Distribution of ACE2, CD147, CD26, and other SARS‐CoV‐2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID‐19 risk factors

Background Morbidity and mortality from COVID‐19 caused by novel coronavirus SARS‐CoV‐2 is accelerating worldwide, and novel clinical presentations of COVID‐19 are often reported. The range of human cells and tissues targeted by SARS‐CoV‐2, its potential receptors and associated regulating factors a...

Full description

Saved in:
Bibliographic Details
Published inAllergy (Copenhagen) Vol. 75; no. 11; pp. 2829 - 2845
Main Authors Radzikowska, Urszula, Ding, Mei, Tan, Ge, Zhakparov, Damir, Peng, Yaqi, Wawrzyniak, Paulina, Wang, Ming, Li, Shuo, Morita, Hideaki, Altunbulakli, Can, Reiger, Matthias, Neumann, Avidan U., Lunjani, Nonhlanhla, Traidl‐Hoffmann, Claudia, Nadeau, Kari C., O’Mahony, Liam, Akdis, Cezmi, Sokolowska, Milena
Format Journal Article
LanguageEnglish
Published Denmark Blackwell Publishing Ltd 01.11.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Morbidity and mortality from COVID‐19 caused by novel coronavirus SARS‐CoV‐2 is accelerating worldwide, and novel clinical presentations of COVID‐19 are often reported. The range of human cells and tissues targeted by SARS‐CoV‐2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS‐CoV‐2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID‐19. Methods We performed RNA sequencing and explored available RNA‐Seq databases to study gene expression and co‐expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID‐19 risk factor status. Results ACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age‐related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2‐ and CD147‐related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147‐related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147‐related genes in the lesional skin of patients with atopic dermatitis. Conclusions Our data suggest different receptor repertoire potentially involved in the SARS‐CoV‐2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID‐19 morbidity and severity patterns. ACE2 and TMPRSS2 expression is unique for the epithelial barrier sites, whereas CD147, cyclophilins, and CD26 are expressed in both, epithelial and immune cells. Age is a factor associated with the differential expression profiles of ACE2‐, CD147‐ and CD26‐related genes in the PBMCs and naive CD4+ T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender generally lead to the higher expression of ACE2‐ and CD147‐related genes in the bronchial biopsy, BAL or blood. Abbreviations: ACE2, angiotensin‐converting enzyme 2; AD, atopic dermatitis; BAL, bronchoalveolar lavage; COPD, chronic obstructive pulmonary disease; CypA, cyclophilin A; CypB, cyclophilin B; GLUT1, glucose transporter 1; ILC, innate lymphoid cell; MCTs, monocarboxylate transporters; NF‐ATs, nuclear factor of activated T cells; PBMCs, peripheral blood mononuclear cells; SARS‐CoV‐2; severe acute respiratory syndrome coronavirus 2; SLC6A19, sodium‐dependent neutral amino acid transporter B(0)AT1; S100A9, protein S100‐A9; TMPRSS2, transmembrane protease serine.
AbstractList Morbidity and mortality from COVID-19 caused by novel coronavirus SARS-CoV-2 is accelerating worldwide, and novel clinical presentations of COVID-19 are often reported. The range of human cells and tissues targeted by SARS-CoV-2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS-CoV-2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID-19.BACKGROUNDMorbidity and mortality from COVID-19 caused by novel coronavirus SARS-CoV-2 is accelerating worldwide, and novel clinical presentations of COVID-19 are often reported. The range of human cells and tissues targeted by SARS-CoV-2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS-CoV-2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID-19.We performed RNA sequencing and explored available RNA-Seq databases to study gene expression and co-expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID-19 risk factor status.METHODSWe performed RNA sequencing and explored available RNA-Seq databases to study gene expression and co-expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID-19 risk factor status.ACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age-related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2- and CD147-related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147-related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147-related genes in the lesional skin of patients with atopic dermatitis.RESULTSACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age-related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2- and CD147-related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147-related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147-related genes in the lesional skin of patients with atopic dermatitis.Our data suggest different receptor repertoire potentially involved in the SARS-CoV-2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID-19 morbidity and severity patterns.CONCLUSIONSOur data suggest different receptor repertoire potentially involved in the SARS-CoV-2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID-19 morbidity and severity patterns.
Morbidity and mortality from COVID-19 caused by novel coronavirus SARS-CoV-2 is accelerating worldwide, and novel clinical presentations of COVID-19 are often reported. The range of human cells and tissues targeted by SARS-CoV-2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS-CoV-2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID-19. We performed RNA sequencing and explored available RNA-Seq databases to study gene expression and co-expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4 and CD8 T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID-19 risk factor status. ACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age-related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2- and CD147-related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147-related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147-related genes in the lesional skin of patients with atopic dermatitis. Our data suggest different receptor repertoire potentially involved in the SARS-CoV-2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID-19 morbidity and severity patterns.
ACE2 and TMPRSS2 expression is unique for the epithelial barrier sites, whereas CD147, cyclophilins, and CD26 are expressed in both, epithelial and immune cells. Age is a factor associated with the differential expression profiles of ACE2‐, CD147‐ and CD26‐related genes in the PBMCs and naive CD4 + T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender generally lead to the higher expression of ACE2‐ and CD147‐related genes in the bronchial biopsy, BAL or blood. Abbreviations: ACE2, angiotensin‐converting enzyme 2; AD, atopic dermatitis; BAL, bronchoalveolar lavage; COPD, chronic obstructive pulmonary disease; CypA, cyclophilin A; CypB, cyclophilin B; GLUT1, glucose transporter 1; ILC, innate lymphoid cell; MCTs, monocarboxylate transporters; NF‐ATs, nuclear factor of activated T cells; PBMCs, peripheral blood mononuclear cells; SARS‐CoV‐2; severe acute respiratory syndrome coronavirus 2; SLC6A19, sodium‐dependent neutral amino acid transporter B(0)AT1; S100A9, protein S100‐A9; TMPRSS2, transmembrane protease serine.
BackgroundMorbidity and mortality from COVID‐19 caused by novel coronavirus SARS‐CoV‐2 is accelerating worldwide, and novel clinical presentations of COVID‐19 are often reported. The range of human cells and tissues targeted by SARS‐CoV‐2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS‐CoV‐2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID‐19.MethodsWe performed RNA sequencing and explored available RNA‐Seq databases to study gene expression and co‐expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID‐19 risk factor status.ResultsACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age‐related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2‐ and CD147‐related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147‐related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147‐related genes in the lesional skin of patients with atopic dermatitis.ConclusionsOur data suggest different receptor repertoire potentially involved in the SARS‐CoV‐2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID‐19 morbidity and severity patterns.
Background Morbidity and mortality from COVID‐19 caused by novel coronavirus SARS‐CoV‐2 is accelerating worldwide, and novel clinical presentations of COVID‐19 are often reported. The range of human cells and tissues targeted by SARS‐CoV‐2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS‐CoV‐2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID‐19. Methods We performed RNA sequencing and explored available RNA‐Seq databases to study gene expression and co‐expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID‐19 risk factor status. Results ACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age‐related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2‐ and CD147‐related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147‐related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147‐related genes in the lesional skin of patients with atopic dermatitis. Conclusions Our data suggest different receptor repertoire potentially involved in the SARS‐CoV‐2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID‐19 morbidity and severity patterns. ACE2 and TMPRSS2 expression is unique for the epithelial barrier sites, whereas CD147, cyclophilins, and CD26 are expressed in both, epithelial and immune cells. Age is a factor associated with the differential expression profiles of ACE2‐, CD147‐ and CD26‐related genes in the PBMCs and naive CD4+ T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender generally lead to the higher expression of ACE2‐ and CD147‐related genes in the bronchial biopsy, BAL or blood. Abbreviations: ACE2, angiotensin‐converting enzyme 2; AD, atopic dermatitis; BAL, bronchoalveolar lavage; COPD, chronic obstructive pulmonary disease; CypA, cyclophilin A; CypB, cyclophilin B; GLUT1, glucose transporter 1; ILC, innate lymphoid cell; MCTs, monocarboxylate transporters; NF‐ATs, nuclear factor of activated T cells; PBMCs, peripheral blood mononuclear cells; SARS‐CoV‐2; severe acute respiratory syndrome coronavirus 2; SLC6A19, sodium‐dependent neutral amino acid transporter B(0)AT1; S100A9, protein S100‐A9; TMPRSS2, transmembrane protease serine.
Author Radzikowska, Urszula
Tan, Ge
Li, Shuo
Altunbulakli, Can
Reiger, Matthias
Zhakparov, Damir
Ding, Mei
Neumann, Avidan U.
Sokolowska, Milena
Wang, Ming
Wawrzyniak, Paulina
Traidl‐Hoffmann, Claudia
Lunjani, Nonhlanhla
O’Mahony, Liam
Morita, Hideaki
Peng, Yaqi
Nadeau, Kari C.
Akdis, Cezmi
AuthorAffiliation 16 Department of Medicine and School of Microbiology APC Microbiome Ireland National University of Ireland Cork Ireland
12 Chair and Institute of Environmental Medicine UNIKA‐T Technical University of Munich and Helmholtz Zentrum Munchen Augsburg Germany
4 Department of Allergology Zhongnan Hospital of Wuhan University Wuhan China
14 Institute of Experimental Medicine (IEM) Czech Academy of Sciences Prague Czech Republic
1 Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
10 Department of Cancer Immunology Institute for Cancer Research Oslo University Hospital Oslo Norway
7 Division of Clinical Chemistry and Biochemistry University Children`s Hospital Zurich Zurich Switzerland
5 Functional Genomic Centre Zurich ETH Zurich/University of Zurich Zurich Switzerland
8 Children`s Research Center University Children`s Hospital Zurich Zurich Switzerland
15 Sean N Parker Centre for Allergy and Asthma Research at Stanford University Department of Medicine Stanfo
AuthorAffiliation_xml – name: 14 Institute of Experimental Medicine (IEM) Czech Academy of Sciences Prague Czech Republic
– name: 4 Department of Allergology Zhongnan Hospital of Wuhan University Wuhan China
– name: 8 Children`s Research Center University Children`s Hospital Zurich Zurich Switzerland
– name: 16 Department of Medicine and School of Microbiology APC Microbiome Ireland National University of Ireland Cork Ireland
– name: 12 Chair and Institute of Environmental Medicine UNIKA‐T Technical University of Munich and Helmholtz Zentrum Munchen Augsburg Germany
– name: 15 Sean N Parker Centre for Allergy and Asthma Research at Stanford University Department of Medicine Stanford University School of Medicine Stanford USA
– name: 6 Otorhinolaryngology Hospital The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
– name: 7 Division of Clinical Chemistry and Biochemistry University Children`s Hospital Zurich Zurich Switzerland
– name: 5 Functional Genomic Centre Zurich ETH Zurich/University of Zurich Zurich Switzerland
– name: 2 Christine Kühne – Center for Research and Education (CK‐CARE) Davos Switzerland
– name: 3 Department of Regenerative Medicine and Immune Regulation Medical University of Bialystok Bialystok Poland
– name: 1 Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
– name: 11 Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
– name: 10 Department of Cancer Immunology Institute for Cancer Research Oslo University Hospital Oslo Norway
– name: 13 Institute of Computational Biology (ICB) Helmholtz Zentrum Munchen Munich Germany
– name: 9 Department of Otolaryngology, Head and Neck Surgery Beijing TongRen Hospital Capital Medical University and the Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
Author_xml – sequence: 1
  givenname: Urszula
  orcidid: 0000-0002-7341-9764
  surname: Radzikowska
  fullname: Radzikowska, Urszula
  organization: Medical University of Bialystok
– sequence: 2
  givenname: Mei
  surname: Ding
  fullname: Ding, Mei
  organization: Zhongnan Hospital of Wuhan University
– sequence: 3
  givenname: Ge
  orcidid: 0000-0003-0026-8739
  surname: Tan
  fullname: Tan, Ge
  organization: ETH Zurich/University of Zurich
– sequence: 4
  givenname: Damir
  surname: Zhakparov
  fullname: Zhakparov, Damir
  organization: University of Zurich
– sequence: 5
  givenname: Yaqi
  surname: Peng
  fullname: Peng, Yaqi
  organization: Sun Yat‐sen University
– sequence: 6
  givenname: Paulina
  orcidid: 0000-0001-9641-2103
  surname: Wawrzyniak
  fullname: Wawrzyniak, Paulina
  organization: University Children`s Hospital Zurich
– sequence: 7
  givenname: Ming
  orcidid: 0000-0002-8560-3964
  surname: Wang
  fullname: Wang, Ming
  organization: Beijing Institute of Otolaryngology
– sequence: 8
  givenname: Shuo
  surname: Li
  fullname: Li, Shuo
  organization: Oslo University Hospital
– sequence: 9
  givenname: Hideaki
  orcidid: 0000-0003-0928-8322
  surname: Morita
  fullname: Morita, Hideaki
  organization: National Research Institute for Child Health and Development
– sequence: 10
  givenname: Can
  orcidid: 0000-0003-2264-7377
  surname: Altunbulakli
  fullname: Altunbulakli, Can
  organization: Christine Kühne – Center for Research and Education (CK‐CARE)
– sequence: 11
  givenname: Matthias
  surname: Reiger
  fullname: Reiger, Matthias
  organization: Technical University of Munich and Helmholtz Zentrum Munchen
– sequence: 12
  givenname: Avidan U.
  surname: Neumann
  fullname: Neumann, Avidan U.
  organization: Czech Academy of Sciences
– sequence: 13
  givenname: Nonhlanhla
  surname: Lunjani
  fullname: Lunjani, Nonhlanhla
  organization: Christine Kühne – Center for Research and Education (CK‐CARE)
– sequence: 14
  givenname: Claudia
  orcidid: 0000-0001-5085-5179
  surname: Traidl‐Hoffmann
  fullname: Traidl‐Hoffmann, Claudia
  organization: Technical University of Munich and Helmholtz Zentrum Munchen
– sequence: 15
  givenname: Kari C.
  orcidid: 0000-0002-2146-2955
  surname: Nadeau
  fullname: Nadeau, Kari C.
  organization: Stanford University School of Medicine
– sequence: 16
  givenname: Liam
  orcidid: 0000-0003-4705-3583
  surname: O’Mahony
  fullname: O’Mahony, Liam
  organization: National University of Ireland
– sequence: 17
  givenname: Cezmi
  orcidid: 0000-0001-8020-019X
  surname: Akdis
  fullname: Akdis, Cezmi
  organization: Christine Kühne – Center for Research and Education (CK‐CARE)
– sequence: 18
  givenname: Milena
  orcidid: 0000-0001-9710-6685
  surname: Sokolowska
  fullname: Sokolowska, Milena
  email: milena.sokolowska@siaf.uzh.ch
  organization: Christine Kühne – Center for Research and Education (CK‐CARE)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32496587$$D View this record in MEDLINE/PubMed
BookMark eNp9kt1uFCEUxyemxm6rF76AIfFGk90WGBiWmyab2apNNlljtbeEYRiHysAKjGbvfASfyIfxSWS7tdEmygWQnN_5n8-j4sB5p4viKYInKJ9Tae0JIgTzB8UElXw-45zTg2ICEaQzQsv5YXEU4zWEkGEOHxWHJSa8onM2KX4sTUzBNGMy3gHfgUV9jqegXiLCdg-upkC6FvjU6wAuF-8uf377XvurfGMgY_TKyKRbMHir1Wh1BMaBZGIc83fnaIZhdBoobe2NrdfSpn5vclkh9YPMgdZvl1PgGx1N2k5Bv93okLSLOal9_Hp9dbHMQREHwcRPoJMq-RAfFw87aaN-cvseFx9enb-v38xW69cX9WI1UxRyPpOQqK6UhDKEVcmqhlRSNVQiSauGzeEc6baBXDLMtGpI11VVR1tOoS65UrQtj4uzve5mbAbdKu1SkFZsghlk2Aovjfjb4kwvPvovgpUQcgSzwItbgeA_594kMZi4a4p02o9RYALzRCDEPKPP76HXfgwul5cpyniJS8Iy9ezPjO5S-T3aDLzcAyr4GIPu7hAExW5tRF4bcbM2mT29xyqT5G4lcjHG_s_jq7F6-29psVit9h6_ADCI1Tg
CitedBy_id crossref_primary_10_1038_s41593_020_00771_8
crossref_primary_10_1111_all_15058
crossref_primary_10_3389_fimmu_2022_834862
crossref_primary_10_3390_v14051092
crossref_primary_10_1111_all_14522
crossref_primary_10_1111_all_16028
crossref_primary_10_1016_j_jid_2023_06_194
crossref_primary_10_1016_j_expneurol_2024_114890
crossref_primary_10_1016_j_sopen_2024_06_009
crossref_primary_10_1111_ijcp_14624
crossref_primary_10_1183_16000617_0126_2023
crossref_primary_10_17343_sdutfd_906320
crossref_primary_10_1093_oxfimm_iqaa004
crossref_primary_10_1165_rcmb_2020_0322PS
crossref_primary_10_3390_ijms24076253
crossref_primary_10_1042_BSR20203092
crossref_primary_10_1002_ppul_24981
crossref_primary_10_18632_aging_204299
crossref_primary_10_1038_s41467_023_37470_4
crossref_primary_10_1038_s41598_021_03912_6
crossref_primary_10_3389_fimmu_2023_1284047
crossref_primary_10_17721_1728_2748_2021_86_17_22
crossref_primary_10_3389_fpubh_2021_711616
crossref_primary_10_4103_jncd_jncd_7_21
crossref_primary_10_31083_j_fbl2707217
crossref_primary_10_1111_all_14657
crossref_primary_10_1111_all_16157
crossref_primary_10_3238_PersImmun_2021_09_17_05
crossref_primary_10_3390_cells10030628
crossref_primary_10_4103_epj_epj_96_23
crossref_primary_10_1007_s13167_021_00267_w
crossref_primary_10_1016_j_jaip_2021_02_041
crossref_primary_10_1097_CCM_0000000000004895
crossref_primary_10_15407_visn2020_08_029
crossref_primary_10_1038_s41392_020_00370_w
crossref_primary_10_1039_D1TB00674F
crossref_primary_10_1177_10815589241270417
crossref_primary_10_1002_lio2_1012
crossref_primary_10_1016_j_jbc_2023_104763
crossref_primary_10_1016_j_resmer_2023_101053
crossref_primary_10_1007_s12020_021_02619_y
crossref_primary_10_3389_fmed_2021_624462
crossref_primary_10_5812_jjm_138125
crossref_primary_10_1186_s12931_021_01782_0
crossref_primary_10_1016_j_isci_2024_109567
crossref_primary_10_1093_intimm_dxab107
crossref_primary_10_1016_j_clinre_2021_101807
crossref_primary_10_1097_JD9_0000000000000138
crossref_primary_10_2337_db20_1260
crossref_primary_10_3390_cells11071235
crossref_primary_10_3389_fgene_2020_607479
crossref_primary_10_1016_j_imbio_2020_152008
crossref_primary_10_5808_gi_20078
crossref_primary_10_1016_j_jmb_2021_166835
crossref_primary_10_1097_CM9_0000000000001388
crossref_primary_10_3390_jcm11154525
crossref_primary_10_1136_bmjopen_2021_055562
crossref_primary_10_3390_biochem2020009
crossref_primary_10_1186_s13195_021_00850_3
crossref_primary_10_2147_JIR_S300747
crossref_primary_10_3390_jcm10102087
crossref_primary_10_1007_s11882_021_00993_1
crossref_primary_10_1097_ACI_0000000000000720
crossref_primary_10_4239_wjd_v15_i5_1011
crossref_primary_10_1007_s11357_022_00528_0
crossref_primary_10_1111_odi_14126
crossref_primary_10_56083_RCV2N3_008
crossref_primary_10_1111_ijcp_14167
crossref_primary_10_1016_j_bbi_2023_06_012
crossref_primary_10_3390_idr17010005
crossref_primary_10_3390_ijms23052873
crossref_primary_10_1016_j_intimp_2020_106980
crossref_primary_10_1016_j_bbih_2024_100888
crossref_primary_10_1111_all_15089
crossref_primary_10_3390_pathogens11050538
crossref_primary_10_3390_cells13020173
crossref_primary_10_1016_j_csbj_2021_03_023
crossref_primary_10_1186_s12964_023_01397_6
crossref_primary_10_1016_j_ebiom_2023_104869
crossref_primary_10_1073_pnas_2408109121
crossref_primary_10_1093_bib_bbaa173
crossref_primary_10_1097_SHK_0000000000001740
crossref_primary_10_1016_j_heliyon_2021_e07665
crossref_primary_10_3390_biology11111579
crossref_primary_10_3390_v16081243
crossref_primary_10_1016_j_ijbiomac_2021_02_090
crossref_primary_10_1016_j_mehy_2020_110155
crossref_primary_10_1080_09537104_2021_1962519
crossref_primary_10_1111_febs_15499
crossref_primary_10_3390_biomedicines9111544
crossref_primary_10_1007_s10495_024_01961_6
crossref_primary_10_1016_j_snb_2022_132427
crossref_primary_10_1210_clinem_dgac137
crossref_primary_10_1097_MNH_0000000000000692
crossref_primary_10_1210_clinem_dgad466
crossref_primary_10_1097_MPG_0000000000003032
crossref_primary_10_1021_acs_analchem_0c05438
crossref_primary_10_3389_fimmu_2021_624324
crossref_primary_10_31083_j_jin2102073
crossref_primary_10_3992_jgb_16_1_199
crossref_primary_10_1002_cjp2_224
crossref_primary_10_15407_ubj92_06_005
crossref_primary_10_1016_j_biopha_2020_110816
crossref_primary_10_1080_19490976_2021_1984105
crossref_primary_10_53065_j7165_0490_8708_h
crossref_primary_10_52547_iau_32_4_337
crossref_primary_10_1016_j_mucimm_2022_12_001
crossref_primary_10_1016_j_ijbiomac_2024_132200
crossref_primary_10_1016_j_pnpbp_2020_110230
crossref_primary_10_3389_fimmu_2023_1055457
crossref_primary_10_1186_s12864_021_07708_w
crossref_primary_10_1002_jmv_27693
crossref_primary_10_3390_cells11091458
crossref_primary_10_1111_all_14449
crossref_primary_10_7189_jogh_13_06012
crossref_primary_10_1182_blood_2021012250
crossref_primary_10_1007_s12519_022_00662_x
crossref_primary_10_3389_fimmu_2020_586765
crossref_primary_10_4081_itjm_2025_1823
crossref_primary_10_1002_ppul_27257
crossref_primary_10_3389_fcell_2022_855340
crossref_primary_10_1016_j_phrs_2021_105821
crossref_primary_10_1002_jgm_3728
crossref_primary_10_1007_s00284_022_02807_7
crossref_primary_10_3390_cimb46070395
crossref_primary_10_1186_s40337_021_00369_w
crossref_primary_10_17709_2410_1893_2022_9_2_13
crossref_primary_10_2196_51150
crossref_primary_10_1038_s41366_022_01111_5
crossref_primary_10_1007_s12016_022_08921_5
crossref_primary_10_5415_apallergy_0000000000000005
crossref_primary_10_1002_JLB_3MIR0221_100R
crossref_primary_10_3390_microorganisms11081919
crossref_primary_10_3390_nu13114174
crossref_primary_10_2147_IJGM_S316708
crossref_primary_10_1016_j_brainres_2021_147344
crossref_primary_10_1513_AnnalsATS_202006_619RL
crossref_primary_10_1016_j_lpmfor_2020_12_009
crossref_primary_10_1097_BOR_0000000000000817
crossref_primary_10_2174_1871530322666220422104009
crossref_primary_10_3389_fped_2022_834875
crossref_primary_10_17116_profmed20222503192
crossref_primary_10_3389_fped_2021_629240
crossref_primary_10_1002_jmv_28311
crossref_primary_10_1002_clt2_12065
crossref_primary_10_29235_1814_6023_2021_18_4_497_512
crossref_primary_10_3389_fmed_2020_629413
crossref_primary_10_1186_s12964_024_01718_3
crossref_primary_10_1128_cmr_00188_21
crossref_primary_10_3389_fimmu_2021_692004
crossref_primary_10_1183_16000617_0199_2020
crossref_primary_10_1186_s12964_022_00982_5
crossref_primary_10_36316_gcatr_02_0037
crossref_primary_10_3389_fimmu_2021_749291
crossref_primary_10_1111_all_14462
crossref_primary_10_3390_v14040739
crossref_primary_10_1186_s42269_022_00886_x
crossref_primary_10_3390_v14030491
crossref_primary_10_1002_jnr_24752
crossref_primary_10_1007_s44197_023_00161_w
crossref_primary_10_1038_s41423_025_01261_2
crossref_primary_10_1186_s12879_024_09520_9
crossref_primary_10_2147_JAA_S421158
crossref_primary_10_2196_50846
crossref_primary_10_1002_2211_5463_13500
crossref_primary_10_2196_50049
crossref_primary_10_3390_antiox11010140
crossref_primary_10_1089_ars_2021_0017
crossref_primary_10_3389_fimmu_2022_906063
crossref_primary_10_3390_cimb46120811
crossref_primary_10_3390_v15040955
crossref_primary_10_1371_journal_pmed_1003868
crossref_primary_10_3390_ijerph192214955
crossref_primary_10_3389_fimmu_2021_597399
crossref_primary_10_1038_s41392_021_00760_8
crossref_primary_10_33181_13074
crossref_primary_10_3390_ijms23052558
crossref_primary_10_1134_S0006297922060086
crossref_primary_10_1002_jev2_12154
crossref_primary_10_2147_JIR_S282710
crossref_primary_10_3390_ijms222312641
crossref_primary_10_3390_ijms23094956
crossref_primary_10_3389_fcell_2020_559841
crossref_primary_10_1016_j_celrep_2020_108590
crossref_primary_10_3390_ijms22052681
crossref_primary_10_1186_s12890_024_02917_x
crossref_primary_10_1111_all_14472
crossref_primary_10_1002_iid3_922
crossref_primary_10_1016_j_anai_2020_11_021
crossref_primary_10_15252_msb_202010079
crossref_primary_10_1016_j_scitotenv_2021_152072
crossref_primary_10_1007_s12012_021_09674_x
crossref_primary_10_12688_f1000research_108667_1
crossref_primary_10_12688_f1000research_108667_2
crossref_primary_10_3389_fimmu_2021_665300
crossref_primary_10_3389_fmed_2020_594495
crossref_primary_10_1042_CS20201268
crossref_primary_10_1007_s11894_021_00822_5
crossref_primary_10_1164_rccm_202302_0317LE
crossref_primary_10_1111_apha_13733
crossref_primary_10_1186_s12979_020_00204_x
crossref_primary_10_1016_j_waojou_2021_100576
crossref_primary_10_1080_14728222_2024_2306345
crossref_primary_10_1016_j_bj_2023_100650
crossref_primary_10_1080_21645515_2024_2322795
crossref_primary_10_1016_j_csbj_2023_11_012
crossref_primary_10_1136_bmjebm_2020_111506
crossref_primary_10_1016_j_thromres_2022_03_022
crossref_primary_10_3389_fimmu_2021_733921
crossref_primary_10_1080_19390211_2022_2075072
crossref_primary_10_2147_JMDH_S347130
crossref_primary_10_3389_fpubh_2021_645739
crossref_primary_10_1016_j_dsx_2021_102307
crossref_primary_10_1016_j_mehy_2021_110628
crossref_primary_10_3390_ph14080805
crossref_primary_10_3389_fimmu_2020_607069
crossref_primary_10_1038_s41380_020_00965_3
crossref_primary_10_3390_ijerph182010950
crossref_primary_10_3389_fcimb_2021_666987
crossref_primary_10_1080_17476348_2021_1985763
crossref_primary_10_3390_diagnostics13071345
crossref_primary_10_2174_1871530322666220104103325
crossref_primary_10_1016_j_obmed_2020_100283
crossref_primary_10_1016_j_waojou_2022_100686
crossref_primary_10_1186_s10020_021_00423_y
crossref_primary_10_1111_jth_15156
crossref_primary_10_3389_fphar_2021_731453
crossref_primary_10_3389_fimmu_2021_678661
crossref_primary_10_3390_v14010025
crossref_primary_10_2147_COPD_S476808
crossref_primary_10_2967_jnumed_120_261768
crossref_primary_10_1038_s41598_023_41389_7
crossref_primary_10_3389_fmicb_2022_1042200
crossref_primary_10_31089_1026_9428_2022_62_9_601_615
crossref_primary_10_1016_j_jacbts_2020_09_010
crossref_primary_10_1111_all_14498
crossref_primary_10_3390_ijms22137017
crossref_primary_10_1111_all_14496
crossref_primary_10_1111_all_16318
crossref_primary_10_1021_acs_molpharmaceut_2c00954
crossref_primary_10_3389_fimmu_2021_612807
crossref_primary_10_1186_s13054_022_04002_3
crossref_primary_10_2147_BTT_S307352
crossref_primary_10_1016_j_ijid_2021_09_026
crossref_primary_10_1007_s13668_024_00599_9
crossref_primary_10_1016_j_bbrep_2021_101081
crossref_primary_10_1128_spectrum_04168_23
crossref_primary_10_3389_fimmu_2021_659339
crossref_primary_10_3389_fphys_2021_665064
crossref_primary_10_3390_children10061020
crossref_primary_10_1111_irv_13078
crossref_primary_10_1016_j_eclinm_2021_100841
crossref_primary_10_2147_COPD_S450209
crossref_primary_10_4103_jfmpc_jfmpc_1712_23
crossref_primary_10_1038_s41538_024_00261_2
crossref_primary_10_1111_jdv_19212
crossref_primary_10_2174_1381612828666220322123225
crossref_primary_10_3390_ijms25094941
crossref_primary_10_1016_j_joim_2022_07_005
crossref_primary_10_2147_HIV_S300055
crossref_primary_10_3390_ijms252212079
crossref_primary_10_21292_2075_1230_2021_99_2_6_15
crossref_primary_10_1111_all_15593
crossref_primary_10_1016_j_semcancer_2021_01_003
crossref_primary_10_3389_fimmu_2021_647824
crossref_primary_10_3389_fimmu_2022_988479
crossref_primary_10_3390_s23063346
crossref_primary_10_3390_ijms241813957
crossref_primary_10_3389_fcell_2021_714999
crossref_primary_10_3389_fimmu_2020_571481
crossref_primary_10_2174_1573398X19666230724155039
crossref_primary_10_3389_fimmu_2022_956671
crossref_primary_10_3389_fcimb_2021_598875
crossref_primary_10_3390_genes13111935
crossref_primary_10_1177_01455613221123737
crossref_primary_10_1186_s12860_022_00442_5
crossref_primary_10_3390_antiox11071366
crossref_primary_10_3390_biom14050537
crossref_primary_10_1186_s12967_023_04787_z
crossref_primary_10_1016_S2665_9913_21_00062_X
crossref_primary_10_2174_1389201023666220421133311
crossref_primary_10_1080_19490976_2022_2073131
crossref_primary_10_2174_1381612829666221123111849
crossref_primary_10_7570_jomes23053
crossref_primary_10_1111_pai_13672
crossref_primary_10_1136_bmjopen_2021_051115
crossref_primary_10_3390_molecules26102917
crossref_primary_10_3390_microorganisms9091794
crossref_primary_10_1016_j_jbior_2021_100820
crossref_primary_10_36106_ijsr_7438869
crossref_primary_10_3233_JAD_220800
crossref_primary_10_1183_16000617_0197_2022
crossref_primary_10_18632_aging_205655
crossref_primary_10_3389_fnins_2021_727060
crossref_primary_10_3390_ijms24119353
crossref_primary_10_2174_0126667975270644231107110626
crossref_primary_10_1038_s41422_021_00523_8
crossref_primary_10_1152_ajplung_00259_2020
crossref_primary_10_1016_j_pharmthera_2020_107750
crossref_primary_10_17816_brmma108519
crossref_primary_10_1016_j_imbio_2023_152350
crossref_primary_10_3390_life12010130
crossref_primary_10_3390_cells10061434
crossref_primary_10_3390_life11121341
crossref_primary_10_1002_jmv_70237
crossref_primary_10_1161_CIRCRESAHA_121_317997
crossref_primary_10_1515_jbcpp_2021_0083
crossref_primary_10_1111_all_15258
crossref_primary_10_1128_mSphere_00647_21
crossref_primary_10_1371_journal_pone_0283331
crossref_primary_10_1111_crj_13813
crossref_primary_10_15252_embr_202154305
crossref_primary_10_3390_pathogens12020321
crossref_primary_10_3390_biomedicines10092155
crossref_primary_10_1098_rsos_202345
crossref_primary_10_1016_j_ccm_2022_11_013
crossref_primary_10_15789_1563_0625_EOC_2515
crossref_primary_10_3390_ijerph19095277
crossref_primary_10_1016_j_compbiolchem_2023_107961
crossref_primary_10_1111_all_14608
crossref_primary_10_1186_s12879_024_09321_0
crossref_primary_10_3390_jcm11226772
crossref_primary_10_22625_2072_6732_2024_16_2_28_36
crossref_primary_10_32902_2663_0338_2024_1_58_62
crossref_primary_10_1016_j_jve_2025_100591
crossref_primary_10_1631_jzus_B2000304
crossref_primary_10_1016_j_jaci_2021_01_006
crossref_primary_10_1038_s41598_025_94801_9
crossref_primary_10_1093_glycob_cwab032
crossref_primary_10_1590_1806_9282_20210555
crossref_primary_10_1155_2022_1806427
crossref_primary_10_4236_ojbiphy_2021_111001
crossref_primary_10_1111_all_14972
crossref_primary_10_1055_s_0041_1740289
crossref_primary_10_1016_j_jprot_2021_104353
crossref_primary_10_1038_s41598_020_80464_1
crossref_primary_10_2217_fvl_2020_0330
crossref_primary_10_3389_fimmu_2021_677025
crossref_primary_10_1111_dth_14443
crossref_primary_10_1016_j_ebiom_2020_103182
crossref_primary_10_1038_s41392_021_00731_z
crossref_primary_10_1016_j_mib_2024_102475
crossref_primary_10_1111_all_14983
crossref_primary_10_1111_ijlh_13479
crossref_primary_10_14341_probl12775
crossref_primary_10_1016_j_ajur_2022_12_004
crossref_primary_10_1111_all_14866
crossref_primary_10_3724_abbs_2021002
crossref_primary_10_3390_microorganisms11112660
crossref_primary_10_1038_s41598_021_02297_w
crossref_primary_10_1111_1348_0421_13184
crossref_primary_10_3390_ijms25189960
crossref_primary_10_3390_vaccines9050478
crossref_primary_10_1124_molpharm_122_000587
crossref_primary_10_3389_fimmu_2022_827146
crossref_primary_10_3892_ijo_2023_5489
crossref_primary_10_1016_j_jare_2023_10_002
crossref_primary_10_3390_ijms231810725
crossref_primary_10_1111_srt_13619
crossref_primary_10_3389_fendo_2021_772865
crossref_primary_10_2217_rme_2020_0189
crossref_primary_10_2139_ssrn_3864027
crossref_primary_10_2147_COPD_S276692
crossref_primary_10_1038_s41598_021_90983_0
crossref_primary_10_1080_25785826_2022_2066251
crossref_primary_10_18093_0869_0189_2021_31_5_663_670
crossref_primary_10_31083_j_fbl2901008
crossref_primary_10_1016_j_identj_2022_11_019
crossref_primary_10_1111_all_14991
crossref_primary_10_37349_ei_2021_00011
crossref_primary_10_3390_ijerph18031093
crossref_primary_10_3390_covid4020014
crossref_primary_10_1111_all_14517
crossref_primary_10_1155_2021_6693909
crossref_primary_10_3389_fimmu_2021_683002
crossref_primary_10_1183_13993003_01881_2021
crossref_primary_10_1002_jmv_26677
crossref_primary_10_1002_iid3_404
crossref_primary_10_3390_life11121378
crossref_primary_10_1111_obr_13496
crossref_primary_10_1007_s00405_021_06883_6
Cites_doi 10.1016/j.cell.2020.02.052
10.1182/blood-2017-08-802918
10.1093/jb/mvv127
10.1056/NEJMc2010419
10.1160/TH08-06-0368
10.21203/rs.3.rs-16992/v1
10.1093/emboj/19.15.3896
10.1038/nri1632
10.1002/dmrr.3325
10.1111/all.14238
10.3390/v5051250
10.7150/ijbs.6818
10.1016/S1471-4914(01)01963-3
10.1080/22221751.2020.1739565
10.1016/j.molimm.2007.09.032
10.1126/science.1260419
10.1056/NEJMc2005073
10.1038/s41598-017-03256-0
10.1042/BJ20120343
10.1086/427811
10.1074/mcp.M400207-MCP200
10.1111/jdv.16090
10.1111/jdv.16411
10.1128/JVI.00676-14
10.1002/iub.573
10.1099/vir.0.034983-0
10.1073/pnas.0502768102
10.1038/ncomms9570
10.1073/pnas.111583198
10.1080/22221751.2020.1713705
10.1093/bioinformatics/btp616
10.15585/mmwr.mm6914e4
10.1128/JVI.02168-09
10.1242/jcs.016980
10.1001/jama.2020.2648
10.1152/ajpcell.00228.2010
10.2139/ssrn.3555145
10.1016/j.jaci.2020.04.009
10.1101/2020.03.14.988345
10.1128/JVI.00702-07
10.1016/j.cell.2020.04.035
10.1002/iub.210
10.1111/all.14364
10.1111/j.1365-2249.2010.04115.x
10.1002/jmv.25936
10.1186/s12985-017-0781-x
10.1111/jdv.16544
10.1038/nature03712
10.1016/j.cell.2020.03.045
10.4014/jmb.1910.10055
10.1681/ASN.2008090957
10.1371/journal.pone.0070011
10.1038/s41591-020-0868-6
10.1101/2020.03.21.20040691
10.1189/jlb.3RU0215-045R
10.1126/science.abb2762
10.1016/j.chom.2020.02.001
10.1158/0008-5472.CAN-08-2491
10.1182/blood-2011-02-339242
10.1084/jem.20102510
10.1007/s11684-020-0754-0
10.1038/nri2818
10.1084/jem.20050828
10.1016/S0022-3476(05)80430-5
10.1158/0008-5472.CAN-11-3843
10.1111/jdv.16387
10.1093/infdis/jiv380
10.1371/journal.ppat.1002331
10.1016/j.bbrc.2007.08.192
10.1074/jbc.272.46.29174
10.1074/jbc.M708566200
10.4049/jimmunol.175.1.591
10.1006/bbrc.1994.2313
10.1016/j.cell.2015.03.023
ContentType Journal Article
Copyright 2020 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.
2020 EAACI and John Wiley and Sons A/S
Copyright_xml – notice: 2020 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.
– notice: 2020 EAACI and John Wiley and Sons A/S
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
H94
K9.
7X8
5PM
DOI 10.1111/all.14429
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

AIDS and Cancer Research Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate RADZIKOWSKA and DING ET AL
EISSN 1398-9995
EndPage 2845
ExternalDocumentID PMC7300910
32496587
10_1111_all_14429
ALL14429
Genre article
Journal Article
GroupedDBID .3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
23M
24P
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8F7
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOETA
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
P6G
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V9Y
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
Y6R
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
H94
K9.
7X8
5PM
ID FETCH-LOGICAL-c5099-a04cf3a45712c376b46acb5a1a56b78081edb09a727ecb4ff66f5d950e39cc5d3
IEDL.DBID DR2
ISSN 0105-4538
1398-9995
IngestDate Thu Aug 21 14:09:35 EDT 2025
Fri Jul 11 03:25:43 EDT 2025
Fri Jul 25 04:25:20 EDT 2025
Wed Feb 19 02:30:04 EST 2025
Thu Apr 24 23:09:35 EDT 2025
Tue Jul 01 04:15:14 EDT 2025
Wed Jan 22 16:59:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords COVID-19
COVID-19 children
asthma
hypertension
SARS receptor
obesity
COPD
Language English
License 2020 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.
This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5099-a04cf3a45712c376b46acb5a1a56b78081edb09a727ecb4ff66f5d950e39cc5d3
Notes Urszula Radzikowska and Mei Ding equally contributed.
Abbreviations: AD, Atopic dermatitis; ALI, Air‐liquid interface cultures; BAL, Bronchoalveolar lavage; BMI, Body mass index; COPD, Chronic obstructive pulmonary disease; COVID‐19, Coronavirus disease 2019; DCs , Dendritic cells; HBECs, Human Bronchial Epithelial Cells; HCV, Hepatitis C virus; HIV, Human immunodeficiency virus; ILC, Innate lymphoid cells; MERS‐CoV, Middle East respiratory syndrome‐related coronavirus; MTCs, Monocarboxylate transporters; NFATs, Nuclear Factor of activated T cells; NK cells, Natural killer cells; nsp1; Non‐structural protein 1; PBMCs, Peripheral blood mononuclear cells; pDCs, Plasmacytoid dendritic cells; RNA‐seq, RNA‐sequencing; SARS‐CoV, Severe acute respiratory syndrome coronavirus; SARS‐CoV‐2, Severe acute respiratory syndrome coronavirus 2; Treg, T regulatory cells
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8560-3964
0000-0001-8020-019X
0000-0003-4705-3583
0000-0003-0026-8739
0000-0001-9710-6685
0000-0003-2264-7377
0000-0001-5085-5179
0000-0001-9641-2103
0000-0003-0928-8322
0000-0002-7341-9764
0000-0002-2146-2955
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7300910
PMID 32496587
PQID 2457932347
PQPubID 34098
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7300910
proquest_miscellaneous_2409650029
proquest_journals_2457932347
pubmed_primary_32496587
crossref_primary_10_1111_all_14429
crossref_citationtrail_10_1111_all_14429
wiley_primary_10_1111_all_14429_ALL14429
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace Denmark
PublicationPlace_xml – name: Denmark
– name: Zurich
– name: Hoboken
PublicationTitle Allergy (Copenhagen)
PublicationTitleAlternate Allergy
PublicationYear 2020
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 2010; 10
2017; 7
2017; 8
2011; 118
2005; 175
2015; 347
2013; 449
1992; 120
1997; 272
2020; 2000688
2020; 14
2020; 367
2020; 323
2013; 8
2013; 5
2018; 131
2011; 208
2000; 19
2010; 26
2013; 10
2005; 102
2020; 9
2016; 159
2012; 64
2001; 98
2005; 191
2009; 69
2015; 161
2015; 6
2009; 20
2020; 382
2009; 61
2007; 363
2020; 181
2019; 34
2005; 436
2015; 98
2010; 160
2008; 121
2010; 84
2011; 7
2008; 283
2014; 88
1994; 203
2020; 75
2001; 7
2017; 14
2020; 30
2020
2005; 202
2013; 73
2011; 92
2010; 299
2005; 5
2020; 27
2005; 4
2009; 101
2008; 45
2020; 26
2007; 81
2020; 69
2016; 213
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
Zhang H (e_1_2_6_65_1) 2017; 8
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
Leung JM (e_1_2_6_60_1) 2020; 2000688
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
Watanabe M (e_1_2_6_53_1) 2020
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
33089902 - Dermatol Ther. 2020 Nov;33(6):e14443
References_xml – volume: 7
  start-page: 213
  issue: 5
  year: 2001
  end-page: 221
  article-title: A crucial role for CD44 in inflammation
  publication-title: Trends Mol Med
– volume: 10
  start-page: 43
  issue: 1
  year: 2013
  end-page: 52
  article-title: Important functional roles of basigin in thymocyte development and T cell activation
  publication-title: Int J Biol Sci
– volume: 61
  start-page: 591
  issue: 6
  year: 2009
  end-page: 599
  article-title: The role of the neutral amino acid transporter B0AT1 (SLC6A19) in Hartnup disorder and protein nutrition
  publication-title: IUBMB Life
– year: 2020
  article-title: SARS‐CoV‐2 receptor ACE2 is an interferon‐stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues
  publication-title: Cell
– volume: 160
  start-page: 305
  issue: 3
  year: 2010
  end-page: 317
  article-title: Cyclophilin‐CD147 interactions: a new target for anti‐inflammatory therapeutics
  publication-title: Clin Exp Immunol.
– volume: 19
  start-page: 3896
  issue: 15
  year: 2000
  end-page: 3904
  article-title: CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression
  publication-title: EMBO J.
– volume: 436
  start-page: 112
  issue: 7047
  year: 2005
  end-page: 116
  article-title: Angiotensin‐converting enzyme 2 protects from severe acute lung failure
  publication-title: Nature
– volume: 449
  start-page: 437
  issue: 2
  year: 2013
  end-page: 448
  article-title: Modulation of CD147‐induced matrix metalloproteinase activity: role of CD147 N‐glycosylation
  publication-title: Biochem J.
– volume: 64
  start-page: 1
  issue: 1
  year: 2012
  end-page: 9
  article-title: The monocarboxylate transporter family–Structure and functional characterization
  publication-title: IUBMB Life
– volume: 26
  start-page: 681
  issue: 5
  year: 2020
  end-page: 687
  article-title: SARS‐CoV‐2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes
  publication-title: Nat Med
– year: 2020
  article-title: European Task Force on Atopic Dermatitis (ETFAD) statement on severe acute respiratory syndrome coronavirus 2 (SARS‐Cov‐2)‐infection and atopic dermatitis
  publication-title: J Eur Acad Dermatol Venereol
– volume: 102
  start-page: 7499
  issue: 21
  year: 2005
  end-page: 7504
  article-title: CD147 is a regulatory subunit of the gamma‐secretase complex in Alzheimer's disease amyloid beta‐peptide production
  publication-title: Proc Natl Acad Sci USA.
– volume: 5
  start-page: 472
  issue: 6
  year: 2005
  end-page: 484
  article-title: NFAT proteins: key regulators of T‐cell development and function
  publication-title: Nat Rev Immunol
– volume: 191
  start-page: 755
  issue: 5
  year: 2005
  end-page: 760
  article-title: Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus
  publication-title: J Infect Dis.
– volume: 69
  start-page: 422
  issue: 14
  year: 2020
  end-page: 426
  article-title: Coronavirus Disease 2019 in Children ‐ United States, February 12‐April 2, 2020
  publication-title: MMWR Morb Mortal Wkly Rep
– volume: 181
  start-page: 271
  issue: 2
  year: 2020
  end-page: 280
  article-title: SARS‐CoV‐2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
  publication-title: Cell
– year: 2020
  article-title: Cutaneous manifestations in COVID‐19: a first perspective
  publication-title: J Eur Acad Dermatol Venereol
– volume: 27
  start-page: 325
  issue: 3
  year: 2020
  end-page: 328
  article-title: Genome Composition and Divergence of the Novel Coronavirus (2019‐nCoV) Originating in China
  publication-title: Cell Host Microbe.
– volume: 88
  start-page: 9220
  issue: 16
  year: 2014
  end-page: 9232
  article-title: Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4
  publication-title: J Virol
– year: 2020
  article-title: Vascular skin symptoms in COVID‐19: a french observational study
  publication-title: J Eur Acad Dermatol Venereol
– volume: 175
  start-page: 591
  issue: 1
  year: 2005
  end-page: 598
  article-title: Response of memory CD8+ T cells to severe acute respiratory syndrome (SARS) coronavirus in recovered SARS patients and healthy individuals
  publication-title: J Immunol (Baltimore, Md: 1950)
– volume: 81
  start-page: 11620
  issue: 21
  year: 2007
  end-page: 11633
  article-title: Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain
  publication-title: J Virol.
– volume: 10
  start-page: 645
  issue: 9
  year: 2010
  end-page: 656
  article-title: NFAT, immunity and cancer: a transcription factor comes of age
  publication-title: Nat Rev Immunol
– volume: 2000688
  year: 2020
  article-title: ACE‐2 Expression in the Small Airway Epithelia of Smokers and COPD Patients: Implications for COVID‐19
  publication-title: Eur Respir J
– volume: 20
  start-page: 1565
  issue: 7
  year: 2009
  end-page: 1576
  article-title: The E‐selectin ligand basigin/CD147 is responsible for neutrophil recruitment in renal ischemia/reperfusion
  publication-title: J Am Soc Nephrol.
– volume: 283
  start-page: 5554
  issue: 9
  year: 2008
  end-page: 5566
  article-title: CD147 inhibits the nuclear factor of activated T‐cells by impairing Vav1 and Rac1 downstream signaling
  publication-title: J Biol Chem
– volume: 8
  issue: 7
  year: 2013
  article-title: Galectin‐3 induces clustering of CD147 and integrin‐beta1 transmembrane glycoprotein receptors on the RPE cell surface
  publication-title: PLoS One
– volume: 363
  start-page: 495
  issue: 3
  year: 2007
  end-page: 499
  article-title: CD147 stimulates HIV‐1 infection in a signal‐independent fashion
  publication-title: Biochem Biophys Res Commun.
– year: 2020
  article-title: SARS‐CoV‐2 can be detected in urine, blood, anal swabs and oropharyngeal swabs specimens
  publication-title: J Med Virol
– volume: 14
  start-page: 114
  issue: 1
  year: 2017
  article-title: Cyclophilin B facilitates the replication of Orf virus
  publication-title: Virol J.
– volume: 202
  start-page: 415
  issue: 3
  year: 2005
  end-page: 424
  article-title: Multiple organ infection and the pathogenesis of SARS
  publication-title: J Exp Med.
– volume: 26
  start-page: 139
  issue: 1
  year: 2010
  end-page: 140
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 323
  start-page: 1239
  issue: 13
  year: 2020
  article-title: Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID‐19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention
  publication-title: JAMA
– volume: 382
  start-page: 1663
  issue: 17
  year: 2020
  end-page: 1665
  article-title: SARS‐CoV‐2 Infection in Children
  publication-title: N Engl J Med
– volume: 73
  start-page: 172
  issue: 1
  year: 2013
  end-page: 183
  article-title: S100A9 is a novel ligand of EMMPRIN that promotes melanoma metastasis
  publication-title: Cancer Res.
– volume: 7
  start-page: 3501
  issue: 1
  year: 2017
  article-title: Transcriptome analysis reveals similarities between human blood CD3(‐) CD56(bright) cells and mouse CD127(+) innate lymphoid cells
  publication-title: Sci Rep
– volume: 272
  start-page: 29174
  issue: 46
  year: 1997
  end-page: 29180
  article-title: Generation of monoclonal antibodies to integrin‐associated proteins. Evidence that alpha3beta1 complexes with EMMPRIN/basigin/OX47/M6
  publication-title: J Biol Chem.
– volume: 9
  start-page: 155
  issue: 1
  year: 2020
  end-page: 168
  article-title: Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus
  publication-title: Emerg Microbes Infect
– volume: 203
  start-page: 1224
  issue: 2
  year: 1994
  end-page: 1229
  article-title: Regional expression of epithelial dipeptidyl peptidase IV in the human intestines
  publication-title: Biochem Biophys Res Commun
– volume: 181
  start-page: 894
  issue: 4
  year: 2020
  end-page: 904.e9
  article-title: Structural and functional basis of SARS‐CoV‐2 entry by using human ACE2
  publication-title: Cell
– volume: 208
  start-page: 1459
  issue: 7
  year: 2011
  end-page: 1471
  article-title: Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44
  publication-title: J Exp Med
– volume: 367
  start-page: 1444
  issue: 6485
  year: 2020
  end-page: 1448
  article-title: Structural basis for the recognition of SARS‐CoV‐2 by full‐length human ACE2
  publication-title: Science
– volume: 75
  start-page: 1564
  year: 2020
  end-page: 1581
  article-title: Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19
  publication-title: Allergy
– volume: 9
  start-page: 601
  issue: 1
  year: 2020
  end-page: 604
  article-title: Emerging WuHan (COVID‐19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26
  publication-title: Emerg Microbes Infect.
– volume: 34
  start-page: 1074
  issue: 5
  year: 2019
  end-page: 1079
  article-title: Recurrent eczema herpeticum ‐ a retrospective European multicenter study evaluating the clinical characteristics of eczema herpeticum cases in atopic dermatitis patients
  publication-title: J Eur Acad Dermatol Venereol
– volume: 347
  start-page: 1260419
  issue: 6220
  year: 2015
  article-title: Tissue‐based map of the human proteome
  publication-title: Science
– volume: 120
  start-page: 216
  issue: 2 Pt 1
  year: 1992
  end-page: 222
  article-title: Age‐related changes in human blood lymphocyte subpopulations
  publication-title: J Pediatr
– volume: 92
  start-page: 2542
  issue: Pt 11
  year: 2011
  end-page: 2548
  article-title: Cyclosporin A inhibits the replication of diverse coronaviruses
  publication-title: J Gen Virol.
– volume: 14
  start-page: 185
  issue: 2
  year: 2020
  end-page: 192
  article-title: Single‐cell RNA‐seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019‐nCoV infection
  publication-title: Front Med
– volume: 98
  start-page: 33
  issue: 1
  year: 2015
  end-page: 48
  article-title: The role of EMMPRIN in T cell biology and immunological diseases
  publication-title: J Leukoc Biol
– volume: 121
  start-page: 487
  issue: Pt 4
  year: 2008
  end-page: 495
  article-title: A role for membrane‐bound CD147 in NOD2‐mediated recognition of bacterial cytoinvasion
  publication-title: J Cell Sci.
– volume: 161
  start-page: 817
  issue: 4
  year: 2015
  end-page: 832
  article-title: Rod‐derived cone viability factor promotes cone survival by stimulating aerobic glycolysis
  publication-title: Cell
– year: 2020
  article-title: Obesity and SARS‐CoV‐ 2: a population to safeguard
  publication-title: Diabetes Metab Res Rev
– volume: 8
  issue: 360
  year: 2017
  article-title: Elevated Serum Cyclophilin B Levels Are Associated with the Prevalence and Severity of Metabolic Syndrome
  publication-title: Front Endocrinol
– volume: 75
  start-page: 1730
  year: 2020
  end-page: 1741
  article-title: Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China
  publication-title: Allergy
– year: 2020
  article-title: Association of respiratory allergy, asthma and expression of the SARS‐CoV‐2 receptor, ACE2
  publication-title: J Allergy Clin Immunol
– volume: 5
  start-page: 1250
  issue: 5
  year: 2013
  end-page: 1260
  article-title: Suppression of coronavirus replication by cyclophilin inhibitors
  publication-title: Viruses
– year: 2020
  article-title: Clinical Characteristics of Covid‐19 in New York City
  publication-title: N Engl J Med.
– volume: 159
  start-page: 481
  issue: 5
  year: 2016
  end-page: 490
  article-title: Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners
  publication-title: J Biochem.
– year: 2020
  article-title: SARS‐CoV‐2 receptor ACE2 is an interferon‐stimulated gene in human airway epithelial cells and is enriched in specific cell subsets across tissues
  publication-title: SSRN Electronic Journal.
– volume: 101
  start-page: 682
  issue: 4
  year: 2009
  end-page: 686
  article-title: EMMPRIN (CD147) is a novel receptor for platelet GPVI and mediates platelet rolling via GPVI‐EMMPRIN interaction
  publication-title: Thromb Haemost.
– volume: 7
  issue: 10
  year: 2011
  article-title: The SARS‐coronavirus‐host interactome: identification of cyclophilins as target for pan‐coronavirus inhibitors
  publication-title: PLoS Pathog.
– volume: 299
  start-page: C1212
  issue: 5
  year: 2010
  end-page: 1219
  article-title: Monocyte CD147 is induced by advanced glycation end products and high glucose concentration: possible role in diabetic complications
  publication-title: Am J Physiol Cell Physiol
– volume: 213
  start-page: 904
  issue: 6
  year: 2016
  end-page: 914
  article-title: Middle east respiratory syndrome coronavirus efficiently infects human primary T Lymphocytes and activates the extrinsic and intrinsic apoptosis pathways
  publication-title: J Infect Dis.
– year: 2020
– volume: 45
  start-page: 1703
  issue: 6
  year: 2008
  end-page: 1711
  article-title: LFA‐1‐mediated leukocyte adhesion regulated by interaction of CD43 with LFA‐1 and CD147
  publication-title: Mol Immunol.
– volume: 118
  start-page: 5141
  issue: 19
  year: 2011
  end-page: 5151
  article-title: CD147 (Basigin/Emmprin) identifies FoxP3+CD45RO+CTLA4+‐activated human regulatory T cells
  publication-title: Blood
– volume: 6
  start-page: 8570
  year: 2015
  article-title: The transcriptional landscape of age in human peripheral blood
  publication-title: Nat Commun
– volume: 84
  start-page: 4183
  issue: 9
  year: 2010
  end-page: 4193
  article-title: CD147/EMMPRIN acts as a functional entry receptor for measles virus on epithelial cells
  publication-title: J Virol.
– volume: 9
  start-page: 601
  issue: 1
  year: 2020
  end-page: 604
  article-title: Emerging COVID‐19 coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26
  publication-title: Emerg Microbes Infect
– volume: 131
  start-page: 1111
  issue: 10
  year: 2018
  end-page: 1121
  article-title: Disrupting CD147‐RAP2 interaction abrogates erythrocyte invasion by Plasmodium falciparum
  publication-title: Blood
– volume: 4
  start-page: 1061
  issue: 8
  year: 2005
  end-page: 1071
  article-title: Metabolic activation‐related CD147‐CD98 complex
  publication-title: Mol Cell Proteomics.
– volume: 30
  start-page: 427
  issue: 3
  year: 2020
  end-page: 438
  article-title: Middle East Respiratory Syndrome‐Coronavirus Infection into Established hDPP4‐Transgenic Mice Accelerates Lung Damage Via Activation of the Pro‐Inflammatory Response and Pulmonary Fibrosis
  publication-title: J Microbiol Biotechnol
– volume: 69
  start-page: 1293
  issue: 4
  year: 2009
  end-page: 1301
  article-title: Hyaluronan, CD44, and emmprin regulate lactate efflux and membrane localization of monocarboxylate transporters in human breast carcinoma cells
  publication-title: Cancer Res
– volume: 98
  start-page: 6360
  issue: 11
  year: 2001
  end-page: 6365
  article-title: CD147 facilitates HIV‐1 infection by interacting with virus‐associated cyclophilin A
  publication-title: Proc Natl Acad Sci USA.
– ident: e_1_2_6_4_1
  doi: 10.1016/j.cell.2020.02.052
– ident: e_1_2_6_14_1
  doi: 10.1182/blood-2017-08-802918
– ident: e_1_2_6_16_1
  doi: 10.1093/jb/mvv127
– ident: e_1_2_6_23_1
  doi: 10.1056/NEJMc2010419
– ident: e_1_2_6_20_1
  doi: 10.1160/TH08-06-0368
– ident: e_1_2_6_7_1
  doi: 10.21203/rs.3.rs-16992/v1
– ident: e_1_2_6_30_1
  doi: 10.1093/emboj/19.15.3896
– ident: e_1_2_6_42_1
  doi: 10.1038/nri1632
– start-page: e3325
  year: 2020
  ident: e_1_2_6_53_1
  article-title: Obesity and SARS‐CoV‐ 2: a population to safeguard
  publication-title: Diabetes Metab Res Rev
  doi: 10.1002/dmrr.3325
– ident: e_1_2_6_2_1
  doi: 10.1111/all.14238
– ident: e_1_2_6_25_1
  doi: 10.3390/v5051250
– ident: e_1_2_6_39_1
  doi: 10.7150/ijbs.6818
– ident: e_1_2_6_70_1
  doi: 10.1016/S1471-4914(01)01963-3
– ident: e_1_2_6_75_1
  doi: 10.1080/22221751.2020.1739565
– ident: e_1_2_6_35_1
  doi: 10.1016/j.molimm.2007.09.032
– ident: e_1_2_6_49_1
  doi: 10.1126/science.1260419
– ident: e_1_2_6_50_1
  doi: 10.1056/NEJMc2005073
– ident: e_1_2_6_76_1
  doi: 10.1038/s41598-017-03256-0
– ident: e_1_2_6_21_1
  doi: 10.1042/BJ20120343
– ident: e_1_2_6_11_1
  doi: 10.1086/427811
– ident: e_1_2_6_34_1
  doi: 10.1074/mcp.M400207-MCP200
– ident: e_1_2_6_74_1
  doi: 10.1111/jdv.16090
– ident: e_1_2_6_73_1
  doi: 10.1111/jdv.16411
– ident: e_1_2_6_45_1
  doi: 10.1128/JVI.00676-14
– ident: e_1_2_6_67_1
  doi: 10.1002/iub.573
– ident: e_1_2_6_27_1
  doi: 10.1099/vir.0.034983-0
– ident: e_1_2_6_38_1
  doi: 10.1073/pnas.0502768102
– ident: e_1_2_6_77_1
  doi: 10.1038/ncomms9570
– ident: e_1_2_6_12_1
  doi: 10.1073/pnas.111583198
– ident: e_1_2_6_46_1
  doi: 10.1080/22221751.2020.1713705
– ident: e_1_2_6_47_1
  doi: 10.1093/bioinformatics/btp616
– ident: e_1_2_6_78_1
  doi: 10.15585/mmwr.mm6914e4
– volume: 8
  issue: 360
  year: 2017
  ident: e_1_2_6_65_1
  article-title: Elevated Serum Cyclophilin B Levels Are Associated with the Prevalence and Severity of Metabolic Syndrome
  publication-title: Front Endocrinol
– ident: e_1_2_6_13_1
  doi: 10.1128/JVI.02168-09
– ident: e_1_2_6_37_1
  doi: 10.1242/jcs.016980
– ident: e_1_2_6_51_1
  doi: 10.1001/jama.2020.2648
– ident: e_1_2_6_64_1
  doi: 10.1152/ajpcell.00228.2010
– ident: e_1_2_6_6_1
  doi: 10.2139/ssrn.3555145
– ident: e_1_2_6_62_1
  doi: 10.1016/j.jaci.2020.04.009
– ident: e_1_2_6_10_1
  doi: 10.1101/2020.03.14.988345
– ident: e_1_2_6_24_1
  doi: 10.1128/JVI.00702-07
– ident: e_1_2_6_22_1
  doi: 10.1080/22221751.2020.1739565
– ident: e_1_2_6_58_1
  doi: 10.1016/j.cell.2020.04.035
– ident: e_1_2_6_59_1
  doi: 10.1002/iub.210
– ident: e_1_2_6_55_1
  doi: 10.1111/all.14364
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1365-2249.2010.04115.x
– ident: e_1_2_6_63_1
  doi: 10.1002/jmv.25936
– ident: e_1_2_6_26_1
  doi: 10.1186/s12985-017-0781-x
– ident: e_1_2_6_72_1
  doi: 10.1111/jdv.16544
– ident: e_1_2_6_61_1
  doi: 10.1038/nature03712
– ident: e_1_2_6_56_1
  doi: 10.1016/j.cell.2020.03.045
– ident: e_1_2_6_44_1
  doi: 10.4014/jmb.1910.10055
– ident: e_1_2_6_19_1
  doi: 10.1681/ASN.2008090957
– ident: e_1_2_6_36_1
  doi: 10.1371/journal.pone.0070011
– volume: 2000688
  year: 2020
  ident: e_1_2_6_60_1
  article-title: ACE‐2 Expression in the Small Airway Epithelia of Smokers and COPD Patients: Implications for COVID‐19
  publication-title: Eur Respir J
– ident: e_1_2_6_57_1
  doi: 10.1038/s41591-020-0868-6
– ident: e_1_2_6_15_1
  doi: 10.1101/2020.03.21.20040691
– ident: e_1_2_6_66_1
  doi: 10.1189/jlb.3RU0215-045R
– ident: e_1_2_6_5_1
  doi: 10.1126/science.abb2762
– ident: e_1_2_6_3_1
  doi: 10.1016/j.chom.2020.02.001
– ident: e_1_2_6_32_1
  doi: 10.1158/0008-5472.CAN-08-2491
– ident: e_1_2_6_43_1
  doi: 10.1182/blood-2011-02-339242
– ident: e_1_2_6_69_1
  doi: 10.1084/jem.20102510
– ident: e_1_2_6_48_1
  doi: 10.1007/s11684-020-0754-0
– ident: e_1_2_6_41_1
  doi: 10.1038/nri2818
– ident: e_1_2_6_9_1
  doi: 10.1084/jem.20050828
– ident: e_1_2_6_52_1
  doi: 10.1016/S0022-3476(05)80430-5
– ident: e_1_2_6_18_1
  doi: 10.1158/0008-5472.CAN-11-3843
– ident: e_1_2_6_54_1
  doi: 10.1111/jdv.16387
– ident: e_1_2_6_8_1
  doi: 10.1093/infdis/jiv380
– ident: e_1_2_6_28_1
  doi: 10.1371/journal.ppat.1002331
– ident: e_1_2_6_29_1
  doi: 10.1016/j.bbrc.2007.08.192
– ident: e_1_2_6_33_1
  doi: 10.1074/jbc.272.46.29174
– ident: e_1_2_6_40_1
  doi: 10.1074/jbc.M708566200
– ident: e_1_2_6_71_1
  doi: 10.4049/jimmunol.175.1.591
– ident: e_1_2_6_68_1
  doi: 10.1006/bbrc.1994.2313
– ident: e_1_2_6_31_1
  doi: 10.1016/j.cell.2015.03.023
– reference: 33089902 - Dermatol Ther. 2020 Nov;33(6):e14443
SSID ssj0007290
Score 2.7014344
Snippet Background Morbidity and mortality from COVID‐19 caused by novel coronavirus SARS‐CoV‐2 is accelerating worldwide, and novel clinical presentations of COVID‐19...
Morbidity and mortality from COVID-19 caused by novel coronavirus SARS-CoV-2 is accelerating worldwide, and novel clinical presentations of COVID-19 are often...
BackgroundMorbidity and mortality from COVID‐19 caused by novel coronavirus SARS‐CoV‐2 is accelerating worldwide, and novel clinical presentations of COVID‐19...
ACE2 and TMPRSS2 expression is unique for the epithelial barrier sites, whereas CD147, cyclophilins, and CD26 are expressed in both, epithelial and immune...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2829
SubjectTerms ACE2
Adolescent
Adult
Age
Age Factors
Aged
Alveoli
Angiotensin-converting enzyme 2
Angiotensin-Converting Enzyme 2 - genetics
Angiotensin-Converting Enzyme 2 - immunology
Asthma
Asthma - epidemiology
Asthma - genetics
Asthma - immunology
Atopic dermatitis
Basigin - genetics
Basigin - immunology
Biopsy
Bronchus
CD147 antigen
CD4 antigen
CD8 antigen
Child
Child, Preschool
Children
Chronic Disease - epidemiology
Chronic obstructive pulmonary disease
Comorbidity
COPD
COVID-19
COVID-19 - epidemiology
COVID-19 - genetics
COVID-19 - immunology
COVID‐19 children
Dipeptidyl Peptidase 4 - genetics
Dipeptidyl Peptidase 4 - immunology
Dipeptidyl-peptidase IV
Epithelial cells
Epithelium
Female
Gender
Gene expression
Gene Expression - genetics
Humans
Hypertension
Hypertension - epidemiology
Hypertension - genetics
Hypertension - immunology
Immunity, Innate - immunology
Infant
Leukocytes (mononuclear)
Leukocytes (neutrophilic)
Lymphocytes B
Lymphocytes T
Male
Middle Aged
Monocytes
Morbidity
Obesity
Obesity - epidemiology
Obesity - genetics
Obesity - immunology
Original
ORIGINAL ARTICLES
Pulmonary Disease, Chronic Obstructive - epidemiology
Pulmonary Disease, Chronic Obstructive - genetics
Pulmonary Disease, Chronic Obstructive - immunology
Ribonucleic acid
Risk Factors
RNA
SARS receptor
SARS-CoV-2 - genetics
SARS-CoV-2 - immunology
Severe acute respiratory syndrome coronavirus 2
Skin diseases
Young Adult
Title Distribution of ACE2, CD147, CD26, and other SARS‐CoV‐2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID‐19 risk factors
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fall.14429
https://www.ncbi.nlm.nih.gov/pubmed/32496587
https://www.proquest.com/docview/2457932347
https://www.proquest.com/docview/2409650029
https://pubmed.ncbi.nlm.nih.gov/PMC7300910
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAXXoWy0CIXceCwqfKwEyJOq2yrgvpAfakHpMh2HO2KrYO62QsnfgK_qD-GX8KM7YQuBQn1slnJ4ziOZ-wv9sw3hLzRXNfVO6WCKtcYksNUIGAVDnSkZJ3WsOYmGI18cJjunbGPF_xihbzvYmEcP0S_4YaWYedrNHAh5zeMXMxmeDIZY_Ae-mohIDr-TR2V-f0VwA8BA6v2rELoxdPXXF6LbgHM236SN_GrXYB2H5LP3aM7v5Mv24tWbqtvf7A63rFvj8gDD0zpyGnSY7KizRNy78Afva-R6zFS7PrsWLSp6ajYiYe0GEcsw0ucDqkwFbURXfRkdHzy8_uPojmH35gKrwS6opcuH6-e06mhrR32ua04xUgVTfEkwZa5CE1XZOAO7eRSQENHn8ZD2rh0BkM6gc_oK-uE3xjXfnF0_mEMjUY5Rbd56hMKPSVnuzunxV7gkz8EiiNrqAiZqhPBeBbFCmZByVKhJBeR4KnMMF-IrmSYC8BfWklW1yloVpXzUCe5UrxKnpFV0xj9nFCWQFUuwhDEmE650JlKM8EA-QqkmxuQt50alMozo2OCjlnZfSHBeJR2PAbkdS_61dGB_E1oo9Ol0s8I8zKGngBWTlg2IFt9MdgyvlZhdLNAGeTiwYPSAVl3qte3AsAXeXqgdraklL0A8oQvl5jpxPKFY0oCQIXQTatz_37wcrS_b_-8-H_Rl-R-jFsQNjxzg6y2Vwu9CTitla-sQf4CiRQ73w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELZKkYAL_9BAAYM4cMhW-2PvshKXaNMqhaRF_VMvaOX1epWoqRc1mwsnHoEn4mF4EmZs79JQkBCXJJLH8Xo9Y3-2Z74h5LXiqirfSumVqcKQHCY9AauwpwJZVHEFa26E0ciTvXh0zN6f8tM18q6NhbH8EN2BG1qGma_RwPFA-pKVi_kcrybD9Bq5jhm9zYbq4Bd5VOJOWABBeAzs2vEKoR9PV3V1NboCMa96Sl5GsGYJ2rlDPrUPbz1PzraWTbElv_zG6_i_vbtLbjtsSgdWme6RNaXvkxsTd_v-gHwfIsuuS5BF64oOsu2wT7NhwBL8CuM-FbqkJqiLHg4ODn98_ZbVJ_AZUuH0QJX03KbkVQs607QxI78wFWcYrKIoXiaYMhukaYs0_EMzPRfQ0P7HYZ_WNqNBn05hJ31h_PBrbdvP9k92h9BokFL0nKcup9BDcryzfZSNPJf_wZMciUOFz2QVCcaTIJQwERYsFrLgIhA8LhJMGaLKwk8FQDAlC1ZVMShXmXJfRamUvIwekXVda7VBKIugKhe-D2JMxVyoRMaJYAB-BTLO9cibVg9y6cjRMUfHPG83STAeuRmPHnnViX62jCB_EtpslSl3k8IiD6EnAJcjlvTIy64YzBlfq9CqXqIM0vHgXWmPPLa617UC2BepeqB2sqKVnQBSha-W6NnUUIZjVgIAhtBNo3R_f_B8MB6bH0_-XfQFuTk6mozz8e7eh6fkVognEiZac5OsNxdL9QxgW1M8N9b5ExfOP_o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKkSou5Z9uKWAQBw6bKj920ojTKumqhe2PWlr1gBQ5jqNddZtU3eyFE4_AE_EwfZLO2E7oUpAQl81KHsdxPGN_sWe-IeS94qostqR0ilhhSA6TjoBV2FGezMuwhDU3wGjkvf1w54R9OuNnS-RjGwtj-CG6DTe0DD1fo4FfFuUtIxfTKZ5M-vE9cp-F7haqdHr0izsqshssACAcBmZtaYXQjaerurgY3UGYdx0lbwNYvQINH5Kv7bMbx5PzzXmTb8pvv9E6_mfnHpFVi0zpwKjSY7KkqidkZc-evT8lP1Pk2LXpsWhd0kGy7fdpknoswosf9qmoCqpDuujx4Oj4-vuPpD6FX58KqwWqoBcmIa-a0UlFGz3uM11xgqEqiuJRgi4zIZqmqII7NOMLAQ0dHKZ9Wpt8Bn06hu_oK-2FX1em_eTgdDeFRr2Yot88tRmFnpGT4faXZMex2R8cyZE2VLhMloFgPPJ8CdNgzkIhcy48wcM8woQhqsjdWAAAUzJnZRmCahUxd1UQS8mL4DlZrupKrRHKAqjKheuCGFMhFyqSYSQYQF-BfHM98qFVg0xaanTM0DHN2k8kGI9Mj0ePvOtELw0fyJ-ENlpdyuyUMMt86AmA5YBFPfK2KwZjxtcqKlXPUQbJePCktEdeGNXrWgHki0Q9UDtaUMpOAInCF0uqyVgThmNOAoCF0E2tc39_8GwwGuk_6_8u-oasHKbDbLS7__kleeDjdoQO1dwgy83VXL0CzNbkr7Vt3gBP8z6y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distribution+of+ACE2%2C+CD147%2C+CD26%2C+and+other+SARS%E2%80%90CoV%E2%80%902+associated+molecules+in+tissues+and+immune+cells+in+health+and+in+asthma%2C+COPD%2C+obesity%2C+hypertension%2C+and+COVID%E2%80%9019+risk+factors&rft.jtitle=Allergy+%28Copenhagen%29&rft.au=Radzikowska%2C+Urszula&rft.au=Ding%2C+Mei&rft.au=Tan%2C+Ge&rft.au=Zhakparov%2C+Damir&rft.date=2020-11-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0105-4538&rft.eissn=1398-9995&rft.volume=75&rft.issue=11&rft.spage=2829&rft.epage=2845&rft_id=info:doi/10.1111%2Fall.14429&rft_id=info%3Apmid%2F32496587&rft.externalDocID=PMC7300910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0105-4538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0105-4538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0105-4538&client=summon