Distribution of ACE2, CD147, CD26, and other SARS‐CoV‐2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID‐19 risk factors
Background Morbidity and mortality from COVID‐19 caused by novel coronavirus SARS‐CoV‐2 is accelerating worldwide, and novel clinical presentations of COVID‐19 are often reported. The range of human cells and tissues targeted by SARS‐CoV‐2, its potential receptors and associated regulating factors a...
Saved in:
Published in | Allergy (Copenhagen) Vol. 75; no. 11; pp. 2829 - 2845 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Denmark
Blackwell Publishing Ltd
01.11.2020
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Morbidity and mortality from COVID‐19 caused by novel coronavirus SARS‐CoV‐2 is accelerating worldwide, and novel clinical presentations of COVID‐19 are often reported. The range of human cells and tissues targeted by SARS‐CoV‐2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS‐CoV‐2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID‐19.
Methods
We performed RNA sequencing and explored available RNA‐Seq databases to study gene expression and co‐expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID‐19 risk factor status.
Results
ACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age‐related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2‐ and CD147‐related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147‐related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147‐related genes in the lesional skin of patients with atopic dermatitis.
Conclusions
Our data suggest different receptor repertoire potentially involved in the SARS‐CoV‐2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID‐19 morbidity and severity patterns.
ACE2 and TMPRSS2 expression is unique for the epithelial barrier sites, whereas CD147, cyclophilins, and CD26 are expressed in both, epithelial and immune cells. Age is a factor associated with the differential expression profiles of ACE2‐, CD147‐ and CD26‐related genes in the PBMCs and naive CD4+ T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender generally lead to the higher expression of ACE2‐ and CD147‐related genes in the bronchial biopsy, BAL or blood.
Abbreviations: ACE2, angiotensin‐converting enzyme 2; AD, atopic dermatitis; BAL, bronchoalveolar lavage; COPD, chronic obstructive pulmonary disease; CypA, cyclophilin A; CypB, cyclophilin B; GLUT1, glucose transporter 1; ILC, innate lymphoid cell; MCTs, monocarboxylate transporters; NF‐ATs, nuclear factor of activated T cells; PBMCs, peripheral blood mononuclear cells; SARS‐CoV‐2; severe acute respiratory syndrome coronavirus 2; SLC6A19, sodium‐dependent neutral amino acid transporter B(0)AT1; S100A9, protein S100‐A9; TMPRSS2, transmembrane protease serine. |
---|---|
AbstractList | Morbidity and mortality from COVID-19 caused by novel coronavirus SARS-CoV-2 is accelerating worldwide, and novel clinical presentations of COVID-19 are often reported. The range of human cells and tissues targeted by SARS-CoV-2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS-CoV-2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID-19.BACKGROUNDMorbidity and mortality from COVID-19 caused by novel coronavirus SARS-CoV-2 is accelerating worldwide, and novel clinical presentations of COVID-19 are often reported. The range of human cells and tissues targeted by SARS-CoV-2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS-CoV-2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID-19.We performed RNA sequencing and explored available RNA-Seq databases to study gene expression and co-expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID-19 risk factor status.METHODSWe performed RNA sequencing and explored available RNA-Seq databases to study gene expression and co-expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID-19 risk factor status.ACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age-related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2- and CD147-related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147-related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147-related genes in the lesional skin of patients with atopic dermatitis.RESULTSACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age-related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2- and CD147-related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147-related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147-related genes in the lesional skin of patients with atopic dermatitis.Our data suggest different receptor repertoire potentially involved in the SARS-CoV-2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID-19 morbidity and severity patterns.CONCLUSIONSOur data suggest different receptor repertoire potentially involved in the SARS-CoV-2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID-19 morbidity and severity patterns. Morbidity and mortality from COVID-19 caused by novel coronavirus SARS-CoV-2 is accelerating worldwide, and novel clinical presentations of COVID-19 are often reported. The range of human cells and tissues targeted by SARS-CoV-2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS-CoV-2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID-19. We performed RNA sequencing and explored available RNA-Seq databases to study gene expression and co-expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4 and CD8 T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID-19 risk factor status. ACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age-related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2- and CD147-related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147-related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147-related genes in the lesional skin of patients with atopic dermatitis. Our data suggest different receptor repertoire potentially involved in the SARS-CoV-2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID-19 morbidity and severity patterns. ACE2 and TMPRSS2 expression is unique for the epithelial barrier sites, whereas CD147, cyclophilins, and CD26 are expressed in both, epithelial and immune cells. Age is a factor associated with the differential expression profiles of ACE2‐, CD147‐ and CD26‐related genes in the PBMCs and naive CD4 + T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender generally lead to the higher expression of ACE2‐ and CD147‐related genes in the bronchial biopsy, BAL or blood. Abbreviations: ACE2, angiotensin‐converting enzyme 2; AD, atopic dermatitis; BAL, bronchoalveolar lavage; COPD, chronic obstructive pulmonary disease; CypA, cyclophilin A; CypB, cyclophilin B; GLUT1, glucose transporter 1; ILC, innate lymphoid cell; MCTs, monocarboxylate transporters; NF‐ATs, nuclear factor of activated T cells; PBMCs, peripheral blood mononuclear cells; SARS‐CoV‐2; severe acute respiratory syndrome coronavirus 2; SLC6A19, sodium‐dependent neutral amino acid transporter B(0)AT1; S100A9, protein S100‐A9; TMPRSS2, transmembrane protease serine. BackgroundMorbidity and mortality from COVID‐19 caused by novel coronavirus SARS‐CoV‐2 is accelerating worldwide, and novel clinical presentations of COVID‐19 are often reported. The range of human cells and tissues targeted by SARS‐CoV‐2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS‐CoV‐2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID‐19.MethodsWe performed RNA sequencing and explored available RNA‐Seq databases to study gene expression and co‐expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID‐19 risk factor status.ResultsACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age‐related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2‐ and CD147‐related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147‐related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147‐related genes in the lesional skin of patients with atopic dermatitis.ConclusionsOur data suggest different receptor repertoire potentially involved in the SARS‐CoV‐2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID‐19 morbidity and severity patterns. Background Morbidity and mortality from COVID‐19 caused by novel coronavirus SARS‐CoV‐2 is accelerating worldwide, and novel clinical presentations of COVID‐19 are often reported. The range of human cells and tissues targeted by SARS‐CoV‐2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS‐CoV‐2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID‐19. Methods We performed RNA sequencing and explored available RNA‐Seq databases to study gene expression and co‐expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID‐19 risk factor status. Results ACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age‐related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2‐ and CD147‐related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147‐related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147‐related genes in the lesional skin of patients with atopic dermatitis. Conclusions Our data suggest different receptor repertoire potentially involved in the SARS‐CoV‐2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID‐19 morbidity and severity patterns. ACE2 and TMPRSS2 expression is unique for the epithelial barrier sites, whereas CD147, cyclophilins, and CD26 are expressed in both, epithelial and immune cells. Age is a factor associated with the differential expression profiles of ACE2‐, CD147‐ and CD26‐related genes in the PBMCs and naive CD4+ T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender generally lead to the higher expression of ACE2‐ and CD147‐related genes in the bronchial biopsy, BAL or blood. Abbreviations: ACE2, angiotensin‐converting enzyme 2; AD, atopic dermatitis; BAL, bronchoalveolar lavage; COPD, chronic obstructive pulmonary disease; CypA, cyclophilin A; CypB, cyclophilin B; GLUT1, glucose transporter 1; ILC, innate lymphoid cell; MCTs, monocarboxylate transporters; NF‐ATs, nuclear factor of activated T cells; PBMCs, peripheral blood mononuclear cells; SARS‐CoV‐2; severe acute respiratory syndrome coronavirus 2; SLC6A19, sodium‐dependent neutral amino acid transporter B(0)AT1; S100A9, protein S100‐A9; TMPRSS2, transmembrane protease serine. |
Author | Radzikowska, Urszula Tan, Ge Li, Shuo Altunbulakli, Can Reiger, Matthias Zhakparov, Damir Ding, Mei Neumann, Avidan U. Sokolowska, Milena Wang, Ming Wawrzyniak, Paulina Traidl‐Hoffmann, Claudia Lunjani, Nonhlanhla O’Mahony, Liam Morita, Hideaki Peng, Yaqi Nadeau, Kari C. Akdis, Cezmi |
AuthorAffiliation | 16 Department of Medicine and School of Microbiology APC Microbiome Ireland National University of Ireland Cork Ireland 12 Chair and Institute of Environmental Medicine UNIKA‐T Technical University of Munich and Helmholtz Zentrum Munchen Augsburg Germany 4 Department of Allergology Zhongnan Hospital of Wuhan University Wuhan China 14 Institute of Experimental Medicine (IEM) Czech Academy of Sciences Prague Czech Republic 1 Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland 10 Department of Cancer Immunology Institute for Cancer Research Oslo University Hospital Oslo Norway 7 Division of Clinical Chemistry and Biochemistry University Children`s Hospital Zurich Zurich Switzerland 5 Functional Genomic Centre Zurich ETH Zurich/University of Zurich Zurich Switzerland 8 Children`s Research Center University Children`s Hospital Zurich Zurich Switzerland 15 Sean N Parker Centre for Allergy and Asthma Research at Stanford University Department of Medicine Stanfo |
AuthorAffiliation_xml | – name: 14 Institute of Experimental Medicine (IEM) Czech Academy of Sciences Prague Czech Republic – name: 4 Department of Allergology Zhongnan Hospital of Wuhan University Wuhan China – name: 8 Children`s Research Center University Children`s Hospital Zurich Zurich Switzerland – name: 16 Department of Medicine and School of Microbiology APC Microbiome Ireland National University of Ireland Cork Ireland – name: 12 Chair and Institute of Environmental Medicine UNIKA‐T Technical University of Munich and Helmholtz Zentrum Munchen Augsburg Germany – name: 15 Sean N Parker Centre for Allergy and Asthma Research at Stanford University Department of Medicine Stanford University School of Medicine Stanford USA – name: 6 Otorhinolaryngology Hospital The First Affiliated Hospital Sun Yat‐sen University Guangzhou China – name: 7 Division of Clinical Chemistry and Biochemistry University Children`s Hospital Zurich Zurich Switzerland – name: 5 Functional Genomic Centre Zurich ETH Zurich/University of Zurich Zurich Switzerland – name: 2 Christine Kühne – Center for Research and Education (CK‐CARE) Davos Switzerland – name: 3 Department of Regenerative Medicine and Immune Regulation Medical University of Bialystok Bialystok Poland – name: 1 Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland – name: 11 Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan – name: 10 Department of Cancer Immunology Institute for Cancer Research Oslo University Hospital Oslo Norway – name: 13 Institute of Computational Biology (ICB) Helmholtz Zentrum Munchen Munich Germany – name: 9 Department of Otolaryngology, Head and Neck Surgery Beijing TongRen Hospital Capital Medical University and the Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China |
Author_xml | – sequence: 1 givenname: Urszula orcidid: 0000-0002-7341-9764 surname: Radzikowska fullname: Radzikowska, Urszula organization: Medical University of Bialystok – sequence: 2 givenname: Mei surname: Ding fullname: Ding, Mei organization: Zhongnan Hospital of Wuhan University – sequence: 3 givenname: Ge orcidid: 0000-0003-0026-8739 surname: Tan fullname: Tan, Ge organization: ETH Zurich/University of Zurich – sequence: 4 givenname: Damir surname: Zhakparov fullname: Zhakparov, Damir organization: University of Zurich – sequence: 5 givenname: Yaqi surname: Peng fullname: Peng, Yaqi organization: Sun Yat‐sen University – sequence: 6 givenname: Paulina orcidid: 0000-0001-9641-2103 surname: Wawrzyniak fullname: Wawrzyniak, Paulina organization: University Children`s Hospital Zurich – sequence: 7 givenname: Ming orcidid: 0000-0002-8560-3964 surname: Wang fullname: Wang, Ming organization: Beijing Institute of Otolaryngology – sequence: 8 givenname: Shuo surname: Li fullname: Li, Shuo organization: Oslo University Hospital – sequence: 9 givenname: Hideaki orcidid: 0000-0003-0928-8322 surname: Morita fullname: Morita, Hideaki organization: National Research Institute for Child Health and Development – sequence: 10 givenname: Can orcidid: 0000-0003-2264-7377 surname: Altunbulakli fullname: Altunbulakli, Can organization: Christine Kühne – Center for Research and Education (CK‐CARE) – sequence: 11 givenname: Matthias surname: Reiger fullname: Reiger, Matthias organization: Technical University of Munich and Helmholtz Zentrum Munchen – sequence: 12 givenname: Avidan U. surname: Neumann fullname: Neumann, Avidan U. organization: Czech Academy of Sciences – sequence: 13 givenname: Nonhlanhla surname: Lunjani fullname: Lunjani, Nonhlanhla organization: Christine Kühne – Center for Research and Education (CK‐CARE) – sequence: 14 givenname: Claudia orcidid: 0000-0001-5085-5179 surname: Traidl‐Hoffmann fullname: Traidl‐Hoffmann, Claudia organization: Technical University of Munich and Helmholtz Zentrum Munchen – sequence: 15 givenname: Kari C. orcidid: 0000-0002-2146-2955 surname: Nadeau fullname: Nadeau, Kari C. organization: Stanford University School of Medicine – sequence: 16 givenname: Liam orcidid: 0000-0003-4705-3583 surname: O’Mahony fullname: O’Mahony, Liam organization: National University of Ireland – sequence: 17 givenname: Cezmi orcidid: 0000-0001-8020-019X surname: Akdis fullname: Akdis, Cezmi organization: Christine Kühne – Center for Research and Education (CK‐CARE) – sequence: 18 givenname: Milena orcidid: 0000-0001-9710-6685 surname: Sokolowska fullname: Sokolowska, Milena email: milena.sokolowska@siaf.uzh.ch organization: Christine Kühne – Center for Research and Education (CK‐CARE) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32496587$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kt1uFCEUxyemxm6rF76AIfFGk90WGBiWmyab2apNNlljtbeEYRiHysAKjGbvfASfyIfxSWS7tdEmygWQnN_5n8-j4sB5p4viKYInKJ9Tae0JIgTzB8UElXw-45zTg2ICEaQzQsv5YXEU4zWEkGEOHxWHJSa8onM2KX4sTUzBNGMy3gHfgUV9jqegXiLCdg-upkC6FvjU6wAuF-8uf377XvurfGMgY_TKyKRbMHir1Wh1BMaBZGIc83fnaIZhdBoobe2NrdfSpn5vclkh9YPMgdZvl1PgGx1N2k5Bv93okLSLOal9_Hp9dbHMQREHwcRPoJMq-RAfFw87aaN-cvseFx9enb-v38xW69cX9WI1UxRyPpOQqK6UhDKEVcmqhlRSNVQiSauGzeEc6baBXDLMtGpI11VVR1tOoS65UrQtj4uzve5mbAbdKu1SkFZsghlk2Aovjfjb4kwvPvovgpUQcgSzwItbgeA_594kMZi4a4p02o9RYALzRCDEPKPP76HXfgwul5cpyniJS8Iy9ezPjO5S-T3aDLzcAyr4GIPu7hAExW5tRF4bcbM2mT29xyqT5G4lcjHG_s_jq7F6-29psVit9h6_ADCI1Tg |
CitedBy_id | crossref_primary_10_1038_s41593_020_00771_8 crossref_primary_10_1111_all_15058 crossref_primary_10_3389_fimmu_2022_834862 crossref_primary_10_3390_v14051092 crossref_primary_10_1111_all_14522 crossref_primary_10_1111_all_16028 crossref_primary_10_1016_j_jid_2023_06_194 crossref_primary_10_1016_j_expneurol_2024_114890 crossref_primary_10_1016_j_sopen_2024_06_009 crossref_primary_10_1111_ijcp_14624 crossref_primary_10_1183_16000617_0126_2023 crossref_primary_10_17343_sdutfd_906320 crossref_primary_10_1093_oxfimm_iqaa004 crossref_primary_10_1165_rcmb_2020_0322PS crossref_primary_10_3390_ijms24076253 crossref_primary_10_1042_BSR20203092 crossref_primary_10_1002_ppul_24981 crossref_primary_10_18632_aging_204299 crossref_primary_10_1038_s41467_023_37470_4 crossref_primary_10_1038_s41598_021_03912_6 crossref_primary_10_3389_fimmu_2023_1284047 crossref_primary_10_17721_1728_2748_2021_86_17_22 crossref_primary_10_3389_fpubh_2021_711616 crossref_primary_10_4103_jncd_jncd_7_21 crossref_primary_10_31083_j_fbl2707217 crossref_primary_10_1111_all_14657 crossref_primary_10_1111_all_16157 crossref_primary_10_3238_PersImmun_2021_09_17_05 crossref_primary_10_3390_cells10030628 crossref_primary_10_4103_epj_epj_96_23 crossref_primary_10_1007_s13167_021_00267_w crossref_primary_10_1016_j_jaip_2021_02_041 crossref_primary_10_1097_CCM_0000000000004895 crossref_primary_10_15407_visn2020_08_029 crossref_primary_10_1038_s41392_020_00370_w crossref_primary_10_1039_D1TB00674F crossref_primary_10_1177_10815589241270417 crossref_primary_10_1002_lio2_1012 crossref_primary_10_1016_j_jbc_2023_104763 crossref_primary_10_1016_j_resmer_2023_101053 crossref_primary_10_1007_s12020_021_02619_y crossref_primary_10_3389_fmed_2021_624462 crossref_primary_10_5812_jjm_138125 crossref_primary_10_1186_s12931_021_01782_0 crossref_primary_10_1016_j_isci_2024_109567 crossref_primary_10_1093_intimm_dxab107 crossref_primary_10_1016_j_clinre_2021_101807 crossref_primary_10_1097_JD9_0000000000000138 crossref_primary_10_2337_db20_1260 crossref_primary_10_3390_cells11071235 crossref_primary_10_3389_fgene_2020_607479 crossref_primary_10_1016_j_imbio_2020_152008 crossref_primary_10_5808_gi_20078 crossref_primary_10_1016_j_jmb_2021_166835 crossref_primary_10_1097_CM9_0000000000001388 crossref_primary_10_3390_jcm11154525 crossref_primary_10_1136_bmjopen_2021_055562 crossref_primary_10_3390_biochem2020009 crossref_primary_10_1186_s13195_021_00850_3 crossref_primary_10_2147_JIR_S300747 crossref_primary_10_3390_jcm10102087 crossref_primary_10_1007_s11882_021_00993_1 crossref_primary_10_1097_ACI_0000000000000720 crossref_primary_10_4239_wjd_v15_i5_1011 crossref_primary_10_1007_s11357_022_00528_0 crossref_primary_10_1111_odi_14126 crossref_primary_10_56083_RCV2N3_008 crossref_primary_10_1111_ijcp_14167 crossref_primary_10_1016_j_bbi_2023_06_012 crossref_primary_10_3390_idr17010005 crossref_primary_10_3390_ijms23052873 crossref_primary_10_1016_j_intimp_2020_106980 crossref_primary_10_1016_j_bbih_2024_100888 crossref_primary_10_1111_all_15089 crossref_primary_10_3390_pathogens11050538 crossref_primary_10_3390_cells13020173 crossref_primary_10_1016_j_csbj_2021_03_023 crossref_primary_10_1186_s12964_023_01397_6 crossref_primary_10_1016_j_ebiom_2023_104869 crossref_primary_10_1073_pnas_2408109121 crossref_primary_10_1093_bib_bbaa173 crossref_primary_10_1097_SHK_0000000000001740 crossref_primary_10_1016_j_heliyon_2021_e07665 crossref_primary_10_3390_biology11111579 crossref_primary_10_3390_v16081243 crossref_primary_10_1016_j_ijbiomac_2021_02_090 crossref_primary_10_1016_j_mehy_2020_110155 crossref_primary_10_1080_09537104_2021_1962519 crossref_primary_10_1111_febs_15499 crossref_primary_10_3390_biomedicines9111544 crossref_primary_10_1007_s10495_024_01961_6 crossref_primary_10_1016_j_snb_2022_132427 crossref_primary_10_1210_clinem_dgac137 crossref_primary_10_1097_MNH_0000000000000692 crossref_primary_10_1210_clinem_dgad466 crossref_primary_10_1097_MPG_0000000000003032 crossref_primary_10_1021_acs_analchem_0c05438 crossref_primary_10_3389_fimmu_2021_624324 crossref_primary_10_31083_j_jin2102073 crossref_primary_10_3992_jgb_16_1_199 crossref_primary_10_1002_cjp2_224 crossref_primary_10_15407_ubj92_06_005 crossref_primary_10_1016_j_biopha_2020_110816 crossref_primary_10_1080_19490976_2021_1984105 crossref_primary_10_53065_j7165_0490_8708_h crossref_primary_10_52547_iau_32_4_337 crossref_primary_10_1016_j_mucimm_2022_12_001 crossref_primary_10_1016_j_ijbiomac_2024_132200 crossref_primary_10_1016_j_pnpbp_2020_110230 crossref_primary_10_3389_fimmu_2023_1055457 crossref_primary_10_1186_s12864_021_07708_w crossref_primary_10_1002_jmv_27693 crossref_primary_10_3390_cells11091458 crossref_primary_10_1111_all_14449 crossref_primary_10_7189_jogh_13_06012 crossref_primary_10_1182_blood_2021012250 crossref_primary_10_1007_s12519_022_00662_x crossref_primary_10_3389_fimmu_2020_586765 crossref_primary_10_4081_itjm_2025_1823 crossref_primary_10_1002_ppul_27257 crossref_primary_10_3389_fcell_2022_855340 crossref_primary_10_1016_j_phrs_2021_105821 crossref_primary_10_1002_jgm_3728 crossref_primary_10_1007_s00284_022_02807_7 crossref_primary_10_3390_cimb46070395 crossref_primary_10_1186_s40337_021_00369_w crossref_primary_10_17709_2410_1893_2022_9_2_13 crossref_primary_10_2196_51150 crossref_primary_10_1038_s41366_022_01111_5 crossref_primary_10_1007_s12016_022_08921_5 crossref_primary_10_5415_apallergy_0000000000000005 crossref_primary_10_1002_JLB_3MIR0221_100R crossref_primary_10_3390_microorganisms11081919 crossref_primary_10_3390_nu13114174 crossref_primary_10_2147_IJGM_S316708 crossref_primary_10_1016_j_brainres_2021_147344 crossref_primary_10_1513_AnnalsATS_202006_619RL crossref_primary_10_1016_j_lpmfor_2020_12_009 crossref_primary_10_1097_BOR_0000000000000817 crossref_primary_10_2174_1871530322666220422104009 crossref_primary_10_3389_fped_2022_834875 crossref_primary_10_17116_profmed20222503192 crossref_primary_10_3389_fped_2021_629240 crossref_primary_10_1002_jmv_28311 crossref_primary_10_1002_clt2_12065 crossref_primary_10_29235_1814_6023_2021_18_4_497_512 crossref_primary_10_3389_fmed_2020_629413 crossref_primary_10_1186_s12964_024_01718_3 crossref_primary_10_1128_cmr_00188_21 crossref_primary_10_3389_fimmu_2021_692004 crossref_primary_10_1183_16000617_0199_2020 crossref_primary_10_1186_s12964_022_00982_5 crossref_primary_10_36316_gcatr_02_0037 crossref_primary_10_3389_fimmu_2021_749291 crossref_primary_10_1111_all_14462 crossref_primary_10_3390_v14040739 crossref_primary_10_1186_s42269_022_00886_x crossref_primary_10_3390_v14030491 crossref_primary_10_1002_jnr_24752 crossref_primary_10_1007_s44197_023_00161_w crossref_primary_10_1038_s41423_025_01261_2 crossref_primary_10_1186_s12879_024_09520_9 crossref_primary_10_2147_JAA_S421158 crossref_primary_10_2196_50846 crossref_primary_10_1002_2211_5463_13500 crossref_primary_10_2196_50049 crossref_primary_10_3390_antiox11010140 crossref_primary_10_1089_ars_2021_0017 crossref_primary_10_3389_fimmu_2022_906063 crossref_primary_10_3390_cimb46120811 crossref_primary_10_3390_v15040955 crossref_primary_10_1371_journal_pmed_1003868 crossref_primary_10_3390_ijerph192214955 crossref_primary_10_3389_fimmu_2021_597399 crossref_primary_10_1038_s41392_021_00760_8 crossref_primary_10_33181_13074 crossref_primary_10_3390_ijms23052558 crossref_primary_10_1134_S0006297922060086 crossref_primary_10_1002_jev2_12154 crossref_primary_10_2147_JIR_S282710 crossref_primary_10_3390_ijms222312641 crossref_primary_10_3390_ijms23094956 crossref_primary_10_3389_fcell_2020_559841 crossref_primary_10_1016_j_celrep_2020_108590 crossref_primary_10_3390_ijms22052681 crossref_primary_10_1186_s12890_024_02917_x crossref_primary_10_1111_all_14472 crossref_primary_10_1002_iid3_922 crossref_primary_10_1016_j_anai_2020_11_021 crossref_primary_10_15252_msb_202010079 crossref_primary_10_1016_j_scitotenv_2021_152072 crossref_primary_10_1007_s12012_021_09674_x crossref_primary_10_12688_f1000research_108667_1 crossref_primary_10_12688_f1000research_108667_2 crossref_primary_10_3389_fimmu_2021_665300 crossref_primary_10_3389_fmed_2020_594495 crossref_primary_10_1042_CS20201268 crossref_primary_10_1007_s11894_021_00822_5 crossref_primary_10_1164_rccm_202302_0317LE crossref_primary_10_1111_apha_13733 crossref_primary_10_1186_s12979_020_00204_x crossref_primary_10_1016_j_waojou_2021_100576 crossref_primary_10_1080_14728222_2024_2306345 crossref_primary_10_1016_j_bj_2023_100650 crossref_primary_10_1080_21645515_2024_2322795 crossref_primary_10_1016_j_csbj_2023_11_012 crossref_primary_10_1136_bmjebm_2020_111506 crossref_primary_10_1016_j_thromres_2022_03_022 crossref_primary_10_3389_fimmu_2021_733921 crossref_primary_10_1080_19390211_2022_2075072 crossref_primary_10_2147_JMDH_S347130 crossref_primary_10_3389_fpubh_2021_645739 crossref_primary_10_1016_j_dsx_2021_102307 crossref_primary_10_1016_j_mehy_2021_110628 crossref_primary_10_3390_ph14080805 crossref_primary_10_3389_fimmu_2020_607069 crossref_primary_10_1038_s41380_020_00965_3 crossref_primary_10_3390_ijerph182010950 crossref_primary_10_3389_fcimb_2021_666987 crossref_primary_10_1080_17476348_2021_1985763 crossref_primary_10_3390_diagnostics13071345 crossref_primary_10_2174_1871530322666220104103325 crossref_primary_10_1016_j_obmed_2020_100283 crossref_primary_10_1016_j_waojou_2022_100686 crossref_primary_10_1186_s10020_021_00423_y crossref_primary_10_1111_jth_15156 crossref_primary_10_3389_fphar_2021_731453 crossref_primary_10_3389_fimmu_2021_678661 crossref_primary_10_3390_v14010025 crossref_primary_10_2147_COPD_S476808 crossref_primary_10_2967_jnumed_120_261768 crossref_primary_10_1038_s41598_023_41389_7 crossref_primary_10_3389_fmicb_2022_1042200 crossref_primary_10_31089_1026_9428_2022_62_9_601_615 crossref_primary_10_1016_j_jacbts_2020_09_010 crossref_primary_10_1111_all_14498 crossref_primary_10_3390_ijms22137017 crossref_primary_10_1111_all_14496 crossref_primary_10_1111_all_16318 crossref_primary_10_1021_acs_molpharmaceut_2c00954 crossref_primary_10_3389_fimmu_2021_612807 crossref_primary_10_1186_s13054_022_04002_3 crossref_primary_10_2147_BTT_S307352 crossref_primary_10_1016_j_ijid_2021_09_026 crossref_primary_10_1007_s13668_024_00599_9 crossref_primary_10_1016_j_bbrep_2021_101081 crossref_primary_10_1128_spectrum_04168_23 crossref_primary_10_3389_fimmu_2021_659339 crossref_primary_10_3389_fphys_2021_665064 crossref_primary_10_3390_children10061020 crossref_primary_10_1111_irv_13078 crossref_primary_10_1016_j_eclinm_2021_100841 crossref_primary_10_2147_COPD_S450209 crossref_primary_10_4103_jfmpc_jfmpc_1712_23 crossref_primary_10_1038_s41538_024_00261_2 crossref_primary_10_1111_jdv_19212 crossref_primary_10_2174_1381612828666220322123225 crossref_primary_10_3390_ijms25094941 crossref_primary_10_1016_j_joim_2022_07_005 crossref_primary_10_2147_HIV_S300055 crossref_primary_10_3390_ijms252212079 crossref_primary_10_21292_2075_1230_2021_99_2_6_15 crossref_primary_10_1111_all_15593 crossref_primary_10_1016_j_semcancer_2021_01_003 crossref_primary_10_3389_fimmu_2021_647824 crossref_primary_10_3389_fimmu_2022_988479 crossref_primary_10_3390_s23063346 crossref_primary_10_3390_ijms241813957 crossref_primary_10_3389_fcell_2021_714999 crossref_primary_10_3389_fimmu_2020_571481 crossref_primary_10_2174_1573398X19666230724155039 crossref_primary_10_3389_fimmu_2022_956671 crossref_primary_10_3389_fcimb_2021_598875 crossref_primary_10_3390_genes13111935 crossref_primary_10_1177_01455613221123737 crossref_primary_10_1186_s12860_022_00442_5 crossref_primary_10_3390_antiox11071366 crossref_primary_10_3390_biom14050537 crossref_primary_10_1186_s12967_023_04787_z crossref_primary_10_1016_S2665_9913_21_00062_X crossref_primary_10_2174_1389201023666220421133311 crossref_primary_10_1080_19490976_2022_2073131 crossref_primary_10_2174_1381612829666221123111849 crossref_primary_10_7570_jomes23053 crossref_primary_10_1111_pai_13672 crossref_primary_10_1136_bmjopen_2021_051115 crossref_primary_10_3390_molecules26102917 crossref_primary_10_3390_microorganisms9091794 crossref_primary_10_1016_j_jbior_2021_100820 crossref_primary_10_36106_ijsr_7438869 crossref_primary_10_3233_JAD_220800 crossref_primary_10_1183_16000617_0197_2022 crossref_primary_10_18632_aging_205655 crossref_primary_10_3389_fnins_2021_727060 crossref_primary_10_3390_ijms24119353 crossref_primary_10_2174_0126667975270644231107110626 crossref_primary_10_1038_s41422_021_00523_8 crossref_primary_10_1152_ajplung_00259_2020 crossref_primary_10_1016_j_pharmthera_2020_107750 crossref_primary_10_17816_brmma108519 crossref_primary_10_1016_j_imbio_2023_152350 crossref_primary_10_3390_life12010130 crossref_primary_10_3390_cells10061434 crossref_primary_10_3390_life11121341 crossref_primary_10_1002_jmv_70237 crossref_primary_10_1161_CIRCRESAHA_121_317997 crossref_primary_10_1515_jbcpp_2021_0083 crossref_primary_10_1111_all_15258 crossref_primary_10_1128_mSphere_00647_21 crossref_primary_10_1371_journal_pone_0283331 crossref_primary_10_1111_crj_13813 crossref_primary_10_15252_embr_202154305 crossref_primary_10_3390_pathogens12020321 crossref_primary_10_3390_biomedicines10092155 crossref_primary_10_1098_rsos_202345 crossref_primary_10_1016_j_ccm_2022_11_013 crossref_primary_10_15789_1563_0625_EOC_2515 crossref_primary_10_3390_ijerph19095277 crossref_primary_10_1016_j_compbiolchem_2023_107961 crossref_primary_10_1111_all_14608 crossref_primary_10_1186_s12879_024_09321_0 crossref_primary_10_3390_jcm11226772 crossref_primary_10_22625_2072_6732_2024_16_2_28_36 crossref_primary_10_32902_2663_0338_2024_1_58_62 crossref_primary_10_1016_j_jve_2025_100591 crossref_primary_10_1631_jzus_B2000304 crossref_primary_10_1016_j_jaci_2021_01_006 crossref_primary_10_1038_s41598_025_94801_9 crossref_primary_10_1093_glycob_cwab032 crossref_primary_10_1590_1806_9282_20210555 crossref_primary_10_1155_2022_1806427 crossref_primary_10_4236_ojbiphy_2021_111001 crossref_primary_10_1111_all_14972 crossref_primary_10_1055_s_0041_1740289 crossref_primary_10_1016_j_jprot_2021_104353 crossref_primary_10_1038_s41598_020_80464_1 crossref_primary_10_2217_fvl_2020_0330 crossref_primary_10_3389_fimmu_2021_677025 crossref_primary_10_1111_dth_14443 crossref_primary_10_1016_j_ebiom_2020_103182 crossref_primary_10_1038_s41392_021_00731_z crossref_primary_10_1016_j_mib_2024_102475 crossref_primary_10_1111_all_14983 crossref_primary_10_1111_ijlh_13479 crossref_primary_10_14341_probl12775 crossref_primary_10_1016_j_ajur_2022_12_004 crossref_primary_10_1111_all_14866 crossref_primary_10_3724_abbs_2021002 crossref_primary_10_3390_microorganisms11112660 crossref_primary_10_1038_s41598_021_02297_w crossref_primary_10_1111_1348_0421_13184 crossref_primary_10_3390_ijms25189960 crossref_primary_10_3390_vaccines9050478 crossref_primary_10_1124_molpharm_122_000587 crossref_primary_10_3389_fimmu_2022_827146 crossref_primary_10_3892_ijo_2023_5489 crossref_primary_10_1016_j_jare_2023_10_002 crossref_primary_10_3390_ijms231810725 crossref_primary_10_1111_srt_13619 crossref_primary_10_3389_fendo_2021_772865 crossref_primary_10_2217_rme_2020_0189 crossref_primary_10_2139_ssrn_3864027 crossref_primary_10_2147_COPD_S276692 crossref_primary_10_1038_s41598_021_90983_0 crossref_primary_10_1080_25785826_2022_2066251 crossref_primary_10_18093_0869_0189_2021_31_5_663_670 crossref_primary_10_31083_j_fbl2901008 crossref_primary_10_1016_j_identj_2022_11_019 crossref_primary_10_1111_all_14991 crossref_primary_10_37349_ei_2021_00011 crossref_primary_10_3390_ijerph18031093 crossref_primary_10_3390_covid4020014 crossref_primary_10_1111_all_14517 crossref_primary_10_1155_2021_6693909 crossref_primary_10_3389_fimmu_2021_683002 crossref_primary_10_1183_13993003_01881_2021 crossref_primary_10_1002_jmv_26677 crossref_primary_10_1002_iid3_404 crossref_primary_10_3390_life11121378 crossref_primary_10_1111_obr_13496 crossref_primary_10_1007_s00405_021_06883_6 |
Cites_doi | 10.1016/j.cell.2020.02.052 10.1182/blood-2017-08-802918 10.1093/jb/mvv127 10.1056/NEJMc2010419 10.1160/TH08-06-0368 10.21203/rs.3.rs-16992/v1 10.1093/emboj/19.15.3896 10.1038/nri1632 10.1002/dmrr.3325 10.1111/all.14238 10.3390/v5051250 10.7150/ijbs.6818 10.1016/S1471-4914(01)01963-3 10.1080/22221751.2020.1739565 10.1016/j.molimm.2007.09.032 10.1126/science.1260419 10.1056/NEJMc2005073 10.1038/s41598-017-03256-0 10.1042/BJ20120343 10.1086/427811 10.1074/mcp.M400207-MCP200 10.1111/jdv.16090 10.1111/jdv.16411 10.1128/JVI.00676-14 10.1002/iub.573 10.1099/vir.0.034983-0 10.1073/pnas.0502768102 10.1038/ncomms9570 10.1073/pnas.111583198 10.1080/22221751.2020.1713705 10.1093/bioinformatics/btp616 10.15585/mmwr.mm6914e4 10.1128/JVI.02168-09 10.1242/jcs.016980 10.1001/jama.2020.2648 10.1152/ajpcell.00228.2010 10.2139/ssrn.3555145 10.1016/j.jaci.2020.04.009 10.1101/2020.03.14.988345 10.1128/JVI.00702-07 10.1016/j.cell.2020.04.035 10.1002/iub.210 10.1111/all.14364 10.1111/j.1365-2249.2010.04115.x 10.1002/jmv.25936 10.1186/s12985-017-0781-x 10.1111/jdv.16544 10.1038/nature03712 10.1016/j.cell.2020.03.045 10.4014/jmb.1910.10055 10.1681/ASN.2008090957 10.1371/journal.pone.0070011 10.1038/s41591-020-0868-6 10.1101/2020.03.21.20040691 10.1189/jlb.3RU0215-045R 10.1126/science.abb2762 10.1016/j.chom.2020.02.001 10.1158/0008-5472.CAN-08-2491 10.1182/blood-2011-02-339242 10.1084/jem.20102510 10.1007/s11684-020-0754-0 10.1038/nri2818 10.1084/jem.20050828 10.1016/S0022-3476(05)80430-5 10.1158/0008-5472.CAN-11-3843 10.1111/jdv.16387 10.1093/infdis/jiv380 10.1371/journal.ppat.1002331 10.1016/j.bbrc.2007.08.192 10.1074/jbc.272.46.29174 10.1074/jbc.M708566200 10.4049/jimmunol.175.1.591 10.1006/bbrc.1994.2313 10.1016/j.cell.2015.03.023 |
ContentType | Journal Article |
Copyright | 2020 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd. 2020 EAACI and John Wiley and Sons A/S |
Copyright_xml | – notice: 2020 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd. – notice: 2020 EAACI and John Wiley and Sons A/S |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 H94 K9. 7X8 5PM |
DOI | 10.1111/all.14429 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | RADZIKOWSKA and DING ET AL |
EISSN | 1398-9995 |
EndPage | 2845 |
ExternalDocumentID | PMC7300910 32496587 10_1111_all_14429 ALL14429 |
Genre | article Journal Article |
GroupedDBID | .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 23M 24P 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8F7 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAKAS AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOETA ATUGU AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D P6G PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V9Y W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR XG1 Y6R ZGI ZXP ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7T5 AAMMB AEFGJ AGXDD AIDQK AIDYY H94 K9. 7X8 5PM |
ID | FETCH-LOGICAL-c5099-a04cf3a45712c376b46acb5a1a56b78081edb09a727ecb4ff66f5d950e39cc5d3 |
IEDL.DBID | DR2 |
ISSN | 0105-4538 1398-9995 |
IngestDate | Thu Aug 21 14:09:35 EDT 2025 Fri Jul 11 03:25:43 EDT 2025 Fri Jul 25 04:25:20 EDT 2025 Wed Feb 19 02:30:04 EST 2025 Thu Apr 24 23:09:35 EDT 2025 Tue Jul 01 04:15:14 EDT 2025 Wed Jan 22 16:59:42 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | COVID-19 COVID-19 children asthma hypertension SARS receptor obesity COPD |
Language | English |
License | 2020 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd. This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5099-a04cf3a45712c376b46acb5a1a56b78081edb09a727ecb4ff66f5d950e39cc5d3 |
Notes | Urszula Radzikowska and Mei Ding equally contributed. Abbreviations: AD, Atopic dermatitis; ALI, Air‐liquid interface cultures; BAL, Bronchoalveolar lavage; BMI, Body mass index; COPD, Chronic obstructive pulmonary disease; COVID‐19, Coronavirus disease 2019; DCs , Dendritic cells; HBECs, Human Bronchial Epithelial Cells; HCV, Hepatitis C virus; HIV, Human immunodeficiency virus; ILC, Innate lymphoid cells; MERS‐CoV, Middle East respiratory syndrome‐related coronavirus; MTCs, Monocarboxylate transporters; NFATs, Nuclear Factor of activated T cells; NK cells, Natural killer cells; nsp1; Non‐structural protein 1; PBMCs, Peripheral blood mononuclear cells; pDCs, Plasmacytoid dendritic cells; RNA‐seq, RNA‐sequencing; SARS‐CoV, Severe acute respiratory syndrome coronavirus; SARS‐CoV‐2, Severe acute respiratory syndrome coronavirus 2; Treg, T regulatory cells ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8560-3964 0000-0001-8020-019X 0000-0003-4705-3583 0000-0003-0026-8739 0000-0001-9710-6685 0000-0003-2264-7377 0000-0001-5085-5179 0000-0001-9641-2103 0000-0003-0928-8322 0000-0002-7341-9764 0000-0002-2146-2955 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7300910 |
PMID | 32496587 |
PQID | 2457932347 |
PQPubID | 34098 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7300910 proquest_miscellaneous_2409650029 proquest_journals_2457932347 pubmed_primary_32496587 crossref_primary_10_1111_all_14429 crossref_citationtrail_10_1111_all_14429 wiley_primary_10_1111_all_14429_ALL14429 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationPlace | Denmark |
PublicationPlace_xml | – name: Denmark – name: Zurich – name: Hoboken |
PublicationTitle | Allergy (Copenhagen) |
PublicationTitleAlternate | Allergy |
PublicationYear | 2020 |
Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
References | 2010; 10 2017; 7 2017; 8 2011; 118 2005; 175 2015; 347 2013; 449 1992; 120 1997; 272 2020; 2000688 2020; 14 2020; 367 2020; 323 2013; 8 2013; 5 2018; 131 2011; 208 2000; 19 2010; 26 2013; 10 2005; 102 2020; 9 2016; 159 2012; 64 2001; 98 2005; 191 2009; 69 2015; 161 2015; 6 2009; 20 2020; 382 2009; 61 2007; 363 2020; 181 2019; 34 2005; 436 2015; 98 2010; 160 2008; 121 2010; 84 2011; 7 2008; 283 2014; 88 1994; 203 2020; 75 2001; 7 2017; 14 2020; 30 2020 2005; 202 2013; 73 2011; 92 2010; 299 2005; 5 2020; 27 2005; 4 2009; 101 2008; 45 2020; 26 2007; 81 2020; 69 2016; 213 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 Zhang H (e_1_2_6_65_1) 2017; 8 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 Leung JM (e_1_2_6_60_1) 2020; 2000688 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 Watanabe M (e_1_2_6_53_1) 2020 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 33089902 - Dermatol Ther. 2020 Nov;33(6):e14443 |
References_xml | – volume: 7 start-page: 213 issue: 5 year: 2001 end-page: 221 article-title: A crucial role for CD44 in inflammation publication-title: Trends Mol Med – volume: 10 start-page: 43 issue: 1 year: 2013 end-page: 52 article-title: Important functional roles of basigin in thymocyte development and T cell activation publication-title: Int J Biol Sci – volume: 61 start-page: 591 issue: 6 year: 2009 end-page: 599 article-title: The role of the neutral amino acid transporter B0AT1 (SLC6A19) in Hartnup disorder and protein nutrition publication-title: IUBMB Life – year: 2020 article-title: SARS‐CoV‐2 receptor ACE2 is an interferon‐stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues publication-title: Cell – volume: 160 start-page: 305 issue: 3 year: 2010 end-page: 317 article-title: Cyclophilin‐CD147 interactions: a new target for anti‐inflammatory therapeutics publication-title: Clin Exp Immunol. – volume: 19 start-page: 3896 issue: 15 year: 2000 end-page: 3904 article-title: CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression publication-title: EMBO J. – volume: 436 start-page: 112 issue: 7047 year: 2005 end-page: 116 article-title: Angiotensin‐converting enzyme 2 protects from severe acute lung failure publication-title: Nature – volume: 449 start-page: 437 issue: 2 year: 2013 end-page: 448 article-title: Modulation of CD147‐induced matrix metalloproteinase activity: role of CD147 N‐glycosylation publication-title: Biochem J. – volume: 64 start-page: 1 issue: 1 year: 2012 end-page: 9 article-title: The monocarboxylate transporter family–Structure and functional characterization publication-title: IUBMB Life – volume: 26 start-page: 681 issue: 5 year: 2020 end-page: 687 article-title: SARS‐CoV‐2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes publication-title: Nat Med – year: 2020 article-title: European Task Force on Atopic Dermatitis (ETFAD) statement on severe acute respiratory syndrome coronavirus 2 (SARS‐Cov‐2)‐infection and atopic dermatitis publication-title: J Eur Acad Dermatol Venereol – volume: 102 start-page: 7499 issue: 21 year: 2005 end-page: 7504 article-title: CD147 is a regulatory subunit of the gamma‐secretase complex in Alzheimer's disease amyloid beta‐peptide production publication-title: Proc Natl Acad Sci USA. – volume: 5 start-page: 472 issue: 6 year: 2005 end-page: 484 article-title: NFAT proteins: key regulators of T‐cell development and function publication-title: Nat Rev Immunol – volume: 191 start-page: 755 issue: 5 year: 2005 end-page: 760 article-title: Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus publication-title: J Infect Dis. – volume: 69 start-page: 422 issue: 14 year: 2020 end-page: 426 article-title: Coronavirus Disease 2019 in Children ‐ United States, February 12‐April 2, 2020 publication-title: MMWR Morb Mortal Wkly Rep – volume: 181 start-page: 271 issue: 2 year: 2020 end-page: 280 article-title: SARS‐CoV‐2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor publication-title: Cell – year: 2020 article-title: Cutaneous manifestations in COVID‐19: a first perspective publication-title: J Eur Acad Dermatol Venereol – volume: 27 start-page: 325 issue: 3 year: 2020 end-page: 328 article-title: Genome Composition and Divergence of the Novel Coronavirus (2019‐nCoV) Originating in China publication-title: Cell Host Microbe. – volume: 88 start-page: 9220 issue: 16 year: 2014 end-page: 9232 article-title: Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4 publication-title: J Virol – year: 2020 article-title: Vascular skin symptoms in COVID‐19: a french observational study publication-title: J Eur Acad Dermatol Venereol – volume: 175 start-page: 591 issue: 1 year: 2005 end-page: 598 article-title: Response of memory CD8+ T cells to severe acute respiratory syndrome (SARS) coronavirus in recovered SARS patients and healthy individuals publication-title: J Immunol (Baltimore, Md: 1950) – volume: 81 start-page: 11620 issue: 21 year: 2007 end-page: 11633 article-title: Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain publication-title: J Virol. – volume: 10 start-page: 645 issue: 9 year: 2010 end-page: 656 article-title: NFAT, immunity and cancer: a transcription factor comes of age publication-title: Nat Rev Immunol – volume: 2000688 year: 2020 article-title: ACE‐2 Expression in the Small Airway Epithelia of Smokers and COPD Patients: Implications for COVID‐19 publication-title: Eur Respir J – volume: 20 start-page: 1565 issue: 7 year: 2009 end-page: 1576 article-title: The E‐selectin ligand basigin/CD147 is responsible for neutrophil recruitment in renal ischemia/reperfusion publication-title: J Am Soc Nephrol. – volume: 283 start-page: 5554 issue: 9 year: 2008 end-page: 5566 article-title: CD147 inhibits the nuclear factor of activated T‐cells by impairing Vav1 and Rac1 downstream signaling publication-title: J Biol Chem – volume: 8 issue: 7 year: 2013 article-title: Galectin‐3 induces clustering of CD147 and integrin‐beta1 transmembrane glycoprotein receptors on the RPE cell surface publication-title: PLoS One – volume: 363 start-page: 495 issue: 3 year: 2007 end-page: 499 article-title: CD147 stimulates HIV‐1 infection in a signal‐independent fashion publication-title: Biochem Biophys Res Commun. – year: 2020 article-title: SARS‐CoV‐2 can be detected in urine, blood, anal swabs and oropharyngeal swabs specimens publication-title: J Med Virol – volume: 14 start-page: 114 issue: 1 year: 2017 article-title: Cyclophilin B facilitates the replication of Orf virus publication-title: Virol J. – volume: 202 start-page: 415 issue: 3 year: 2005 end-page: 424 article-title: Multiple organ infection and the pathogenesis of SARS publication-title: J Exp Med. – volume: 26 start-page: 139 issue: 1 year: 2010 end-page: 140 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 323 start-page: 1239 issue: 13 year: 2020 article-title: Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID‐19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention publication-title: JAMA – volume: 382 start-page: 1663 issue: 17 year: 2020 end-page: 1665 article-title: SARS‐CoV‐2 Infection in Children publication-title: N Engl J Med – volume: 73 start-page: 172 issue: 1 year: 2013 end-page: 183 article-title: S100A9 is a novel ligand of EMMPRIN that promotes melanoma metastasis publication-title: Cancer Res. – volume: 7 start-page: 3501 issue: 1 year: 2017 article-title: Transcriptome analysis reveals similarities between human blood CD3(‐) CD56(bright) cells and mouse CD127(+) innate lymphoid cells publication-title: Sci Rep – volume: 272 start-page: 29174 issue: 46 year: 1997 end-page: 29180 article-title: Generation of monoclonal antibodies to integrin‐associated proteins. Evidence that alpha3beta1 complexes with EMMPRIN/basigin/OX47/M6 publication-title: J Biol Chem. – volume: 9 start-page: 155 issue: 1 year: 2020 end-page: 168 article-title: Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus publication-title: Emerg Microbes Infect – volume: 203 start-page: 1224 issue: 2 year: 1994 end-page: 1229 article-title: Regional expression of epithelial dipeptidyl peptidase IV in the human intestines publication-title: Biochem Biophys Res Commun – volume: 181 start-page: 894 issue: 4 year: 2020 end-page: 904.e9 article-title: Structural and functional basis of SARS‐CoV‐2 entry by using human ACE2 publication-title: Cell – volume: 208 start-page: 1459 issue: 7 year: 2011 end-page: 1471 article-title: Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44 publication-title: J Exp Med – volume: 367 start-page: 1444 issue: 6485 year: 2020 end-page: 1448 article-title: Structural basis for the recognition of SARS‐CoV‐2 by full‐length human ACE2 publication-title: Science – volume: 75 start-page: 1564 year: 2020 end-page: 1581 article-title: Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19 publication-title: Allergy – volume: 9 start-page: 601 issue: 1 year: 2020 end-page: 604 article-title: Emerging WuHan (COVID‐19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26 publication-title: Emerg Microbes Infect. – volume: 34 start-page: 1074 issue: 5 year: 2019 end-page: 1079 article-title: Recurrent eczema herpeticum ‐ a retrospective European multicenter study evaluating the clinical characteristics of eczema herpeticum cases in atopic dermatitis patients publication-title: J Eur Acad Dermatol Venereol – volume: 347 start-page: 1260419 issue: 6220 year: 2015 article-title: Tissue‐based map of the human proteome publication-title: Science – volume: 120 start-page: 216 issue: 2 Pt 1 year: 1992 end-page: 222 article-title: Age‐related changes in human blood lymphocyte subpopulations publication-title: J Pediatr – volume: 92 start-page: 2542 issue: Pt 11 year: 2011 end-page: 2548 article-title: Cyclosporin A inhibits the replication of diverse coronaviruses publication-title: J Gen Virol. – volume: 14 start-page: 185 issue: 2 year: 2020 end-page: 192 article-title: Single‐cell RNA‐seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019‐nCoV infection publication-title: Front Med – volume: 98 start-page: 33 issue: 1 year: 2015 end-page: 48 article-title: The role of EMMPRIN in T cell biology and immunological diseases publication-title: J Leukoc Biol – volume: 121 start-page: 487 issue: Pt 4 year: 2008 end-page: 495 article-title: A role for membrane‐bound CD147 in NOD2‐mediated recognition of bacterial cytoinvasion publication-title: J Cell Sci. – volume: 161 start-page: 817 issue: 4 year: 2015 end-page: 832 article-title: Rod‐derived cone viability factor promotes cone survival by stimulating aerobic glycolysis publication-title: Cell – year: 2020 article-title: Obesity and SARS‐CoV‐ 2: a population to safeguard publication-title: Diabetes Metab Res Rev – volume: 8 issue: 360 year: 2017 article-title: Elevated Serum Cyclophilin B Levels Are Associated with the Prevalence and Severity of Metabolic Syndrome publication-title: Front Endocrinol – volume: 75 start-page: 1730 year: 2020 end-page: 1741 article-title: Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China publication-title: Allergy – year: 2020 article-title: Association of respiratory allergy, asthma and expression of the SARS‐CoV‐2 receptor, ACE2 publication-title: J Allergy Clin Immunol – volume: 5 start-page: 1250 issue: 5 year: 2013 end-page: 1260 article-title: Suppression of coronavirus replication by cyclophilin inhibitors publication-title: Viruses – year: 2020 article-title: Clinical Characteristics of Covid‐19 in New York City publication-title: N Engl J Med. – volume: 159 start-page: 481 issue: 5 year: 2016 end-page: 490 article-title: Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners publication-title: J Biochem. – year: 2020 article-title: SARS‐CoV‐2 receptor ACE2 is an interferon‐stimulated gene in human airway epithelial cells and is enriched in specific cell subsets across tissues publication-title: SSRN Electronic Journal. – volume: 101 start-page: 682 issue: 4 year: 2009 end-page: 686 article-title: EMMPRIN (CD147) is a novel receptor for platelet GPVI and mediates platelet rolling via GPVI‐EMMPRIN interaction publication-title: Thromb Haemost. – volume: 7 issue: 10 year: 2011 article-title: The SARS‐coronavirus‐host interactome: identification of cyclophilins as target for pan‐coronavirus inhibitors publication-title: PLoS Pathog. – volume: 299 start-page: C1212 issue: 5 year: 2010 end-page: 1219 article-title: Monocyte CD147 is induced by advanced glycation end products and high glucose concentration: possible role in diabetic complications publication-title: Am J Physiol Cell Physiol – volume: 213 start-page: 904 issue: 6 year: 2016 end-page: 914 article-title: Middle east respiratory syndrome coronavirus efficiently infects human primary T Lymphocytes and activates the extrinsic and intrinsic apoptosis pathways publication-title: J Infect Dis. – year: 2020 – volume: 45 start-page: 1703 issue: 6 year: 2008 end-page: 1711 article-title: LFA‐1‐mediated leukocyte adhesion regulated by interaction of CD43 with LFA‐1 and CD147 publication-title: Mol Immunol. – volume: 118 start-page: 5141 issue: 19 year: 2011 end-page: 5151 article-title: CD147 (Basigin/Emmprin) identifies FoxP3+CD45RO+CTLA4+‐activated human regulatory T cells publication-title: Blood – volume: 6 start-page: 8570 year: 2015 article-title: The transcriptional landscape of age in human peripheral blood publication-title: Nat Commun – volume: 84 start-page: 4183 issue: 9 year: 2010 end-page: 4193 article-title: CD147/EMMPRIN acts as a functional entry receptor for measles virus on epithelial cells publication-title: J Virol. – volume: 9 start-page: 601 issue: 1 year: 2020 end-page: 604 article-title: Emerging COVID‐19 coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26 publication-title: Emerg Microbes Infect – volume: 131 start-page: 1111 issue: 10 year: 2018 end-page: 1121 article-title: Disrupting CD147‐RAP2 interaction abrogates erythrocyte invasion by Plasmodium falciparum publication-title: Blood – volume: 4 start-page: 1061 issue: 8 year: 2005 end-page: 1071 article-title: Metabolic activation‐related CD147‐CD98 complex publication-title: Mol Cell Proteomics. – volume: 30 start-page: 427 issue: 3 year: 2020 end-page: 438 article-title: Middle East Respiratory Syndrome‐Coronavirus Infection into Established hDPP4‐Transgenic Mice Accelerates Lung Damage Via Activation of the Pro‐Inflammatory Response and Pulmonary Fibrosis publication-title: J Microbiol Biotechnol – volume: 69 start-page: 1293 issue: 4 year: 2009 end-page: 1301 article-title: Hyaluronan, CD44, and emmprin regulate lactate efflux and membrane localization of monocarboxylate transporters in human breast carcinoma cells publication-title: Cancer Res – volume: 98 start-page: 6360 issue: 11 year: 2001 end-page: 6365 article-title: CD147 facilitates HIV‐1 infection by interacting with virus‐associated cyclophilin A publication-title: Proc Natl Acad Sci USA. – ident: e_1_2_6_4_1 doi: 10.1016/j.cell.2020.02.052 – ident: e_1_2_6_14_1 doi: 10.1182/blood-2017-08-802918 – ident: e_1_2_6_16_1 doi: 10.1093/jb/mvv127 – ident: e_1_2_6_23_1 doi: 10.1056/NEJMc2010419 – ident: e_1_2_6_20_1 doi: 10.1160/TH08-06-0368 – ident: e_1_2_6_7_1 doi: 10.21203/rs.3.rs-16992/v1 – ident: e_1_2_6_30_1 doi: 10.1093/emboj/19.15.3896 – ident: e_1_2_6_42_1 doi: 10.1038/nri1632 – start-page: e3325 year: 2020 ident: e_1_2_6_53_1 article-title: Obesity and SARS‐CoV‐ 2: a population to safeguard publication-title: Diabetes Metab Res Rev doi: 10.1002/dmrr.3325 – ident: e_1_2_6_2_1 doi: 10.1111/all.14238 – ident: e_1_2_6_25_1 doi: 10.3390/v5051250 – ident: e_1_2_6_39_1 doi: 10.7150/ijbs.6818 – ident: e_1_2_6_70_1 doi: 10.1016/S1471-4914(01)01963-3 – ident: e_1_2_6_75_1 doi: 10.1080/22221751.2020.1739565 – ident: e_1_2_6_35_1 doi: 10.1016/j.molimm.2007.09.032 – ident: e_1_2_6_49_1 doi: 10.1126/science.1260419 – ident: e_1_2_6_50_1 doi: 10.1056/NEJMc2005073 – ident: e_1_2_6_76_1 doi: 10.1038/s41598-017-03256-0 – ident: e_1_2_6_21_1 doi: 10.1042/BJ20120343 – ident: e_1_2_6_11_1 doi: 10.1086/427811 – ident: e_1_2_6_34_1 doi: 10.1074/mcp.M400207-MCP200 – ident: e_1_2_6_74_1 doi: 10.1111/jdv.16090 – ident: e_1_2_6_73_1 doi: 10.1111/jdv.16411 – ident: e_1_2_6_45_1 doi: 10.1128/JVI.00676-14 – ident: e_1_2_6_67_1 doi: 10.1002/iub.573 – ident: e_1_2_6_27_1 doi: 10.1099/vir.0.034983-0 – ident: e_1_2_6_38_1 doi: 10.1073/pnas.0502768102 – ident: e_1_2_6_77_1 doi: 10.1038/ncomms9570 – ident: e_1_2_6_12_1 doi: 10.1073/pnas.111583198 – ident: e_1_2_6_46_1 doi: 10.1080/22221751.2020.1713705 – ident: e_1_2_6_47_1 doi: 10.1093/bioinformatics/btp616 – ident: e_1_2_6_78_1 doi: 10.15585/mmwr.mm6914e4 – volume: 8 issue: 360 year: 2017 ident: e_1_2_6_65_1 article-title: Elevated Serum Cyclophilin B Levels Are Associated with the Prevalence and Severity of Metabolic Syndrome publication-title: Front Endocrinol – ident: e_1_2_6_13_1 doi: 10.1128/JVI.02168-09 – ident: e_1_2_6_37_1 doi: 10.1242/jcs.016980 – ident: e_1_2_6_51_1 doi: 10.1001/jama.2020.2648 – ident: e_1_2_6_64_1 doi: 10.1152/ajpcell.00228.2010 – ident: e_1_2_6_6_1 doi: 10.2139/ssrn.3555145 – ident: e_1_2_6_62_1 doi: 10.1016/j.jaci.2020.04.009 – ident: e_1_2_6_10_1 doi: 10.1101/2020.03.14.988345 – ident: e_1_2_6_24_1 doi: 10.1128/JVI.00702-07 – ident: e_1_2_6_22_1 doi: 10.1080/22221751.2020.1739565 – ident: e_1_2_6_58_1 doi: 10.1016/j.cell.2020.04.035 – ident: e_1_2_6_59_1 doi: 10.1002/iub.210 – ident: e_1_2_6_55_1 doi: 10.1111/all.14364 – ident: e_1_2_6_17_1 doi: 10.1111/j.1365-2249.2010.04115.x – ident: e_1_2_6_63_1 doi: 10.1002/jmv.25936 – ident: e_1_2_6_26_1 doi: 10.1186/s12985-017-0781-x – ident: e_1_2_6_72_1 doi: 10.1111/jdv.16544 – ident: e_1_2_6_61_1 doi: 10.1038/nature03712 – ident: e_1_2_6_56_1 doi: 10.1016/j.cell.2020.03.045 – ident: e_1_2_6_44_1 doi: 10.4014/jmb.1910.10055 – ident: e_1_2_6_19_1 doi: 10.1681/ASN.2008090957 – ident: e_1_2_6_36_1 doi: 10.1371/journal.pone.0070011 – volume: 2000688 year: 2020 ident: e_1_2_6_60_1 article-title: ACE‐2 Expression in the Small Airway Epithelia of Smokers and COPD Patients: Implications for COVID‐19 publication-title: Eur Respir J – ident: e_1_2_6_57_1 doi: 10.1038/s41591-020-0868-6 – ident: e_1_2_6_15_1 doi: 10.1101/2020.03.21.20040691 – ident: e_1_2_6_66_1 doi: 10.1189/jlb.3RU0215-045R – ident: e_1_2_6_5_1 doi: 10.1126/science.abb2762 – ident: e_1_2_6_3_1 doi: 10.1016/j.chom.2020.02.001 – ident: e_1_2_6_32_1 doi: 10.1158/0008-5472.CAN-08-2491 – ident: e_1_2_6_43_1 doi: 10.1182/blood-2011-02-339242 – ident: e_1_2_6_69_1 doi: 10.1084/jem.20102510 – ident: e_1_2_6_48_1 doi: 10.1007/s11684-020-0754-0 – ident: e_1_2_6_41_1 doi: 10.1038/nri2818 – ident: e_1_2_6_9_1 doi: 10.1084/jem.20050828 – ident: e_1_2_6_52_1 doi: 10.1016/S0022-3476(05)80430-5 – ident: e_1_2_6_18_1 doi: 10.1158/0008-5472.CAN-11-3843 – ident: e_1_2_6_54_1 doi: 10.1111/jdv.16387 – ident: e_1_2_6_8_1 doi: 10.1093/infdis/jiv380 – ident: e_1_2_6_28_1 doi: 10.1371/journal.ppat.1002331 – ident: e_1_2_6_29_1 doi: 10.1016/j.bbrc.2007.08.192 – ident: e_1_2_6_33_1 doi: 10.1074/jbc.272.46.29174 – ident: e_1_2_6_40_1 doi: 10.1074/jbc.M708566200 – ident: e_1_2_6_71_1 doi: 10.4049/jimmunol.175.1.591 – ident: e_1_2_6_68_1 doi: 10.1006/bbrc.1994.2313 – ident: e_1_2_6_31_1 doi: 10.1016/j.cell.2015.03.023 – reference: 33089902 - Dermatol Ther. 2020 Nov;33(6):e14443 |
SSID | ssj0007290 |
Score | 2.7014344 |
Snippet | Background
Morbidity and mortality from COVID‐19 caused by novel coronavirus SARS‐CoV‐2 is accelerating worldwide, and novel clinical presentations of COVID‐19... Morbidity and mortality from COVID-19 caused by novel coronavirus SARS-CoV-2 is accelerating worldwide, and novel clinical presentations of COVID-19 are often... BackgroundMorbidity and mortality from COVID‐19 caused by novel coronavirus SARS‐CoV‐2 is accelerating worldwide, and novel clinical presentations of COVID‐19... ACE2 and TMPRSS2 expression is unique for the epithelial barrier sites, whereas CD147, cyclophilins, and CD26 are expressed in both, epithelial and immune... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2829 |
SubjectTerms | ACE2 Adolescent Adult Age Age Factors Aged Alveoli Angiotensin-converting enzyme 2 Angiotensin-Converting Enzyme 2 - genetics Angiotensin-Converting Enzyme 2 - immunology Asthma Asthma - epidemiology Asthma - genetics Asthma - immunology Atopic dermatitis Basigin - genetics Basigin - immunology Biopsy Bronchus CD147 antigen CD4 antigen CD8 antigen Child Child, Preschool Children Chronic Disease - epidemiology Chronic obstructive pulmonary disease Comorbidity COPD COVID-19 COVID-19 - epidemiology COVID-19 - genetics COVID-19 - immunology COVID‐19 children Dipeptidyl Peptidase 4 - genetics Dipeptidyl Peptidase 4 - immunology Dipeptidyl-peptidase IV Epithelial cells Epithelium Female Gender Gene expression Gene Expression - genetics Humans Hypertension Hypertension - epidemiology Hypertension - genetics Hypertension - immunology Immunity, Innate - immunology Infant Leukocytes (mononuclear) Leukocytes (neutrophilic) Lymphocytes B Lymphocytes T Male Middle Aged Monocytes Morbidity Obesity Obesity - epidemiology Obesity - genetics Obesity - immunology Original ORIGINAL ARTICLES Pulmonary Disease, Chronic Obstructive - epidemiology Pulmonary Disease, Chronic Obstructive - genetics Pulmonary Disease, Chronic Obstructive - immunology Ribonucleic acid Risk Factors RNA SARS receptor SARS-CoV-2 - genetics SARS-CoV-2 - immunology Severe acute respiratory syndrome coronavirus 2 Skin diseases Young Adult |
Title | Distribution of ACE2, CD147, CD26, and other SARS‐CoV‐2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID‐19 risk factors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fall.14429 https://www.ncbi.nlm.nih.gov/pubmed/32496587 https://www.proquest.com/docview/2457932347 https://www.proquest.com/docview/2409650029 https://pubmed.ncbi.nlm.nih.gov/PMC7300910 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAXXoWy0CIXceCwqfKwEyJOq2yrgvpAfakHpMh2HO2KrYO62QsnfgK_qD-GX8KM7YQuBQn1slnJ4ziOZ-wv9sw3hLzRXNfVO6WCKtcYksNUIGAVDnSkZJ3WsOYmGI18cJjunbGPF_xihbzvYmEcP0S_4YaWYedrNHAh5zeMXMxmeDIZY_Ae-mohIDr-TR2V-f0VwA8BA6v2rELoxdPXXF6LbgHM236SN_GrXYB2H5LP3aM7v5Mv24tWbqtvf7A63rFvj8gDD0zpyGnSY7KizRNy78Afva-R6zFS7PrsWLSp6ajYiYe0GEcsw0ucDqkwFbURXfRkdHzy8_uPojmH35gKrwS6opcuH6-e06mhrR32ua04xUgVTfEkwZa5CE1XZOAO7eRSQENHn8ZD2rh0BkM6gc_oK-uE3xjXfnF0_mEMjUY5Rbd56hMKPSVnuzunxV7gkz8EiiNrqAiZqhPBeBbFCmZByVKhJBeR4KnMMF-IrmSYC8BfWklW1yloVpXzUCe5UrxKnpFV0xj9nFCWQFUuwhDEmE650JlKM8EA-QqkmxuQt50alMozo2OCjlnZfSHBeJR2PAbkdS_61dGB_E1oo9Ol0s8I8zKGngBWTlg2IFt9MdgyvlZhdLNAGeTiwYPSAVl3qte3AsAXeXqgdraklL0A8oQvl5jpxPKFY0oCQIXQTatz_37wcrS_b_-8-H_Rl-R-jFsQNjxzg6y2Vwu9CTitla-sQf4CiRQ73w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELZKkYAL_9BAAYM4cMhW-2PvshKXaNMqhaRF_VMvaOX1epWoqRc1mwsnHoEn4mF4EmZs79JQkBCXJJLH8Xo9Y3-2Z74h5LXiqirfSumVqcKQHCY9AauwpwJZVHEFa26E0ciTvXh0zN6f8tM18q6NhbH8EN2BG1qGma_RwPFA-pKVi_kcrybD9Bq5jhm9zYbq4Bd5VOJOWABBeAzs2vEKoR9PV3V1NboCMa96Sl5GsGYJ2rlDPrUPbz1PzraWTbElv_zG6_i_vbtLbjtsSgdWme6RNaXvkxsTd_v-gHwfIsuuS5BF64oOsu2wT7NhwBL8CuM-FbqkJqiLHg4ODn98_ZbVJ_AZUuH0QJX03KbkVQs607QxI78wFWcYrKIoXiaYMhukaYs0_EMzPRfQ0P7HYZ_WNqNBn05hJ31h_PBrbdvP9k92h9BokFL0nKcup9BDcryzfZSNPJf_wZMciUOFz2QVCcaTIJQwERYsFrLgIhA8LhJMGaLKwk8FQDAlC1ZVMShXmXJfRamUvIwekXVda7VBKIugKhe-D2JMxVyoRMaJYAB-BTLO9cibVg9y6cjRMUfHPG83STAeuRmPHnnViX62jCB_EtpslSl3k8IiD6EnAJcjlvTIy64YzBlfq9CqXqIM0vHgXWmPPLa617UC2BepeqB2sqKVnQBSha-W6NnUUIZjVgIAhtBNo3R_f_B8MB6bH0_-XfQFuTk6mozz8e7eh6fkVognEiZac5OsNxdL9QxgW1M8N9b5ExfOP_o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKkSou5Z9uKWAQBw6bKj920ojTKumqhe2PWlr1gBQ5jqNddZtU3eyFE4_AE_EwfZLO2E7oUpAQl81KHsdxPGN_sWe-IeS94qostqR0ilhhSA6TjoBV2FGezMuwhDU3wGjkvf1w54R9OuNnS-RjGwtj-CG6DTe0DD1fo4FfFuUtIxfTKZ5M-vE9cp-F7haqdHr0izsqshssACAcBmZtaYXQjaerurgY3UGYdx0lbwNYvQINH5Kv7bMbx5PzzXmTb8pvv9E6_mfnHpFVi0zpwKjSY7KkqidkZc-evT8lP1Pk2LXpsWhd0kGy7fdpknoswosf9qmoCqpDuujx4Oj4-vuPpD6FX58KqwWqoBcmIa-a0UlFGz3uM11xgqEqiuJRgi4zIZqmqII7NOMLAQ0dHKZ9Wpt8Bn06hu_oK-2FX1em_eTgdDeFRr2Yot88tRmFnpGT4faXZMex2R8cyZE2VLhMloFgPPJ8CdNgzkIhcy48wcM8woQhqsjdWAAAUzJnZRmCahUxd1UQS8mL4DlZrupKrRHKAqjKheuCGFMhFyqSYSQYQF-BfHM98qFVg0xaanTM0DHN2k8kGI9Mj0ePvOtELw0fyJ-ENlpdyuyUMMt86AmA5YBFPfK2KwZjxtcqKlXPUQbJePCktEdeGNXrWgHki0Q9UDtaUMpOAInCF0uqyVgThmNOAoCF0E2tc39_8GwwGuk_6_8u-oasHKbDbLS7__kleeDjdoQO1dwgy83VXL0CzNbkr7Vt3gBP8z6y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distribution+of+ACE2%2C+CD147%2C+CD26%2C+and+other+SARS%E2%80%90CoV%E2%80%902+associated+molecules+in+tissues+and+immune+cells+in+health+and+in+asthma%2C+COPD%2C+obesity%2C+hypertension%2C+and+COVID%E2%80%9019+risk+factors&rft.jtitle=Allergy+%28Copenhagen%29&rft.au=Radzikowska%2C+Urszula&rft.au=Ding%2C+Mei&rft.au=Tan%2C+Ge&rft.au=Zhakparov%2C+Damir&rft.date=2020-11-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0105-4538&rft.eissn=1398-9995&rft.volume=75&rft.issue=11&rft.spage=2829&rft.epage=2845&rft_id=info:doi/10.1111%2Fall.14429&rft_id=info%3Apmid%2F32496587&rft.externalDocID=PMC7300910 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0105-4538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0105-4538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0105-4538&client=summon |