yT6qc3Mrc90jt0dx5g_Jg0ZgdGKA9ogMVHlIjialqKvLLX1HtbewNsMckntTK8gj8gvETTscUo1DWhUUkENbHNIOh1TjkLY4pA2EaINDmm2pxSG1ONS99XGIdxC0xaHt5DE5PzmeT2dOU-bDkcBWa8dH23bmF5Hny3iMWnml_3cRxpIlsH7kMVrDVSSAZsmEsTwWgkeJ5Fkho0zwJ-SgrEr1jNCceRE0yCQWHWB5BotTyDGrG2y8o5yJIXGtRFLZ5MDHUiyrVPtixEEKIkxRhKkR4ZC8by_4YdK_7G_KrIjThr0aVpoCEvdf9MaCIQWhobFOlKraXKXA82FrgmrZIXlqwNE-AQuS2BsncHW8A5u2AeaM3_2lXF7o3PHAWdF0_vw2D_uC3O_G-EtyUK836hVQ8jp7rYfIHwyf4Z0 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+C-terminal+Tails+of+the+Bacterial+Chaperonin+GroEL+Stimulate+Protein+Folding+by+Directly+Altering+the+Conformation+of+a+Substrate+Protein&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Weaver%2C+Jeremy&rft.au=Rye%2C+Hays+S.&rft.date=2014-08-15&rft.pub=Elsevier+Inc&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=289&rft.issue=33&rft.spage=23219&rft.epage=23232&rft_id=info:doi/10.1074%2Fjbc.M114.577205&rft.externalDocID=S0021925820331185 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |