Nonreplication of functional connectivity differences in autism spectrum disorder across multiple sites and denoising strategies

A rapidly growing number of studies on autism spectrum disorder (ASD) have used resting‐state fMRI to identify alterations of functional connectivity, with the hope of identifying clinical biomarkers or underlying neural mechanisms. However, results have been largely inconsistent across studies, and...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 41; no. 5; pp. 1334 - 1350
Main Authors He, Ye, Byrge, Lisa, Kennedy, Daniel P.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A rapidly growing number of studies on autism spectrum disorder (ASD) have used resting‐state fMRI to identify alterations of functional connectivity, with the hope of identifying clinical biomarkers or underlying neural mechanisms. However, results have been largely inconsistent across studies, and there remains a pressing need to determine the primary factors influencing replicability. Here, we used resting‐state fMRI data from the Autism Brain Imaging Data Exchange to investigate two potential factors: denoising strategy and data site (which differ in terms of sample, data acquisition, etc.). We examined the similarity of both group‐averaged functional connectomes and group‐level differences (ASD vs. control) across 33 denoising pipelines and four independently‐acquired datasets. The group‐averaged connectomes were highly consistent across pipelines (r = 0.92 ± 0.06) and sites (r = 0.88 ± 0.02). However, the group differences, while still consistent within site across pipelines (r = 0.76 ± 0.12), were highly inconsistent across sites regardless of choice of denoising strategies (r = 0.07 ± 0.04), suggesting lack of replication may be strongly influenced by site and/or cohort differences. Across‐site similarity remained low even when considering the data at a large‐scale network level or when considering only the most significant edges. We further show through an extensive literature survey that the parameters chosen in the current study (i.e., sample size, age range, preprocessing methods) are quite representative of the published literature. These results highlight the importance of examining replicability in future studies of ASD, and, more generally, call for extra caution when interpreting alterations in functional connectivity across groups of individuals.
AbstractList A rapidly growing number of studies on autism spectrum disorder (ASD) have used resting‐state fMRI to identify alterations of functional connectivity, with the hope of identifying clinical biomarkers or underlying neural mechanisms. However, results have been largely inconsistent across studies, and there remains a pressing need to determine the primary factors influencing replicability. Here, we used resting‐state fMRI data from the Autism Brain Imaging Data Exchange to investigate two potential factors: denoising strategy and data site (which differ in terms of sample, data acquisition, etc.). We examined the similarity of both group‐averaged functional connectomes and group‐level differences (ASD vs. control) across 33 denoising pipelines and four independently‐acquired datasets. The group‐averaged connectomes were highly consistent across pipelines (r = 0.92 ± 0.06) and sites (r = 0.88 ± 0.02). However, the group differences, while still consistent within site across pipelines (r = 0.76 ± 0.12), were highly inconsistent across sites regardless of choice of denoising strategies (r = 0.07 ± 0.04), suggesting lack of replication may be strongly influenced by site and/or cohort differences. Across‐site similarity remained low even when considering the data at a large‐scale network level or when considering only the most significant edges. We further show through an extensive literature survey that the parameters chosen in the current study (i.e., sample size, age range, preprocessing methods) are quite representative of the published literature. These results highlight the importance of examining replicability in future studies of ASD, and, more generally, call for extra caution when interpreting alterations in functional connectivity across groups of individuals.
Abstract A rapidly growing number of studies on autism spectrum disorder (ASD) have used resting‐state fMRI to identify alterations of functional connectivity, with the hope of identifying clinical biomarkers or underlying neural mechanisms. However, results have been largely inconsistent across studies, and there remains a pressing need to determine the primary factors influencing replicability. Here, we used resting‐state fMRI data from the Autism Brain Imaging Data Exchange to investigate two potential factors: denoising strategy and data site (which differ in terms of sample, data acquisition, etc.). We examined the similarity of both group‐averaged functional connectomes and group‐level differences (ASD vs. control) across 33 denoising pipelines and four independently‐acquired datasets. The group‐averaged connectomes were highly consistent across pipelines ( r = 0.92 ± 0.06) and sites ( r = 0.88 ± 0.02). However, the group differences, while still consistent within site across pipelines ( r = 0.76 ± 0.12), were highly inconsistent across sites regardless of choice of denoising strategies ( r = 0.07 ± 0.04), suggesting lack of replication may be strongly influenced by site and/or cohort differences. Across‐site similarity remained low even when considering the data at a large‐scale network level or when considering only the most significant edges. We further show through an extensive literature survey that the parameters chosen in the current study (i.e., sample size, age range, preprocessing methods) are quite representative of the published literature. These results highlight the importance of examining replicability in future studies of ASD, and, more generally, call for extra caution when interpreting alterations in functional connectivity across groups of individuals.
A rapidly growing number of studies on autism spectrum disorder (ASD) have used resting‐state fMRI to identify alterations of functional connectivity, with the hope of identifying clinical biomarkers or underlying neural mechanisms. However, results have been largely inconsistent across studies, and there remains a pressing need to determine the primary factors influencing replicability. Here, we used resting‐state fMRI data from the Autism Brain Imaging Data Exchange to investigate two potential factors: denoising strategy and data site (which differ in terms of sample, data acquisition, etc.). We examined the similarity of both group‐averaged functional connectomes and group‐level differences (ASD vs. control) across 33 denoising pipelines and four independently‐acquired datasets. The group‐averaged connectomes were highly consistent across pipelines ( r = 0.92 ± 0.06) and sites ( r = 0.88 ± 0.02). However, the group differences, while still consistent within site across pipelines ( r = 0.76 ± 0.12), were highly inconsistent across sites regardless of choice of denoising strategies ( r = 0.07 ± 0.04), suggesting lack of replication may be strongly influenced by site and/or cohort differences. Across‐site similarity remained low even when considering the data at a large‐scale network level or when considering only the most significant edges. We further show through an extensive literature survey that the parameters chosen in the current study (i.e., sample size, age range, preprocessing methods) are quite representative of the published literature. These results highlight the importance of examining replicability in future studies of ASD, and, more generally, call for extra caution when interpreting alterations in functional connectivity across groups of individuals.
Author Byrge, Lisa
He, Ye
Kennedy, Daniel P.
AuthorAffiliation 1 Department of Psychological and Brain Sciences Indiana University Bloomington Indiana
3 Program in Neuroscience Indiana University Bloomington Indiana
2 Cognitive Science Program Indiana University Bloomington Indiana
AuthorAffiliation_xml – name: 2 Cognitive Science Program Indiana University Bloomington Indiana
– name: 1 Department of Psychological and Brain Sciences Indiana University Bloomington Indiana
– name: 3 Program in Neuroscience Indiana University Bloomington Indiana
Author_xml – sequence: 1
  givenname: Ye
  orcidid: 0000-0001-7113-8056
  surname: He
  fullname: He, Ye
  email: he33@iu.edu
  organization: Indiana University
– sequence: 2
  givenname: Lisa
  orcidid: 0000-0001-8554-1401
  surname: Byrge
  fullname: Byrge, Lisa
  organization: Indiana University
– sequence: 3
  givenname: Daniel P.
  orcidid: 0000-0002-5915-0893
  surname: Kennedy
  fullname: Kennedy, Daniel P.
  email: dpk@indiana.edu
  organization: Indiana University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31916675$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1TAQhS1URH9gwQsgS2xgkXYcx3G8QSoVUKQCG1hbjj25dZXYwU6K7o5Hx7e3VIDEamY03xwdzTkmByEGJOQ5g1MGUJ9d99Np3XRSPSJHDJSsgCl-sOtbUalGskNynPMNAGMC2BNyyJlibSvFEfn5OYaE8-itWXwMNA50WIPd9WakNoaAZbj1y5Y6PwyYMFjM1Adq1sXniea5AGmdyjrH5DBRY1PMmU7ruPh5RJr9Ui5McNRhiD77sKF5SWbBjcf8lDwezJjx2X09Id_ev_t6cVldffnw8eL8qrIClKoQRd-AaFqwcrAcWN8Cs53gVjRuwM7w3nZ110srBeMKOThrXctb7qCGzvET8mavO6_9hM5iKBZGPSc_mbTV0Xj99yb4a72Jt1rWbQegisCre4EUv6-YFz35bHEcTcC4Zl1zLpiUdcML-vIf9CauqTx0R0loOIi6LdTrPXX3r4TDgxkGeperLrnqu1wL--JP9w_k7yALcLYHfvgRt_9X0pdvP-0lfwGR3LJx
CitedBy_id crossref_primary_10_1007_s00521_020_05193_y
crossref_primary_10_1002_hbm_25592
crossref_primary_10_1093_brain_awab096
crossref_primary_10_1002_hbm_25830
crossref_primary_10_1177_1073858421994784
crossref_primary_10_1016_j_biopsych_2023_04_014
crossref_primary_10_1176_appi_ajp_20220503
crossref_primary_10_3389_fnins_2024_1223230
crossref_primary_10_1016_j_neuroscience_2023_06_005
crossref_primary_10_1162_netn_a_00222
crossref_primary_10_1186_s13229_020_00397_4
crossref_primary_10_1016_j_biopsych_2020_05_010
crossref_primary_10_1002_aur_2393
crossref_primary_10_1007_s00521_024_09770_3
crossref_primary_10_1038_s41380_021_01245_4
crossref_primary_10_1016_j_cccb_2023_100167
crossref_primary_10_1016_j_biopsych_2020_03_022
crossref_primary_10_1016_j_biopsych_2022_09_008
crossref_primary_10_3390_brainsci12070883
crossref_primary_10_1017_S095457942000084X
crossref_primary_10_1016_j_tics_2022_12_011
crossref_primary_10_3389_fnins_2021_720909
crossref_primary_10_1016_j_pnpbp_2020_109986
crossref_primary_10_3389_fpsyt_2021_667881
crossref_primary_10_1038_s42003_021_02572_6
crossref_primary_10_1016_j_pscychresns_2023_111762
crossref_primary_10_1186_s13229_021_00415_z
crossref_primary_10_1007_s00429_022_02483_0
crossref_primary_10_1002_hbm_24943
crossref_primary_10_1038_s41467_021_21387_x
crossref_primary_10_1002_hbm_25615
Cites_doi 10.1016/j.neuroimage.2016.09.038
10.1016/j.biopsych.2015.12.023
10.1002/jmri.23572
10.1016/j.neuroimage.2014.03.028
10.1016/j.neuroimage.2017.12.073
10.1186/s13229-019-0273-5
10.1016/j.neuroimage.2016.10.020
10.1038/s41380-019-0441-1
10.1016/j.neuroimage.2015.02.064
10.1002/hbm.24241
10.1016/j.neuroimage.2017.03.020
10.1038/ncomms11254
10.1093/cercor/bhq296
10.1093/cercor/bhx179
10.1038/sdata.2017.10
10.3389/fpsyt.2016.00205
10.1093/cercor/bht040
10.1073/pnas.0135058100
10.1016/j.neuroimage.2013.08.048
10.1016/j.neuroimage.2018.01.022
10.1007/s11682-017-9678-y
10.1371/journal.pbio.3000042
10.1016/j.neuroimage.2011.10.018
10.1016/j.tics.2017.04.002
10.1016/j.neuroimage.2011.07.044
10.1016/j.tics.2016.03.014
10.1523/JNEUROSCI.5182-14.2015
10.1016/j.neuroimage.2012.01.016
10.1016/j.neuroimage.2017.12.082
10.1038/mp.2013.78
10.1016/j.neuroimage.2013.04.081
10.1016/j.neubiorev.2018.01.014
10.1038/s42003-019-0378-6
10.1038/nn.4125
10.3389/fnins.2013.00137
10.1016/j.neuroimage.2012.08.052
10.1016/j.neuroimage.2011.12.063
10.1073/pnas.0913110107
10.1016/j.media.2007.06.004
10.1016/j.neuroimage.2016.10.045
10.1259/bjr.20180910
10.1126/scitranslmed.aat9223
10.1001/jamanetworkopen.2018.4777
10.1016/j.neuroimage.2009.10.003
10.1016/j.neuroimage.2004.07.051
10.1016/j.neuroimage.2017.01.072
10.1002/mrm.1910340409
10.1111/j.2517-6161.1995.tb02031.x
10.1038/nn.3919
10.1016/j.biopsych.2018.02.1174
10.1073/pnas.1405289111
10.1038/nn.4135
10.3389/fnhum.2013.00356
10.1002/hbm.24074
10.1152/jn.00338.2011
10.1016/j.neuroimage.2013.03.004
10.1016/j.mri.2007.03.009
10.1016/j.neuroimage.2019.02.062
10.1186/s13229-018-0192-x
10.1016/j.neuroimage.2010.09.076
10.1016/j.neuroimage.2009.07.051
10.1016/j.neuroimage.2009.07.026
10.1006/nimg.2002.1132
10.1093/cercor/bhx335
10.1162/netn_a_00068
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals, Inc.
2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals, Inc.
– notice: 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.24879
DatabaseName Wiley Online Library
Wiley Online Library
PubMed
CrossRef
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Technology Research Database
CrossRef

PubMed

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate He et al
EISSN 1097-0193
EndPage 1350
ExternalDocumentID 10_1002_hbm_24879
31916675
HBM24879
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Child Health and Human Development
  funderid: T32HD007475
– fundername: National Institutes of Mental Health
  funderid: R00MH094409; R01MH110630
– fundername: NICHD NIH HHS
  grantid: T32 HD007475
– fundername: NIMH NIH HHS
  grantid: R01 MH110630
– fundername: NIMH NIH HHS
  grantid: K23 MH087770
– fundername: NIMH NIH HHS
  grantid: R00 MH094409
– fundername: NIMH NIH HHS
  grantid: R03 MH096321
– fundername: NIMH NIH HHS
  grantid: R21 MH107045
– fundername: National Institutes of Mental Health
  grantid: R00MH094409; R01MH110630
– fundername: ;
  grantid: T32HD007475
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HZ~
IAO
IHR
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
ITC
NPM
.Y3
31~
7X7
8FI
8FJ
AAYXX
ABEML
ABJNI
ABUWG
ACBWZ
ACSCC
AFKRA
ASPBG
AVWKF
AZFZN
BENPR
BFHJK
CCPQU
CITATION
EJD
FEDTE
FYUFA
GAKWD
HF~
HMCUK
HVGLF
LW6
M6M
RIWAO
RJQFR
SAMSI
UKHRP
WXSBR
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5099-ee5b405460c7fc301b601c853c54dfe8a3bc828b7c75139e30dccd6363d0208d3
IEDL.DBID RPM
ISSN 1065-9471
IngestDate Tue Sep 17 21:08:19 EDT 2024
Thu Aug 15 22:49:17 EDT 2024
Thu Oct 10 22:22:48 EDT 2024
Thu Sep 26 16:09:26 EDT 2024
Sat Sep 28 08:27:24 EDT 2024
Sat Aug 24 01:07:42 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords replication
functional connectivity
fcMRI
resting-state fMRI
autism
Language English
License Attribution-NonCommercial
2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5099-ee5b405460c7fc301b601c853c54dfe8a3bc828b7c75139e30dccd6363d0208d3
Notes Funding information
National Institute of Child Health and Human Development, Grant/Award Number: T32HD007475; National Institutes of Mental Health, Grant/Award Numbers: R00MH094409, R01MH110630
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Funding information National Institute of Child Health and Human Development, Grant/Award Number: T32HD007475; National Institutes of Mental Health, Grant/Award Numbers: R00MH094409, R01MH110630
ORCID 0000-0001-8554-1401
0000-0002-5915-0893
0000-0001-7113-8056
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268009/
PMID 31916675
PQID 2370430526
PQPubID 996345
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7268009
proquest_miscellaneous_2335177243
proquest_journals_2370430526
crossref_primary_10_1002_hbm_24879
pubmed_primary_31916675
wiley_primary_10_1002_hbm_24879_HBM24879
PublicationCentury 2000
PublicationDate April 1, 2020
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 1, 2020
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2015; 35
2002; 17
2012; 60
2019; 92
2017; 4
2010; 107
2019; 11
2019; 10
1995; 34
2013; 64
2004; 23
2019; 17
2011; 54
2014; 24
2017; 154
2012; 59
2013; 7
2018; 89
2018; 9
2018; 39
2018; 171
2018; 1
2019; 24
2011; 21
2014; 19
2016; 80
2014; 96
2007; 25
2012; 62
2018; 28
2019; 3
2019; 192
2015; 18
2019; 190
2019; 2
1995; 57
2017; 21
2008; 12
2012; 36
2014; 84
2014; 111
2016; 7
2010; 49
2011; 106
2013; 76
2015; 112
2013; 80
2016; 20
2018
2018; 12
2017; 146
2017; 147
2003; 100
2010; 52
2017; 149
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 54
  start-page: 2163
  issue: 3
  year: 2011
  end-page: 2175
  article-title: Multisite reliability of cognitive BOLD data
  publication-title: NeuroImage
– volume: 146
  start-page: 609
  year: 2017
  end-page: 625
  article-title: Sources and implications of whole‐brain fMRI signals in humans
  publication-title: NeuroImage
– volume: 1
  issue: 7
  year: 2018
  article-title: Evaluation of differences in temporal synchrony between brain regions in individuals with autism and typical development
  publication-title: JAMA Network Open
– volume: 25
  start-page: 894
  issue: 6
  year: 2007
  end-page: 901
  article-title: Modelling large motion events in fMRI studies of patients with epilepsy
  publication-title: Magnetic Resonance Imaging
– volume: 92
  start-page: 20180910
  year: 2019
  article-title: Neuroimaging in psychiatry and neurodevelopment: Why the emperor has no clothes
  publication-title: The British Journal of Radiology
– volume: 96
  start-page: 22
  year: 2014
  end-page: 35
  article-title: Reduction of motion‐related artifacts in resting state fMRI using aCompCor
  publication-title: NeuroImage
– volume: 112
  start-page: 267
  year: 2015
  end-page: 277
  article-title: ICA‐AROMA: A robust ICA‐based strategy for removing motion artifacts from fMRI data
  publication-title: NeuroImage
– volume: 35
  start-page: 5837
  issue: 14
  year: 2015
  end-page: 5850
  article-title: Idiosyncratic brain activation patterns are associated with poor social comprehension in autism
  publication-title: The Journal of Neuroscience
– volume: 19
  start-page: 659
  issue: 6
  year: 2014
  end-page: 667
  article-title: The autism brain imaging data exchange: Towards a large‐scale evaluation of the intrinsic brain architecture in autism
  publication-title: Molecular Psychiatry
– volume: 12
  start-page: 168
  issue: 1
  year: 2018
  end-page: 179
  article-title: Local resting state functional connectivity in autism: Site and cohort variability and the effect of eye status
  publication-title: Brain Imaging and Behavior
– volume: 18
  start-page: 1565
  issue: 11
  year: 2015
  end-page: 1567
  article-title: A positive‐negative mode of population covariation links brain connectivity, demographics and behavior
  publication-title: Nature Neuroscience
– volume: 7
  start-page: 205
  year: 2016
  article-title: Resting‐state functional connectivity in autism spectrum disorders: A review
  publication-title: Frontiers in Psychiatry
– volume: 111
  start-page: 7438
  issue: 20
  year: 2014
  end-page: 7443
  article-title: Altered global brain signal in schizophrenia
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 64
  start-page: 240
  year: 2013
  end-page: 256
  article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting‐state functional connectivity data
  publication-title: NeuroImage
– volume: 7
  start-page: 11254
  year: 2016
  article-title: A small number of abnormal brain connections predicts adult autism spectrum disorder
  publication-title: Nature Communications
– volume: 20
  start-page: 425
  issue: 6
  year: 2016
  end-page: 443
  article-title: Building a science of individual differences from fMRI
  publication-title: Trends in Cognitive Sciences
– volume: 89
  start-page: 132
  year: 2018
  end-page: 150
  article-title: Repint of “Reframing autism as a behavioral syndrome and not a specific mental disorder: Implications of genetic and phenotypic heterogeneity”
  publication-title: Neuroscience and Biobehavioral Reviews
– volume: 24
  start-page: 1415
  year: 2019
  end-page: 1424
  article-title: Conceptualizing mental disorders as deviations from normative functioning
  publication-title: Molecular Psychiatry
– volume: 28
  start-page: 3095
  issue: 9
  year: 2018
  end-page: 3114
  article-title: Local‐global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI
  publication-title: Cerebral Cortex
– volume: 76
  start-page: 183
  year: 2013
  end-page: 201
  article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics
  publication-title: NeuroImage
– volume: 60
  start-page: 623
  issue: 1
  year: 2012
  end-page: 632
  article-title: Impact of in‐scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth
  publication-title: NeuroImage
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
– volume: 107
  start-page: 10238
  issue: 22
  year: 2010
  end-page: 10243
  article-title: Neural basis of global resting‐state fMRI activity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 39
  start-page: 4213
  issue: 11
  year: 2018
  end-page: 4227
  article-title: Statistical harmonization corrects site effects in functional connectivity measurements from multi‐site fMRI data
  publication-title: Human Brain Mapping
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate—A practical and powerful approach to multiple testing
  publication-title: Journal of the Royal Statistical Society Series B‐Statistical Methodology
– volume: 11
  issue: 481
  year: 2019
  article-title: Patients with autism spectrum disorders display reproducible functional connectivity alterations
  publication-title: Science Translational Medicine
– volume: 36
  start-page: 39
  issue: 1
  year: 2012
  end-page: 54
  article-title: Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 146
  start-page: 959
  year: 2017
  end-page: 970
  article-title: Multisite reliability of MR‐based functional connectivity
  publication-title: NeuroImage
– volume: 18
  start-page: 1664
  issue: 11
  year: 2015
  end-page: 1671
  article-title: Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity
  publication-title: Nature Neuroscience
– volume: 149
  start-page: 220
  year: 2017
  end-page: 232
  article-title: Statistical power and prediction accuracy in multisite resting‐state fMRI connectivity
  publication-title: NeuroImage
– volume: 28
  start-page: 1383
  issue: 4
  year: 2018
  end-page: 1395
  article-title: Reconfiguration of cortical networks in MDD uncovered by multiscale community detection with fMRI
  publication-title: Cerebral Cortex
– volume: 171
  start-page: 376
  year: 2018
  end-page: 392
  article-title: Identifying and characterizing systematic temporally‐lagged BOLD artifacts
  publication-title: NeuroImage
– volume: 39
  start-page: 3253
  issue: 8
  year: 2018
  end-page: 3262
  article-title: Different brain networks underlying intelligence in autism spectrum disorders
  publication-title: Human Brain Mapping
– volume: 59
  start-page: 431
  issue: 1
  year: 2012
  end-page: 438
  article-title: The influence of head motion on intrinsic functional connectivity MRI
  publication-title: NeuroImage
– volume: 52
  start-page: 1059
  issue: 3
  year: 2010
  end-page: 1069
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: NeuroImage
– volume: 3
  start-page: 363
  issue: 2
  year: 2019
  end-page: 383
  article-title: High‐accuracy individual identification using a “thin slice” of the functional connectome
  publication-title: Network Neuroscience
– volume: 18
  start-page: 302
  issue: 2
  year: 2015
  end-page: 309
  article-title: The idiosyncratic brain: Distortion of spontaneous connectivity patterns in autism spectrum disorder
  publication-title: Nature Neuroscience
– volume: 10
  start-page: 27
  year: 2019
  article-title: Generalizability and reproducibility of functional connectivity in autism
  publication-title: Molecular Autism
– volume: 84
  start-page: 320
  year: 2014
  end-page: 341
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI
  publication-title: NeuroImage
– volume: 21
  start-page: 405
  issue: 6
  year: 2017
  end-page: 406
  article-title: Mixed signals: On separating brain signal from noise
  publication-title: Trends in Cognitive Sciences
– volume: 80
  start-page: 552
  issue: 7
  year: 2016
  end-page: 561
  article-title: Understanding heterogeneity in clinical cohorts using normative models: Beyond case–control studies
  publication-title: Biological Psychiatry
– volume: 2
  start-page: 130
  issue: 1
  year: 2019
  article-title: fMRI replicability depends upon sufficient individual‐level data
  publication-title: Communications Biology
– volume: 24
  start-page: 1894
  issue: 7
  year: 2014
  end-page: 1905
  article-title: Largely typical patterns of resting‐state functional connectivity in high‐functioning adults with autism
  publication-title: Cerebral Cortex
– volume: 106
  start-page: 1125
  issue: 3
  year: 2011
  end-page: 1165
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: Journal of Neurophysiology
– volume: 9
  start-page: 17
  issue: 1
  year: 2018
  article-title: Network‐specific sex differentiation of intrinsic brain function in males with autism
  publication-title: Molecular Autism
– volume: 49
  start-page: 552
  issue: 1
  year: 2010
  end-page: 560
  article-title: Functional magnetic resonance imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task
  publication-title: NeuroImage
– volume: 100
  start-page: 253
  issue: 1
  year: 2003
  end-page: 258
  article-title: Functional connectivity in the resting brain: A network analysis of the default mode hypothesis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 4
  start-page: 170010
  year: 2017
  article-title: Data descriptor: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II
  publication-title: Scientific Data
– volume: 171
  start-page: 415
  year: 2018
  end-page: 436
  article-title: An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting‐state functional MRI
  publication-title: NeuroImage
– volume: 59
  start-page: 2142
  issue: 3
  year: 2012
  end-page: 2154
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  end-page: 841
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
– volume: 62
  start-page: 864
  issue: 2
  year: 2012
  end-page: 870
  article-title: The role of physiological noise in resting‐state functional connectivity
  publication-title: NeuroImage
– volume: 192
  start-page: 115
  year: 2019
  end-page: 134
  article-title: Benchmarking functional connectome‐based predictive models for resting‐state fMRI
  publication-title: NeuroImage
– volume: 49
  start-page: 401
  issue: 1
  year: 2010
  end-page: 414
  article-title: Sources of group differences in functional connectivity: An investigation applied to autism spectrum disorder
  publication-title: NeuroImage
– volume: 17
  issue: 4
  year: 2019
  article-title: Harmonization of resting‐state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias
  publication-title: PLoS Biology
– volume: 7
  start-page: 356
  year: 2013
  article-title: The perils of global signal regression for group comparisons: A case study of autism spectrum disorders
  publication-title: Frontiers in Human Neuroscience
– volume: 21
  start-page: 2233
  issue: 10
  year: 2011
  end-page: 2243
  article-title: Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders
  publication-title: Cerebral Cortex
– year: 2018
  article-title: Personalized intrinsic network topography mapping and functional connectivity deficits in autism spectrum disorder
  publication-title: Biol Psychiatry
– volume: 34
  start-page: 537
  issue: 4
  year: 1995
  end-page: 541
  article-title: Functional connectivity in the motor cortex of resting human brain using Echo‐planar Mri
  publication-title: Magnetic Resonance in Medicine
– volume: 147
  start-page: 736
  year: 2017
  end-page: 745
  article-title: Deriving reproducible biomarkers from multi‐site resting‐state data: An autism‐based example
  publication-title: NeuroImage
– volume: 80
  start-page: 246
  year: 2013
  end-page: 262
  article-title: Standardizing the intrinsic brain: Towards robust measurement of inter‐individual variation in 1000 functional connectomes
  publication-title: NeuroImage
– volume: 12
  start-page: 26
  issue: 1
  year: 2008
  end-page: 41
  article-title: Symmetric diffeomorphic image registration with cross‐correlation: Evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Medical Image Analysis
– volume: 154
  start-page: 174
  year: 2017
  end-page: 187
  article-title: Benchmarking of participant‐level confound regression strategies for the control of motion artifact in studies of functional connectivity
  publication-title: NeuroImage
– volume: 7
  start-page: 137
  year: 2013
  article-title: A multi‐site resting state fMRI study on the amplitude of low frequency fluctuations in schizophrenia
  publication-title: Frontiers in Neuroscience
– volume: 190
  start-page: 182
  year: 2019
  end-page: 190
  article-title: Idiosyncratic organization of cortical networks in autism spectrum disorder
  publication-title: NeuroImage
– ident: e_1_2_8_45_1
  doi: 10.1016/j.neuroimage.2016.09.038
– ident: e_1_2_8_35_1
  doi: 10.1016/j.biopsych.2015.12.023
– ident: e_1_2_8_21_1
  doi: 10.1002/jmri.23572
– ident: e_1_2_8_37_1
  doi: 10.1016/j.neuroimage.2014.03.028
– ident: e_1_2_8_42_1
  doi: 10.1016/j.neuroimage.2017.12.073
– ident: e_1_2_8_32_1
  doi: 10.1186/s13229-019-0273-5
– ident: e_1_2_8_40_1
  doi: 10.1016/j.neuroimage.2016.10.020
– ident: e_1_2_8_34_1
  doi: 10.1038/s41380-019-0441-1
– ident: e_1_2_8_46_1
  doi: 10.1016/j.neuroimage.2015.02.064
– ident: e_1_2_8_66_1
  doi: 10.1002/hbm.24241
– ident: e_1_2_8_12_1
  doi: 10.1016/j.neuroimage.2017.03.020
– ident: e_1_2_8_60_1
  doi: 10.1038/ncomms11254
– ident: e_1_2_8_36_1
  doi: 10.1093/cercor/bhq296
– ident: e_1_2_8_51_1
  doi: 10.1093/cercor/bhx179
– ident: e_1_2_8_16_1
  doi: 10.1038/sdata.2017.10
– ident: e_1_2_8_28_1
  doi: 10.3389/fpsyt.2016.00205
– ident: e_1_2_8_57_1
  doi: 10.1093/cercor/bht040
– ident: e_1_2_8_24_1
  doi: 10.1073/pnas.0135058100
– ident: e_1_2_8_44_1
  doi: 10.1016/j.neuroimage.2013.08.048
– ident: e_1_2_8_41_1
  doi: 10.1016/j.neuroimage.2018.01.022
– ident: e_1_2_8_38_1
  doi: 10.1007/s11682-017-9678-y
– ident: e_1_2_8_61_1
  doi: 10.1371/journal.pbio.3000042
– ident: e_1_2_8_43_1
  doi: 10.1016/j.neuroimage.2011.10.018
– ident: e_1_2_8_58_1
  doi: 10.1016/j.tics.2017.04.002
– ident: e_1_2_8_59_1
  doi: 10.1016/j.neuroimage.2011.07.044
– ident: e_1_2_8_18_1
  doi: 10.1016/j.tics.2016.03.014
– ident: e_1_2_8_9_1
  doi: 10.1523/JNEUROSCI.5182-14.2015
– ident: e_1_2_8_6_1
  doi: 10.1016/j.neuroimage.2012.01.016
– ident: e_1_2_8_10_1
  doi: 10.1016/j.neuroimage.2017.12.082
– ident: e_1_2_8_17_1
  doi: 10.1038/mp.2013.78
– ident: e_1_2_8_63_1
  doi: 10.1016/j.neuroimage.2013.04.081
– ident: e_1_2_8_55_1
  doi: 10.1016/j.neubiorev.2018.01.014
– ident: e_1_2_8_39_1
  doi: 10.1038/s42003-019-0378-6
– ident: e_1_2_8_54_1
  doi: 10.1038/nn.4125
– ident: e_1_2_8_56_1
  doi: 10.3389/fnins.2013.00137
– ident: e_1_2_8_49_1
  doi: 10.1016/j.neuroimage.2012.08.052
– ident: e_1_2_8_50_1
  doi: 10.1016/j.neuroimage.2011.12.063
– ident: e_1_2_8_52_1
  doi: 10.1073/pnas.0913110107
– ident: e_1_2_8_4_1
  doi: 10.1016/j.media.2007.06.004
– ident: e_1_2_8_2_1
  doi: 10.1016/j.neuroimage.2016.10.045
– ident: e_1_2_8_3_1
  doi: 10.1259/bjr.20180910
– ident: e_1_2_8_27_1
  doi: 10.1126/scitranslmed.aat9223
– ident: e_1_2_8_31_1
  doi: 10.1001/jamanetworkopen.2018.4777
– ident: e_1_2_8_48_1
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: e_1_2_8_53_1
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: e_1_2_8_14_1
  doi: 10.1016/j.neuroimage.2017.01.072
– ident: e_1_2_8_7_1
  doi: 10.1002/mrm.1910340409
– ident: e_1_2_8_5_1
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_2_8_25_1
  doi: 10.1038/nn.3919
– ident: e_1_2_8_15_1
  doi: 10.1016/j.biopsych.2018.02.1174
– ident: e_1_2_8_64_1
  doi: 10.1073/pnas.1405289111
– ident: e_1_2_8_19_1
  doi: 10.1038/nn.4135
– ident: e_1_2_8_22_1
  doi: 10.3389/fnhum.2013.00356
– ident: e_1_2_8_47_1
  doi: 10.1002/hbm.24074
– ident: e_1_2_8_65_1
  doi: 10.1152/jn.00338.2011
– ident: e_1_2_8_62_1
  doi: 10.1016/j.neuroimage.2013.03.004
– ident: e_1_2_8_33_1
  doi: 10.1016/j.mri.2007.03.009
– ident: e_1_2_8_13_1
  doi: 10.1016/j.neuroimage.2019.02.062
– ident: e_1_2_8_20_1
  doi: 10.1186/s13229-018-0192-x
– ident: e_1_2_8_8_1
  doi: 10.1016/j.neuroimage.2010.09.076
– ident: e_1_2_8_30_1
  doi: 10.1016/j.neuroimage.2009.07.051
– ident: e_1_2_8_23_1
  doi: 10.1016/j.neuroimage.2009.07.026
– ident: e_1_2_8_29_1
  doi: 10.1006/nimg.2002.1132
– ident: e_1_2_8_26_1
  doi: 10.1093/cercor/bhx335
– ident: e_1_2_8_11_1
  doi: 10.1162/netn_a_00068
SSID ssj0011501
Score 2.5331979
Snippet A rapidly growing number of studies on autism spectrum disorder (ASD) have used resting‐state fMRI to identify alterations of functional connectivity, with the...
A rapidly growing number of studies on autism spectrum disorder (ASD) have used resting-state fMRI to identify alterations of functional connectivity, with the...
Abstract A rapidly growing number of studies on autism spectrum disorder (ASD) have used resting‐state fMRI to identify alterations of functional connectivity,...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1334
SubjectTerms Autism
Biomarkers
Brain mapping
Data acquisition
Data exchange
Data processing
fcMRI
functional connectivity
Functional magnetic resonance imaging
Literature reviews
Magnetic resonance imaging
Neural networks
Neuroimaging
Noise reduction
Pipelines
replication
resting‐state fMRI
Similarity
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEC6WPYgXH7s-oquUIuIls9l-ZvC0issgzB7EhT0IoV9hB5lEzMxBT_50qzsPHRdBvAW6QzrdVdVfPfprgBdS1aTOc5Y7X5tcOMlyUxYut0IEWSjSkUSkvTxXiwvx_lJe7sHr8SxMzw8xBdyiZiR7HRXc2O74F2nolV3PGMHteHgvEulFQPRhoo6KQCc5W7TF5nOywCOrUMGOpzd396JrAPN6neTv-DVtQGe34dM49L7u5PNsu7Ez9_0PVsf__Lc7cGsApnjaS9Jd2AvNARyeNuSUr7_hS0yloikGfwA3lkNG_hB-nLckgFMSHNsa41bZRxjRxTIa119QgeNdLGSZcNWgIZHv1piOen7drtEPPKBo0mzhWOqIMb_doWk8ko1sVzG4gd1mpLi4Bxdn7z6-XeTDrQ65k5EONARpCSUKVThdO7IvlnxCR6jBSeHrUBpuHbmBVjstCZ4GXnjnvOKK-3ihqOf3Yb9pm_AQUElfal9Gzn8pOK_nXilbl0ZwLWpndQbPx_WtvvTkHVVP08wqmuIqTXEGR-PKV4P-dhXjOpGhMZXBs6mZNC-mU0wT2m3sw-UJOSeCZ_CgF5TpK2TYThT5YhnoHRGaOkRW792WZnWV2L01UwTiaVivkoT8feDV4s0yPTz6966P4SaLAYNUenQE-7S-4Qmhqo19mtTnJ8YJIgc
  priority: 102
  providerName: Wiley-Blackwell
Title Nonreplication of functional connectivity differences in autism spectrum disorder across multiple sites and denoising strategies
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24879
https://www.ncbi.nlm.nih.gov/pubmed/31916675
https://www.proquest.com/docview/2370430526
https://search.proquest.com/docview/2335177243
https://pubmed.ncbi.nlm.nih.gov/PMC7268009
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6yOZReSpr04TZdpqWUXrzr6Ok9pqFhKWwIpYHcjPUwWYjt0E0OufWndyRbS0LopRdjsEEyM6P5RvP5E8BnqRoK5wXLrWvqXFjJ8rosbG6E8LJQFCNRSHt1ppYX4selvNwBmf6FiaR9a9az7rqddeuryK28ae088cTm56sTzRThnMV8AhPNeSrRx9YBIZxYZVFuzRe09CY5oYLNr0w7Y4TQg1Qoud6RUoFe-DAfPQGZT7mSDzFsTEKne_BiRI94PMzyJez4bh8OjjuqnNt7_IKRzxk3yvfh2Wpsmx_An7OevGTbqca-wZDPhm1AtIHrYodTJDAdmELLB647rMkvNy3G_zF_37XoRrFOrOPnYOIjYmhCb7DuHNJC1q_DDgRubpMOxSu4OP3-62SZj0cv5FYGzU7vpSEoJ1RhdWNpETBUuFlK7VYK1_iy5sZSrWa01ZIwpOeFs9YprrgLp346_hp2u77zbwGVdKV2ZRDml4LzZuGUMk1ZC65FY43O4FMyQHUzKGxUg5Yyq8hgVTRYBofJNNUYZJuKcR0Vy5jK4OP2MYVH6HnUne_vwjtcHlEFIXgGbwZLbkdJLpCBfmTj7QtBevvxE_LIKME9emAGX6M3_Hvi1fLbKt68--9B3sNzFor8SBc6hF0yt_9ASOjWTGHCxPk07iOE6082jbHwFw4jDZc
link.rule.ids 230,315,733,786,790,870,891,1382,11589,27955,27956,46085,46327,46509,46751,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIgGXFlpKQwsYhBCXZFN_Zo-lolqgWXFoUW9RbCfqCpJU3d1DOfHTGTvxqqXiALdIjpQPv7HfeJ6fAd4KWWM4j2lsbF3G3Agal1lqYs15JVKJMeKNtPOpnJzxz-fifA1E2AvjRftGz5L2R5O0swuvrbxszCjoxEZf8yNFJfKc8ege3Md4pSIk6UPxADmOz7Nwdo3HOPgGQ6GUji50k1Dk6M4sFMF3IKUTGN6cke7QzLtqyZss1k9Dx5vwLXxArz75niwXOjE___B2_OcvfAwbAzElh33zE1ir2i3YPmwxKW-uyTvipaJ-DX4LHuRDRX4bfk07BOCqCE66mripsl9hJMbJaEx_QAUJZ7HgyERmLSkR8vOG-K2eV8uG2MEHlJT-P5EgdSSuvj0nZWsJjpHdzC1ukPkiWFw8hbPjj6dHk3g41SE2wtmBVpXQyBK5TI2qDY4vGnNCg6zBCG7rKiuZNpgGamWUQHpasdQaYyWTzLoDRS3bgfW2a6tdIFLYTNnMef4Lzlg9tlLqOis5U7w2WkXwJvRscdmbdxS9TTMtEAmFR0IE-6HPiyF-5wVlypuhURnB61UzRp4rp5Rt1S3dPUwcYHLCWQTPeoisnhKwFYG6BZ7VDc7V-3YLQsG7ew9dH8F7D7O_v3gx-ZD7i-f__ZBX8HBymp8UJ5-mX_bgEXVrCV6VtA_r2PXVCyRcC_3Sh9dvIl0s2A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BkSouPFoehgILQoiLH92ncyyFKDwS9UCliovl3bXViNqOmuQAJ346s2tvlFJx6c2SV3Ls_Wb3m50v3wC8FbLGcB7R2Ni6jLkRNC7zzMSa80pkEmPEG2lPZ3Jyyr-cibOtVl9etG_0PGkvmqSdn3tt5aIxadCJpSfTY0Ul8pxRurB1ehvuYMxSFRL1oYCAPMfnWrjDxiNcgIOpUEbTc90kFHm6MwxFAB5K6USG27vSNap5XTG5zWT9VjS-Dz_CS_QKlJ_JeqUT8_sff8cbveUDuDcQVHLUD3kIt6p2D_aPWkzOm1_kHfGSUX8Wvwe706Eyvw9_Zh0CcVMMJ11N3JbZnzQS4-Q0pm9UQUJPFlyhyLwlJUJ_2RD_l8_LdUPs4AdKSv-tSJA8ElfnXpKytQTXym7uDjnIchWsLh7B6fjT9-NJPHR3iI1wtqBVJTSyRS4zo2qD64zG3NAgezCC27rKS6YNpoNaGSWQplYss8ZYySSzrrGoZY9hp-3a6ikQKWyubO68_wVnrB5ZKXWdl5wpXhutIngTZrdY9CYeRW_XTAtEQ-HREMFBmPdiiONlQZnypmhURvB6cxsj0JVVyrbq1m4ME4eYpHAWwZMeJpunBHxFoK4AaDPAuXtfvYNw8C7fw_RH8N5D7f8_vJh8mPqLZzd-yCvYPfk4Lr59nn19DnepO1Lw4qQD2MGZr14g71rplz7C_gJyTi9Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonreplication+of+functional+connectivity+differences+in+autism+spectrum+disorder+across+multiple+sites+and+denoising+strategies&rft.jtitle=Human+brain+mapping&rft.au=He%2C+Ye&rft.au=Byrge%2C+Lisa&rft.au=Kennedy%2C+Daniel+P&rft.date=2020-04-01&rft.eissn=1097-0193&rft.volume=41&rft.issue=5&rft.spage=1334&rft.epage=1350&rft_id=info:doi/10.1002%2Fhbm.24879&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon