Inflammation is independent of steatosis in a murine model of steatohepatitis

Obesity and alcohol consumption synergistically promote steatohepatitis, and neutrophil infiltration is believed to be associated with steatosis. However, the underlying mechanisms remain obscure. Peroxisome proliferator–activated receptor gamma (PPARγ) plays a complex role in lipid metabolism and i...

Full description

Saved in:
Bibliographic Details
Published inHepatology (Baltimore, Md.) Vol. 66; no. 1; pp. 108 - 123
Main Authors Wang, Wei, Xu, Ming‐Jiang, Cai, Yan, Zhou, Zhou, Cao, Haixia, Mukhopadhyay, Partha, Pacher, Pal, Zheng, Shusen, Gonzalez, Frank J., Gao, Bin
Format Journal Article
LanguageEnglish
Published United States Wolters Kluwer Health, Inc 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Obesity and alcohol consumption synergistically promote steatohepatitis, and neutrophil infiltration is believed to be associated with steatosis. However, the underlying mechanisms remain obscure. Peroxisome proliferator–activated receptor gamma (PPARγ) plays a complex role in lipid metabolism and inflammation; therefore, the purpose of this study was to dissect its role in regulating steatosis and neutrophil infiltration in a clinically relevant mouse steatohepatitis model of 3‐month high‐fat diet (HFD) feeding plus a binge of ethanol (HFD‐plus‐binge ethanol). Hepatocyte‐specific Pparg disruption reduced liver steatosis but surprisingly increased hepatic neutrophil infiltration after HFD‐plus‐binge ethanol. Knockout or knockdown of the PPARγ target gene, fat‐specific protein 27, reduced steatosis without affecting neutrophil infiltration in this model. Moreover, hepatocyte‐specific deletion of the Pparg gene, but not the fat‐specific protein 27 gene, markedly up‐regulated hepatic levels of the gene for chemokine (C‐X‐C motif) ligand 1 (Cxcl1, a chemokine for neutrophil infiltration) in HFD‐plus‐binge ethanol‐fed mice. In vitro, deletion of the Pparg gene also highly augmented palmitic acid or tumor necrosis factor alpha induction of Cxcl1 in mouse hepatocytes. In contrast, activation of PPARγ with a PPARγ agonist attenuated Cxcl1 expression in hepatocytes. Palmitic acid also up‐regulated interleukin‐8 (a key chemokine for human neutrophil recruitment) expression in human hepatocytes, which was attenuated and enhanced by cotreatment with a PPARγ agonist and antagonist, respectively. Finally, acute ethanol binge markedly attenuated HFD‐induced hepatic PPARγ activation, which contributed to the up‐regulation of hepatic Cxcl1 expression post–HFD‐plus‐binge ethanol. Conclusion: Hepatic PPARγ plays an opposing role in controlling steatosis and neutrophil infiltration, leading to dissociation between steatosis and inflammation; acute ethanol gavage attenuates hepatic PPARγ activation and subsequently up‐regulates hepatic CXCL1/interleukin‐8 expression, thereby exacerbating hepatic neutrophil infiltration. (Hepatology 2017;66:108–123).
AbstractList Obesity and alcohol consumption synergistically promote steatohepatitis, and neutrophil infiltration is believed to be associated with steatosis. However, the underlying mechanisms remain obscure. Peroxisome proliferator-activated receptor gamma (PPARγ) plays a complex role in lipid metabolism and inflammation; therefore, the purpose of this study was to dissect its role in regulating steatosis and neutrophil infiltration in a clinically relevant mouse steatohepatitis model of 3-month high-fat diet (HFD) feeding plus a binge of ethanol (HFD-plus-binge ethanol). Hepatocyte-specific Pparg disruption reduced liver steatosis but surprisingly increased hepatic neutrophil infiltration after HFD-plus-binge ethanol. Knockout or knockdown of the PPARγ target gene, fat-specific protein 27, reduced steatosis without affecting neutrophil infiltration in this model. Moreover, hepatocyte-specific deletion of the Pparg gene, but not the fat-specific protein 27 gene, markedly up-regulated hepatic levels of the gene for chemokine (C-X-C motif) ligand 1 (Cxcl1, a chemokine for neutrophil infiltration) in HFD-plus-binge ethanol-fed mice. In vitro, deletion of the Pparg gene also highly augmented palmitic acid or tumor necrosis factor alpha induction of Cxcl1 in mouse hepatocytes. In contrast, activation of PPARγ with a PPARγ agonist attenuated Cxcl1 expression in hepatocytes. Palmitic acid also up-regulated interleukin-8 (a key chemokine for human neutrophil recruitment) expression in human hepatocytes, which was attenuated and enhanced by cotreatment with a PPARγ agonist and antagonist, respectively. Finally, acute ethanol binge markedly attenuated HFD-induced hepatic PPARγ activation, which contributed to the up-regulation of hepatic Cxcl1 expression post-HFD-plus-binge ethanol. Hepatic PPARγ plays an opposing role in controlling steatosis and neutrophil infiltration, leading to dissociation between steatosis and inflammation; acute ethanol gavage attenuates hepatic PPARγ activation and subsequently up-regulates hepatic CXCL1/interleukin-8 expression, thereby exacerbating hepatic neutrophil infiltration. (Hepatology 2017;66:108-123).
Obesity and alcohol consumption synergistically promote steatohepatitis, and neutrophil infiltration is believed to be associated with steatosis. However, the underlying mechanisms remain obscure. Peroxisome proliferator-activated receptor gamma (PPAR[gamma]) plays a complex role in lipid metabolism and inflammation; therefore, the purpose of this study was to dissect its role in regulating steatosis and neutrophil infiltration in a clinically relevant mouse steatohepatitis model of 3-month high-fat diet (HFD) feeding plus a binge of ethanol (HFD-plus-binge ethanol). Hepatocyte-specific Pparg disruption reduced liver steatosis but surprisingly increased hepatic neutrophil infiltration after HFD-plus-binge ethanol. Knockout or knockdown of the PPAR[gamma] target gene, fat-specific protein 27, reduced steatosis without affecting neutrophil infiltration in this model. Moreover, hepatocyte-specific deletion of the Pparg gene, but not the fat-specific protein 27 gene, markedly up-regulated hepatic levels of the gene for chemokine (C-X-C motif) ligand 1 (Cxcl1, a chemokine for neutrophil infiltration) in HFD-plus-binge ethanol-fed mice. In vitro, deletion of the Pparg gene also highly augmented palmitic acid or tumor necrosis factor alpha induction of Cxcl1 in mouse hepatocytes. In contrast, activation of PPAR[gamma] with a PPAR[gamma] agonist attenuated Cxcl1 expression in hepatocytes. Palmitic acid also up-regulated interleukin-8 (a key chemokine for human neutrophil recruitment) expression in human hepatocytes, which was attenuated and enhanced by cotreatment with a PPAR[gamma] agonist and antagonist, respectively. Finally, acute ethanol binge markedly attenuated HFD-induced hepatic PPAR[gamma] activation, which contributed to the up-regulation of hepatic Cxcl1 expression post-HFD-plus-binge ethanol. Conclusion: Hepatic PPAR[gamma] plays an opposing role in controlling steatosis and neutrophil infiltration, leading to dissociation between steatosis and inflammation; acute ethanol gavage attenuates hepatic PPAR[gamma] activation and subsequently up-regulates hepatic CXCL1/interleukin-8 expression, thereby exacerbating hepatic neutrophil infiltration. (Hepatology 2017;66:108-123).
Obesity and alcohol consumption synergistically promote steatohepatitis, and neutrophil infiltration is believed to be associated with steatosis. However, the underlying mechanisms remain obscure. Peroxisome proliferator-activated receptor-gamma (PPARγ) plays a complex role in lipid metabolism and inflammation, therefore, the purpose of this study was to dissect its role in regulating steatosis and neutrophil infiltration in a clinically relevant mouse steatohepatitis model of 3-month high-fat diet (HFD) feeding plus a binge of ethanol (HFD - plus-binge ethanol). Hepatocyte-specific Pparg disruption reduced liver steatosis, but surprisingly increased hepatic neutrophil infiltration after HFD-plus-binge ethanol. Knockout or knockdown of the PPARγ target gene, fat-specific protein 27 ( Fsp27), reduced steatosis without affecting neutrophil infiltration in this model. Moreover, hepatocyte-specific deletion of the Pparg gene but not the Fsp27 gene markedly upregulated hepatic levels of Cxcl1 (a chemokine for neutrophil infiltration) in HFD-plus-binge ethanol-fed mice. In vitro, deletion of the Pparg gene also highly augmented palmitic acid or TNF-α induction of Cxcl1 in mouse hepatocytes. In contrast, activation of PPARγ with a PPARγ agonist attenuated Cxcl1 expression in hepatocytes. Palmitic acid also upregulated IL-8 (a key chemokine for human neutrophil recruitment) expression in human hepatocytes, which was attenuated and enhanced by co-treatment with a PPARγ agonist and antagonist, respectively. Finally, acute ethanol binge markedly attenuated HFD-induced hepatic PPARγ activation, which contributed to the upregulation of hepatic Cxcl1 expression post HFD-plus-bigne ethanol. In conclusion, hepatic PPARγ plays an opposing role in controlling steatosis and neutrophil infiltration, leading to dissociation between steatosis and inflammation. Acute ethanol gavage attenuates hepatic PPARγ activation and subsequently upregulates hepatic CXCL1/IL-8 expression, thereby exacerbating hepatic neutrophil infiltration.
Obesity and alcohol consumption synergistically promote steatohepatitis, and neutrophil infiltration is believed to be associated with steatosis. However, the underlying mechanisms remain obscure. Peroxisome proliferator–activated receptor gamma (PPARγ) plays a complex role in lipid metabolism and inflammation; therefore, the purpose of this study was to dissect its role in regulating steatosis and neutrophil infiltration in a clinically relevant mouse steatohepatitis model of 3‐month high‐fat diet (HFD) feeding plus a binge of ethanol (HFD‐plus‐binge ethanol). Hepatocyte‐specific Pparg disruption reduced liver steatosis but surprisingly increased hepatic neutrophil infiltration after HFD‐plus‐binge ethanol. Knockout or knockdown of the PPARγ target gene, fat‐specific protein 27, reduced steatosis without affecting neutrophil infiltration in this model. Moreover, hepatocyte‐specific deletion of the Pparg gene, but not the fat‐specific protein 27 gene, markedly up‐regulated hepatic levels of the gene for chemokine (C‐X‐C motif) ligand 1 ( Cxcl1 , a chemokine for neutrophil infiltration) in HFD‐plus‐binge ethanol‐fed mice. In vitro, deletion of the Pparg gene also highly augmented palmitic acid or tumor necrosis factor alpha induction of Cxcl1 in mouse hepatocytes. In contrast, activation of PPARγ with a PPARγ agonist attenuated Cxcl1 expression in hepatocytes. Palmitic acid also up‐regulated interleukin‐8 (a key chemokine for human neutrophil recruitment) expression in human hepatocytes, which was attenuated and enhanced by cotreatment with a PPARγ agonist and antagonist, respectively. Finally, acute ethanol binge markedly attenuated HFD‐induced hepatic PPARγ activation, which contributed to the up‐regulation of hepatic Cxcl1 expression post–HFD‐plus‐binge ethanol. Conclusion : Hepatic PPARγ plays an opposing role in controlling steatosis and neutrophil infiltration, leading to dissociation between steatosis and inflammation; acute ethanol gavage attenuates hepatic PPARγ activation and subsequently up‐regulates hepatic CXCL1/interleukin‐8 expression, thereby exacerbating hepatic neutrophil infiltration. (H epatology 2017;66:108–123).
Obesity and alcohol consumption synergistically promote steatohepatitis, and neutrophil infiltration is believed to be associated with steatosis. However, the underlying mechanisms remain obscure. Peroxisome proliferator–activated receptor gamma (PPARγ) plays a complex role in lipid metabolism and inflammation; therefore, the purpose of this study was to dissect its role in regulating steatosis and neutrophil infiltration in a clinically relevant mouse steatohepatitis model of 3‐month high‐fat diet (HFD) feeding plus a binge of ethanol (HFD‐plus‐binge ethanol). Hepatocyte‐specific Pparg disruption reduced liver steatosis but surprisingly increased hepatic neutrophil infiltration after HFD‐plus‐binge ethanol. Knockout or knockdown of the PPARγ target gene, fat‐specific protein 27, reduced steatosis without affecting neutrophil infiltration in this model. Moreover, hepatocyte‐specific deletion of the Pparg gene, but not the fat‐specific protein 27 gene, markedly up‐regulated hepatic levels of the gene for chemokine (C‐X‐C motif) ligand 1 (Cxcl1, a chemokine for neutrophil infiltration) in HFD‐plus‐binge ethanol‐fed mice. In vitro, deletion of the Pparg gene also highly augmented palmitic acid or tumor necrosis factor alpha induction of Cxcl1 in mouse hepatocytes. In contrast, activation of PPARγ with a PPARγ agonist attenuated Cxcl1 expression in hepatocytes. Palmitic acid also up‐regulated interleukin‐8 (a key chemokine for human neutrophil recruitment) expression in human hepatocytes, which was attenuated and enhanced by cotreatment with a PPARγ agonist and antagonist, respectively. Finally, acute ethanol binge markedly attenuated HFD‐induced hepatic PPARγ activation, which contributed to the up‐regulation of hepatic Cxcl1 expression post–HFD‐plus‐binge ethanol. Conclusion: Hepatic PPARγ plays an opposing role in controlling steatosis and neutrophil infiltration, leading to dissociation between steatosis and inflammation; acute ethanol gavage attenuates hepatic PPARγ activation and subsequently up‐regulates hepatic CXCL1/interleukin‐8 expression, thereby exacerbating hepatic neutrophil infiltration. (Hepatology 2017;66:108–123).
Author Zhou, Zhou
Pacher, Pal
Gonzalez, Frank J.
Wang, Wei
Cai, Yan
Mukhopadhyay, Partha
Zheng, Shusen
Gao, Bin
Xu, Ming‐Jiang
Cao, Haixia
AuthorAffiliation 1 Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
4 Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
2 Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
3 Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
AuthorAffiliation_xml – name: 1 Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
– name: 4 Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
– name: 2 Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
– name: 3 Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
Author_xml – sequence: 1
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: Zhejiang University School of Medicine
– sequence: 2
  givenname: Ming‐Jiang
  surname: Xu
  fullname: Xu, Ming‐Jiang
  organization: National Institutes of Health
– sequence: 3
  givenname: Yan
  surname: Cai
  fullname: Cai, Yan
  organization: National Institutes of Health
– sequence: 4
  givenname: Zhou
  surname: Zhou
  fullname: Zhou, Zhou
  organization: National Institutes of Health
– sequence: 5
  givenname: Haixia
  surname: Cao
  fullname: Cao, Haixia
  organization: National Institutes of Health
– sequence: 6
  givenname: Partha
  orcidid: 0000-0002-1178-1274
  surname: Mukhopadhyay
  fullname: Mukhopadhyay, Partha
  organization: National Institutes of Health
– sequence: 7
  givenname: Pal
  surname: Pacher
  fullname: Pacher, Pal
  organization: National Institutes of Health
– sequence: 8
  givenname: Shusen
  surname: Zheng
  fullname: Zheng, Shusen
  organization: Zhejiang University School of Medicine
– sequence: 9
  givenname: Frank J.
  surname: Gonzalez
  fullname: Gonzalez, Frank J.
  organization: National Institutes of Health
– sequence: 10
  givenname: Bin
  surname: Gao
  fullname: Gao, Bin
  email: bgao@mail.nih.gov
  organization: National Institutes of Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28220523$$D View this record in MEDLINE/PubMed
BookMark eNp1UbtOwzAUtVARfcDAD6BITAyh13ZM7AUJVQUqgWCA2XJjh7pK7BKnoP49pi1PwWIP53XvuX3Ucd4ZhA4xnGIAMpyZxSkRmIgd1MOM5CmlDDqoBySHVGAquqgfwhwAREb4HuoSTggwQnvoduLKStW1aq13iQ2JddosTHxcm_gyCa1RrQ9rIFFJvWysM0nttam-4Jgf9a0N-2i3VFUwB9t_gB4vxw-j6_Tm7moyurhJCwZCpJqeQSGM1qqkhGXElILlIEqqNXCVc5ZryAUt8TRuwxkH9i7jOdFQkGKq6QCdb3wXy2ltdBGHbVQlF42tVbOSXln5E3F2Jp_8i2QZx1lsZICOtwaNf16a0Mq5XzYuzixxLJJEGieRdfQ95tP_o75IGG4IReNDaEwpC9uuq4yptpIY5PuBZCxIrg8UFSe_FB-mf3G37q-2Mqv_ifJ6fL9RvAHZ95_E
CitedBy_id crossref_primary_10_1002_hep_31031
crossref_primary_10_1016_j_jcmgh_2018_12_009
crossref_primary_10_1096_fj_202000194R
crossref_primary_10_1016_j_alcohol_2020_08_007
crossref_primary_10_1177_0192623318778508
crossref_primary_10_1136_gutjnl_2019_319720
crossref_primary_10_1038_nrgastro_2017_116
crossref_primary_10_1016_j_molimm_2022_10_011
crossref_primary_10_1002_hep_32756
crossref_primary_10_1007_s00018_022_04629_z
crossref_primary_10_1016_j_jcmgh_2023_07_006
crossref_primary_10_1186_s12864_021_07784_y
crossref_primary_10_1093_nutrit_nuab031
crossref_primary_10_1016_j_ebiom_2019_03_046
crossref_primary_10_1016_j_freeradbiomed_2025_03_021
crossref_primary_10_1016_j_phymed_2022_154599
crossref_primary_10_1016_j_jcmgh_2021_01_003
crossref_primary_10_3390_cells9071638
crossref_primary_10_3389_fphar_2023_1298341
crossref_primary_10_4254_wjh_v14_i7_1365
crossref_primary_10_1074_jbc_RA119_010233
crossref_primary_10_2174_0115680266295582240318060802
crossref_primary_10_1016_j_ajpath_2024_11_011
crossref_primary_10_1016_j_jcmgh_2018_01_003
crossref_primary_10_3892_etm_2021_10438
crossref_primary_10_1016_j_cyto_2020_155402
crossref_primary_10_3389_fphys_2021_782677
crossref_primary_10_1016_j_jcmgh_2024_04_009
crossref_primary_10_1038_s41388_019_0734_5
crossref_primary_10_1039_D0FO02653K
crossref_primary_10_1016_j_dld_2019_12_008
crossref_primary_10_1194_jlr_M077941
crossref_primary_10_1016_j_bbagrm_2022_194802
crossref_primary_10_1007_s11356_021_15689_2
crossref_primary_10_1016_j_neubiorev_2018_05_002
crossref_primary_10_1016_j_comtox_2020_100147
crossref_primary_10_1152_ajpgi_00217_2019
crossref_primary_10_1016_j_toxlet_2021_06_018
crossref_primary_10_1155_2020_9735083
crossref_primary_10_1166_jbt_2022_3027
crossref_primary_10_1007_s12272_025_01537_1
crossref_primary_10_1016_j_jhep_2018_10_023
crossref_primary_10_1016_S0021_9258_17_49910_8
crossref_primary_10_1016_j_jnutbio_2017_11_011
crossref_primary_10_1136_gutjnl_2020_321767
crossref_primary_10_1016_j_biopha_2018_11_069
crossref_primary_10_1371_journal_pone_0195212
crossref_primary_10_1002_hep_30525
crossref_primary_10_3390_ijms23031062
crossref_primary_10_1016_j_alcohol_2020_04_004
crossref_primary_10_1016_j_ijbiomac_2022_03_148
crossref_primary_10_1016_j_atherosclerosis_2018_05_045
Cites_doi 10.1016/j.metabol.2016.08.001
10.1002/hep.26419
10.1016/j.nut.2005.04.011
10.1002/9780470985571.ch16
10.1074/jbc.M210062200
10.1136/jim-2016-000204
10.1097/MEG.0b013e3283328b86
10.1002/hep.28960
10.1002/hep.27371
10.1111/j.1530-0277.2011.01472.x
10.1016/j.alcohol.2006.12.006
10.1002/hep.27332
10.1172/JCI200317223
10.1002/hep.20304
10.1053/j.gastro.2016.01.025
10.1056/NEJMoa060326
10.1097/01.ALC.0000134412.38510.F7
10.1038/cmi.2016.3
10.1016/S1542-3565(05)00743-3
10.1002/hep.27607
10.1016/j.cmet.2008.03.003
10.1002/hep.28000
10.1038/nm.3159
10.1016/j.jhep.2010.12.034
10.1053/j.gastro.2015.06.009
10.1096/fj.10-173716
10.1210/jc.2010-2129
10.1016/j.alcohol.2004.07.010
10.1016/j.bbrc.2005.08.070
10.1002/hep.23270
10.1053/j.gastro.2006.03.014
10.1002/hep.510250120
10.1002/hep.27921
10.1111/j.1365-2036.2009.04141.x
10.1146/annurev.med.53.082901.104018
10.7326/M15-1774
10.1093/ajcn/88.4.1097
10.1016/j.bbalip.2011.10.016
10.1002/hep.21752
10.1038/nature03988
10.1172/JCI88881
10.1053/j.gastro.2016.05.051
10.1016/j.dsx.2014.09.015
10.1111/acer.13049
10.1016/j.jhep.2013.06.023
10.1136/bmj.c1240
10.1002/hep.28823
10.1002/hep.21661
10.1074/jbc.M203436200
ContentType Journal Article
Copyright 2017 by the American Association for the Study of Liver Diseases. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
2017 by the American Association for the Study of Liver Diseases.
Copyright_xml – notice: 2017 by the American Association for the Study of Liver Diseases. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
– notice: 2017 by the American Association for the Study of Liver Diseases.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
H94
K9.
5PM
DOI 10.1002/hep.29129
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Nucleic Acids Abstracts
DatabaseTitleList MEDLINE
AIDS and Cancer Research Abstracts

CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-3350
EndPage 123
ExternalDocumentID PMC5481491
28220523
10_1002_hep_29129
HEP29129
Genre article
Journal Article
Comparative Study
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health
– fundername: Intramural NIH HHS
  grantid: Z01 AA000369
– fundername: Intramural NIH HHS
  grantid: ZIA AA000369
GroupedDBID ---
--K
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
186
1B1
1CY
1L6
1OB
1OC
1ZS
1~5
24P
31~
33P
3O-
3SF
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AALRI
AANHP
AAONW
AAQFI
AAQQT
AAQXK
AASGY
AAXRX
AAXUO
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABMAC
ABOCM
ABPVW
ABWVN
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACLDA
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AECAP
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFFNX
AFGKR
AFPWT
AFUWQ
AFZJQ
AHMBA
AIACR
AIURR
AIWBW
AJAOE
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
F00
F01
F04
F5P
FD8
FDB
FEDTE
FGOYB
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IHE
IX1
J0M
J5H
JPC
KBYEO
KQQ
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
M65
MJL
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
NQ-
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
R2-
RGB
RIG
RIWAO
RJQFR
ROL
RPZ
RWI
RX1
RYL
SEW
SSZ
SUPJJ
TEORI
UB1
V2E
V9Y
W2D
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ABJNI
ACZKN
AFNMH
AGQPQ
AHQVU
CITATION
MEWTI
WXSBR
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
ADSXY
H94
K9.
5PM
ID FETCH-LOGICAL-c5099-d360c9eddaf32542ef95709f3dd08a7857d0793f1b152858055099872d0c2cbd3
IEDL.DBID DR2
ISSN 0270-9139
IngestDate Thu Aug 21 18:30:58 EDT 2025
Wed Aug 13 07:02:28 EDT 2025
Mon Jul 21 06:02:36 EDT 2025
Tue Jul 01 03:33:48 EDT 2025
Thu Apr 24 23:00:07 EDT 2025
Wed Jan 22 16:57:06 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2017 by the American Association for the Study of Liver Diseases. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5099-d360c9eddaf32542ef95709f3dd08a7857d0793f1b152858055099872d0c2cbd3
Notes These authors contributed equally to this work.
Supported by the intramural program of the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health.
Potential conflict of interest: Nothing to report.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
Wei Wang and Ming-Jiang Xu contribute equally to this work.
ORCID 0000-0002-1178-1274
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5481491
PMID 28220523
PQID 1912248182
PQPubID 996352
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5481491
proquest_journals_1912248182
pubmed_primary_28220523
crossref_citationtrail_10_1002_hep_29129
crossref_primary_10_1002_hep_29129
wiley_primary_10_1002_hep_29129_HEP29129
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2017
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: July 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Hepatology (Baltimore, Md.)
PublicationTitleAlternate Hepatology
PublicationYear 2017
Publisher Wolters Kluwer Health, Inc
Publisher_xml – name: Wolters Kluwer Health, Inc
References 2004; 40
2002; 53
2015; 149
2004; 28
2017; 66
2012; 1821
2007; 286
1997; 25
2017; 65
2005; 336
2002; 277
2006; 130
2005; 437
2011; 96
2011; 55
2008; 7
2010; 340
2016; 165
2011; 35
2015; 9
2003; 278
2003; 111
2016; 13
2006; 355
2013; 19
2010; 22
2009; 30
2013; 59
2013; 58
2006; 40
2015; 62
2015; 61
2006; 22
2004; 34
2016; 64
2016; 40
2008; 88
2005; 3
2011; 25
2007; 46
2010; 51
2017; 127
2016; 151
2016; 150
(hep29129-bib-0044-20241017) 2006; 22
(hep29129-bib-0013-20241017) 2015; 62
(hep29129-bib-0040-20241017) 2013; 59
(hep29129-bib-0011-20241017) 2016; 64
(hep29129-bib-0001-20241017) 2010; 340
(hep29129-bib-0021-20241017) 2010; 51
(hep29129-bib-0032-20241017) 2015; 61
(hep29129-bib-0010-20241017) 2006; 40
(hep29129-bib-0023-20241017) 2003; 111
(hep29129-bib-0046-20241017) 2002; 277
(hep29129-bib-0007-20241017) 2009; 30
(hep29129-bib-0028-20241017) 2008; 7
(hep29129-bib-0034-20241017) 2013; 58
(hep29129-bib-0048-20241017) 2007; 286
(hep29129-bib-0024-20241017) 2011; 25
(hep29129-bib-0014-20241017) 2002; 53
(hep29129-bib-0043-20241017) 2004; 28
(hep29129-bib-0049-20241017) 2015; 62
(hep29129-bib-0008-20241017) 2011; 35
(hep29129-bib-0022-20241017) 2016; 165
(hep29129-bib-0025-20241017) 2016; 40
(hep29129-bib-0036-20241017) 2006; 130
(hep29129-bib-0027-20241017) 2015; 149
(hep29129-bib-0042-20241017) 2005; 336
(hep29129-bib-0029-20241017) 2003; 278
(hep29129-bib-0041-20241017) 2007; 46
(hep29129-bib-0035-20241017) 2006; 355
(hep29129-bib-0047-20241017) 2005; 437
(hep29129-bib-0016-20241017) 2013; 19
(hep29129-bib-0005-20241017) 2008; 88
(hep29129-bib-0037-20241017) 2015; 61
(hep29129-bib-0033-20241017) 2016; 150
(hep29129-bib-0002-20241017) 1997; 25
(hep29129-bib-0015-20241017) 2015; 9
(hep29129-bib-0026-20241017) 2011; 96
(hep29129-bib-0031-20241017) 2016; 64
(hep29129-bib-0003-20241017) 2005; 3
(hep29129-bib-0009-20241017) 2011; 55
(hep29129-bib-0017-20241017) 2017; 66
(hep29129-bib-0018-20241017) 2017; 65
(hep29129-bib-0038-20241017) 2017; 127
(hep29129-bib-0039-20241017) 2016; 13
(hep29129-bib-0019-20241017) 2012; 1821
(hep29129-bib-0030-20241017) 2015; 61
(hep29129-bib-0004-20241017) 2004; 34
(hep29129-bib-0045-20241017) 2004; 40
(hep29129-bib-0020-20241017) 2007; 46
(hep29129-bib-0006-20241017) 2010; 22
(hep29129-bib-0012-20241017) 2016; 151
References_xml – volume: 53
  start-page: 409
  year: 2002
  end-page: 435
  article-title: The mechanisms of action of PPARs
  publication-title: Annu Rev Med
– volume: 46
  start-page: 823
  year: 2007
  end-page: 830
  article-title: Palmitic acid induces production of proinflammatory cytokine interleukin‐8 from hepatocytes
  publication-title: Hepatology
– volume: 1821
  start-page: 809
  year: 2012
  end-page: 818
  article-title: Roles of PPARs in NAFLD: potential therapeutic targets
  publication-title: Biochim Biophys Acta
– volume: 40
  start-page: 988
  year: 2016
  end-page: 999
  article-title: Hepatic peroxisome proliferator–activated receptor gamma signaling contributes to alcohol‐induced hepatic steatosis and inflammation in mice
  publication-title: Alcohol Clin Exp Res
– volume: 65
  start-page: 1058
  year: 2017
  end-page: 1061
  article-title: Pioglitazone for advanced fibrosis in NASH: new evidence, new challenges
  publication-title: Hepatology
– volume: 111
  start-page: 737
  year: 2003
  end-page: 747
  article-title: Liver‐specific disruption of PPARgamma in leptin‐deficient mice improves fatty liver but aggravates diabetic phenotypes
  publication-title: J Clin Invest
– volume: 22
  start-page: 820
  year: 2010
  end-page: 825
  article-title: A cohort study of the effect of alcohol consumption and obesity on serum liver enzyme levels
  publication-title: Eur J Gastroenterol Hepatol
– volume: 40
  start-page: 185
  year: 2006
  end-page: 191
  article-title: Combined effects of high‐fat diet and ethanol induce oxidative stress in rat liver
  publication-title: Alcohol
– volume: 149
  start-page: 1030
  year: 2015
  end-page: 1041
  article-title: Fat‐specific protein 27/CIDEC promotes development of alcoholic steatohepatitis in mice and humans
  publication-title: Gastroenterology
– volume: 9
  start-page: 46
  year: 2015
  end-page: 50
  article-title: PPAR gamma gene—a review
  publication-title: Diabetes Metab Syndr
– volume: 58
  start-page: 1814
  year: 2013
  end-page: 1823
  article-title: Chronic plus binge ethanol feeding synergistically induces neutrophil infiltration and liver injury in mice: a critical role for E‐selectin
  publication-title: Hepatology
– volume: 278
  start-page: 498
  year: 2003
  end-page: 505
  article-title: Adipocyte‐specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator–activated receptor gamma1 (PPARgamma1) overexpression
  publication-title: J Biol Chem
– volume: 151
  start-page: 513
  year: 2016
  end-page: 525
  article-title: Comparison of gene expression patterns between mouse models of nonalcoholic fatty liver disease and liver tissues from patients
  publication-title: Gastroenterology
– volume: 46
  start-page: 424
  year: 2007
  end-page: 429
  article-title: The effects of discontinuing pioglitazone in patients with nonalcoholic steatohepatitis
  publication-title: Hepatology
– volume: 437
  start-page: 759
  year: 2005
  end-page: 763
  article-title: A SUMOylation‐dependent pathway mediates transrepression of inflammatory response genes by PPAR‐gamma
  publication-title: Nature
– volume: 165
  start-page: 305
  year: 2016
  end-page: 315
  article-title: Long‐term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: a randomized trial
  publication-title: Ann Intern Med
– volume: 96
  start-page: 1424
  year: 2011
  end-page: 1430
  article-title: Up‐regulation of PPAR‐gamma mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP‐1c induction
  publication-title: J Clin Endocrinol Metab
– volume: 286
  start-page: 183
  year: 2007
  end-page: 196
  article-title: Anti‐inflammatory and antidiabetic roles of PPARgamma
  publication-title: Novartis Found Symp
– volume: 340
  start-page: c1240
  year: 2010
  article-title: Effect of body mass index and alcohol consumption on liver disease: analysis of data from two prospective cohort studies
  publication-title: BMJ
– volume: 61
  start-page: 1066
  year: 2015
  end-page: 1079
  article-title: Hepatic inflammation and fibrosis: functional links and key pathways
  publication-title: Hepatology
– volume: 40
  start-page: 376
  year: 2004
  end-page: 385
  article-title: Diverse regulation of NF‐kappaB and peroxisome proliferator–activated receptors in murine nonalcoholic fatty liver
  publication-title: Hepatology
– volume: 7
  start-page: 302
  year: 2008
  end-page: 311
  article-title: Hepatic steatosis in leptin‐deficient mice is promoted by the PPARgamma target gene Fsp27
  publication-title: Cell Metab
– volume: 55
  start-page: 673
  year: 2011
  end-page: 682
  article-title: Synergistic steatohepatitis by moderate obesity and alcohol in mice despite increased adiponectin and p‐AMPK
  publication-title: J Hepatol
– volume: 30
  start-page: 1137
  year: 2009
  end-page: 1149
  article-title: Synergistic association between alcohol intake and body mass index with serum alanine and aspartate aminotransferase levels in older adults: the Rancho Bernardo Study
  publication-title: Aliment Pharmacol Ther
– volume: 355
  start-page: 2297
  year: 2006
  end-page: 2307
  article-title: A placebo‐controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis
  publication-title: N Engl J Med
– volume: 130
  start-page: 1636
  year: 2006
  end-page: 1642
  article-title: Relationship between steatosis, inflammation, and fibrosis in chronic hepatitis C: a meta‐analysis of individual patient data
  publication-title: Gastroenterology
– volume: 277
  start-page: 34176
  year: 2002
  end-page: 34181
  article-title: Constitutive activation of peroxisome proliferator–activated receptor‐gamma suppresses pro‐inflammatory adhesion molecules in human vascular endothelial cells
  publication-title: J Biol Chem
– volume: 28
  start-page: 139S
  year: 2004
  end-page: 144S
  article-title: Pioglitazone prevents acute liver injury induced by ethanol and lipopolysaccharide through the suppression of tumor necrosis factor‐alpha
  publication-title: Alcohol Clin Exp Res
– volume: 25
  start-page: 108
  year: 1997
  end-page: 111
  article-title: Excess weight risk factor for alcoholic liver disease
  publication-title: Hepatology
– volume: 64
  start-page: 1078
  year: 2016
  end-page: 1081
  article-title: Alcohol and fat promote steatohepatitis: a critical role for fat‐specific protein 27/CIDEC
  publication-title: J Investig Med
– volume: 35
  start-page: 1361
  year: 2011
  end-page: 1367
  article-title: A new model of interactive effects of alcohol and high‐fat diet on hepatic fibrosis
  publication-title: Alcohol Clin Exp Res
– volume: 62
  start-page: 1070
  year: 2015
  end-page: 1085
  article-title: Short‐ or long‐term high‐fat diet feeding plus acute ethanol binge synergistically induce acute liver injury in mice: an important role for CXCL1
  publication-title: Hepatology
– volume: 61
  start-page: 857
  year: 2015
  end-page: 869
  article-title: Transcriptional activation of Fsp27 by the liver‐enriched transcription factor CREBH promotes lipid droplet growth and hepatic steatosis
  publication-title: Hepatology
– volume: 64
  start-page: 1398
  year: 2016
  end-page: 1400
  article-title: Modeling fatty liver disease in animals: is there an optimal approach, and is the effort worthwhile?
  publication-title: Hepatology
– volume: 25
  start-page: 2538
  year: 2011
  end-page: 2550
  article-title: Role for PPARgamma in obesity‐induced hepatic steatosis as determined by hepatocyte‐ and macrophage‐specific conditional knockouts
  publication-title: FASEB J
– volume: 34
  start-page: 81
  year: 2004
  end-page: 87
  article-title: Obesity and alcoholic liver disease
  publication-title: Alcohol
– volume: 61
  start-page: 1227
  year: 2015
  end-page: 1238
  article-title: CIDEC/FSP27 is regulated by peroxisome proliferator–activated receptor alpha and plays a critical role in fasting‐ and diet‐induced hepatosteatosis
  publication-title: Hepatology
– volume: 88
  start-page: 1097
  year: 2008
  end-page: 1103
  article-title: Effect of moderate alcohol consumption on liver enzymes increases with increasing body mass index
  publication-title: Am J Clin Nutr
– volume: 127
  start-page: 55
  year: 2017
  end-page: 64
  article-title: Liver inflammation and fibrosis
  publication-title: J Clin Invest
– volume: 336
  start-page: 215
  year: 2005
  end-page: 222
  article-title: Increased expression of PPARgamma in high fat diet‐induced liver steatosis in mice
  publication-title: Biochem Biophys Res Commun
– volume: 59
  start-page: 1045
  year: 2013
  end-page: 1053
  article-title: Cell‐specific PPARgamma deficiency establishes anti‐inflammatory and anti‐fibrogenic properties for this nuclear receptor in non‐parenchymal liver cells
  publication-title: J Hepatol
– volume: 22
  start-page: 60
  year: 2006
  end-page: 68
  article-title: PPAR‐gamma response element activity in intact primary human adipocytes: effects of fatty acids
  publication-title: Nutrition
– volume: 66
  start-page: 64
  year: 2017
  end-page: 68
  article-title: Nonalcoholic fatty liver disease: updates on associations with the metabolic syndrome and lipid profile and effects of treatment with PPAR‐gamma agonists
  publication-title: Metabolism
– volume: 150
  start-page: 1704
  year: 2016
  end-page: 1709
  article-title: Inflammation in alcoholic and nonalcoholic fatty liver disease: friend or foe?
  publication-title: Gastroenterology
– volume: 13
  start-page: 267
  year: 2016
  end-page: 276
  article-title: Liver immunology and its role in inflammation and homeostasis
  publication-title: Cell Mol Immunol
– volume: 62
  start-page: 1551
  year: 2015
  end-page: 1562
  article-title: Stimulation of nuclear receptor peroxisome proliferator–activated receptor‐gamma limits NF‐kappaB‐dependent inflammation in mouse cystic fibrosis biliary epithelium
  publication-title: Hepatology
– volume: 51
  start-page: 445
  year: 2010
  end-page: 453
  article-title: Long‐term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the Fatty Liver Improvement by Rosiglitazone Therapy (FLIRT 2) extension trial
  publication-title: Hepatology
– volume: 3
  start-page: 1260
  year: 2005
  end-page: 1268
  article-title: Joint effects of body weight and alcohol on elevated serum alanine aminotransferase in the United States population
  publication-title: Clin Gastroenterol Hepatol
– volume: 19
  start-page: 557
  year: 2013
  end-page: 566
  article-title: PPARgamma signaling and metabolism: the good, the bad and the future
  publication-title: Nat Med
– volume: 66
  start-page: 64
  year: 2017
  ident: hep29129-bib-0017-20241017
  article-title: Nonalcoholic fatty liver disease: updates on associations with the metabolic syndrome and lipid profile and effects of treatment with PPAR‐gamma agonists
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2016.08.001
– volume: 58
  start-page: 1814
  year: 2013
  ident: hep29129-bib-0034-20241017
  article-title: Chronic plus binge ethanol feeding synergistically induces neutrophil infiltration and liver injury in mice: a critical role for E‐selectin
  publication-title: Hepatology
  doi: 10.1002/hep.26419
– volume: 22
  start-page: 60
  year: 2006
  ident: hep29129-bib-0044-20241017
  article-title: PPAR‐gamma response element activity in intact primary human adipocytes: effects of fatty acids
  publication-title: Nutrition
  doi: 10.1016/j.nut.2005.04.011
– volume: 286
  start-page: 183
  year: 2007
  ident: hep29129-bib-0048-20241017
  article-title: Anti‐inflammatory and antidiabetic roles of PPARgamma
  publication-title: Novartis Found Symp
  doi: 10.1002/9780470985571.ch16
– volume: 278
  start-page: 498
  year: 2003
  ident: hep29129-bib-0029-20241017
  article-title: Adipocyte‐specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator–activated receptor gamma1 (PPARgamma1) overexpression
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M210062200
– volume: 64
  start-page: 1078
  year: 2016
  ident: hep29129-bib-0031-20241017
  article-title: Alcohol and fat promote steatohepatitis: a critical role for fat‐specific protein 27/CIDEC
  publication-title: J Investig Med
  doi: 10.1136/jim-2016-000204
– volume: 22
  start-page: 820
  year: 2010
  ident: hep29129-bib-0006-20241017
  article-title: A cohort study of the effect of alcohol consumption and obesity on serum liver enzyme levels
  publication-title: Eur J Gastroenterol Hepatol
  doi: 10.1097/MEG.0b013e3283328b86
– volume: 65
  start-page: 1058
  year: 2017
  ident: hep29129-bib-0018-20241017
  article-title: Pioglitazone for advanced fibrosis in NASH: new evidence, new challenges
  publication-title: Hepatology
  doi: 10.1002/hep.28960
– volume: 61
  start-page: 857
  year: 2015
  ident: hep29129-bib-0030-20241017
  article-title: Transcriptional activation of Fsp27 by the liver‐enriched transcription factor CREBH promotes lipid droplet growth and hepatic steatosis
  publication-title: Hepatology
  doi: 10.1002/hep.27371
– volume: 35
  start-page: 1361
  year: 2011
  ident: hep29129-bib-0008-20241017
  article-title: A new model of interactive effects of alcohol and high‐fat diet on hepatic fibrosis
  publication-title: Alcohol Clin Exp Res
  doi: 10.1111/j.1530-0277.2011.01472.x
– volume: 40
  start-page: 185
  year: 2006
  ident: hep29129-bib-0010-20241017
  article-title: Combined effects of high‐fat diet and ethanol induce oxidative stress in rat liver
  publication-title: Alcohol
  doi: 10.1016/j.alcohol.2006.12.006
– volume: 61
  start-page: 1066
  year: 2015
  ident: hep29129-bib-0037-20241017
  article-title: Hepatic inflammation and fibrosis: functional links and key pathways
  publication-title: Hepatology
  doi: 10.1002/hep.27332
– volume: 111
  start-page: 737
  year: 2003
  ident: hep29129-bib-0023-20241017
  article-title: Liver‐specific disruption of PPARgamma in leptin‐deficient mice improves fatty liver but aggravates diabetic phenotypes
  publication-title: J Clin Invest
  doi: 10.1172/JCI200317223
– volume: 40
  start-page: 376
  year: 2004
  ident: hep29129-bib-0045-20241017
  article-title: Diverse regulation of NF‐kappaB and peroxisome proliferator–activated receptors in murine nonalcoholic fatty liver
  publication-title: Hepatology
  doi: 10.1002/hep.20304
– volume: 150
  start-page: 1704
  year: 2016
  ident: hep29129-bib-0033-20241017
  article-title: Inflammation in alcoholic and nonalcoholic fatty liver disease: friend or foe?
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2016.01.025
– volume: 355
  start-page: 2297
  year: 2006
  ident: hep29129-bib-0035-20241017
  article-title: A placebo‐controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa060326
– volume: 28
  start-page: 139S
  year: 2004
  ident: hep29129-bib-0043-20241017
  article-title: Pioglitazone prevents acute liver injury induced by ethanol and lipopolysaccharide through the suppression of tumor necrosis factor‐alpha
  publication-title: Alcohol Clin Exp Res
  doi: 10.1097/01.ALC.0000134412.38510.F7
– volume: 13
  start-page: 267
  year: 2016
  ident: hep29129-bib-0039-20241017
  article-title: Liver immunology and its role in inflammation and homeostasis
  publication-title: Cell Mol Immunol
  doi: 10.1038/cmi.2016.3
– volume: 3
  start-page: 1260
  year: 2005
  ident: hep29129-bib-0003-20241017
  article-title: Joint effects of body weight and alcohol on elevated serum alanine aminotransferase in the United States population
  publication-title: Clin Gastroenterol Hepatol
  doi: 10.1016/S1542-3565(05)00743-3
– volume: 61
  start-page: 1227
  year: 2015
  ident: hep29129-bib-0032-20241017
  article-title: CIDEC/FSP27 is regulated by peroxisome proliferator–activated receptor alpha and plays a critical role in fasting‐ and diet‐induced hepatosteatosis
  publication-title: Hepatology
  doi: 10.1002/hep.27607
– volume: 7
  start-page: 302
  year: 2008
  ident: hep29129-bib-0028-20241017
  article-title: Hepatic steatosis in leptin‐deficient mice is promoted by the PPARgamma target gene Fsp27
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2008.03.003
– volume: 62
  start-page: 1551
  year: 2015
  ident: hep29129-bib-0049-20241017
  article-title: Stimulation of nuclear receptor peroxisome proliferator–activated receptor‐gamma limits NF‐kappaB‐dependent inflammation in mouse cystic fibrosis biliary epithelium
  publication-title: Hepatology
  doi: 10.1002/hep.28000
– volume: 19
  start-page: 557
  year: 2013
  ident: hep29129-bib-0016-20241017
  article-title: PPARgamma signaling and metabolism: the good, the bad and the future
  publication-title: Nat Med
  doi: 10.1038/nm.3159
– volume: 55
  start-page: 673
  year: 2011
  ident: hep29129-bib-0009-20241017
  article-title: Synergistic steatohepatitis by moderate obesity and alcohol in mice despite increased adiponectin and p‐AMPK
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2010.12.034
– volume: 149
  start-page: 1030
  year: 2015
  ident: hep29129-bib-0027-20241017
  article-title: Fat‐specific protein 27/CIDEC promotes development of alcoholic steatohepatitis in mice and humans
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2015.06.009
– volume: 25
  start-page: 2538
  year: 2011
  ident: hep29129-bib-0024-20241017
  article-title: Role for PPARgamma in obesity‐induced hepatic steatosis as determined by hepatocyte‐ and macrophage‐specific conditional knockouts
  publication-title: FASEB J
  doi: 10.1096/fj.10-173716
– volume: 96
  start-page: 1424
  year: 2011
  ident: hep29129-bib-0026-20241017
  article-title: Up‐regulation of PPAR‐gamma mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP‐1c induction
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2010-2129
– volume: 34
  start-page: 81
  year: 2004
  ident: hep29129-bib-0004-20241017
  article-title: Obesity and alcoholic liver disease
  publication-title: Alcohol
  doi: 10.1016/j.alcohol.2004.07.010
– volume: 336
  start-page: 215
  year: 2005
  ident: hep29129-bib-0042-20241017
  article-title: Increased expression of PPARgamma in high fat diet‐induced liver steatosis in mice
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2005.08.070
– volume: 51
  start-page: 445
  year: 2010
  ident: hep29129-bib-0021-20241017
  article-title: Long‐term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the Fatty Liver Improvement by Rosiglitazone Therapy (FLIRT 2) extension trial
  publication-title: Hepatology
  doi: 10.1002/hep.23270
– volume: 130
  start-page: 1636
  year: 2006
  ident: hep29129-bib-0036-20241017
  article-title: Relationship between steatosis, inflammation, and fibrosis in chronic hepatitis C: a meta‐analysis of individual patient data
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2006.03.014
– volume: 25
  start-page: 108
  year: 1997
  ident: hep29129-bib-0002-20241017
  article-title: Excess weight risk factor for alcoholic liver disease
  publication-title: Hepatology
  doi: 10.1002/hep.510250120
– volume: 62
  start-page: 1070
  year: 2015
  ident: hep29129-bib-0013-20241017
  article-title: Short‐ or long‐term high‐fat diet feeding plus acute ethanol binge synergistically induce acute liver injury in mice: an important role for CXCL1
  publication-title: Hepatology
  doi: 10.1002/hep.27921
– volume: 30
  start-page: 1137
  year: 2009
  ident: hep29129-bib-0007-20241017
  article-title: Synergistic association between alcohol intake and body mass index with serum alanine and aspartate aminotransferase levels in older adults: the Rancho Bernardo Study
  publication-title: Aliment Pharmacol Ther
  doi: 10.1111/j.1365-2036.2009.04141.x
– volume: 53
  start-page: 409
  year: 2002
  ident: hep29129-bib-0014-20241017
  article-title: The mechanisms of action of PPARs
  publication-title: Annu Rev Med
  doi: 10.1146/annurev.med.53.082901.104018
– volume: 165
  start-page: 305
  year: 2016
  ident: hep29129-bib-0022-20241017
  article-title: Long‐term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: a randomized trial
  publication-title: Ann Intern Med
  doi: 10.7326/M15-1774
– volume: 88
  start-page: 1097
  year: 2008
  ident: hep29129-bib-0005-20241017
  article-title: Effect of moderate alcohol consumption on liver enzymes increases with increasing body mass index
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/88.4.1097
– volume: 1821
  start-page: 809
  year: 2012
  ident: hep29129-bib-0019-20241017
  article-title: Roles of PPARs in NAFLD: potential therapeutic targets
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbalip.2011.10.016
– volume: 46
  start-page: 823
  year: 2007
  ident: hep29129-bib-0041-20241017
  article-title: Palmitic acid induces production of proinflammatory cytokine interleukin‐8 from hepatocytes
  publication-title: Hepatology
  doi: 10.1002/hep.21752
– volume: 437
  start-page: 759
  year: 2005
  ident: hep29129-bib-0047-20241017
  article-title: A SUMOylation‐dependent pathway mediates transrepression of inflammatory response genes by PPAR‐gamma
  publication-title: Nature
  doi: 10.1038/nature03988
– volume: 127
  start-page: 55
  year: 2017
  ident: hep29129-bib-0038-20241017
  article-title: Liver inflammation and fibrosis
  publication-title: J Clin Invest
  doi: 10.1172/JCI88881
– volume: 151
  start-page: 513
  year: 2016
  ident: hep29129-bib-0012-20241017
  article-title: Comparison of gene expression patterns between mouse models of nonalcoholic fatty liver disease and liver tissues from patients
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2016.05.051
– volume: 9
  start-page: 46
  year: 2015
  ident: hep29129-bib-0015-20241017
  article-title: PPAR gamma gene—a review
  publication-title: Diabetes Metab Syndr
  doi: 10.1016/j.dsx.2014.09.015
– volume: 40
  start-page: 988
  year: 2016
  ident: hep29129-bib-0025-20241017
  article-title: Hepatic peroxisome proliferator–activated receptor gamma signaling contributes to alcohol‐induced hepatic steatosis and inflammation in mice
  publication-title: Alcohol Clin Exp Res
  doi: 10.1111/acer.13049
– volume: 59
  start-page: 1045
  year: 2013
  ident: hep29129-bib-0040-20241017
  article-title: Cell‐specific PPARgamma deficiency establishes anti‐inflammatory and anti‐fibrogenic properties for this nuclear receptor in non‐parenchymal liver cells
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2013.06.023
– volume: 340
  start-page: c1240
  year: 2010
  ident: hep29129-bib-0001-20241017
  article-title: Effect of body mass index and alcohol consumption on liver disease: analysis of data from two prospective cohort studies
  publication-title: BMJ
  doi: 10.1136/bmj.c1240
– volume: 64
  start-page: 1398
  year: 2016
  ident: hep29129-bib-0011-20241017
  article-title: Modeling fatty liver disease in animals: is there an optimal approach, and is the effort worthwhile?
  publication-title: Hepatology
  doi: 10.1002/hep.28823
– volume: 46
  start-page: 424
  year: 2007
  ident: hep29129-bib-0020-20241017
  article-title: The effects of discontinuing pioglitazone in patients with nonalcoholic steatohepatitis
  publication-title: Hepatology
  doi: 10.1002/hep.21661
– volume: 277
  start-page: 34176
  year: 2002
  ident: hep29129-bib-0046-20241017
  article-title: Constitutive activation of peroxisome proliferator–activated receptor‐gamma suppresses pro‐inflammatory adhesion molecules in human vascular endothelial cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M203436200
SSID ssj0009428
Score 2.468072
Snippet Obesity and alcohol consumption synergistically promote steatohepatitis, and neutrophil infiltration is believed to be associated with steatosis. However, the...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108
SubjectTerms Analysis of Variance
Animal models
Animals
Binge Drinking - complications
Binge Drinking - metabolism
Biopsy, Needle
Cell activation
Cells, Cultured
Chemokine CXCL1 - metabolism
Chemokines
Cytokines
Diet, High-Fat
Disease Models, Animal
Ethanol
Ethanol - administration & dosage
Ethanol - adverse effects
Fatty liver
Fatty Liver - etiology
Fatty Liver - metabolism
Fatty Liver - pathology
Gene deletion
Hepatocytes
Hepatocytes - cytology
Hepatocytes - metabolism
Hepatology
High fat diet
Immunohistochemistry
Inflammation
Inflammation - pathology
Inflammation - physiopathology
Interleukin 8
Lipid metabolism
Liver
Liver Function Tests
Male
Metastases
Mice
Mice, Inbred C57BL
Mice, Knockout
Neutrophils
Obesity
Palmitic acid
Peroxisome proliferator-activated receptors
PPAR gamma - metabolism
Random Allocation
Rodents
Steatosis
Tumor necrosis factor
Title Inflammation is independent of steatosis in a murine model of steatohepatitis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhep.29129
https://www.ncbi.nlm.nih.gov/pubmed/28220523
https://www.proquest.com/docview/1912248182
https://pubmed.ncbi.nlm.nih.gov/PMC5481491
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6tOCAulEdptwVkoR562cVxknUsTggtWpAWVVWROCBFdhyLFZBFTbjw6zvjPJblIVXcItlO7MzY8409_gbghxZ5FgVa4BQ32QDttRsoi16rkrgwSLS4xtKJ7vRiNLmMzq_iqx4ctXdhan6IbsONZoZfr2mCa1MeLkhDb_KHoVBornD9pVgtAkS_F9RRKvJ5VdHr4nS6rFpWIS4Ou5bLtugVwHwdJ_kcv3oDdPoJrtuu13Ent8PHygyzpxesjh8c2wasN8CUHdeatAm9vNiC1Wlz9L4N07PCofbUNx3ZrGSzLoFuxeaOkbZU89IXMM3uaRc_Zz7RzqIYv0jqOSs_w-Xp-M_JZNDkYhhkMZF42nDEM5Vbq12IPqXInYolVy60lidaJrG0RLXnAoOAIIkTHlOzRArLM5EZG-7ASjEv8q_AjDFhNNJccS0iF4y0szqUMghCg2qiVR9-tlJJs4aonPJl3KU1xbJIsbOp_z19OOiqPtTsHG9V2m1FmzYTtEzRTUXwgmhF9OFLLeXuDRRZS7vlfZBL8u8qECX3ckkxu_HU3Oj_ocsZ4BC8eN_vVDoZ__IP3_6_6ndYEwQqfLDwLqxUfx_zPYREldn3uv8PJnEH8w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5tqdT2QsurXUqLhThw2cVxknUs9VIV0PJYVFUgcUGRHcdiRZtF3eyFX8-M89huAanqLZLtxM7MeB4efwOwq0WeRYEWKOIm66G-dj1l0WtVEjcGiRrXWDrRHZ0PhpfRyVV81YEvzV2YCh-iDbiRZPj9mgScAtL7c9TQm_yuLxTqqxfwkip6E3L-wY85eJSKfGVV9Ls4nS-rBleIi_126KI2emRiPs6U_NOC9Sro6C1cN5OvMk9u-7PS9LP7v3Ad_3d172C5tk3Z14qZVqCTF6vwalSfvq_B6LhwyEDVZUc2nrJxW0O3ZBPHiGHKydQ3MM1-USA_Z77WzrwZv0gcOp6uw-XR4cW3Ya8ux9DLYsLxtOGAZyq3VrsQ3UqROxVLrlxoLU-0TGJpCW3PBQZtgiROeEzDEiksz0RmbLgBS8WkyD8AM8aE0UBzxbWIXDDQzupQyiAIDXKKVl3Ya8iSZjVWOZXM-JlWKMsixcmm_vd0YaftelcBdDzVaauhbVrL6DRFTxXtFzRYRBfeV2Ru30DJtRQw74JcYIC2A6FyL7YU4xuPzo0uIHqdAS7B0_f5SaXDw-_-YfPfu27D6-HF6Cw9Oz4__QhvBNkYPnd4C5bK37P8E1pIpfnsBeEBlG4MDw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-swEB6xSIjLY4c-Ngtx4NKSOItjcUJAVZYihEDigBTZcaxW8NLqNVz49YydpZRFQtwieZzYmRnPjD3-BmBf0DTxXUFRxWXSRHutm1xh1MoZLgwMLa5U5kS3ex127v2Lh-BhCo6quzAFPkS94WY0w67XRsGHSh-OQUN76bBFOZqraZj1Q4ebug2nt2PsKO7bwqoYdjnmeJlXsEIOPay7ThqjTx7m50TJ9w6stUDtBXisxl4knjy1XnLZSl4_wDr-cnKL8Kf0TMlxIUpLMJVmyzDXLc_eV6B7nmkUn-KqI-mPSL-uoJuTgSZGXPLByDYQQf6ZbfyU2Eo742b8opHP_mgV7ttndyedZlmMoZkEBsVTeaGT8FQpoT0MKmmqecAcrj2lnEiwKGDKYO1pV6JHEAWRE5huEaPKSWgilbcGM9kgSzeASCk9PxTIMkF97YZCK-Ex5rqeRDkRvAEHFVfipEQqNwUznuMCY5nGONjY_p4G7NWkwwKe4yuirYq1camhoxjjVPRe0F2hDVgvuFy_waTWmu3yBrAJ_tcEBpN7siXr9yw2NwaAGHO6OAXL3u8HFXfObuzD35-T7sLczWk7vjq_vtyEeWocDJs4vAUz-f-XdBvdo1zuWDV4A3AYCr4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inflammation+is+independent+of+steatosis+in+a+murine+model+of+steatohepatitis&rft.jtitle=Hepatology+%28Baltimore%2C+Md.%29&rft.au=Wang%2C+Wei&rft.au=Xu%2C+Ming%E2%80%90Jiang&rft.au=Cai%2C+Yan&rft.au=Zhou%2C+Zhou&rft.date=2017-07-01&rft.issn=0270-9139&rft.eissn=1527-3350&rft.volume=66&rft.issue=1&rft.spage=108&rft.epage=123&rft_id=info:doi/10.1002%2Fhep.29129&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hep_29129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-9139&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-9139&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-9139&client=summon