A phantom study comparing radial trajectories for accelerated cardiac 4D flow MRI against a particle imaging velocimetry reference

Purpose Radial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual‐velocity encoding (Venc) assessment of slow flow in the left ventricle (LV). Here, two radial trajectories are compared in vitro for this application: 3D radial (phase‐contrast vastly undersampled isotr...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 86; no. 1; pp. 363 - 371
Main Authors Corrado, Philip A., Medero, Rafael, Johnson, Kevin M., François, Christopher J., Roldán‐Alzate, Alejandro, Wieben, Oliver
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Radial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual‐velocity encoding (Venc) assessment of slow flow in the left ventricle (LV). Here, two radial trajectories are compared in vitro for this application: 3D radial (phase‐contrast vastly undersampled isotropic projection, PC‐VIPR) versus stack of stars (phase‐contrast stack of stars, PC‐SOS), with benchtop particle imaging velocimetry (PIV) serving as a reference standard. Methods The study contained three steps: (1) Construction of an MRI‐ and PIV‐compatible LV model from a healthy adult’s CT images. (2) In vitro PIV using a pulsatile flow pump. (3) In vitro dual‐Venc 4D flow MRI using PC‐VIPR and PC‐SOS (two repeat experiments). Each MR image set was retrospectively undersampled to five effective scan durations and compared with the PIV reference. The root‐mean‐square velocity vector difference (RMSE) between MRI and PIV images was compared, along with kinetic energy (KE) and wall shear stress (WSS). Results RMSE increased as scan time decreased for both MR acquisitions. RMSE was 3% lower in PC‐SOS images than PC‐VIPR images in 30‐min scans (3.8 vs. 3.9 cm/s) but 98% higher in 2.5‐min scans (9.5 vs. 4.8 cm/s). PIV intrasession repeatability showed a RMSE of 4.4 cm/s, reflecting beat‐to‐beat flow variation, while MRI had intersession RMSEs of 3.8/3.5 cm/s for VIPR/SOS, respectively. Speed, KE, and WSS were overestimated voxel‐wise in 30‐min MRI scans relative to PIV by 0.4/0.3 cm/s, 0.2/0.1 μJ/mL, and 36/43 mPa, respectively, for VIPR/SOS. Conclusions PIV is feasible for application‐specific 4D flow MRI protocol optimization. PC‐VIPR is better‐suited to dual‐Venc LV imaging with short scan times.
AbstractList Radial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual-velocity encoding (Venc) assessment of slow flow in the left ventricle (LV). Here, two radial trajectories are compared in vitro for this application: 3D radial (phase-contrast vastly undersampled isotropic projection, PC-VIPR) versus stack of stars (phase-contrast stack of stars, PC-SOS), with benchtop particle imaging velocimetry (PIV) serving as a reference standard.PURPOSERadial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual-velocity encoding (Venc) assessment of slow flow in the left ventricle (LV). Here, two radial trajectories are compared in vitro for this application: 3D radial (phase-contrast vastly undersampled isotropic projection, PC-VIPR) versus stack of stars (phase-contrast stack of stars, PC-SOS), with benchtop particle imaging velocimetry (PIV) serving as a reference standard.The study contained three steps: (1) Construction of an MRI- and PIV-compatible LV model from a healthy adult's CT images. (2) In vitro PIV using a pulsatile flow pump. (3) In vitro dual-Venc 4D flow MRI using PC-VIPR and PC-SOS (two repeat experiments). Each MR image set was retrospectively undersampled to five effective scan durations and compared with the PIV reference. The root-mean-square velocity vector difference (RMSE) between MRI and PIV images was compared, along with kinetic energy (KE) and wall shear stress (WSS).METHODSThe study contained three steps: (1) Construction of an MRI- and PIV-compatible LV model from a healthy adult's CT images. (2) In vitro PIV using a pulsatile flow pump. (3) In vitro dual-Venc 4D flow MRI using PC-VIPR and PC-SOS (two repeat experiments). Each MR image set was retrospectively undersampled to five effective scan durations and compared with the PIV reference. The root-mean-square velocity vector difference (RMSE) between MRI and PIV images was compared, along with kinetic energy (KE) and wall shear stress (WSS).RMSE increased as scan time decreased for both MR acquisitions. RMSE was 3% lower in PC-SOS images than PC-VIPR images in 30-min scans (3.8 vs. 3.9 cm/s) but 98% higher in 2.5-min scans (9.5 vs. 4.8 cm/s). PIV intrasession repeatability showed a RMSE of 4.4 cm/s, reflecting beat-to-beat flow variation, while MRI had intersession RMSEs of 3.8/3.5 cm/s for VIPR/SOS, respectively. Speed, KE, and WSS were overestimated voxel-wise in 30-min MRI scans relative to PIV by 0.4/0.3 cm/s, 0.2/0.1 μJ/mL, and 36/43 mPa, respectively, for VIPR/SOS.RESULTSRMSE increased as scan time decreased for both MR acquisitions. RMSE was 3% lower in PC-SOS images than PC-VIPR images in 30-min scans (3.8 vs. 3.9 cm/s) but 98% higher in 2.5-min scans (9.5 vs. 4.8 cm/s). PIV intrasession repeatability showed a RMSE of 4.4 cm/s, reflecting beat-to-beat flow variation, while MRI had intersession RMSEs of 3.8/3.5 cm/s for VIPR/SOS, respectively. Speed, KE, and WSS were overestimated voxel-wise in 30-min MRI scans relative to PIV by 0.4/0.3 cm/s, 0.2/0.1 μJ/mL, and 36/43 mPa, respectively, for VIPR/SOS.PIV is feasible for application-specific 4D flow MRI protocol optimization. PC-VIPR is better-suited to dual-Venc LV imaging with short scan times.CONCLUSIONSPIV is feasible for application-specific 4D flow MRI protocol optimization. PC-VIPR is better-suited to dual-Venc LV imaging with short scan times.
Radial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual-velocity encoding (Venc) assessment of slow flow in the left ventricle (LV). Here, two radial trajectories are compared in vitro for this application: 3D radial (phase-contrast vastly undersampled isotropic projection, PC-VIPR) versus stack of stars (phase-contrast stack of stars, PC-SOS), with benchtop particle imaging velocimetry (PIV) serving as a reference standard. The study contained three steps: (1) Construction of an MRI- and PIV-compatible LV model from a healthy adult's CT images. (2) In vitro PIV using a pulsatile flow pump. (3) In vitro dual-Venc 4D flow MRI using PC-VIPR and PC-SOS (two repeat experiments). Each MR image set was retrospectively undersampled to five effective scan durations and compared with the PIV reference. The root-mean-square velocity vector difference (RMSE) between MRI and PIV images was compared, along with kinetic energy (KE) and wall shear stress (WSS). RMSE increased as scan time decreased for both MR acquisitions. RMSE was 3% lower in PC-SOS images than PC-VIPR images in 30-min scans (3.8 vs. 3.9 cm/s) but 98% higher in 2.5-min scans (9.5 vs. 4.8 cm/s). PIV intrasession repeatability showed a RMSE of 4.4 cm/s, reflecting beat-to-beat flow variation, while MRI had intersession RMSEs of 3.8/3.5 cm/s for VIPR/SOS, respectively. Speed, KE, and WSS were overestimated voxel-wise in 30-min MRI scans relative to PIV by 0.4/0.3 cm/s, 0.2/0.1 μJ/mL, and 36/43 mPa, respectively, for VIPR/SOS. PIV is feasible for application-specific 4D flow MRI protocol optimization. PC-VIPR is better-suited to dual-Venc LV imaging with short scan times.
PurposeRadial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual‐velocity encoding (Venc) assessment of slow flow in the left ventricle (LV). Here, two radial trajectories are compared in vitro for this application: 3D radial (phase‐contrast vastly undersampled isotropic projection, PC‐VIPR) versus stack of stars (phase‐contrast stack of stars, PC‐SOS), with benchtop particle imaging velocimetry (PIV) serving as a reference standard.MethodsThe study contained three steps: (1) Construction of an MRI‐ and PIV‐compatible LV model from a healthy adult’s CT images. (2) In vitro PIV using a pulsatile flow pump. (3) In vitro dual‐Venc 4D flow MRI using PC‐VIPR and PC‐SOS (two repeat experiments). Each MR image set was retrospectively undersampled to five effective scan durations and compared with the PIV reference. The root‐mean‐square velocity vector difference (RMSE) between MRI and PIV images was compared, along with kinetic energy (KE) and wall shear stress (WSS).ResultsRMSE increased as scan time decreased for both MR acquisitions. RMSE was 3% lower in PC‐SOS images than PC‐VIPR images in 30‐min scans (3.8 vs. 3.9 cm/s) but 98% higher in 2.5‐min scans (9.5 vs. 4.8 cm/s). PIV intrasession repeatability showed a RMSE of 4.4 cm/s, reflecting beat‐to‐beat flow variation, while MRI had intersession RMSEs of 3.8/3.5 cm/s for VIPR/SOS, respectively. Speed, KE, and WSS were overestimated voxel‐wise in 30‐min MRI scans relative to PIV by 0.4/0.3 cm/s, 0.2/0.1 μJ/mL, and 36/43 mPa, respectively, for VIPR/SOS.ConclusionsPIV is feasible for application‐specific 4D flow MRI protocol optimization. PC‐VIPR is better‐suited to dual‐Venc LV imaging with short scan times.
Purpose Radial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual‐velocity encoding (Venc) assessment of slow flow in the left ventricle (LV). Here, two radial trajectories are compared in vitro for this application: 3D radial (phase‐contrast vastly undersampled isotropic projection, PC‐VIPR) versus stack of stars (phase‐contrast stack of stars, PC‐SOS), with benchtop particle imaging velocimetry (PIV) serving as a reference standard. Methods The study contained three steps: (1) Construction of an MRI‐ and PIV‐compatible LV model from a healthy adult’s CT images. (2) In vitro PIV using a pulsatile flow pump. (3) In vitro dual‐Venc 4D flow MRI using PC‐VIPR and PC‐SOS (two repeat experiments). Each MR image set was retrospectively undersampled to five effective scan durations and compared with the PIV reference. The root‐mean‐square velocity vector difference (RMSE) between MRI and PIV images was compared, along with kinetic energy (KE) and wall shear stress (WSS). Results RMSE increased as scan time decreased for both MR acquisitions. RMSE was 3% lower in PC‐SOS images than PC‐VIPR images in 30‐min scans (3.8 vs. 3.9 cm/s) but 98% higher in 2.5‐min scans (9.5 vs. 4.8 cm/s). PIV intrasession repeatability showed a RMSE of 4.4 cm/s, reflecting beat‐to‐beat flow variation, while MRI had intersession RMSEs of 3.8/3.5 cm/s for VIPR/SOS, respectively. Speed, KE, and WSS were overestimated voxel‐wise in 30‐min MRI scans relative to PIV by 0.4/0.3 cm/s, 0.2/0.1 μJ/mL, and 36/43 mPa, respectively, for VIPR/SOS. Conclusions PIV is feasible for application‐specific 4D flow MRI protocol optimization. PC‐VIPR is better‐suited to dual‐Venc LV imaging with short scan times.
Author François, Christopher J.
Johnson, Kevin M.
Corrado, Philip A.
Medero, Rafael
Wieben, Oliver
Roldán‐Alzate, Alejandro
Author_xml – sequence: 1
  givenname: Philip A.
  orcidid: 0000-0002-1510-8247
  surname: Corrado
  fullname: Corrado, Philip A.
  email: pcorrado2@wisc.edu
  organization: University of Wisconsin‐Madison
– sequence: 2
  givenname: Rafael
  surname: Medero
  fullname: Medero, Rafael
  organization: University of Wisconsin‐Madison
– sequence: 3
  givenname: Kevin M.
  surname: Johnson
  fullname: Johnson, Kevin M.
  organization: University of Wisconsin‐Madison
– sequence: 4
  givenname: Christopher J.
  surname: François
  fullname: François, Christopher J.
  organization: University of Wisconsin‐Madison
– sequence: 5
  givenname: Alejandro
  surname: Roldán‐Alzate
  fullname: Roldán‐Alzate, Alejandro
  organization: University of Wisconsin‐Madison
– sequence: 6
  givenname: Oliver
  surname: Wieben
  fullname: Wieben, Oliver
  organization: University of Wisconsin‐Madison
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33547658$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rFDEYxoNU7LZ68AtIwIsepk0yyUzmIpRqtdBFKHoOmcw72yyZZE0yLXv1k5vt1qIFPeWQ3_vw_DlCBz54QOg1JSeUEHY6xemEyaaTz9CCCsYqJjp-gBak5aSqaccP0VFKa0JI17X8BTqsa8HbRsgF-nmGNzfa5zDhlOdhi02YNjpav8JRD1Y7nKNeg8khWkh4DBFrY8BB1BkGbHQskMH8Ix5duMPL60usV9r6lLHGRShb4wDbSa92krfggrET5LjFEUaI4A28RM9H7RK8eniP0feLT9_Ov1RXXz9fnp9dVUaQTlYN4VySvpctK847CQMdCRl7SdqeCF3CCV0qKDX0rKeCaBg5jETXhHLaNFAfow973c3cTzAY8CWaU5tY3MWtCtqqv3-8vVGrcKskJR2r6yLw7kEghh8zpKwmm0oXTnsIc1KMy5YKwSQv6Nsn6DrM0Zd4ipU0rKFt2xbqzZ-OHq38nqcA7_eAiSGl0tgjQonaTa_K9Op--sKePmGNzTrbsAtj3f8u7qyD7b-l1fJ6ub_4Bd_lwNE
CitedBy_id crossref_primary_10_1002_mrm_29978
crossref_primary_10_1152_ajpheart_00824_2020
crossref_primary_10_3389_fphy_2022_963807
crossref_primary_10_1007_s10334_024_01164_9
crossref_primary_10_2463_mrms_rev_2021_0105
crossref_primary_10_1002_mp_16255
crossref_primary_10_1115_1_4065110
Cites_doi 10.1177/0284185118784981
10.1002/jmri.25111
10.1002/jmri.25595
10.1016/j.neuroimage.2006.01.015
10.1016/j.ijnurstu.2009.10.001
10.1186/s12880-019-0404-7
10.1136/heartjnl-2012-301962
10.1002/mrm.1910330119
10.1007/s10439-016-1602-x
10.1186/1532-429X-13-55
10.1152/ajpheart.00942.2011
10.1109/42.774166
10.1186/s12968-018-0483-6
10.1002/jmri.23632
10.1002/jmri.22079
10.1007/s13239-019-00417-2
10.1016/j.jbiomech.2018.04.030
10.1186/s12968-015-0174-5
10.1109/TMI.2006.885337
10.1002/(SICI)1522-2594(200004)43:4<503::AID-MRM3>3.0.CO;2-0
10.1007/s00348-006-0212-z
10.1186/s12968-015-0172-7
10.1002/jmri.23501
10.1002/mrm.10212
10.1002/jmri.23588
10.1093/ehjci/jey121
10.1002/mrm.21763
10.1007/s10439-018-02109-9
10.1002/mrm.21837
10.1002/mrm.25683
10.1002/mrm.21778
10.1002/jmri.25668
10.1148/ryct.2020190126
10.1007/s13239-018-00377-z
10.1016/S0049-3848(09)70140-9
ContentType Journal Article
Copyright 2021 International Society for Magnetic Resonance in Medicine
2021 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2021 International Society for Magnetic Resonance in Medicine
– notice: 2021 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.28698
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Biochemistry Abstracts 1

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 371
ExternalDocumentID PMC8109233
33547658
10_1002_mrm_28698
MRM28698
Genre technicalNote
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Heart, Lung, And Blood Institute of the National Institutes of Health
  funderid: F31HL144020
– fundername: GE Healthcare
– fundername: NHLBI NIH HHS
  grantid: F31 HL144020
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c5098-604480bb87265898ed1f00fb807b05a0005a698869b2b150aef4ef0a3014166e3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 18:14:57 EDT 2025
Fri Jul 11 08:32:18 EDT 2025
Fri Jul 25 12:11:55 EDT 2025
Mon Jul 21 06:00:25 EDT 2025
Tue Jul 01 04:26:59 EDT 2025
Thu Apr 24 23:06:15 EDT 2025
Wed Aug 20 07:26:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords phantom
radial
dual-Venc
flow
validation
non-cartesian
Language English
License 2021 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5098-604480bb87265898ed1f00fb807b05a0005a698869b2b150aef4ef0a3014166e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1510-8247
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8109233
PMID 33547658
PQID 2509261777
PQPubID 1016391
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8109233
proquest_miscellaneous_2487155284
proquest_journals_2509261777
pubmed_primary_33547658
crossref_primary_10_1002_mrm_28698
crossref_citationtrail_10_1002_mrm_28698
wiley_primary_10_1002_mrm_28698_MRM28698
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 31
2015; 17
2006; 31
2009; 61
2019; 10
2000; 43
1995; 33
2017; 46
2016; 75
2019; 19
2011; 13
2012; 36
2005; 26
2012; 35
2012; 302
2018; 20
2012; 98
2018; 46
2018; 9
2002; 48
2006; 41
2019; 60
2010; 47
2020; 2
2019; 20
1999; 18
2016; 43
2009; 123
2018; 74
2008; 60
2007; 26
2016; 44
e_1_2_8_28_1
e_1_2_8_29_1
Gu T (e_1_2_8_15_1) 2005; 26
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 123
  start-page: S30
  year: 2009
  end-page: S34
  article-title: Pathophysiology of venous thrombosis
  publication-title: Thromb Res
– volume: 9
  start-page: 674
  year: 2018
  end-page: 687
  article-title: In vitro validation of 4D flow MRI for local pulse wave velocity estimation
  publication-title: Cardiovasc Eng Technol
– volume: 36
  start-page: 1015
  year: 2012
  end-page: 1036
  article-title: 4D flow MRI
  publication-title: J Magn Reson Imaging
– volume: 60
  start-page: 327
  year: 2019
  end-page: 337
  article-title: Validation and reproducibility of cardiovascular 4D‐flow MRI from two vendors using 2 × 2 parallel imaging acceleration in pulsatile flow phantom and in vivo with and without respiratory gating
  publication-title: Acta radiol
– volume: 41
  start-page: 933
  year: 2006
  end-page: 947
  article-title: Tomographic particle image velocimetry
  publication-title: Exp Fluids
– volume: 47
  start-page: 931
  year: 2010
  end-page: 936
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Int J Nurs Stud
– volume: 60
  start-page: 1329
  year: 2008
  end-page: 1336
  article-title: Improved 3D phase contrast MRI with off‐resonance corrected dual echo VIPR
  publication-title: Magn Reson Med
– volume: 26
  start-page: 68
  year: 2007
  end-page: 76
  article-title: An optimal radial profile order based on the golden ratio for time‐resolved MRI
  publication-title: IEEE Trans Med Imaging
– volume: 60
  start-page: 1218
  year: 2008
  end-page: 1231
  article-title: Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters
  publication-title: Magn Reson Med
– volume: 26
  start-page: 743
  year: 2005
  end-page: 749
  article-title: PC VIPR: A high‐speed 3D phase‐contrast method for flow quantification and high‐resolution angiography
  publication-title: Am J Neuroradiol
– volume: 75
  start-page: 1064
  year: 2016
  end-page: 1075
  article-title: Independent validation of four‐dimensional flow MR velocities and vortex ring volume using particle imaging velocimetry and planar laser‐Induced fluorescence
  publication-title: Magn Reson Med
– volume: 19
  start-page: 1
  year: 2019
  end-page: 10
  article-title: Reduced regional flow in the left ventricle after anterior acute myocardial infarction: a case control study using 4D flow MRI
  publication-title: BMC Med Imaging
– volume: 302
  start-page: H893
  year: 2012
  end-page: H900
  article-title: Quantification of left and right ventricular kinetic energy using four‐dimensional intracardiac magnetic resonance imaging flow measurements
  publication-title: AJP Hear Circ Physiol
– volume: 98
  start-page: 1743
  year: 2012
  end-page: 1749
  article-title: Left ventricular thrombus formation after acute myocardial infarction
  publication-title: Heart
– volume: 33
  start-page: 122
  year: 1995
  end-page: 126
  article-title: Three‐point phase‐contrast velocity measurements with increased velocity‐to‐noise ratio
  publication-title: Magn Reson Med
– volume: 20
  start-page: 1
  year: 2018
  end-page: 15
  article-title: Left ventricular blood flow kinetic energy after myocardial infarction—insights from 4D flow cardiovascular magnetic resonance
  publication-title: J Cardiovasc Magn Reson
– volume: 18
  start-page: 385
  year: 1999
  end-page: 392
  article-title: Resampling of data between arbitrary grids using convolution interpolation
  publication-title: IEEE Trans Med Imaging
– volume: 35
  start-page: 1462
  year: 2012
  end-page: 1471
  article-title: Four‐dimensional phase contrast MRI with accelerated dual velocity encoding
  publication-title: J Magn Reson Imaging
– volume: 10
  start-page: 500
  year: 2019
  end-page: 507
  article-title: Fabrication of low‐cost patient‐specific vascular models for particle image velocimetry
  publication-title: Cardiovasc Eng Technol
– volume: 20
  start-page: 108
  year: 2019
  end-page: 117
  article-title: Left ventricular thrombus formation in myocardial infarction is associated with altered left ventricular blood flow energetics
  publication-title: Eur Heart J Cardiovasc Imaging
– volume: 43
  start-page: 503
  year: 2000
  end-page: 509
  article-title: Phase‐contrast with interleaved undersampled projections
  publication-title: Magn Reson Med
– volume: 61
  start-page: 354
  year: 2009
  end-page: 363
  article-title: Temporal stability of adaptive 3D radial MRI using multidimensional golden means
  publication-title: Magn Reson Med
– volume: 17
  start-page: 1
  year: 2015
  end-page: 26
  article-title: Cardiovascular magnetic resonance phase contrast imaging
  publication-title: J Cardiovasc Magn Reson
– volume: 46
  start-page: 102
  year: 2017
  end-page: 114
  article-title: Accelerated dual‐venc 4D flow MRI for neurovascular applications
  publication-title: J Magn Reson Imaging
– volume: 74
  start-page: 116
  year: 2018
  end-page: 125
  article-title: Assessment of human left ventricle flow using statistical shape modelling and computational fluid dynamics
  publication-title: J Biomech
– volume: 17
  start-page: 72
  year: 2015
  article-title: 4D flow cardiovascular magnetic resonance consensus statement
  publication-title: J Cardiovasc Magn Reson
– volume: 48
  start-page: 297
  year: 2002
  end-page: 305
  article-title: Time‐resolved contrast‐enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory
  publication-title: Magn Reson Med
– volume: 35
  start-page: 518
  year: 2012
  end-page: 527
  article-title: High resolution three‐dimensional cine phase contrast MRI of small intracranial aneurysms using a stack of stars k‐space trajectory
  publication-title: J Magn Reson Imaging
– volume: 13
  start-page: 1
  year: 2011
  end-page: 7
  article-title: Quantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or k‐t BLAST: head to head comparison and validation at 1.5 T and 3 T
  publication-title: J Cardiovasc Magn Reson
– volume: 44
  start-page: 3202
  year: 2016
  end-page: 3214
  article-title: Accuracy of 4D flow measurement of cerebrospinal fluid dynamics in the cervical spine: an in vitro verification against numerical simulation
  publication-title: Ann Biomed Eng
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  article-title: User‐guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
– volume: 46
  start-page: 1516
  year: 2017
  end-page: 1525
  article-title: Image‐based background phase error correction in 4D flow MRI revisited
  publication-title: J Magn Reson Imaging
– volume: 2
  year: 2020
  article-title: Mitral valve flow and myocardial motion assessed with dual‐echo dual‐velocity cardiac MRI
  publication-title: Radiol Cardiothorac Imaging
– volume: 31
  start-page: 579
  year: 2010
  end-page: 588
  article-title: Hepatic vascular flow measurements by phase contrast MRI and doppler echography: a comparative and reproducibility study
  publication-title: J Magn Reson Imaging
– volume: 43
  start-page: 1386
  year: 2016
  end-page: 1397
  article-title: Vortex‐ring mixing as a measure of diastolic function of the human heart: phantom validation and initial observations in healthy volunteers and patients with heart failure
  publication-title: J Magn Reson Imaging
– volume: 46
  start-page: 2112
  year: 2018
  end-page: 2122
  article-title: Comparison of 4D flow MRI and particle image velocimetry using an in vitro carotid bifurcation model
  publication-title: Ann Biomed Eng
– ident: e_1_2_8_21_1
  doi: 10.1177/0284185118784981
– ident: e_1_2_8_24_1
  doi: 10.1002/jmri.25111
– ident: e_1_2_8_11_1
  doi: 10.1002/jmri.25595
– ident: e_1_2_8_31_1
  doi: 10.1016/j.neuroimage.2006.01.015
– ident: e_1_2_8_35_1
  doi: 10.1016/j.ijnurstu.2009.10.001
– ident: e_1_2_8_5_1
  doi: 10.1186/s12880-019-0404-7
– ident: e_1_2_8_8_1
  doi: 10.1136/heartjnl-2012-301962
– ident: e_1_2_8_10_1
  doi: 10.1002/mrm.1910330119
– ident: e_1_2_8_17_1
  doi: 10.1007/s10439-016-1602-x
– ident: e_1_2_8_18_1
  doi: 10.1186/1532-429X-13-55
– ident: e_1_2_8_34_1
  doi: 10.1152/ajpheart.00942.2011
– ident: e_1_2_8_32_1
  doi: 10.1109/42.774166
– ident: e_1_2_8_6_1
  doi: 10.1186/s12968-018-0483-6
– ident: e_1_2_8_3_1
  doi: 10.1002/jmri.23632
– ident: e_1_2_8_19_1
  doi: 10.1002/jmri.22079
– ident: e_1_2_8_26_1
  doi: 10.1007/s13239-019-00417-2
– ident: e_1_2_8_37_1
  doi: 10.1016/j.jbiomech.2018.04.030
– ident: e_1_2_8_2_1
  doi: 10.1186/s12968-015-0174-5
– ident: e_1_2_8_27_1
  doi: 10.1109/TMI.2006.885337
– ident: e_1_2_8_16_1
  doi: 10.1002/(SICI)1522-2594(200004)43:4<503::AID-MRM3>3.0.CO;2-0
– ident: e_1_2_8_20_1
  doi: 10.1007/s00348-006-0212-z
– ident: e_1_2_8_4_1
  doi: 10.1186/s12968-015-0172-7
– ident: e_1_2_8_14_1
  doi: 10.1002/jmri.23501
– ident: e_1_2_8_29_1
  doi: 10.1002/mrm.10212
– ident: e_1_2_8_12_1
  doi: 10.1002/jmri.23588
– ident: e_1_2_8_7_1
  doi: 10.1093/ehjci/jey121
– ident: e_1_2_8_13_1
  doi: 10.1002/mrm.21763
– ident: e_1_2_8_25_1
  doi: 10.1007/s10439-018-02109-9
– ident: e_1_2_8_28_1
  doi: 10.1002/mrm.21837
– ident: e_1_2_8_23_1
  doi: 10.1002/mrm.25683
– ident: e_1_2_8_33_1
  doi: 10.1002/mrm.21778
– volume: 26
  start-page: 743
  year: 2005
  ident: e_1_2_8_15_1
  article-title: PC VIPR: A high‐speed 3D phase‐contrast method for flow quantification and high‐resolution angiography
  publication-title: Am J Neuroradiol
– ident: e_1_2_8_30_1
  doi: 10.1002/jmri.25668
– ident: e_1_2_8_36_1
  doi: 10.1148/ryct.2020190126
– ident: e_1_2_8_22_1
  doi: 10.1007/s13239-018-00377-z
– ident: e_1_2_8_9_1
  doi: 10.1016/S0049-3848(09)70140-9
SSID ssj0009974
Score 2.3990207
Snippet Purpose Radial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual‐velocity encoding (Venc) assessment of slow flow in the left...
Radial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual-velocity encoding (Venc) assessment of slow flow in the left...
PurposeRadial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual‐velocity encoding (Venc) assessment of slow flow in the left...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 363
SubjectTerms Blood Flow Velocity
Computed tomography
dual‐Venc
flow
Imaging, Three-Dimensional
Kinetic energy
Magnetic Resonance Imaging
Medical imaging
non‐cartesian
Optimization
phantom
radial
Reproducibility of Results
Retrospective Studies
Rheology
validation
Velocimetry
Velocity
Ventricle
Wall shear stresses
Title A phantom study comparing radial trajectories for accelerated cardiac 4D flow MRI against a particle imaging velocimetry reference
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28698
https://www.ncbi.nlm.nih.gov/pubmed/33547658
https://www.proquest.com/docview/2509261777
https://www.proquest.com/docview/2487155284
https://pubmed.ncbi.nlm.nih.gov/PMC8109233
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VlUBcgJZXSosM4sAl2zzsOBGnqqUqSOGwolIPSJHtOO3CJrvahyo48suZcR5lKUiIW6RMlIwz4_kcf_kG4HXMk6pMhPKVFdLHEqD8TIjKN1pFRgbCpo7yn39Mzs75hwtxsQVv-39hWn2I4YMbZYabrynBlV4e3oiG1ot6FKVJRj_6EleLANH4Rjoqy1oFZslpnsl4ryoURIfDlZu16BbAvM2T_BW_ugJ0-gA-94_e8k6-jtYrPTLff1N1_E_fHsL9DpiyozaSdmDLNrtwN--23nfhjuOKmuUj-HHE5lfUe7hmTpyWtTx2rIFsQUoHU4ZufHG7AbgMZ4iKmTIGyxupUpTMuJg0jJ-wajq7Zvn4PVOXaoI4lSk270KZTWrXP4kRp8lMartafGNDT5THcH767tPxmd-1cvCNIMXSJMBlYKB1KiOEPFlqy7AKgkqngdSBUIQcFbqLLutII0ZVtuK2ChQt-MIksfET2G5mjX0GzBgdxmmJs7iNuchwSqpsXCZclmHJdSU8eNO_1MJ0OufUbmNatArNUYGjW7jR9eDVYDpvxT3-ZLTfR0bR5feyQOCYkZa9lB68HE5jZtJ2i2rsbI02uBYkgbuUe_C0DaThLnEsuMSR8EBuhNhgQKrfm2eayZVT_05DvHUco5sugv7-4EU-zt3B3r-bPod7EZF2HB95H7ZXi7U9QNS10i9cev0EE5Mqlw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9NAEIdHpYjHhUd5BQoMiAMXp37sem2JS0WpUqh7iFqpF2Ttrtc0EDtRmgjBkb-c2fWjhIKEuEXyRPZuZnZ-6518A_AqYnFZxFx60nDhUQqQXsp56WklQy18bhJX8p8dxaMT9v6Un27Am-6_MA0fon_hZiPDrdc2wO0L6Z0Lami1qIZhEqfJFbhqO3pbcv7e-AIelaYNg1kwu9KkrOMK-eFO_9X1bHRJYl6ulPxVwboUtH8bPnYP31SefBmulmqov__Gdfzf0d2BW602xd3Gme7Chqm34HrWnr5vwTVXLqrP78GPXZyf2fbDFTo-LTal7JQGcWFhB1OkcXx2BwK0E0cSxii1pgxnwRQFaueWGtkeltPZV8zGByg_yQlJVZQ4b70ZJ5VroYS2rElPKrNcfMO-Lcp9ONl_d_x25LXdHDzNLbQ09mkn6CuViJBUT5qYIih9v1SJL5TPpRWPkoZLQ1ahIpkqTclM6Uu75wvi2EQPYLOe1eYRoNYqiJKCFnITMZ7SqlSaqIiZKIKCqZIP4HX3q-a6RZ3bjhvTvIE0hznNbu5mdwAve9N5w_f4k9F25xp5G-LnOWnH1OLshRjAi_4yBac9cZG1ma3IhraDlnGXsAE8bDypv0sUcSZoJgYg1nysN7Dg7_Ur9eTMAcCTgG4dRTRM50J_f_A8G2fuw-N_N30ON0bH2WF-eHD04QncDG0NjytP3obN5WJlnpIIW6pnLtZ-ApibLrM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouPAqlgQIGceCSrZPYeYhTxbJqgVRoRaUekCLbsenSTXa13RWCI7-csfMoS0FC3CJ5ImeceXyOJ98AvIhYbMqYC19onviYAoSfcW58JUWoEsp16kr-8-P48IS9PeWnG_Cq-xem4YfoP7hZz3Dx2jr4vDT7l6Sh1aIahGmcpdfgOotpZvs2DMeX3FFZ1lAwJ8wGmox1tEI03O9vXU9GVxDm1ULJXwGsy0Cj2_Cpe_am8OR8sFrKgfr-G63jfyp3B261yJQcNKZ0FzZ0vQ1beXv2vg03XLGourgHPw7I_Mw2H66IY6clTSE7JkGysFQHU4JqfHHHAbgPJwiLiVAK85ulpSiJckapCBsSM519Jfn4iIjPYoJAlQgyb22ZTCrXQInYoiY1qfRy8Y30TVHuw8nozcfXh37by8FX3FKWxhT3gVTKNAkR82SpLgNDqZEpTSTlwkJHgeqiyjKUCFKFNkwbKuyOL4hjHe3AZj2r9S4QpWQQpSWGcR0xnmFMMjoqY5aUQcmk4R687F5qoVqic9tvY1o0FM1hgatbuNX14HkvOm_YPf4ktNdZRtE6-EWByDGzZPZJ4sGzfhhd0563iFrPViiDm0HLcJcyDx40htTPEkWcJbgSHiRrJtYLWNrv9ZF6cubov9MAp44iVNNZ0N8fvMjHubt4-O-iT2Hrw3BUvD86fvcIboa2gMfVJu_B5nKx0o8RgS3lE-dpPwHyWy1i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+phantom+study+comparing+radial+trajectories+for+accelerated+cardiac+4D+flow+MRI+against+a+particle+imaging+velocimetry+reference&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Corrado%2C+Philip+A.&rft.au=Medero%2C+Rafael&rft.au=Johnson%2C+Kevin+M.&rft.au=Fran%C3%A7ois%2C+Christopher+J.&rft.date=2021-07-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=86&rft.issue=1&rft.spage=363&rft.epage=371&rft_id=info:doi/10.1002%2Fmrm.28698&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_28698
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon