Resting state connectivity differences in eyes open versus eyes closed conditions

Functional magnetic resonance imaging data are commonly collected during the resting state. Resting state functional magnetic resonance imaging (rs‐fMRI) is very practical and applicable for a wide range of study populations. Rs‐fMRI is usually collected in at least one of three different conditions...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 40; no. 8; pp. 2488 - 2498
Main Authors Agcaoglu, Oktay, Wilson, Tony W., Wang, Yu‐Ping, Stephen, Julia, Calhoun, Vince D.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.06.2019
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.24539

Cover

Loading…
Abstract Functional magnetic resonance imaging data are commonly collected during the resting state. Resting state functional magnetic resonance imaging (rs‐fMRI) is very practical and applicable for a wide range of study populations. Rs‐fMRI is usually collected in at least one of three different conditions/tasks, eyes closed (EC), eyes open (EO), or eyes fixated on an object (EO‐F). Several studies have shown that there are significant condition‐related differences in the acquired data. In this study, we compared the functional network connectivity (FNC) differences assessed via group independent component analysis on a large rs‐fMRI dataset collected in both EC and EO‐F conditions, and also investigated the effect of covariates (e.g., age, gender, and social status score). Our results indicated that task condition significantly affected a wide range of networks; connectivity of visual networks to themselves and other networks was increased during EO‐F, while EC was associated with increased connectivity of auditory and sensorimotor networks to other networks. In addition, the association of FNC with age, gender, and social status was observed to be significant only in the EO‐F condition (though limited as well). However, statistical analysis did not reveal any significant effect of interaction between eyes status and covariates. These results indicate that resting‐state condition is an important variable that may limit the generalizability of clinical findings using rs‐fMRI.
AbstractList Functional magnetic resonance imaging data are commonly collected during the resting state. Resting state functional magnetic resonance imaging (rs‐fMRI) is very practical and applicable for a wide range of study populations. Rs‐fMRI is usually collected in at least one of three different conditions/tasks, eyes closed (EC), eyes open (EO), or eyes fixated on an object (EO‐F). Several studies have shown that there are significant condition‐related differences in the acquired data. In this study, we compared the functional network connectivity (FNC) differences assessed via group independent component analysis on a large rs‐fMRI dataset collected in both EC and EO‐F conditions, and also investigated the effect of covariates (e.g., age, gender, and social status score). Our results indicated that task condition significantly affected a wide range of networks; connectivity of visual networks to themselves and other networks was increased during EO‐F, while EC was associated with increased connectivity of auditory and sensorimotor networks to other networks. In addition, the association of FNC with age, gender, and social status was observed to be significant only in the EO‐F condition (though limited as well). However, statistical analysis did not reveal any significant effect of interaction between eyes status and covariates. These results indicate that resting‐state condition is an important variable that may limit the generalizability of clinical findings using rs‐fMRI.
Functional magnetic resonance imaging data are commonly collected during the resting state. Resting state functional magnetic resonance imaging (rs-fMRI) is very practical and applicable for a wide range of study populations. Rs-fMRI is usually collected in at least one of three different conditions/tasks, eyes closed (EC), eyes open (EO), or eyes fixated on an object (EO-F). Several studies have shown that there are significant condition-related differences in the acquired data. In this study, we compared the functional network connectivity (FNC) differences assessed via group independent component analysis on a large rs-fMRI dataset collected in both EC and EO-F conditions, and also investigated the effect of covariates (e.g., age, gender, and social status score). Our results indicated that task condition significantly affected a wide range of networks; connectivity of visual networks to themselves and other networks was increased during EO-F, while EC was associated with increased connectivity of auditory and sensorimotor networks to other networks. In addition, the association of FNC with age, gender, and social status was observed to be significant only in the EO-F condition (though limited as well). However, statistical analysis did not reveal any significant effect of interaction between eyes status and covariates. These results indicate that resting-state condition is an important variable that may limit the generalizability of clinical findings using rs-fMRI.Functional magnetic resonance imaging data are commonly collected during the resting state. Resting state functional magnetic resonance imaging (rs-fMRI) is very practical and applicable for a wide range of study populations. Rs-fMRI is usually collected in at least one of three different conditions/tasks, eyes closed (EC), eyes open (EO), or eyes fixated on an object (EO-F). Several studies have shown that there are significant condition-related differences in the acquired data. In this study, we compared the functional network connectivity (FNC) differences assessed via group independent component analysis on a large rs-fMRI dataset collected in both EC and EO-F conditions, and also investigated the effect of covariates (e.g., age, gender, and social status score). Our results indicated that task condition significantly affected a wide range of networks; connectivity of visual networks to themselves and other networks was increased during EO-F, while EC was associated with increased connectivity of auditory and sensorimotor networks to other networks. In addition, the association of FNC with age, gender, and social status was observed to be significant only in the EO-F condition (though limited as well). However, statistical analysis did not reveal any significant effect of interaction between eyes status and covariates. These results indicate that resting-state condition is an important variable that may limit the generalizability of clinical findings using rs-fMRI.
Author Stephen, Julia
Agcaoglu, Oktay
Wang, Yu‐Ping
Wilson, Tony W.
Calhoun, Vince D.
AuthorAffiliation 5 Department of Electrical and Computer Engineering University of New Mexico Albuquerque New Mexico
2 Department of Neurological Sciences University of Nebraska Medical Center Omaha Nebraska
3 Department of Biomedical Engineering Tulane University New Orleans Louisiana
4 Department of Global Biostatistics and Data Science Tulane University New Orleans Louisiana
1 The Mind Research Network Albuquerque New Mexico
AuthorAffiliation_xml – name: 1 The Mind Research Network Albuquerque New Mexico
– name: 2 Department of Neurological Sciences University of Nebraska Medical Center Omaha Nebraska
– name: 4 Department of Global Biostatistics and Data Science Tulane University New Orleans Louisiana
– name: 5 Department of Electrical and Computer Engineering University of New Mexico Albuquerque New Mexico
– name: 3 Department of Biomedical Engineering Tulane University New Orleans Louisiana
Author_xml – sequence: 1
  givenname: Oktay
  orcidid: 0000-0003-4062-0557
  surname: Agcaoglu
  fullname: Agcaoglu, Oktay
  email: oagcaoglu@mrn.org
  organization: The Mind Research Network
– sequence: 2
  givenname: Tony W.
  orcidid: 0000-0002-5053-8306
  surname: Wilson
  fullname: Wilson, Tony W.
  organization: University of Nebraska Medical Center
– sequence: 3
  givenname: Yu‐Ping
  surname: Wang
  fullname: Wang, Yu‐Ping
  organization: Tulane University
– sequence: 4
  givenname: Julia
  surname: Stephen
  fullname: Stephen, Julia
  organization: The Mind Research Network
– sequence: 5
  givenname: Vince D.
  surname: Calhoun
  fullname: Calhoun, Vince D.
  organization: University of New Mexico
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30720907$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P3DAQhi1ExVd76B-oIvVSDoFxHMfxpRIgKJVAqFV7thJ7AkZZe7GTrfbf43SXFSDBxWPZz7zz8e6TbecdEvKZwhEFKI7v2tlRUXImt8geBSlyoJJtT_eK57IUdJfsx3gPQCkHukN2GYgCJIg98us3xsG62ywOzYCZ9s6hHuzCDsvM2K7DgE5jzKzLcJmin6PLFhjiGFcPuvcRzZRo7GC9ix_Jh67pI35axwPy9-L8z9llfnXz4-fZyVWuOUiZcwRsippXAljLRGqtNlTz0qBA3glpZF02NS1bAx0XWrdcG6ENciGMEYyzA_J9pTsf2xkajW4ITa_mwc6asFS-serlj7N36tYvVFVXnHOZBL6tBYJ_GNMa1MxGjX3fOPRjVAUVkrOClVOtr6_Qez8Gl8ZTxYRVkI5EfXne0aaVp20n4HAF6OBjDNhtEApqclIlJ9V_JxN7_IrVNlmUNpyGsf17Gf9sj8u3pdXl6fUq4xET27Aa
CitedBy_id crossref_primary_10_1016_j_jneumeth_2020_108985
crossref_primary_10_1007_s00213_023_06479_4
crossref_primary_10_1016_j_clinph_2024_03_036
crossref_primary_10_1016_j_yebeh_2020_107013
crossref_primary_10_1111_psyp_13594
crossref_primary_10_1016_j_neuroimage_2021_117864
crossref_primary_10_1038_s41598_023_32599_0
crossref_primary_10_1016_j_jneumeth_2021_109202
crossref_primary_10_3389_fnins_2023_1078995
crossref_primary_10_1089_brain_2019_0700
crossref_primary_10_1111_acer_15046
crossref_primary_10_3389_fnsys_2021_724805
crossref_primary_10_1016_j_neubiorev_2022_104689
crossref_primary_10_3389_fnins_2019_01190
crossref_primary_10_3389_fncir_2020_570583
crossref_primary_10_1016_j_jad_2021_09_062
crossref_primary_10_1002_mrm_28690
crossref_primary_10_1016_j_neuroimage_2023_120480
crossref_primary_10_1038_s41598_020_66100_y
crossref_primary_10_1016_j_neuropsychologia_2022_108216
crossref_primary_10_7554_eLife_87992
crossref_primary_10_3389_fnhum_2021_689488
crossref_primary_10_1002_hbm_26746
crossref_primary_10_1016_j_nicl_2022_103073
crossref_primary_10_1016_j_schres_2020_11_055
crossref_primary_10_2463_mrms_mp_2022_0010
crossref_primary_10_1093_braincomms_fcae476
crossref_primary_10_1002_hbm_26142
crossref_primary_10_1002_hbm_26543
crossref_primary_10_1016_j_neuroimage_2022_119424
crossref_primary_10_3389_fnhum_2021_649074
crossref_primary_10_1016_j_nicl_2024_103585
crossref_primary_10_1016_j_jpsychires_2023_11_044
crossref_primary_10_1007_s10803_022_05772_z
crossref_primary_10_1016_j_jneumeth_2024_110138
crossref_primary_10_15212_RADSCI_2023_0008
crossref_primary_10_1016_j_neuroimage_2020_116998
crossref_primary_10_1016_j_nicl_2023_103382
crossref_primary_10_1093_cercor_bhac512
crossref_primary_10_1016_j_bja_2023_10_037
crossref_primary_10_1109_TMI_2021_3131142
crossref_primary_10_1186_s11689_021_09390_1
crossref_primary_10_1007_s40519_023_01617_5
crossref_primary_10_1007_s10548_020_00792_3
crossref_primary_10_1016_j_neuroimage_2019_116425
crossref_primary_10_1038_s41386_020_0624_0
crossref_primary_10_1016_j_nicl_2020_102356
crossref_primary_10_1016_j_pscychresns_2020_111068
crossref_primary_10_3389_fnins_2023_1163111
crossref_primary_10_1002_eat_23212
crossref_primary_10_1016_j_neuroimage_2020_117674
crossref_primary_10_1016_j_ynirp_2021_100054
crossref_primary_10_1002_hbm_26525
crossref_primary_10_1007_s00062_022_01170_1
crossref_primary_10_1007_s11060_021_03706_w
crossref_primary_10_1016_j_neuroimage_2023_120275
crossref_primary_10_1093_cercor_bhad464
crossref_primary_10_1038_s41598_021_91976_9
crossref_primary_10_3389_fcomm_2021_719652
crossref_primary_10_1016_j_neuroimage_2023_120155
crossref_primary_10_1523_JNEUROSCI_1020_23_2023
crossref_primary_10_1016_j_nicl_2023_103556
crossref_primary_10_1017_S0954579423001013
crossref_primary_10_1038_s41598_020_66083_w
crossref_primary_10_1002_brb3_1905
crossref_primary_10_1016_j_jpsychires_2021_09_004
crossref_primary_10_3389_fnint_2023_1272529
crossref_primary_10_1007_s12021_022_09617_z
crossref_primary_10_1162_jocn_a_02065
crossref_primary_10_1016_j_nicl_2025_103733
crossref_primary_10_1016_j_neures_2020_10_004
crossref_primary_10_1016_j_pscychresns_2022_111489
crossref_primary_10_3389_fneur_2022_960760
crossref_primary_10_1016_j_jneumeth_2022_109537
crossref_primary_10_1093_cercor_bhaa367
crossref_primary_10_1093_cercor_bhab335
crossref_primary_10_1002_hbm_25458
crossref_primary_10_1038_s41598_022_19106_7
crossref_primary_10_1007_s00429_023_02612_3
crossref_primary_10_1016_j_ajp_2023_103498
crossref_primary_10_1016_j_neunet_2023_11_027
crossref_primary_10_3390_brainsci11050599
crossref_primary_10_1038_s41598_024_68532_2
crossref_primary_10_1111_ene_15233
crossref_primary_10_1016_j_nicl_2023_103345
crossref_primary_10_1016_j_neuroimage_2020_117647
crossref_primary_10_3390_brainsci13010122
crossref_primary_10_1016_j_neuroimage_2021_118852
crossref_primary_10_1016_j_jneumeth_2021_109424
crossref_primary_10_1089_brain_2020_0768
crossref_primary_10_3174_ajnr_A8067
crossref_primary_10_1002_advs_202306321
crossref_primary_10_1093_alcalc_agab079
crossref_primary_10_1016_j_dcn_2020_100836
crossref_primary_10_1016_j_ijpsycho_2022_01_003
crossref_primary_10_1002_hbm_26213
crossref_primary_10_1088_2632_072X_adab5c
crossref_primary_10_1016_j_neuroimage_2022_118925
crossref_primary_10_3390_e26030213
crossref_primary_10_3390_brainsci11121590
crossref_primary_10_1016_j_neuroimage_2021_118503
crossref_primary_10_1016_j_neuroscience_2023_08_022
crossref_primary_10_1177_10870547251315230
crossref_primary_10_1016_j_neuroimage_2021_118865
crossref_primary_10_1016_j_neuroimage_2020_117230
crossref_primary_10_1016_j_neuroimage_2023_120217
crossref_primary_10_1089_brain_2020_0997
crossref_primary_10_1016_j_neuroimage_2024_120914
Cites_doi 10.1007/s10548-017-0546-2
10.1002/mrm.1910340409
10.1007/s12021-013-9187-0
10.1007/s11682-015-9463-8
10.1016/j.neuroimage.2015.07.044
10.1016/j.neuroimage.2010.05.053
10.1016/j.neuroimage.2010.08.063
10.3389/fnsys.2011.00002
10.1006/nimg.2001.0869
10.1093/biostatistics/kxm045
10.1093/cercor/bhs352
10.1016/j.neuroimage.2018.05.071
10.1002/hbm.23086
10.1371/journal.pone.0005743
10.1016/j.neuron.2014.10.015
10.1016/j.neuroimage.2017.11.033
10.1002/hbm.24064
10.1152/jn.00783.2009
10.1093/brain/awm121
10.1162/neco.1995.7.6.1129
10.1016/j.neuroimage.2013.04.013
10.1007/s11682-017-9718-7
10.1002/hbm.21170
10.1016/j.neuroimage.2017.06.075
10.1177/1971400917697342
10.1016/j.neuroimage.2012.11.008
10.1109/RBME.2012.2211076
10.1002/hbm.1048
10.1109/TBME.2011.2167149
10.1016/j.neuroimage.2004.03.027
10.3389/fnins.2017.00249
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.24539
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Agcaoglu et al
EISSN 1097-0193
EndPage 2498
ExternalDocumentID PMC6865559
30720907
10_1002_hbm_24539
HBM24539
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: P20GM103472; R01EB020407
– fundername: NIH HHS
  grantid: R01EB020407
– fundername: NIH HHS
  grantid: P20GM103472
– fundername: ;
  grantid: P20GM103472; R01EB020407
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
.Y3
31~
7X7
8FI
8FJ
AAFWJ
AANHP
AAYXX
ABEML
ABJNI
ABUWG
ACBWZ
ACCMX
ACRPL
ACSCC
ACYXJ
ADNMO
AFKRA
AFPKN
AGQPQ
ASPBG
AVWKF
AZFZN
BENPR
CCPQU
CITATION
FEDTE
FYUFA
GAKWD
HF~
HMCUK
HVGLF
LW6
M6M
PHGZM
PHGZT
RIWAO
RJQFR
SAMSI
UKHRP
WXSBR
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5099-5e0ea2856703b370118d1c54de7e5f79d984a814bd0f57ccb5cd7cde577dd7353
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 14:11:57 EDT 2025
Fri Jul 11 05:02:15 EDT 2025
Sat Jul 26 02:20:17 EDT 2025
Wed Feb 19 02:30:39 EST 2025
Tue Jul 01 01:10:53 EDT 2025
Thu Apr 24 23:10:11 EDT 2025
Wed Jan 22 16:34:36 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords independent component analysis
resting state fMRI
functional network connectivity
eyes closed
eyes open
Language English
License 2019 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5099-5e0ea2856703b370118d1c54de7e5f79d984a814bd0f57ccb5cd7cde577dd7353
Notes Funding information
National Institutes of Health, Grant/Award Numbers: P20GM103472, R01EB020407
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information National Institutes of Health, Grant/Award Numbers: P20GM103472, R01EB020407
ORCID 0000-0002-5053-8306
0000-0003-4062-0557
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.24539?download=true
PMID 30720907
PQID 2217960179
PQPubID 996345
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6865559
proquest_miscellaneous_2179532345
proquest_journals_2217960179
pubmed_primary_30720907
crossref_primary_10_1002_hbm_24539
crossref_citationtrail_10_1002_hbm_24539
wiley_primary_10_1002_hbm_24539_HBM24539
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 1, 2019
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 1, 2019
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2004; 22
2013; 69
2010; 103
1995; 34
2015; 121
2016; 10
2008; 9
2014; 24
2011; 32
2011; 54
2002
2011; 58
2001; 22
2014; 84
2011; 5
2016; 37
1995; 7
2017; 30
2018; 170
2013; 11
2013; 78
2018; 0
2017; 11
2018; 178
2007; 130
2009; 4
2018; 12
2018; 180
2018; 31
2012; 5
2001; 14
2010; 52
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Cetin M. (e_1_2_8_13_1) 2016; 10
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Cordes D. (e_1_2_8_14_1) 2001; 22
e_1_2_8_30_1
References_xml – volume: 11
  start-page: 469
  issue: 4
  year: 2013
  end-page: 476
  article-title: Eyes‐open/eyes‐closed dataset sharing for reproducibility evaluation of resting state fMRI data analysis methods
  publication-title: Neuroinformatics
– volume: 5
  start-page: 2
  year: 2011
  article-title: A baseline for the multivariate comparison of resting‐state networks
  publication-title: Frontiers in Systems Neuroscience
– volume: 37
  start-page: 1005
  issue: 3
  year: 2016
  end-page: 1025
  article-title: Artifact removal in the context of group ICA: A comparison of single‐subject and group approaches
  publication-title: Human Brain Mapping
– volume: 180
  start-page: 594
  issue: Pt B
  year: 2018
  end-page: 608
  article-title: Dynamic effective connectivity in resting state fMRI
  publication-title: NeuroImage
– volume: 24
  start-page: 663
  issue: 3
  year: 2014
  end-page: 676
  article-title: Tracking whole‐brain connectivity dynamics in the resting state
  publication-title: Cerebral Cortex
– volume: 0
  start-page: 3127
  issue: 0
  year: 2018
  end-page: 3142
  article-title: Connectivity dynamics in typical development and its relationship to autistic traits and autism spectrum disorder
  publication-title: Human Brain Mapping
– volume: 22
  start-page: 1326
  issue: 7
  year: 2001
  end-page: 1333
  article-title: Frequencies contributing to functional connectivity in the cerebral cortex in "resting‐state" data
  publication-title: AJNR. American Journal of Neuroradiology
– volume: 22
  start-page: 1214
  issue: 3
  year: 2004
  end-page: 1222
  article-title: Validating the independent components of neuroimaging time series via clustering and visualization
  publication-title: NeuroImage
– volume: 58
  start-page: 3406
  issue: 12
  year: 2011
  end-page: 3417
  article-title: Automatic identification of functional clusters in FMRI data using spatial dependence
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 178
  start-page: 687
  year: 2018
  end-page: 701
  article-title: A longitudinal model for functional connectivity networks using resting‐state fMRI
  publication-title: NeuroImage
– volume: 7
  start-page: 1129
  issue: 6
  year: 1995
  end-page: 1159
  article-title: An information maximization approach to blind separation and blind Deconvolution
  publication-title: Neural Computation
– volume: 84
  start-page: 262
  issue: 2
  year: 2014
  end-page: 274
  article-title: The chronnectome: Time‐varying connectivity networks as the next frontier in fMRI data discovery
  publication-title: Neuron
– volume: 121
  start-page: 91
  year: 2015
  end-page: 105
  article-title: Reliability comparison of spontaneous brain activities between BOLD and CBF contrasts in eyes‐open and eyes‐closed resting states
  publication-title: NeuroImage
– volume: 130
  start-page: 2085
  issue: Pt 8
  year: 2007
  end-page: 2096
  article-title: Whole brain functional connectivity in the early blind
  publication-title: Brain
– volume: 32
  start-page: 2075
  issue: 12
  year: 2011
  end-page: 2095
  article-title: Comparison of multi‐subject ICA methods for analysis of fMRI data
  publication-title: Human Brain Mapping
– volume: 5
  start-page: 60
  year: 2012
  end-page: 73
  article-title: Multisubject independent component analysis of fMRI: A decade of intrinsic networks, default mode, and neurodiagnostic discovery
  publication-title: IEEE Reviews in Biomedical Engineering
– volume: 34
  start-page: 537
  issue: 4
  year: 1995
  end-page: 541
  article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI
  publication-title: Magnetic Resonance in Medicine
– volume: 69
  start-page: 157
  year: 2013
  end-page: 197
  article-title: Group information guided ICA for fMRI data analysis
  publication-title: NeuroImage
– volume: 14
  start-page: 709
  issue: 3
  year: 2001
  end-page: 722
  article-title: Motion correction algorithms may create spurious brain activations in the absence of subject motion
  publication-title: NeuroImage
– volume: 78
  start-page: 463
  year: 2013
  end-page: 473
  article-title: The effect of resting condition on resting‐state fMRI reliability and consistency: A comparison between resting with eyes open, closed, and fixated
  publication-title: NeuroImage
– volume: 10
  start-page: 1004
  issue: 4
  year: 2016
  end-page: 1014
  article-title: Increased spatial granularity of left brain activation and unique age/gender signatures: A 4D frequency domain approach to cerebral lateralization at rest
  publication-title: Brain Imaging and Behavior
– year: 2002
– volume: 30
  start-page: 305
  issue: 4
  year: 2017
  end-page: 317
  article-title: Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks
  publication-title: The Neuroradiology Journal
– volume: 54
  start-page: 875
  issue: 2
  year: 2011
  end-page: 891
  article-title: Network modelling methods for FMRI
  publication-title: NeuroImage
– volume: 9
  start-page: 432
  issue: 3
  year: 2008
  end-page: 441
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Biostatistics
– volume: 11
  start-page: 249
  year: 2017
  article-title: Improving the test‐retest reliability of resting state fMRI by removing the impact of sleep
  publication-title: Frontiers in Neuroscience
– volume: 170
  start-page: 83
  year: 2018
  end-page: 94
  article-title: Connectopic mapping with resting‐state fMRI
  publication-title: NeuroImage
– volume: 103
  start-page: 297
  issue: 1
  year: 2010
  end-page: 321
  article-title: Intrinsic functional connectivity as a tool for human connectomics: Theory, properties, and optimization
  publication-title: Journal of Neurophysiology
– volume: 10
  issue: 466
  year: 2016
  article-title: Multimodal classification of schizophrenia patients with MEG and fMRI data using static and dynamic connectivity measures
  publication-title: Frontiers in Neuroscience
– volume: 12
  start-page: 615
  issue: 3
  year: 2018
  end-page: 630
  article-title: Decreased hemispheric connectivity and decreased intra‐ and inter‐ hemisphere asymmetry of resting state functional network connectivity in schizophrenia
  publication-title: Brain Imaging and Behavior
– volume: 31
  start-page: 101
  issue: 1
  year: 2018
  end-page: 116
  article-title: EEG signatures of dynamic functional network connectivity states
  publication-title: Brain Topography
– volume: 14
  start-page: 140
  issue: 3
  year: 2001
  end-page: 151
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Human Brain Mapping
– volume: 4
  start-page: e5743
  issue: 5
  year: 2009
  article-title: Spontaneous brain activity in the default mode network is sensitive to different resting‐state conditions with limited cognitive load
  publication-title: PLoS One
– volume: 52
  start-page: 1252
  issue: 4
  year: 2010
  end-page: 1260
  article-title: Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: A concurrent EEG‐fMRI study
  publication-title: NeuroImage
– ident: e_1_2_8_4_1
  doi: 10.1007/s10548-017-0546-2
– ident: e_1_2_8_8_1
  doi: 10.1002/mrm.1910340409
– ident: e_1_2_8_23_1
  doi: 10.1007/s12021-013-9187-0
– ident: e_1_2_8_3_1
  doi: 10.1007/s11682-015-9463-8
– ident: e_1_2_8_35_1
  doi: 10.1016/j.neuroimage.2015.07.044
– ident: e_1_2_8_33_1
  doi: 10.1016/j.neuroimage.2010.05.053
– ident: e_1_2_8_29_1
  doi: 10.1016/j.neuroimage.2010.08.063
– ident: e_1_2_8_6_1
  doi: 10.3389/fnsys.2011.00002
– ident: e_1_2_8_18_1
  doi: 10.1006/nimg.2001.0869
– ident: e_1_2_8_19_1
  doi: 10.1093/biostatistics/kxm045
– ident: e_1_2_8_5_1
  doi: 10.1093/cercor/bhs352
– ident: e_1_2_8_21_1
  doi: 10.1016/j.neuroimage.2018.05.071
– ident: e_1_2_8_15_1
  doi: 10.1002/hbm.23086
– ident: e_1_2_8_34_1
  doi: 10.1371/journal.pone.0005743
– ident: e_1_2_8_11_1
  doi: 10.1016/j.neuron.2014.10.015
– ident: e_1_2_8_26_1
  doi: 10.1016/j.neuroimage.2017.11.033
– ident: e_1_2_8_28_1
  doi: 10.1002/hbm.24064
– ident: e_1_2_8_31_1
  doi: 10.1152/jn.00783.2009
– ident: e_1_2_8_24_1
  doi: 10.1093/brain/awm121
– ident: e_1_2_8_7_1
  doi: 10.1162/neco.1995.7.6.1129
– ident: e_1_2_8_27_1
  doi: 10.1016/j.neuroimage.2013.04.013
– ident: e_1_2_8_2_1
  doi: 10.1007/s11682-017-9718-7
– ident: e_1_2_8_17_1
  doi: 10.1002/hbm.21170
– ident: e_1_2_8_20_1
  doi: 10.1016/j.neuroimage.2017.06.075
– ident: e_1_2_8_30_1
  doi: 10.1177/1971400917697342
– volume: 22
  start-page: 1326
  issue: 7
  year: 2001
  ident: e_1_2_8_14_1
  article-title: Frequencies contributing to functional connectivity in the cerebral cortex in "resting‐state" data
  publication-title: AJNR. American Journal of Neuroradiology
– volume: 10
  issue: 466
  year: 2016
  ident: e_1_2_8_13_1
  article-title: Multimodal classification of schizophrenia patients with MEG and fMRI data using static and dynamic connectivity measures
  publication-title: Frontiers in Neuroscience
– ident: e_1_2_8_16_1
  doi: 10.1016/j.neuroimage.2012.11.008
– ident: e_1_2_8_9_1
  doi: 10.1109/RBME.2012.2211076
– ident: e_1_2_8_12_1
– ident: e_1_2_8_10_1
  doi: 10.1002/hbm.1048
– ident: e_1_2_8_25_1
  doi: 10.1109/TBME.2011.2167149
– ident: e_1_2_8_22_1
  doi: 10.1016/j.neuroimage.2004.03.027
– ident: e_1_2_8_32_1
  doi: 10.3389/fnins.2017.00249
SSID ssj0011501
Score 2.581976
Snippet Functional magnetic resonance imaging data are commonly collected during the resting state. Resting state functional magnetic resonance imaging (rs‐fMRI) is...
Functional magnetic resonance imaging data are commonly collected during the resting state. Resting state functional magnetic resonance imaging (rs-fMRI) is...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2488
SubjectTerms Adolescent
Brain - diagnostic imaging
Brain - physiology
Child
Connectome - methods
Connectome - standards
Data acquisition
Datasets as Topic
Eye
Eye (anatomy)
eyes closed
eyes open
Female
Fixation, Ocular - physiology
Functional magnetic resonance imaging
functional network connectivity
Humans
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - standards
Independent component analysis
Magnetic Resonance Imaging
Male
Nerve Net - diagnostic imaging
Nerve Net - physiology
Networks
NMR
Nuclear magnetic resonance
Population studies
Resonance
resting state fMRI
Sensorimotor system
Social classes
Social interactions
Statistical analysis
Visual Perception - physiology
Title Resting state connectivity differences in eyes open versus eyes closed conditions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24539
https://www.ncbi.nlm.nih.gov/pubmed/30720907
https://www.proquest.com/docview/2217960179
https://www.proquest.com/docview/2179532345
https://pubmed.ncbi.nlm.nih.gov/PMC6865559
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KH8QXra0fV1tZRaQvueY2O7cJPlWxHMIJFgt9EMJ-nS22OfHuHupf78xuknpWQXxJQnbCbnZnZmeSmd8AvCydJz6wmPncF5nyxmYV5iELpZMyGMQw4mzk6Yfx5FS9P8OzDXjd5cIkfIj-gxtLRtTXLODGLg5vQEPP7dVQKiw4eY9jtdggOumho9jQic4WbbFZRRq4QxXK5WH_5PpedMvAvB0n-av9Gjeg4_vwuRt6ijv5Olwt7dD9-A3V8T_fbQvutYapOEqc9AA2QrMNO0cNOeVX1-KViKGi8Rv8NtyZtn_kd-DjCcN0NF9EzEwSjuNmXKpIIbriK6SKxEUjwjWduVqX4FCQ1SLdcJfzRfD8oE_RYw_h9Pjdp7eTrC3TkDlkfE8MeTCyxDEpD1toTmX1I4fKBx1wpitflcqUI2V9PkPtnEXntfMBtfZeF1g8gs1m3oQnIJQ0ys_IxUHpVZCmzMvKFI6sviIoO9MDOOgWrHYthjmX0risE_qyrGnm6jhzA3jRk35LwB1_ItrrVr1uZXdRS_LSyK-jwwCe980kdfwrxTRhviIaakUalcIBPE5M0vdCWlPmVU6D1Wvs0xMwovd6S3NxHpG9x5wmjNTvQeSOvw-8nryZxovdfyd9CnfJ2qtSnNsebC6_r8I-WVRL-yyKzk-Q1R5b
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDLfGkIAXPjY-DgYEhNBeeuul8aWVeBkf0wG7SUybtJepaj6OTWw9xN09jL8eO2kLx0BCvLRV4yppazt2Yv8M8CK3jvjAYOJSlyXKVSYpMPWJz62UvkL0A85GHu8NR4fqwxEercCrNhcm4kN0C24sGUFfs4DzgvTWT9TQE3Pelwqz4gpc5YreXL_g7X4HHsWmTnC3aJJNCtLBLa5QKre6R5dno0sm5uVIyV8t2DAF7dyC43bwMfLkS38xN337_Tdcx_99u9tws7FNxXZkpjuw4us1WN-uyS8_vxAvRYgWDcvwa3Bt3GzKr8OnfUbqqD-LkJwkLIfO2FiUQrT1V0gbidNa-As6c8EuwdEgi1m8Yc-mM-_4QRcDyO7C4c67gzejpKnUkFhkiE_0qa9kjkPSHybTnM3qBhaV89rjRBeuyFWVD5Rx6QS1tQat09Z51No5nWF2D1brae0fgFCyUm5CXg5Kp7ys8jQvqsyS4Zd5ZSa6B5vtHyttA2PO1TTOygjALEv6cmX4cj143pF-jdgdfyLaaH972YjvrJTkqJFrR4cePOuaSfB4N6Wq_XRBNNSKNCqFPbgfuaTrhRSnTIuUBquX-KcjYFDv5Zb69CSAew85Uxip383AHn8feDl6PQ4XD_-d9ClcHx2Md8vd93sfH8ENMv6KGPa2Aavzbwv_mAysuXkS5OgHUjgidQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8gJMQXFVA4RFyNMbz06G13btv4hMDl_DiiRBIeSJruR4UAPeLdPeBf7-xuWz3RxPjSNt1pdrs7MzvTzvwG4FWqDfGBwsjEJomEKVSUYWwjm2rObYFoey4beXTUH56I96d4ugBvmlyYgA_RfnBzkuH1tRPwG1Pu_gQNPVfXXS4wye7BkuiTsDiL6LjFjnKWjve2aI-NMlLBDaxQzHfbR-c3ozsW5t1AyV8NWL8DDR7CWTP2EHhy2Z1NVVd__w3W8T9f7hE8qC1TthdYaQUWbLUKa3sVeeXXt-w187Gi_iP8KiyP6l_ya_D52OF0VF-ZT01i2gXO6FCSgjXVV0gXsYuK2Vs6u3JdzMWCzCbhhr4aT6xxD5oQPvYYTgaHX_aHUV2nIdLoAD7RxrbgKfZJe6hEulxW09MojJUWS5mZLBVF2hPKxCVKrRVqI7WxKKUxMsHkCSxW48puABO8EKYkHwe5EZYXaZxmRaLJ7EusUKXswE6zYLmuQcxdLY2rPMAv85xmLvcz14GXLelNQO74E9FWs-p5LbyTnJObRo4dHTrwom0msXP_UorKjmdEQ61IoxLYgfXAJG0vpDZ5nMU0WDnHPi2Bg_Seb6kuzj20d9_lCSP1u-O54-8Dz4dvR_5i899Jn8Pyp4NB_vHd0YencJ8svyzEvG3B4vTbzD4j62qqtr0U_QD3sCEt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resting+state+connectivity+differences+in+eyes+open+versus+eyes+closed+conditions&rft.jtitle=Human+brain+mapping&rft.au=Agcaoglu%2C+Oktay&rft.au=Wilson%2C+Tony+W.&rft.au=Wang%2C+Yu%E2%80%90Ping&rft.au=Stephen%2C+Julia&rft.date=2019-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=40&rft.issue=8&rft.spage=2488&rft.epage=2498&rft_id=info:doi/10.1002%2Fhbm.24539&rft_id=info%3Apmid%2F30720907&rft.externalDocID=PMC6865559
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon