Ketogenic diet ameliorates cognitive impairment and neuroinflammation in a mouse model of Alzheimer’s disease
Introduction Alzheimer's disease (AD) is the most common neurodegenerative disorder that causes dementia and affects millions of people worldwide. Although it has devastating outcomes for patients and tremendous economic costs to society, there is currently no effective treatment available. Aim...
Saved in:
Published in | CNS neuroscience & therapeutics Vol. 28; no. 4; pp. 580 - 592 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.04.2022
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Introduction
Alzheimer's disease (AD) is the most common neurodegenerative disorder that causes dementia and affects millions of people worldwide. Although it has devastating outcomes for patients and tremendous economic costs to society, there is currently no effective treatment available.
Aims
The high‐fat, low‐carbohydrate ketogenic diet (KD) is an established treatment for refractory epilepsy with a proven efficacy. Although the considerable interest has emerged in recent years for applying KD in AD patients, only few interventional studies in animals and humans have addressed the effects of KD on cognitive impairments, and the results were inconclusive. The aim of this study was to explore the impact of KD on cognitive functions and AD pathology in 5XFAD mice—a validated animal model of AD.
Results
Four months of a ketogenic diet improved spatial learning, spatial memory and working memory in 5XFAD mice. The improvement in cognitive functions was associated with a restored number of neurons and synapses in both the hippocampus and the cortex. Ketogenic diet treatment also reduced amyloid plaque deposition and microglial activation, resulting in reduced neuroinflammation. The positive effect of ketogenic diet on cognitive functions depended on the starting time and the duration of the diet. A shorter period (2 months) of ketogenic diet treatment had a weaker effect. Ketogenic diet initiated at late stage of AD (9 months of age) displayed no effect on cognitive improvement.
Conclusions
These findings indicate positive effects of ketogenic diet on both cognitive function and histopathology in Alzheimer's disease, which could be due to reduced microglial activation and neuroinflammation. Our findings provide new insights and therapeutic interventions for the treatment of Alzheimer's disease.
Ketogenic diet improved cognitive functions, decreased amyloid plaque deposition and microglial activation, restored synaptic and neuronal density, and reduced neuroinflammation. |
---|---|
AbstractList | IntroductionAlzheimer's disease (AD) is the most common neurodegenerative disorder that causes dementia and affects millions of people worldwide. Although it has devastating outcomes for patients and tremendous economic costs to society, there is currently no effective treatment available.AimsThe high‐fat, low‐carbohydrate ketogenic diet (KD) is an established treatment for refractory epilepsy with a proven efficacy. Although the considerable interest has emerged in recent years for applying KD in AD patients, only few interventional studies in animals and humans have addressed the effects of KD on cognitive impairments, and the results were inconclusive. The aim of this study was to explore the impact of KD on cognitive functions and AD pathology in 5XFAD mice—a validated animal model of AD.ResultsFour months of a ketogenic diet improved spatial learning, spatial memory and working memory in 5XFAD mice. The improvement in cognitive functions was associated with a restored number of neurons and synapses in both the hippocampus and the cortex. Ketogenic diet treatment also reduced amyloid plaque deposition and microglial activation, resulting in reduced neuroinflammation. The positive effect of ketogenic diet on cognitive functions depended on the starting time and the duration of the diet. A shorter period (2 months) of ketogenic diet treatment had a weaker effect. Ketogenic diet initiated at late stage of AD (9 months of age) displayed no effect on cognitive improvement.ConclusionsThese findings indicate positive effects of ketogenic diet on both cognitive function and histopathology in Alzheimer's disease, which could be due to reduced microglial activation and neuroinflammation. Our findings provide new insights and therapeutic interventions for the treatment of Alzheimer's disease. Introduction Alzheimer's disease (AD) is the most common neurodegenerative disorder that causes dementia and affects millions of people worldwide. Although it has devastating outcomes for patients and tremendous economic costs to society, there is currently no effective treatment available. Aims The high‐fat, low‐carbohydrate ketogenic diet (KD) is an established treatment for refractory epilepsy with a proven efficacy. Although the considerable interest has emerged in recent years for applying KD in AD patients, only few interventional studies in animals and humans have addressed the effects of KD on cognitive impairments, and the results were inconclusive. The aim of this study was to explore the impact of KD on cognitive functions and AD pathology in 5XFAD mice—a validated animal model of AD. Results Four months of a ketogenic diet improved spatial learning, spatial memory and working memory in 5XFAD mice. The improvement in cognitive functions was associated with a restored number of neurons and synapses in both the hippocampus and the cortex. Ketogenic diet treatment also reduced amyloid plaque deposition and microglial activation, resulting in reduced neuroinflammation. The positive effect of ketogenic diet on cognitive functions depended on the starting time and the duration of the diet. A shorter period (2 months) of ketogenic diet treatment had a weaker effect. Ketogenic diet initiated at late stage of AD (9 months of age) displayed no effect on cognitive improvement. Conclusions These findings indicate positive effects of ketogenic diet on both cognitive function and histopathology in Alzheimer's disease, which could be due to reduced microglial activation and neuroinflammation. Our findings provide new insights and therapeutic interventions for the treatment of Alzheimer's disease. Ketogenic diet improved cognitive functions, decreased amyloid plaque deposition and microglial activation, restored synaptic and neuronal density, and reduced neuroinflammation. Alzheimer's disease (AD) is the most common neurodegenerative disorder that causes dementia and affects millions of people worldwide. Although it has devastating outcomes for patients and tremendous economic costs to society, there is currently no effective treatment available.INTRODUCTIONAlzheimer's disease (AD) is the most common neurodegenerative disorder that causes dementia and affects millions of people worldwide. Although it has devastating outcomes for patients and tremendous economic costs to society, there is currently no effective treatment available.The high-fat, low-carbohydrate ketogenic diet (KD) is an established treatment for refractory epilepsy with a proven efficacy. Although the considerable interest has emerged in recent years for applying KD in AD patients, only few interventional studies in animals and humans have addressed the effects of KD on cognitive impairments, and the results were inconclusive. The aim of this study was to explore the impact of KD on cognitive functions and AD pathology in 5XFAD mice-a validated animal model of AD.AIMSThe high-fat, low-carbohydrate ketogenic diet (KD) is an established treatment for refractory epilepsy with a proven efficacy. Although the considerable interest has emerged in recent years for applying KD in AD patients, only few interventional studies in animals and humans have addressed the effects of KD on cognitive impairments, and the results were inconclusive. The aim of this study was to explore the impact of KD on cognitive functions and AD pathology in 5XFAD mice-a validated animal model of AD.Four months of a ketogenic diet improved spatial learning, spatial memory and working memory in 5XFAD mice. The improvement in cognitive functions was associated with a restored number of neurons and synapses in both the hippocampus and the cortex. Ketogenic diet treatment also reduced amyloid plaque deposition and microglial activation, resulting in reduced neuroinflammation. The positive effect of ketogenic diet on cognitive functions depended on the starting time and the duration of the diet. A shorter period (2 months) of ketogenic diet treatment had a weaker effect. Ketogenic diet initiated at late stage of AD (9 months of age) displayed no effect on cognitive improvement.RESULTSFour months of a ketogenic diet improved spatial learning, spatial memory and working memory in 5XFAD mice. The improvement in cognitive functions was associated with a restored number of neurons and synapses in both the hippocampus and the cortex. Ketogenic diet treatment also reduced amyloid plaque deposition and microglial activation, resulting in reduced neuroinflammation. The positive effect of ketogenic diet on cognitive functions depended on the starting time and the duration of the diet. A shorter period (2 months) of ketogenic diet treatment had a weaker effect. Ketogenic diet initiated at late stage of AD (9 months of age) displayed no effect on cognitive improvement.These findings indicate positive effects of ketogenic diet on both cognitive function and histopathology in Alzheimer's disease, which could be due to reduced microglial activation and neuroinflammation. Our findings provide new insights and therapeutic interventions for the treatment of Alzheimer's disease.CONCLUSIONSThese findings indicate positive effects of ketogenic diet on both cognitive function and histopathology in Alzheimer's disease, which could be due to reduced microglial activation and neuroinflammation. Our findings provide new insights and therapeutic interventions for the treatment of Alzheimer's disease. Ketogenic diet improved cognitive functions, decreased amyloid plaque deposition and microglial activation, restored synaptic and neuronal density, and reduced neuroinflammation. Alzheimer's disease (AD) is the most common neurodegenerative disorder that causes dementia and affects millions of people worldwide. Although it has devastating outcomes for patients and tremendous economic costs to society, there is currently no effective treatment available. The high-fat, low-carbohydrate ketogenic diet (KD) is an established treatment for refractory epilepsy with a proven efficacy. Although the considerable interest has emerged in recent years for applying KD in AD patients, only few interventional studies in animals and humans have addressed the effects of KD on cognitive impairments, and the results were inconclusive. The aim of this study was to explore the impact of KD on cognitive functions and AD pathology in 5XFAD mice-a validated animal model of AD. Four months of a ketogenic diet improved spatial learning, spatial memory and working memory in 5XFAD mice. The improvement in cognitive functions was associated with a restored number of neurons and synapses in both the hippocampus and the cortex. Ketogenic diet treatment also reduced amyloid plaque deposition and microglial activation, resulting in reduced neuroinflammation. The positive effect of ketogenic diet on cognitive functions depended on the starting time and the duration of the diet. A shorter period (2 months) of ketogenic diet treatment had a weaker effect. Ketogenic diet initiated at late stage of AD (9 months of age) displayed no effect on cognitive improvement. These findings indicate positive effects of ketogenic diet on both cognitive function and histopathology in Alzheimer's disease, which could be due to reduced microglial activation and neuroinflammation. Our findings provide new insights and therapeutic interventions for the treatment of Alzheimer's disease. |
Author | Xu, Yunlong Zhang, Yadong Wu, Junyan Deng, Xiaofei Peng, Bo Liu, Peidong Jiang, Chenyu Zhu, Yingjie |
AuthorAffiliation | 5 State Key Laboratory of Medical Neurobiology MOE Frontiers Center for Brain Science Institute for Translational Brain Research Fudan University Shanghai China 8 CAS Key Laboratory of Brain Connectome and Manipulation The Brain Cognition and Brain Disease Institute (BCBDI) Shenzhen Institute of Advanced Technology (SIAT) Chinese Academy of Sciences (CAS) Shenzhen China 4 Medical College of Acupuncture‐Moxibustion and Rehabilitation Guangzhou University of Chinese Medicine Guangzhou China 3 The First Affiliated Hospital Sun Yat‐sen University Guangzhou China 7 CAS Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai China 6 Faculty of Life and Health Sciences Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China 2 University of Chinese Academy of Sciences Beijing China 1 Shenzhen Key Laboratory of Drug Addiction Shenzhen Neher Neural Plasticity Laboratory the Brain Cognition and Brain Disease Institute (BCBDI) S |
AuthorAffiliation_xml | – name: 2 University of Chinese Academy of Sciences Beijing China – name: 1 Shenzhen Key Laboratory of Drug Addiction Shenzhen Neher Neural Plasticity Laboratory the Brain Cognition and Brain Disease Institute (BCBDI) Shenzhen Institute of Advanced Technology Chinese Academy of Sciences (CAS) Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research Institutions Shenzhen China – name: 6 Faculty of Life and Health Sciences Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China – name: 5 State Key Laboratory of Medical Neurobiology MOE Frontiers Center for Brain Science Institute for Translational Brain Research Fudan University Shanghai China – name: 8 CAS Key Laboratory of Brain Connectome and Manipulation The Brain Cognition and Brain Disease Institute (BCBDI) Shenzhen Institute of Advanced Technology (SIAT) Chinese Academy of Sciences (CAS) Shenzhen China – name: 7 CAS Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai China – name: 3 The First Affiliated Hospital Sun Yat‐sen University Guangzhou China – name: 4 Medical College of Acupuncture‐Moxibustion and Rehabilitation Guangzhou University of Chinese Medicine Guangzhou China |
Author_xml | – sequence: 1 givenname: Yunlong surname: Xu fullname: Xu, Yunlong organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Chenyu surname: Jiang fullname: Jiang, Chenyu organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Junyan surname: Wu fullname: Wu, Junyan organization: Guangzhou University of Chinese Medicine – sequence: 4 givenname: Peidong surname: Liu fullname: Liu, Peidong organization: Sun Yat‐sen University – sequence: 5 givenname: Xiaofei surname: Deng fullname: Deng, Xiaofei organization: Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research Institutions – sequence: 6 givenname: Yadong surname: Zhang fullname: Zhang, Yadong organization: Sun Yat‐sen University – sequence: 7 givenname: Bo surname: Peng fullname: Peng, Bo organization: Fudan University – sequence: 8 givenname: Yingjie orcidid: 0000-0002-0783-0897 surname: Zhu fullname: Zhu, Yingjie email: yj.zhu1@siat.ac.cn organization: Chinese Academy of Sciences (CAS) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34889516$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1uFDEQhS0URH5gwQWQJTawmMRu2932BikaAUFEYQGsLbe7euLIP4PdHRRWXIPrcZKYzCQiEXhhl-Svnl7V20c7MUVA6Dklh7SeIxvLIWVdpx6hPdoJsRCKq527mpFdtF_KBSFtI5V8gnYZl1IJ2u6h9BGmtILoLB4cTNgE8C5lM0HBNq2im9wlYBfWxuUAsQJxwBHmnFwcvQnBTC5F7CI2OKS5QL0H8DiN-Nj_OAcXIP_--atU9QKmwFP0eDS-wLPte4C-vnv7ZXmyOP30_sPy-HRhBVFqYYmUtCOMCmBj03bDMJBh6EbgnbGigc7wXikODTNCMt4L0418ZKzlxva95OwAvdnoruc-wGCr9Wy8XmcXTL7SyTh9_ye6c71Kl1qquqOGVIFXW4Gcvs1QJh1cseC9iVDn1E1LpGCqVbSiLx-gF2nOsY5XKU5II2nbVurF347urNxmUYGjDWBzKiXDqK2bbtZbDTqvKdF_0tY1bX2Tdu14_aDjVvRf7Fb9u_Nw9X9QL88-bzquAdvpvJ0 |
CitedBy_id | crossref_primary_10_1016_j_physbeh_2023_114386 crossref_primary_10_1016_j_neuint_2023_105614 crossref_primary_10_1051_jbio_2023031 crossref_primary_10_1016_j_intimp_2024_113376 crossref_primary_10_18632_aging_205741 crossref_primary_10_1016_j_jconrel_2025_01_022 crossref_primary_10_1111_cns_14363 crossref_primary_10_1159_000543499 crossref_primary_10_1007_s12035_023_03659_3 crossref_primary_10_3389_fnut_2022_947567 crossref_primary_10_1186_s12974_023_02931_6 crossref_primary_10_1080_19490976_2025_2471015 crossref_primary_10_3389_fnut_2023_1085623 crossref_primary_10_3390_microorganisms12091831 crossref_primary_10_1016_j_mehy_2024_111356 crossref_primary_10_1186_s12974_025_03371_0 crossref_primary_10_3389_fpsyt_2023_1099333 crossref_primary_10_3390_ijms241310751 crossref_primary_10_3390_ijms252211955 crossref_primary_10_1016_j_neuropharm_2024_110108 crossref_primary_10_3233_JAD_240186 crossref_primary_10_31083_j_jin2305091 crossref_primary_10_1002_mco2_656 crossref_primary_10_1051_e3sconf_202455305027 crossref_primary_10_1126_sciadv_ado1463 crossref_primary_10_1186_s13024_023_00595_7 crossref_primary_10_1016_j_nut_2024_112480 crossref_primary_10_3390_brainsci14111101 crossref_primary_10_1080_10408398_2022_2153355 crossref_primary_10_1002_advs_202300738 crossref_primary_10_1111_cns_14147 crossref_primary_10_1039_D3MA00736G crossref_primary_10_2478_ebtj_2022_0008 crossref_primary_10_3390_nu14235003 crossref_primary_10_3389_fnut_2024_1322509 crossref_primary_10_1016_j_expneurol_2023_114432 crossref_primary_10_3390_metabo14010025 crossref_primary_10_3389_fmicb_2022_959856 crossref_primary_10_1016_j_brainres_2023_148404 crossref_primary_10_1039_D3FO04007K crossref_primary_10_1177_0271678X231169133 crossref_primary_10_1186_s12974_024_03140_5 crossref_primary_10_3389_fnins_2022_899612 crossref_primary_10_1038_s41398_025_03232_7 crossref_primary_10_3389_fnut_2025_1539355 crossref_primary_10_1016_j_xcrm_2024_101593 crossref_primary_10_1016_j_neuro_2023_08_001 crossref_primary_10_3389_fnut_2023_1191903 crossref_primary_10_1016_j_biopha_2024_117207 crossref_primary_10_1039_D3FO04335E crossref_primary_10_1111_cns_13940 crossref_primary_10_3389_fnins_2023_1242254 crossref_primary_10_1007_s40618_023_02258_2 crossref_primary_10_3390_ijms25010124 crossref_primary_10_3390_nu15102270 crossref_primary_10_3390_nu14194137 crossref_primary_10_1016_S1875_5364_24_60652_7 crossref_primary_10_1111_imr_13365 crossref_primary_10_3233_JAD_230002 |
Cites_doi | 10.1523/JNEUROSCI.5209-10.2011 10.3390/nu12092616 10.1136/bmjebm-2021-111765 10.1126/scitranslmed.3002369 10.31887/DCNS.2009.11.2/cqiu 10.1016/j.stemcr.2019.10.012 10.1016/j.bbr.2017.05.005 10.3389/fnana.2015.00052 10.1038/s41593-018-0090-8 10.1007/s00429-013-0518-6 10.3233/JAD-141074 10.1037/h0077579 10.1038/npp.2013.243 10.1038/s41422-019-0216-x 10.1523/ENEURO.0448-18.2019 10.1038/nrneurol.2012.263 10.1016/j.neurobiolaging.2010.05.027 10.1177/0271678X19899577 10.1111/j.1755-5949.2010.00153.x 10.1007/s12264-013-1418-8 10.1097/MCO.0000000000000759 10.1016/j.lfs.2010.09.004 10.1016/j.cell.2018.06.051 10.1038/nature16954 10.1007/s002130000590 10.1111/cns.13216 10.1073/pnas.1718683115 10.1038/nprot.2006.2 10.1523/JNEUROSCI.1202-06.2006 10.1002/ana.410300410 10.1126/science.aad8373 10.1001/jamainternmed.2021.4622 10.1111/cns.13613 10.1186/s13229-016-0099-3 10.1111/jgs.15830 10.1177/0271678X21992457 10.1016/j.neuron.2020.06.028 10.1177/0271678X15626719 10.1523/JNEUROSCI.1136-17.2017 10.1126/sciadv.aba0466 10.1016/j.eplepsyres.2020.106454 10.21769/BioProtoc.2744 10.1016/S1471-4892(01)00126-6 10.1177/0271678X20965786 10.1007/s00259-008-1039-z 10.1038/nature20587 10.1186/s40035-015-0029-x 10.3233/JAD-2011-101782 10.1038/jcbfm.2013.1 10.1021/acs.jproteome.5b01025 10.1126/science.1072994 10.1016/j.cell.2019.02.014 10.1016/j.nut.2010.07.021 10.1177/0271678X21996177 10.1097/00005072-199708000-00011 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Ltd. 2021 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd. – notice: 2021 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1111/cns.13779 |
DatabaseName | Wiley Online Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
DocumentTitleAlternate | XU et al |
EISSN | 1755-5949 |
EndPage | 592 |
ExternalDocumentID | PMC8928920 34889516 10_1111_cns_13779 CNS13779 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Beijing China China |
GeographicLocations_xml | – name: China – name: Beijing China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 81922024; 31922027 – fundername: Science, Technology and Innovation Commission of Shenzhen Municipality funderid: RCJC20200714114556103; ZDSYS20190902093601675; JCYJ20180302145554969 – fundername: Frontier Research Program of Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) funderid: 2018GZR110105006 – fundername: Program of Shanghai Subject Chief Scientist funderid: 21XD1420400 – fundername: Program of Shanghai Subject Chief Scientist grantid: 21XD1420400 – fundername: ; grantid: 81922024; 31922027 – fundername: Frontier Research Program of Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) grantid: 2018GZR110105006 – fundername: Science, Technology and Innovation Commission of Shenzhen Municipality grantid: RCJC20200714114556103; ZDSYS20190902093601675; JCYJ20180302145554969 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29B 31~ 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8AO 8FI 8FJ 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AAONW AAZKR ABCQN ABDBF ABEML ABIVO ABPVW ABUWG ACCFJ ACCMX ACGFS ACMXC ACPRK ACSCC ACUHS ACXQS ADBBV ADEOM ADIZJ ADKYN ADPDF ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AFBPY AFKRA AFPKN AFZJQ AHMBA AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AOIJS ATUGU AVUZU AZBYB AZVAB BAFTC BBNVY BCNDV BENPR BFHJK BHBCM BHPHI BMXJE BROTX BRXPI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DU5 EBC EBD EBS EJD EMB EMOBN ESX F00 F01 F04 F5P FUBAC FYUFA G-S G.N GODZA GROUPED_DOAJ H.X HCIFZ HF~ HMCUK HYE HZ~ IAO IHR INH ITC IX1 J0M LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 M7P MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD OVEED P2W P2X P2Z P4B P4D PHGZM PHGZT PIMPY PQQKQ Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ SV3 TEORI TUS UB1 UKHRP W8V W99 WBKPD WIH WIJ WIK WNSPC WOHZO WQJ WXI WYISQ XG1 ~IA ~WT AAYXX CITATION 33P AEUQT AFPWT CGR CUY CVF ECM EIF NPM WIN WRC 1OB 3V. 7TK 7XB 8FE 8FH 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ K9. LK8 PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c5099-c088170315e3f267ddd0dd7fe47ac52e7a4b994e23a5834b5a7f4f3364acbb843 |
IEDL.DBID | 7X7 |
ISSN | 1755-5930 1755-5949 |
IngestDate | Thu Aug 21 13:59:05 EDT 2025 Fri Jul 11 06:41:34 EDT 2025 Wed Aug 13 07:18:45 EDT 2025 Wed Feb 19 02:26:36 EST 2025 Tue Jul 01 00:33:47 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Wed Jun 18 06:50:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | cognitive impairment ketogenic diet neuroinflammation Alzheimer's disease microglial activation |
Language | English |
License | Attribution 2021 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5099-c088170315e3f267ddd0dd7fe47ac52e7a4b994e23a5834b5a7f4f3364acbb843 |
Notes | Yunlong Xu and Chenyu Jiang Contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0783-0897 |
OpenAccessLink | https://www.proquest.com/docview/2640028166?pq-origsite=%requestingapplication% |
PMID | 34889516 |
PQID | 2640028166 |
PQPubID | 946372 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8928920 proquest_miscellaneous_2608539691 proquest_journals_2640028166 pubmed_primary_34889516 crossref_citationtrail_10_1111_cns_13779 crossref_primary_10_1111_cns_13779 wiley_primary_10_1111_cns_13779_CNS13779 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | CNS neuroscience & therapeutics |
PublicationTitleAlternate | CNS Neurosci Ther |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2021; 24 2012; 60 2021; 27 2021; 26 2010; 16 2014; 219 2019; 13 2016; 540 2020; 12 2020; 167 2016; 36 2013; 9 2009; 11 2018; 174 2020; 6 2018; 8 2019; 67 2006; 26 1997; 56 2015; 43 2016; 352 2019; 29 2011; 24 2011; 27 2021; 41 2018; 38 2019; 6 2015; 4 2002; 297 2020; 40 1991; 30 2011; 31 2002; 2 2021; 181 2020; 107 2006; 1 2017; 331 2011; 3 2015; 9 2018; 21 2016; 15 2012; 33 1979; 93 2010; 87 2009; 36 2016; 7 2001; 153 2013; 33 2018; 115 2016; 530 2020; 26 2014; 39 2014; 30 2019; 177 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 Shoji H (e_1_2_9_27_1) 2012; 60 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 Moloney RD (e_1_2_9_54_1) 2010; 16 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 24 start-page: 547 issue: 3 year: 2011 end-page: 557 article-title: Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and Alzheimer's disease publication-title: J Alzheimers Dis – volume: 36 start-page: 819 issue: 4 year: 2016 end-page: 830 article-title: Cerebrovascular and microglial states are not altered by functional neuroinflammatory gene variant publication-title: J Cereb Blood Flow Metab – volume: 21 start-page: 530 issue: 4 year: 2018 end-page: 540 article-title: Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion publication-title: Nat Neurosci – volume: 115 start-page: 578 issue: 3 year: 2018 end-page: 583 article-title: The prodrug of 7,8‐dihydroxyflavone development and therapeutic efficacy for treating Alzheimer's disease publication-title: Proc Natl Acad Sci USA – volume: 27 start-page: 3 issue: 1 year: 2011 end-page: 20 article-title: Brain fuel metabolism, aging, and Alzheimer's disease publication-title: Nutrition – volume: 540 start-page: 230 issue: 7632 year: 2016 end-page: 235 article-title: Gamma frequency entrainment attenuates amyloid load and modifies microglia publication-title: Nature – volume: 13 start-page: 1022 issue: 6 year: 2019 end-page: 1037 article-title: Human neural stem cells reinforce hippocampal synaptic network and rescue cognitive deficits in a mouse model of Alzheimer's disease publication-title: Stem Cell Rep – volume: 43 start-page: 1343 issue: 4 year: 2015 end-page: 1353 article-title: Lower brain 18F‐fluorodeoxyglucose uptake but normal 11C‐acetoacetate metabolism in mild Alzheimer's disease dementia publication-title: J Alzheimers Dis – volume: 26 start-page: 10129 issue: 40 year: 2006 end-page: 10140 article-title: Intraneuronal beta‐amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation publication-title: J Neurosci – volume: 8 issue: 5 year: 2018 article-title: Barnes maze procedure for spatial learning and memory in mice publication-title: Bio‐protocol – volume: 40 start-page: S25 issue: 1_suppl year: 2020 end-page: S33 article-title: Neuroinflammatory responses of microglia in central nervous system trauma publication-title: J Cereb Blood Flow Metab – volume: 4 start-page: 8 year: 2015 article-title: The promise of stem cells in the therapy of Alzheimer's disease publication-title: Transl Neurodegener – volume: 530 start-page: 219 issue: 7589 year: 2016 end-page: 222 article-title: A thalamic input to the nucleus accumbens mediates opiate dependence publication-title: Nature – volume: 41 start-page: 2162 issue: 9 year: 2021 end-page: 2173 article-title: Reduction of neuroinflammation alleviated mouse post bone fracture and stroke memory dysfunction publication-title: J Cereb Blood Flow Metab – volume: 6 issue: 4 year: 2019 article-title: Tmem119‐EGFP and Tmem119‐CreERT2 transgenic mice for labeling and manipulating microglia publication-title: eNeuro – volume: 153 start-page: 353 issue: 3 year: 2001 end-page: 364 article-title: Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task publication-title: Psychopharmacology – volume: 41 start-page: 2076 issue: 8 year: 2021 end-page: 2089 article-title: Detection of Alzheimer's disease‐related neuroinflammation by a PET ligand selective for glial versus vascular translocator protein publication-title: J Cereb Blood Flow Metab – volume: 7 start-page: 37 issue: 1 year: 2016 article-title: Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder publication-title: Mol Autism – volume: 9 start-page: 52 year: 2015 article-title: Alterations in dendrite and spine morphology of cortical pyramidal neurons in DISC1‐binding zinc finger protein (DBZ) knockout mice publication-title: Front Neuroanat – volume: 16 start-page: 316 issue: 5 year: 2010 end-page: 321 article-title: Stress and the microbiota‐gut‐brain axis in visceral pain: relevance to irritable bowel syndrome publication-title: CNS Neurosci Ther – volume: 107 start-page: 1113 issue: 6 year: 2020 end-page: 1123 e1114 article-title: Orchestrating opiate‐associated memories in thalamic circuits publication-title: Neuron – volume: 27 start-page: 505 issue: 5 year: 2021 end-page: 514 article-title: Gut dysbiosis in stroke and its implications on Alzheimer's disease‐like cognitive dysfunction publication-title: CNS Neurosci Ther – volume: 3 start-page: 77sr71 issue: 77 year: 2011 article-title: Alzheimer's disease: the challenge of the second century publication-title: Sci Transl Med – volume: 174 start-page: 497 issue: 2 year: 2018 article-title: The gut microbiota mediates the anti‐seizure effects of the ketogenic diet publication-title: Cell – volume: 26 start-page: 155 issue: 2 year: 2020 end-page: 166 article-title: Exploring the bi‐directional relationship between autophagy and Alzheimer's disease publication-title: CNS Neurosci Ther – volume: 1 start-page: 7 issue: 1 year: 2006 end-page: 12 article-title: T‐maze alternation in the rodent publication-title: Nat Protoc – volume: 29 start-page: 787 issue: 10 year: 2019 end-page: 803 article-title: Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids‐shaped neuroinflammation to inhibit Alzheimer's disease progression publication-title: Cell Res – volume: 31 start-page: 630 issue: 2 year: 2011 end-page: 643 article-title: PKC epsilon activation prevents synaptic loss, Abeta elevation, and cognitive deficits in Alzheimer's disease transgenic mice publication-title: J Neurosci – volume: 352 start-page: 712 issue: 6286 year: 2016 end-page: 716 article-title: Complement and microglia mediate early synapse loss in Alzheimer mouse models publication-title: Science – volume: 167 start-page: 106454 year: 2020 article-title: Ketogenic diet and neuroinflammation publication-title: Epilepsy Res – volume: 60 start-page: 3300 year: 2012 article-title: T‐maze forced alternation and left‐right discrimination tasks for assessing working and reference memory in mice publication-title: J Vis Exp – volume: 56 start-page: 933 issue: 8 year: 1997 end-page: 944 article-title: Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease publication-title: J Neuropathol Exp Neurol – volume: 33 start-page: 196 issue: 1 year: 2012 article-title: Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model of Alzheimer's disease publication-title: Neurobiol Aging – volume: 16 start-page: 316 issue: 5 year: 2010 end-page: 321 article-title: Apolipoprotein E genotype and cognition in bipolar disorder publication-title: CNS Neurosci Ther – volume: 2 start-page: 87 issue: 1 year: 2002 end-page: 92 article-title: Alzheimer's disease and the amyloid cascade hypothesis: ten years on publication-title: Curr Opin Pharmacol – volume: 177 start-page: 256 issue: 2 year: 2019 end-page: 271 e222 article-title: Multi‐sensory gamma stimulation ameliorates Alzheimer's‐associated pathology and improves cognition publication-title: Cell – volume: 30 start-page: 308 issue: 2 year: 2014 end-page: 316 article-title: Dysfunctional autophagy in Alzheimer's disease: pathogenic roles and therapeutic implications publication-title: Neurosci Bull – volume: 9 start-page: 106 issue: 2 year: 2013 end-page: 118 article-title: Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy publication-title: Nat Rev Neurol – volume: 39 start-page: 638 issue: 3 year: 2014 end-page: 650 article-title: 7,8‐dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer's disease publication-title: Neuropsychopharmacology – volume: 12 start-page: 2616 issue: 9 year: 2020 article-title: Therapeutic use of the ketogenic diet in refractory epilepsy: what we know and what still needs to be learned publication-title: Nutrients – volume: 297 start-page: 353 issue: 5580 year: 2002 end-page: 356 article-title: The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics publication-title: Science – volume: 87 start-page: 521 issue: 17–18 year: 2010 end-page: 536 article-title: Assessment of spatial memory in mice publication-title: Life Sci – volume: 26 start-page: 214 issue: 5 year: 2021 end-page: 215 article-title: Aducanumab for Alzheimer's disease: expediting approval and delaying science publication-title: BMJ Evid Based Med – volume: 11 start-page: 111 issue: 2 year: 2009 end-page: 128 article-title: Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention publication-title: Dialogues Clin Neurosci – volume: 15 start-page: 1143 issue: 4 year: 2016 end-page: 1150 article-title: Metabolomic modeling to monitor host responsiveness to gut microbiota manipulation in the BTBR(T+tf/j) mouse publication-title: J Proteome Res – volume: 67 start-page: 841 issue: 4 year: 2019 end-page: 844 article-title: Major clinical trials failed the amyloid hypothesis of Alzheimer's disease publication-title: J Am Geriatr Soc – volume: 93 start-page: 74 issue: 1 year: 1979 end-page: 104 article-title: Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat publication-title: J Comp Physiol Psychol – volume: 24 start-page: 372 issue: 4 year: 2021 end-page: 378 article-title: Ketogenic diet therapy in Alzheimer's disease: an updated review publication-title: Curr Opin Clin Nutr Metab Care – volume: 331 start-page: 54 year: 2017 end-page: 66 article-title: Water and T‐maze protocols are equally efficient methods to assess spatial memory in 3xTg Alzheimer's disease mice publication-title: Behav Brain Res – volume: 38 start-page: 2911 issue: 12 year: 2018 end-page: 2919 article-title: Microglia‐mediated synapse loss in Alzheimer's disease publication-title: J Neurosci – volume: 219 start-page: 571 issue: 2 year: 2014 end-page: 580 article-title: Spine pruning in 5xFAD mice starts on basal dendrites of layer 5 pyramidal neurons publication-title: Brain Struct Funct – volume: 40 start-page: 2505 issue: 12 year: 2020 end-page: 2520 article-title: Metabolic endotoxemia promotes neuroinflammation after focal cerebral ischemia publication-title: J Cereb Blood Flow Metab – volume: 36 start-page: 811 issue: 5 year: 2009 end-page: 822 article-title: FDG‐PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer's disease publication-title: Eur J Nucl Med Mol Imaging – volume: 30 start-page: 572 issue: 4 year: 1991 end-page: 580 article-title: Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment publication-title: Ann Neurol – volume: 6 start-page: eaba0466 issue: 31 year: 2020 article-title: Gut dysbiosis contributes to amyloid pathology, associated with C/EBPbeta/AEP signaling activation in Alzheimer's disease mouse model publication-title: Sci Adv – volume: 181 start-page: 1281 issue: 10 year: 2021 article-title: The accelerated approval of aducanumab for treatment of patients with Alzheimer disease publication-title: JAMA Intern Med – volume: 33 start-page: 708 issue: 5 year: 2013 end-page: 715 article-title: Induction of hyperhomocysteinemia models vascular dementia by induction of cerebral microhemorrhages and neuroinflammation publication-title: J Cereb Blood Flow Metab – ident: e_1_2_9_34_1 doi: 10.1523/JNEUROSCI.5209-10.2011 – ident: e_1_2_9_12_1 doi: 10.3390/nu12092616 – ident: e_1_2_9_10_1 doi: 10.1136/bmjebm-2021-111765 – ident: e_1_2_9_2_1 doi: 10.1126/scitranslmed.3002369 – ident: e_1_2_9_3_1 doi: 10.31887/DCNS.2009.11.2/cqiu – ident: e_1_2_9_20_1 doi: 10.1016/j.stemcr.2019.10.012 – ident: e_1_2_9_29_1 doi: 10.1016/j.bbr.2017.05.005 – ident: e_1_2_9_37_1 doi: 10.3389/fnana.2015.00052 – ident: e_1_2_9_43_1 doi: 10.1038/s41593-018-0090-8 – ident: e_1_2_9_33_1 doi: 10.1007/s00429-013-0518-6 – ident: e_1_2_9_51_1 doi: 10.3233/JAD-141074 – ident: e_1_2_9_25_1 doi: 10.1037/h0077579 – ident: e_1_2_9_32_1 doi: 10.1038/npp.2013.243 – ident: e_1_2_9_56_1 doi: 10.1038/s41422-019-0216-x – ident: e_1_2_9_42_1 doi: 10.1523/ENEURO.0448-18.2019 – ident: e_1_2_9_53_1 doi: 10.1038/nrneurol.2012.263 – ident: e_1_2_9_36_1 doi: 10.1016/j.neurobiolaging.2010.05.027 – ident: e_1_2_9_58_1 doi: 10.1177/0271678X19899577 – ident: e_1_2_9_52_1 doi: 10.1111/j.1755-5949.2010.00153.x – ident: e_1_2_9_4_1 doi: 10.1007/s12264-013-1418-8 – ident: e_1_2_9_17_1 doi: 10.1097/MCO.0000000000000759 – ident: e_1_2_9_19_1 doi: 10.1016/j.lfs.2010.09.004 – ident: e_1_2_9_15_1 doi: 10.1016/j.cell.2018.06.051 – ident: e_1_2_9_22_1 doi: 10.1038/nature16954 – volume: 60 start-page: 3300 year: 2012 ident: e_1_2_9_27_1 article-title: T‐maze forced alternation and left‐right discrimination tasks for assessing working and reference memory in mice publication-title: J Vis Exp – ident: e_1_2_9_21_1 doi: 10.1007/s002130000590 – ident: e_1_2_9_7_1 doi: 10.1111/cns.13216 – ident: e_1_2_9_49_1 doi: 10.1073/pnas.1718683115 – ident: e_1_2_9_28_1 doi: 10.1038/nprot.2006.2 – ident: e_1_2_9_18_1 doi: 10.1523/JNEUROSCI.1202-06.2006 – ident: e_1_2_9_31_1 doi: 10.1002/ana.410300410 – ident: e_1_2_9_40_1 doi: 10.1126/science.aad8373 – ident: e_1_2_9_9_1 doi: 10.1001/jamainternmed.2021.4622 – ident: e_1_2_9_57_1 doi: 10.1111/cns.13613 – ident: e_1_2_9_14_1 doi: 10.1186/s13229-016-0099-3 – ident: e_1_2_9_8_1 doi: 10.1111/jgs.15830 – ident: e_1_2_9_47_1 doi: 10.1177/0271678X21992457 – ident: e_1_2_9_23_1 doi: 10.1016/j.neuron.2020.06.028 – ident: e_1_2_9_38_1 doi: 10.1177/0271678X15626719 – ident: e_1_2_9_41_1 doi: 10.1523/JNEUROSCI.1136-17.2017 – ident: e_1_2_9_55_1 doi: 10.1126/sciadv.aba0466 – ident: e_1_2_9_16_1 doi: 10.1016/j.eplepsyres.2020.106454 – ident: e_1_2_9_26_1 doi: 10.21769/BioProtoc.2744 – ident: e_1_2_9_6_1 doi: 10.1016/S1471-4892(01)00126-6 – ident: e_1_2_9_44_1 doi: 10.1177/0271678X20965786 – ident: e_1_2_9_50_1 doi: 10.1007/s00259-008-1039-z – ident: e_1_2_9_45_1 doi: 10.1038/nature20587 – ident: e_1_2_9_48_1 doi: 10.1186/s40035-015-0029-x – ident: e_1_2_9_30_1 doi: 10.3233/JAD-2011-101782 – ident: e_1_2_9_46_1 doi: 10.1038/jcbfm.2013.1 – volume: 16 start-page: 316 issue: 5 year: 2010 ident: e_1_2_9_54_1 article-title: Stress and the microbiota‐gut‐brain axis in visceral pain: relevance to irritable bowel syndrome publication-title: CNS Neurosci Ther – ident: e_1_2_9_13_1 doi: 10.1021/acs.jproteome.5b01025 – ident: e_1_2_9_5_1 doi: 10.1126/science.1072994 – ident: e_1_2_9_24_1 doi: 10.1016/j.cell.2019.02.014 – ident: e_1_2_9_11_1 doi: 10.1016/j.nut.2010.07.021 – ident: e_1_2_9_39_1 doi: 10.1177/0271678X21996177 – ident: e_1_2_9_35_1 doi: 10.1097/00005072-199708000-00011 |
SSID | ssj0062898 |
Score | 2.5385146 |
Snippet | Introduction
Alzheimer's disease (AD) is the most common neurodegenerative disorder that causes dementia and affects millions of people worldwide. Although it... Alzheimer's disease (AD) is the most common neurodegenerative disorder that causes dementia and affects millions of people worldwide. Although it has... IntroductionAlzheimer's disease (AD) is the most common neurodegenerative disorder that causes dementia and affects millions of people worldwide. Although it... Ketogenic diet improved cognitive functions, decreased amyloid plaque deposition and microglial activation, restored synaptic and neuronal density, and reduced... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 580 |
SubjectTerms | Alzheimer Disease - pathology Alzheimer's disease Amyloid Animal cognition Animal models Animals Brain Carbohydrates Cognitive ability Cognitive Dysfunction - etiology cognitive impairment Dementia Dementia disorders Diet Diet, Ketogenic Disease Models, Animal Epilepsy Ethanol High carbohydrate diet High fat diet Humans Inflammation Ketogenesis ketogenic diet Laboratories Low carbohydrate diet Low fat diet Memory Mice Mice, Transgenic microglial activation Neurodegenerative diseases neuroinflammation Neuroinflammatory Diseases Nutrient deficiency Original Patients Plaque, Amyloid Proteins Short term memory Spatial discrimination learning Spatial memory Synapses Therapeutic applications Transgenic animals |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS91AFB3ElZu22q_XarktRbowkpeZySR0JVKRloq0Ci4KYb6CoZpXXuJCV_4N_15_Se-dfOirLZTuHuQObzI5Z3Jmcu8Zxt6SqZjkAomU2TgSZV6SB6SMYqsyM7XWKE37HZ8P0v1j8fFEniyx90MtTOcPMW64ETPCfE0E16a5Q3KLDyXY5eH8S7laJIi-jNZRKS4kQhmckjKSOY97VyHK4hlbLr6L7gnM-3mSd_VreAHtPWTfhq53eSffty9as22vfnN1_M97e8Qe9MIUdjokrbIlX6-xzcPO2fpyC45uC7WaLdiEw1vP68vHbPbJtzPEYmXBVb4FfY49IHT5BsYMJaCSzGpO-5GgawfBSxMRjqDsCiihqkEDbUZ4CEf0wKyEnbOrU1-d-_nP65sG-g9KT9jx3oej3f2oP8shspJMQC3OZlPyypeel0mqnHOxc6r0QmkrE6-0MHkufMK1zLgwUqtSlJynQltjMsGfsuV6VvvnDDLjcq9I6CXYKEUqKC987LgT2hmZT9i74akWtjc6p_M2zophwYPDW4ThnbA3Y-iPzt3jT0HrAzSKnuBNgTqSlqvTNJ2w1-NlpCZ9b9G1x5HCGNSzPE_z6YQ965A0_gvSI0Nxi63VAsbGALL9XrxSV6fB_jvLEdtJjLcZIPT3jhe7B1_Djxf_HvqSrSRU4BFyk9bZcju_8Bsou1rzKvDrF10ILf4 priority: 102 providerName: Wiley-Blackwell |
Title | Ketogenic diet ameliorates cognitive impairment and neuroinflammation in a mouse model of Alzheimer’s disease |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcns.13779 https://www.ncbi.nlm.nih.gov/pubmed/34889516 https://www.proquest.com/docview/2640028166 https://www.proquest.com/docview/2608539691 https://pubmed.ncbi.nlm.nih.gov/PMC8928920 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELZoe-GC-GehrAxCFYdGZGM7jk-oVK0qEKtVaaW9Rf6LGmmblN3toT3xGrweT8KM482yKnCJItlWYs9nezye-YaQd0gqJhiHiVTYNOGVqpADUiSplYUZWWukRnvH13F-cs4_T8U0GtwW0a1ytSaGhdq1Fm3kH2DjxvPBKM8_Xn1PMGsU3q7GFBpbZAepy9ClS077A1cOh4kQCieFSIRiaWQWQk8eCyINZHub-9EdJfOur-SfOmzYhI4fkgdRe6QHnbgfkXu-eUz2Jh399M0-PVtHUy326R6drImpb56Q9otftgCY2lJX-yXVl36GEfqgbdLejYhi3GQ9R6Mh1Y2jgfASYAjI6aIcad1QTdFi4GnIo0Pbih7Mbi98fennv378XNB46_OUnB8fnR2eJDHhQmIFMnVaWHJGSGgvPKuyXDrnUudk5bnUVmReam6U4j5jWhSMG6FlxSvGcq6tMQVnz8h20zb-BaGFccpL1MYyaJQDXqXnPnXMce2MUAPyfjXspY1s5JgUY1auTiUgoTJIaEDe9lWvOgqOv1XaXcmujLNwUa4xMyBv-mKYP3gpohsPIwV1QOlkKlejAXneibr_CmC4AA0UWssNEPQVkJt7s6SpLwJHd6EAfFkK3Qxw-fePl4fjb-Hl5f978IrczzDyIjgN7ZLt5fzavwZ9aGmGZCvjk2GA_pDsfDoaT06HwbaAz9PsN4d2Efc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbK9gAXxD_bFjAIKg6NyMZ2nBwQKqXVlm1XK9hKvQXHdtRI26TsLkLLidfgJXgonoQZ52dZFbj1Fsl2_uYbe8ae-YaQ50gqJhgHRYq07_EszpADUni-llHa0zqVCvc7jodh_4S_PxWna-RnkwuDYZXNnOgmalNq3CN_BQs3-ge9MHxz8dnDqlF4utqU0KhgMbCLr-CyzV4fvgP5vgiCg_3xXt-rqwp4WiAdpQa96iFru7AsC0JpjPGNkZnlUmkRWKl4GsfcBkyJiPFUKJnxjLGQK52mEWdw32tknTNwZTpk_e3-cPShmftDcF9c8p0UwhMx82suI4wd0gAiR--3ugJeMmsvR2f-aTW7Ze_gFrlZ26t0twLYbbJmiztke1QRXi926HiZvzXbodt0tKTCXtwl5cDOS4BorqnJ7ZyqcztBTgCwb2kbuEQxUzOf4jYlVYWhjmITgA9YrfIqaV5QRXGPwlJXuYeWGd2dfDuz-bmd_vr-Y0brc6Z75ORKhHGfdIqysA8JjVITW4n2XwCDQtAQabn1DTNcmVTEXfKy-e2JrvnPsQzHJGn8IJBQ4iTUJc_arhcV6cffOm01sktqvZ8lS5R2ydO2GTQWj2FUYeFPQR8wc1kcxr0ueVCJun0KaE0ENi-MlisgaDsgG_hqS5GfOVbwKAbwBT58poPLv1882Rt-dBcb__-CJ-R6f3x8lBwdDgeb5EaAeR8uZGmLdObTL_YRWGPz9HGtApR8umqt-w39_Euh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbGkBA3iPFb2MAgmLhYtCS24-QCoWmj2ihUldik3gXHdrRIXTLaIlSu9hp7FR6HJ-Ec56dUA-52VylO2-R8n32Ofc53CHmFomKCcSBSrH2P50mOGpDC87WMs0DrTCrc7_g0jA5P-IexGK-Rn20tDKZVtnOim6hNpXGPfBcWbowPgijazZu0iNFB_935Vw87SOFJa9tOo4bIwC6-Q_g2e3t0ALZ-HYb998f7h17TYcDTAqUpNXAsQAV3YVkeRtIY4xsjc8ul0iK0UvEsSbgNmRIx45lQMuc5YxFXOstizuB7b5CbkokAOSbHXbAXQSDjyvCkEJ5ImN-oGmEWkQY4OaG_1bXwioN7NU_zT__ZLYD9u-RO47nSvRpqG2TNlvfI9qiWvl7s0ONlJddsh27T0VIUe3GfVAM7rwCshaamsHOqzuwE1QHA06VdChPFms1iihuWVJWGOrFNoACgtq6wpEVJFcXdCktdDx9a5XRv8uPUFmd2-uvickabE6cH5ORaTPGQrJdVaR8TGmcmsRI9wRBuioAr0nLrG2a4MplIeuRN-9pT3SihY0OOSdpGRGCh1FmoR152Q89r-Y-_DdpsbZc2M8AsXeK1R150l4G7eCCjSgtvCsaAw8uSKAl65FFt6u5XgD8xeL9wt1wBQTcAdcFXr5TFqdMHjxMAX-jDYzq4_PuPp_vDz-7Dk_8_wXNyC7iWfjwaDp6S2yEWgLjcpU2yPp9-s1vgls2zZw7_lHy5bsL9Bop4TnE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ketogenic+diet+ameliorates+cognitive+impairment+and+neuroinflammation+in+a+mouse+model+of+Alzheimer%E2%80%99s+disease&rft.jtitle=CNS+neuroscience+%26+therapeutics&rft.au=Xu%2C+Yunlong&rft.au=Jiang%2C+Chenyu&rft.au=Wu%2C+Junyan&rft.au=Liu%2C+Peidong&rft.date=2022-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1755-5930&rft.eissn=1755-5949&rft.volume=28&rft.issue=4&rft.spage=580&rft.epage=592&rft_id=info:doi/10.1111%2Fcns.13779&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-5930&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-5930&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-5930&client=summon |