A phantom study comparing radial trajectories for accelerated cardiac 4D flow MRI against a particle imaging velocimetry reference
Purpose Radial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual‐velocity encoding (Venc) assessment of slow flow in the left ventricle (LV). Here, two radial trajectories are compared in vitro for this application: 3D radial (phase‐contrast vastly undersampled isotr...
Saved in:
Published in | Magnetic resonance in medicine Vol. 86; no. 1; pp. 363 - 371 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Radial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual‐velocity encoding (Venc) assessment of slow flow in the left ventricle (LV). Here, two radial trajectories are compared in vitro for this application: 3D radial (phase‐contrast vastly undersampled isotropic projection, PC‐VIPR) versus stack of stars (phase‐contrast stack of stars, PC‐SOS), with benchtop particle imaging velocimetry (PIV) serving as a reference standard.
Methods
The study contained three steps: (1) Construction of an MRI‐ and PIV‐compatible LV model from a healthy adult’s CT images. (2) In vitro PIV using a pulsatile flow pump. (3) In vitro dual‐Venc 4D flow MRI using PC‐VIPR and PC‐SOS (two repeat experiments). Each MR image set was retrospectively undersampled to five effective scan durations and compared with the PIV reference. The root‐mean‐square velocity vector difference (RMSE) between MRI and PIV images was compared, along with kinetic energy (KE) and wall shear stress (WSS).
Results
RMSE increased as scan time decreased for both MR acquisitions. RMSE was 3% lower in PC‐SOS images than PC‐VIPR images in 30‐min scans (3.8 vs. 3.9 cm/s) but 98% higher in 2.5‐min scans (9.5 vs. 4.8 cm/s). PIV intrasession repeatability showed a RMSE of 4.4 cm/s, reflecting beat‐to‐beat flow variation, while MRI had intersession RMSEs of 3.8/3.5 cm/s for VIPR/SOS, respectively. Speed, KE, and WSS were overestimated voxel‐wise in 30‐min MRI scans relative to PIV by 0.4/0.3 cm/s, 0.2/0.1 μJ/mL, and 36/43 mPa, respectively, for VIPR/SOS.
Conclusions
PIV is feasible for application‐specific 4D flow MRI protocol optimization. PC‐VIPR is better‐suited to dual‐Venc LV imaging with short scan times. |
---|---|
AbstractList | Radial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual-velocity encoding (Venc) assessment of slow flow in the left ventricle (LV). Here, two radial trajectories are compared in vitro for this application: 3D radial (phase-contrast vastly undersampled isotropic projection, PC-VIPR) versus stack of stars (phase-contrast stack of stars, PC-SOS), with benchtop particle imaging velocimetry (PIV) serving as a reference standard.PURPOSERadial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual-velocity encoding (Venc) assessment of slow flow in the left ventricle (LV). Here, two radial trajectories are compared in vitro for this application: 3D radial (phase-contrast vastly undersampled isotropic projection, PC-VIPR) versus stack of stars (phase-contrast stack of stars, PC-SOS), with benchtop particle imaging velocimetry (PIV) serving as a reference standard.The study contained three steps: (1) Construction of an MRI- and PIV-compatible LV model from a healthy adult's CT images. (2) In vitro PIV using a pulsatile flow pump. (3) In vitro dual-Venc 4D flow MRI using PC-VIPR and PC-SOS (two repeat experiments). Each MR image set was retrospectively undersampled to five effective scan durations and compared with the PIV reference. The root-mean-square velocity vector difference (RMSE) between MRI and PIV images was compared, along with kinetic energy (KE) and wall shear stress (WSS).METHODSThe study contained three steps: (1) Construction of an MRI- and PIV-compatible LV model from a healthy adult's CT images. (2) In vitro PIV using a pulsatile flow pump. (3) In vitro dual-Venc 4D flow MRI using PC-VIPR and PC-SOS (two repeat experiments). Each MR image set was retrospectively undersampled to five effective scan durations and compared with the PIV reference. The root-mean-square velocity vector difference (RMSE) between MRI and PIV images was compared, along with kinetic energy (KE) and wall shear stress (WSS).RMSE increased as scan time decreased for both MR acquisitions. RMSE was 3% lower in PC-SOS images than PC-VIPR images in 30-min scans (3.8 vs. 3.9 cm/s) but 98% higher in 2.5-min scans (9.5 vs. 4.8 cm/s). PIV intrasession repeatability showed a RMSE of 4.4 cm/s, reflecting beat-to-beat flow variation, while MRI had intersession RMSEs of 3.8/3.5 cm/s for VIPR/SOS, respectively. Speed, KE, and WSS were overestimated voxel-wise in 30-min MRI scans relative to PIV by 0.4/0.3 cm/s, 0.2/0.1 μJ/mL, and 36/43 mPa, respectively, for VIPR/SOS.RESULTSRMSE increased as scan time decreased for both MR acquisitions. RMSE was 3% lower in PC-SOS images than PC-VIPR images in 30-min scans (3.8 vs. 3.9 cm/s) but 98% higher in 2.5-min scans (9.5 vs. 4.8 cm/s). PIV intrasession repeatability showed a RMSE of 4.4 cm/s, reflecting beat-to-beat flow variation, while MRI had intersession RMSEs of 3.8/3.5 cm/s for VIPR/SOS, respectively. Speed, KE, and WSS were overestimated voxel-wise in 30-min MRI scans relative to PIV by 0.4/0.3 cm/s, 0.2/0.1 μJ/mL, and 36/43 mPa, respectively, for VIPR/SOS.PIV is feasible for application-specific 4D flow MRI protocol optimization. PC-VIPR is better-suited to dual-Venc LV imaging with short scan times.CONCLUSIONSPIV is feasible for application-specific 4D flow MRI protocol optimization. PC-VIPR is better-suited to dual-Venc LV imaging with short scan times. Radial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual-velocity encoding (Venc) assessment of slow flow in the left ventricle (LV). Here, two radial trajectories are compared in vitro for this application: 3D radial (phase-contrast vastly undersampled isotropic projection, PC-VIPR) versus stack of stars (phase-contrast stack of stars, PC-SOS), with benchtop particle imaging velocimetry (PIV) serving as a reference standard. The study contained three steps: (1) Construction of an MRI- and PIV-compatible LV model from a healthy adult's CT images. (2) In vitro PIV using a pulsatile flow pump. (3) In vitro dual-Venc 4D flow MRI using PC-VIPR and PC-SOS (two repeat experiments). Each MR image set was retrospectively undersampled to five effective scan durations and compared with the PIV reference. The root-mean-square velocity vector difference (RMSE) between MRI and PIV images was compared, along with kinetic energy (KE) and wall shear stress (WSS). RMSE increased as scan time decreased for both MR acquisitions. RMSE was 3% lower in PC-SOS images than PC-VIPR images in 30-min scans (3.8 vs. 3.9 cm/s) but 98% higher in 2.5-min scans (9.5 vs. 4.8 cm/s). PIV intrasession repeatability showed a RMSE of 4.4 cm/s, reflecting beat-to-beat flow variation, while MRI had intersession RMSEs of 3.8/3.5 cm/s for VIPR/SOS, respectively. Speed, KE, and WSS were overestimated voxel-wise in 30-min MRI scans relative to PIV by 0.4/0.3 cm/s, 0.2/0.1 μJ/mL, and 36/43 mPa, respectively, for VIPR/SOS. PIV is feasible for application-specific 4D flow MRI protocol optimization. PC-VIPR is better-suited to dual-Venc LV imaging with short scan times. PurposeRadial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual‐velocity encoding (Venc) assessment of slow flow in the left ventricle (LV). Here, two radial trajectories are compared in vitro for this application: 3D radial (phase‐contrast vastly undersampled isotropic projection, PC‐VIPR) versus stack of stars (phase‐contrast stack of stars, PC‐SOS), with benchtop particle imaging velocimetry (PIV) serving as a reference standard.MethodsThe study contained three steps: (1) Construction of an MRI‐ and PIV‐compatible LV model from a healthy adult’s CT images. (2) In vitro PIV using a pulsatile flow pump. (3) In vitro dual‐Venc 4D flow MRI using PC‐VIPR and PC‐SOS (two repeat experiments). Each MR image set was retrospectively undersampled to five effective scan durations and compared with the PIV reference. The root‐mean‐square velocity vector difference (RMSE) between MRI and PIV images was compared, along with kinetic energy (KE) and wall shear stress (WSS).ResultsRMSE increased as scan time decreased for both MR acquisitions. RMSE was 3% lower in PC‐SOS images than PC‐VIPR images in 30‐min scans (3.8 vs. 3.9 cm/s) but 98% higher in 2.5‐min scans (9.5 vs. 4.8 cm/s). PIV intrasession repeatability showed a RMSE of 4.4 cm/s, reflecting beat‐to‐beat flow variation, while MRI had intersession RMSEs of 3.8/3.5 cm/s for VIPR/SOS, respectively. Speed, KE, and WSS were overestimated voxel‐wise in 30‐min MRI scans relative to PIV by 0.4/0.3 cm/s, 0.2/0.1 μJ/mL, and 36/43 mPa, respectively, for VIPR/SOS.ConclusionsPIV is feasible for application‐specific 4D flow MRI protocol optimization. PC‐VIPR is better‐suited to dual‐Venc LV imaging with short scan times. Purpose Radial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual‐velocity encoding (Venc) assessment of slow flow in the left ventricle (LV). Here, two radial trajectories are compared in vitro for this application: 3D radial (phase‐contrast vastly undersampled isotropic projection, PC‐VIPR) versus stack of stars (phase‐contrast stack of stars, PC‐SOS), with benchtop particle imaging velocimetry (PIV) serving as a reference standard. Methods The study contained three steps: (1) Construction of an MRI‐ and PIV‐compatible LV model from a healthy adult’s CT images. (2) In vitro PIV using a pulsatile flow pump. (3) In vitro dual‐Venc 4D flow MRI using PC‐VIPR and PC‐SOS (two repeat experiments). Each MR image set was retrospectively undersampled to five effective scan durations and compared with the PIV reference. The root‐mean‐square velocity vector difference (RMSE) between MRI and PIV images was compared, along with kinetic energy (KE) and wall shear stress (WSS). Results RMSE increased as scan time decreased for both MR acquisitions. RMSE was 3% lower in PC‐SOS images than PC‐VIPR images in 30‐min scans (3.8 vs. 3.9 cm/s) but 98% higher in 2.5‐min scans (9.5 vs. 4.8 cm/s). PIV intrasession repeatability showed a RMSE of 4.4 cm/s, reflecting beat‐to‐beat flow variation, while MRI had intersession RMSEs of 3.8/3.5 cm/s for VIPR/SOS, respectively. Speed, KE, and WSS were overestimated voxel‐wise in 30‐min MRI scans relative to PIV by 0.4/0.3 cm/s, 0.2/0.1 μJ/mL, and 36/43 mPa, respectively, for VIPR/SOS. Conclusions PIV is feasible for application‐specific 4D flow MRI protocol optimization. PC‐VIPR is better‐suited to dual‐Venc LV imaging with short scan times. |
Author | François, Christopher J. Johnson, Kevin M. Corrado, Philip A. Medero, Rafael Wieben, Oliver Roldán‐Alzate, Alejandro |
Author_xml | – sequence: 1 givenname: Philip A. orcidid: 0000-0002-1510-8247 surname: Corrado fullname: Corrado, Philip A. email: pcorrado2@wisc.edu organization: University of Wisconsin‐Madison – sequence: 2 givenname: Rafael surname: Medero fullname: Medero, Rafael organization: University of Wisconsin‐Madison – sequence: 3 givenname: Kevin M. surname: Johnson fullname: Johnson, Kevin M. organization: University of Wisconsin‐Madison – sequence: 4 givenname: Christopher J. surname: François fullname: François, Christopher J. organization: University of Wisconsin‐Madison – sequence: 5 givenname: Alejandro surname: Roldán‐Alzate fullname: Roldán‐Alzate, Alejandro organization: University of Wisconsin‐Madison – sequence: 6 givenname: Oliver surname: Wieben fullname: Wieben, Oliver organization: University of Wisconsin‐Madison |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33547658$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9rFDEYxoNU7LZ68AtIwIsepk0yyUzmIpRqtdBFKHoOmcw72yyZZE0yLXv1k5vt1qIFPeWQ3_vw_DlCBz54QOg1JSeUEHY6xemEyaaTz9CCCsYqJjp-gBak5aSqaccP0VFKa0JI17X8BTqsa8HbRsgF-nmGNzfa5zDhlOdhi02YNjpav8JRD1Y7nKNeg8khWkh4DBFrY8BB1BkGbHQskMH8Ix5duMPL60usV9r6lLHGRShb4wDbSa92krfggrET5LjFEUaI4A28RM9H7RK8eniP0feLT9_Ov1RXXz9fnp9dVUaQTlYN4VySvpctK847CQMdCRl7SdqeCF3CCV0qKDX0rKeCaBg5jETXhHLaNFAfow973c3cTzAY8CWaU5tY3MWtCtqqv3-8vVGrcKskJR2r6yLw7kEghh8zpKwmm0oXTnsIc1KMy5YKwSQv6Nsn6DrM0Zd4ipU0rKFt2xbqzZ-OHq38nqcA7_eAiSGl0tgjQonaTa_K9Op--sKePmGNzTrbsAtj3f8u7qyD7b-l1fJ6ub_4Bd_lwNE |
CitedBy_id | crossref_primary_10_1002_mrm_29978 crossref_primary_10_1152_ajpheart_00824_2020 crossref_primary_10_3389_fphy_2022_963807 crossref_primary_10_1007_s10334_024_01164_9 crossref_primary_10_2463_mrms_rev_2021_0105 crossref_primary_10_1002_mp_16255 crossref_primary_10_1115_1_4065110 |
Cites_doi | 10.1177/0284185118784981 10.1002/jmri.25111 10.1002/jmri.25595 10.1016/j.neuroimage.2006.01.015 10.1016/j.ijnurstu.2009.10.001 10.1186/s12880-019-0404-7 10.1136/heartjnl-2012-301962 10.1002/mrm.1910330119 10.1007/s10439-016-1602-x 10.1186/1532-429X-13-55 10.1152/ajpheart.00942.2011 10.1109/42.774166 10.1186/s12968-018-0483-6 10.1002/jmri.23632 10.1002/jmri.22079 10.1007/s13239-019-00417-2 10.1016/j.jbiomech.2018.04.030 10.1186/s12968-015-0174-5 10.1109/TMI.2006.885337 10.1002/(SICI)1522-2594(200004)43:4<503::AID-MRM3>3.0.CO;2-0 10.1007/s00348-006-0212-z 10.1186/s12968-015-0172-7 10.1002/jmri.23501 10.1002/mrm.10212 10.1002/jmri.23588 10.1093/ehjci/jey121 10.1002/mrm.21763 10.1007/s10439-018-02109-9 10.1002/mrm.21837 10.1002/mrm.25683 10.1002/mrm.21778 10.1002/jmri.25668 10.1148/ryct.2020190126 10.1007/s13239-018-00377-z 10.1016/S0049-3848(09)70140-9 |
ContentType | Journal Article |
Copyright | 2021 International Society for Magnetic Resonance in Medicine 2021 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2021 International Society for Magnetic Resonance in Medicine – notice: 2021 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
DOI | 10.1002/mrm.28698 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 371 |
ExternalDocumentID | PMC8109233 33547658 10_1002_mrm_28698 MRM28698 |
Genre | technicalNote Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Heart, Lung, And Blood Institute of the National Institutes of Health funderid: F31HL144020 – fundername: GE Healthcare – fundername: NHLBI NIH HHS grantid: F31 HL144020 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
ID | FETCH-LOGICAL-c5098-604480bb87265898ed1f00fb807b05a0005a698869b2b150aef4ef0a3014166e3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Aug 21 18:14:57 EDT 2025 Fri Jul 11 08:32:18 EDT 2025 Fri Jul 25 12:11:55 EDT 2025 Mon Jul 21 06:00:25 EDT 2025 Tue Jul 01 04:26:59 EDT 2025 Thu Apr 24 23:06:15 EDT 2025 Wed Aug 20 07:26:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | phantom radial dual-Venc flow validation non-cartesian |
Language | English |
License | 2021 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5098-604480bb87265898ed1f00fb807b05a0005a698869b2b150aef4ef0a3014166e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1510-8247 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8109233 |
PMID | 33547658 |
PQID | 2509261777 |
PQPubID | 1016391 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8109233 proquest_miscellaneous_2487155284 proquest_journals_2509261777 pubmed_primary_33547658 crossref_primary_10_1002_mrm_28698 crossref_citationtrail_10_1002_mrm_28698 wiley_primary_10_1002_mrm_28698_MRM28698 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 31 2015; 17 2006; 31 2009; 61 2019; 10 2000; 43 1995; 33 2017; 46 2016; 75 2019; 19 2011; 13 2012; 36 2005; 26 2012; 35 2012; 302 2018; 20 2012; 98 2018; 46 2018; 9 2002; 48 2006; 41 2019; 60 2010; 47 2020; 2 2019; 20 1999; 18 2016; 43 2009; 123 2018; 74 2008; 60 2007; 26 2016; 44 e_1_2_8_28_1 e_1_2_8_29_1 Gu T (e_1_2_8_15_1) 2005; 26 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 123 start-page: S30 year: 2009 end-page: S34 article-title: Pathophysiology of venous thrombosis publication-title: Thromb Res – volume: 9 start-page: 674 year: 2018 end-page: 687 article-title: In vitro validation of 4D flow MRI for local pulse wave velocity estimation publication-title: Cardiovasc Eng Technol – volume: 36 start-page: 1015 year: 2012 end-page: 1036 article-title: 4D flow MRI publication-title: J Magn Reson Imaging – volume: 60 start-page: 327 year: 2019 end-page: 337 article-title: Validation and reproducibility of cardiovascular 4D‐flow MRI from two vendors using 2 × 2 parallel imaging acceleration in pulsatile flow phantom and in vivo with and without respiratory gating publication-title: Acta radiol – volume: 41 start-page: 933 year: 2006 end-page: 947 article-title: Tomographic particle image velocimetry publication-title: Exp Fluids – volume: 47 start-page: 931 year: 2010 end-page: 936 article-title: Statistical methods for assessing agreement between two methods of clinical measurement publication-title: Int J Nurs Stud – volume: 60 start-page: 1329 year: 2008 end-page: 1336 article-title: Improved 3D phase contrast MRI with off‐resonance corrected dual echo VIPR publication-title: Magn Reson Med – volume: 26 start-page: 68 year: 2007 end-page: 76 article-title: An optimal radial profile order based on the golden ratio for time‐resolved MRI publication-title: IEEE Trans Med Imaging – volume: 60 start-page: 1218 year: 2008 end-page: 1231 article-title: Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters publication-title: Magn Reson Med – volume: 26 start-page: 743 year: 2005 end-page: 749 article-title: PC VIPR: A high‐speed 3D phase‐contrast method for flow quantification and high‐resolution angiography publication-title: Am J Neuroradiol – volume: 75 start-page: 1064 year: 2016 end-page: 1075 article-title: Independent validation of four‐dimensional flow MR velocities and vortex ring volume using particle imaging velocimetry and planar laser‐Induced fluorescence publication-title: Magn Reson Med – volume: 19 start-page: 1 year: 2019 end-page: 10 article-title: Reduced regional flow in the left ventricle after anterior acute myocardial infarction: a case control study using 4D flow MRI publication-title: BMC Med Imaging – volume: 302 start-page: H893 year: 2012 end-page: H900 article-title: Quantification of left and right ventricular kinetic energy using four‐dimensional intracardiac magnetic resonance imaging flow measurements publication-title: AJP Hear Circ Physiol – volume: 98 start-page: 1743 year: 2012 end-page: 1749 article-title: Left ventricular thrombus formation after acute myocardial infarction publication-title: Heart – volume: 33 start-page: 122 year: 1995 end-page: 126 article-title: Three‐point phase‐contrast velocity measurements with increased velocity‐to‐noise ratio publication-title: Magn Reson Med – volume: 20 start-page: 1 year: 2018 end-page: 15 article-title: Left ventricular blood flow kinetic energy after myocardial infarction—insights from 4D flow cardiovascular magnetic resonance publication-title: J Cardiovasc Magn Reson – volume: 18 start-page: 385 year: 1999 end-page: 392 article-title: Resampling of data between arbitrary grids using convolution interpolation publication-title: IEEE Trans Med Imaging – volume: 35 start-page: 1462 year: 2012 end-page: 1471 article-title: Four‐dimensional phase contrast MRI with accelerated dual velocity encoding publication-title: J Magn Reson Imaging – volume: 10 start-page: 500 year: 2019 end-page: 507 article-title: Fabrication of low‐cost patient‐specific vascular models for particle image velocimetry publication-title: Cardiovasc Eng Technol – volume: 20 start-page: 108 year: 2019 end-page: 117 article-title: Left ventricular thrombus formation in myocardial infarction is associated with altered left ventricular blood flow energetics publication-title: Eur Heart J Cardiovasc Imaging – volume: 43 start-page: 503 year: 2000 end-page: 509 article-title: Phase‐contrast with interleaved undersampled projections publication-title: Magn Reson Med – volume: 61 start-page: 354 year: 2009 end-page: 363 article-title: Temporal stability of adaptive 3D radial MRI using multidimensional golden means publication-title: Magn Reson Med – volume: 17 start-page: 1 year: 2015 end-page: 26 article-title: Cardiovascular magnetic resonance phase contrast imaging publication-title: J Cardiovasc Magn Reson – volume: 46 start-page: 102 year: 2017 end-page: 114 article-title: Accelerated dual‐venc 4D flow MRI for neurovascular applications publication-title: J Magn Reson Imaging – volume: 74 start-page: 116 year: 2018 end-page: 125 article-title: Assessment of human left ventricle flow using statistical shape modelling and computational fluid dynamics publication-title: J Biomech – volume: 17 start-page: 72 year: 2015 article-title: 4D flow cardiovascular magnetic resonance consensus statement publication-title: J Cardiovasc Magn Reson – volume: 48 start-page: 297 year: 2002 end-page: 305 article-title: Time‐resolved contrast‐enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory publication-title: Magn Reson Med – volume: 35 start-page: 518 year: 2012 end-page: 527 article-title: High resolution three‐dimensional cine phase contrast MRI of small intracranial aneurysms using a stack of stars k‐space trajectory publication-title: J Magn Reson Imaging – volume: 13 start-page: 1 year: 2011 end-page: 7 article-title: Quantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or k‐t BLAST: head to head comparison and validation at 1.5 T and 3 T publication-title: J Cardiovasc Magn Reson – volume: 44 start-page: 3202 year: 2016 end-page: 3214 article-title: Accuracy of 4D flow measurement of cerebrospinal fluid dynamics in the cervical spine: an in vitro verification against numerical simulation publication-title: Ann Biomed Eng – volume: 31 start-page: 1116 year: 2006 end-page: 1128 article-title: User‐guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage – volume: 46 start-page: 1516 year: 2017 end-page: 1525 article-title: Image‐based background phase error correction in 4D flow MRI revisited publication-title: J Magn Reson Imaging – volume: 2 year: 2020 article-title: Mitral valve flow and myocardial motion assessed with dual‐echo dual‐velocity cardiac MRI publication-title: Radiol Cardiothorac Imaging – volume: 31 start-page: 579 year: 2010 end-page: 588 article-title: Hepatic vascular flow measurements by phase contrast MRI and doppler echography: a comparative and reproducibility study publication-title: J Magn Reson Imaging – volume: 43 start-page: 1386 year: 2016 end-page: 1397 article-title: Vortex‐ring mixing as a measure of diastolic function of the human heart: phantom validation and initial observations in healthy volunteers and patients with heart failure publication-title: J Magn Reson Imaging – volume: 46 start-page: 2112 year: 2018 end-page: 2122 article-title: Comparison of 4D flow MRI and particle image velocimetry using an in vitro carotid bifurcation model publication-title: Ann Biomed Eng – ident: e_1_2_8_21_1 doi: 10.1177/0284185118784981 – ident: e_1_2_8_24_1 doi: 10.1002/jmri.25111 – ident: e_1_2_8_11_1 doi: 10.1002/jmri.25595 – ident: e_1_2_8_31_1 doi: 10.1016/j.neuroimage.2006.01.015 – ident: e_1_2_8_35_1 doi: 10.1016/j.ijnurstu.2009.10.001 – ident: e_1_2_8_5_1 doi: 10.1186/s12880-019-0404-7 – ident: e_1_2_8_8_1 doi: 10.1136/heartjnl-2012-301962 – ident: e_1_2_8_10_1 doi: 10.1002/mrm.1910330119 – ident: e_1_2_8_17_1 doi: 10.1007/s10439-016-1602-x – ident: e_1_2_8_18_1 doi: 10.1186/1532-429X-13-55 – ident: e_1_2_8_34_1 doi: 10.1152/ajpheart.00942.2011 – ident: e_1_2_8_32_1 doi: 10.1109/42.774166 – ident: e_1_2_8_6_1 doi: 10.1186/s12968-018-0483-6 – ident: e_1_2_8_3_1 doi: 10.1002/jmri.23632 – ident: e_1_2_8_19_1 doi: 10.1002/jmri.22079 – ident: e_1_2_8_26_1 doi: 10.1007/s13239-019-00417-2 – ident: e_1_2_8_37_1 doi: 10.1016/j.jbiomech.2018.04.030 – ident: e_1_2_8_2_1 doi: 10.1186/s12968-015-0174-5 – ident: e_1_2_8_27_1 doi: 10.1109/TMI.2006.885337 – ident: e_1_2_8_16_1 doi: 10.1002/(SICI)1522-2594(200004)43:4<503::AID-MRM3>3.0.CO;2-0 – ident: e_1_2_8_20_1 doi: 10.1007/s00348-006-0212-z – ident: e_1_2_8_4_1 doi: 10.1186/s12968-015-0172-7 – ident: e_1_2_8_14_1 doi: 10.1002/jmri.23501 – ident: e_1_2_8_29_1 doi: 10.1002/mrm.10212 – ident: e_1_2_8_12_1 doi: 10.1002/jmri.23588 – ident: e_1_2_8_7_1 doi: 10.1093/ehjci/jey121 – ident: e_1_2_8_13_1 doi: 10.1002/mrm.21763 – ident: e_1_2_8_25_1 doi: 10.1007/s10439-018-02109-9 – ident: e_1_2_8_28_1 doi: 10.1002/mrm.21837 – ident: e_1_2_8_23_1 doi: 10.1002/mrm.25683 – ident: e_1_2_8_33_1 doi: 10.1002/mrm.21778 – volume: 26 start-page: 743 year: 2005 ident: e_1_2_8_15_1 article-title: PC VIPR: A high‐speed 3D phase‐contrast method for flow quantification and high‐resolution angiography publication-title: Am J Neuroradiol – ident: e_1_2_8_30_1 doi: 10.1002/jmri.25668 – ident: e_1_2_8_36_1 doi: 10.1148/ryct.2020190126 – ident: e_1_2_8_22_1 doi: 10.1007/s13239-018-00377-z – ident: e_1_2_8_9_1 doi: 10.1016/S0049-3848(09)70140-9 |
SSID | ssj0009974 |
Score | 2.3990207 |
Snippet | Purpose
Radial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual‐velocity encoding (Venc) assessment of slow flow in the left... Radial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual-velocity encoding (Venc) assessment of slow flow in the left... PurposeRadial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual‐velocity encoding (Venc) assessment of slow flow in the left... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 363 |
SubjectTerms | Blood Flow Velocity Computed tomography dual‐Venc flow Imaging, Three-Dimensional Kinetic energy Magnetic Resonance Imaging Medical imaging non‐cartesian Optimization phantom radial Reproducibility of Results Retrospective Studies Rheology validation Velocimetry Velocity Ventricle Wall shear stresses |
Title | A phantom study comparing radial trajectories for accelerated cardiac 4D flow MRI against a particle imaging velocimetry reference |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28698 https://www.ncbi.nlm.nih.gov/pubmed/33547658 https://www.proquest.com/docview/2509261777 https://www.proquest.com/docview/2487155284 https://pubmed.ncbi.nlm.nih.gov/PMC8109233 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VlUBcgJZXSosM4sAl2zzsOBGnqqUqSOGwolIPSJHtOO3CJrvahyo48suZcR5lKUiIW6RMlIwz4_kcf_kG4HXMk6pMhPKVFdLHEqD8TIjKN1pFRgbCpo7yn39Mzs75hwtxsQVv-39hWn2I4YMbZYabrynBlV4e3oiG1ot6FKVJRj_6EleLANH4Rjoqy1oFZslpnsl4ryoURIfDlZu16BbAvM2T_BW_ugJ0-gA-94_e8k6-jtYrPTLff1N1_E_fHsL9DpiyozaSdmDLNrtwN--23nfhjuOKmuUj-HHE5lfUe7hmTpyWtTx2rIFsQUoHU4ZufHG7AbgMZ4iKmTIGyxupUpTMuJg0jJ-wajq7Zvn4PVOXaoI4lSk270KZTWrXP4kRp8lMartafGNDT5THcH767tPxmd-1cvCNIMXSJMBlYKB1KiOEPFlqy7AKgkqngdSBUIQcFbqLLutII0ZVtuK2ChQt-MIksfET2G5mjX0GzBgdxmmJs7iNuchwSqpsXCZclmHJdSU8eNO_1MJ0OufUbmNatArNUYGjW7jR9eDVYDpvxT3-ZLTfR0bR5feyQOCYkZa9lB68HE5jZtJ2i2rsbI02uBYkgbuUe_C0DaThLnEsuMSR8EBuhNhgQKrfm2eayZVT_05DvHUco5sugv7-4EU-zt3B3r-bPod7EZF2HB95H7ZXi7U9QNS10i9cev0EE5Mqlw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9NAEIdHpYjHhUd5BQoMiAMXp37sem2JS0WpUqh7iFqpF2Ttrtc0EDtRmgjBkb-c2fWjhIKEuEXyRPZuZnZ-6518A_AqYnFZxFx60nDhUQqQXsp56WklQy18bhJX8p8dxaMT9v6Un27Am-6_MA0fon_hZiPDrdc2wO0L6Z0Lami1qIZhEqfJFbhqO3pbcv7e-AIelaYNg1kwu9KkrOMK-eFO_9X1bHRJYl6ulPxVwboUtH8bPnYP31SefBmulmqov__Gdfzf0d2BW602xd3Gme7Chqm34HrWnr5vwTVXLqrP78GPXZyf2fbDFTo-LTal7JQGcWFhB1OkcXx2BwK0E0cSxii1pgxnwRQFaueWGtkeltPZV8zGByg_yQlJVZQ4b70ZJ5VroYS2rElPKrNcfMO-Lcp9ONl_d_x25LXdHDzNLbQ09mkn6CuViJBUT5qYIih9v1SJL5TPpRWPkoZLQ1ahIpkqTclM6Uu75wvi2EQPYLOe1eYRoNYqiJKCFnITMZ7SqlSaqIiZKIKCqZIP4HX3q-a6RZ3bjhvTvIE0hznNbu5mdwAve9N5w_f4k9F25xp5G-LnOWnH1OLshRjAi_4yBac9cZG1ma3IhraDlnGXsAE8bDypv0sUcSZoJgYg1nysN7Dg7_Ur9eTMAcCTgG4dRTRM50J_f_A8G2fuw-N_N30ON0bH2WF-eHD04QncDG0NjytP3obN5WJlnpIIW6pnLtZ-ApibLrM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouPAqlgQIGceCSrZPYeYhTxbJqgVRoRaUekCLbsenSTXa13RWCI7-csfMoS0FC3CJ5ImeceXyOJ98AvIhYbMqYC19onviYAoSfcW58JUWoEsp16kr-8-P48IS9PeWnG_Cq-xem4YfoP7hZz3Dx2jr4vDT7l6Sh1aIahGmcpdfgOotpZvs2DMeX3FFZ1lAwJ8wGmox1tEI03O9vXU9GVxDm1ULJXwGsy0Cj2_Cpe_am8OR8sFrKgfr-G63jfyp3B261yJQcNKZ0FzZ0vQ1beXv2vg03XLGourgHPw7I_Mw2H66IY6clTSE7JkGysFQHU4JqfHHHAbgPJwiLiVAK85ulpSiJckapCBsSM519Jfn4iIjPYoJAlQgyb22ZTCrXQInYoiY1qfRy8Y30TVHuw8nozcfXh37by8FX3FKWxhT3gVTKNAkR82SpLgNDqZEpTSTlwkJHgeqiyjKUCFKFNkwbKuyOL4hjHe3AZj2r9S4QpWQQpSWGcR0xnmFMMjoqY5aUQcmk4R687F5qoVqic9tvY1o0FM1hgatbuNX14HkvOm_YPf4ktNdZRtE6-EWByDGzZPZJ4sGzfhhd0563iFrPViiDm0HLcJcyDx40htTPEkWcJbgSHiRrJtYLWNrv9ZF6cubov9MAp44iVNNZ0N8fvMjHubt4-O-iT2Hrw3BUvD86fvcIboa2gMfVJu_B5nKx0o8RgS3lE-dpPwHyWy1i |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+phantom+study+comparing+radial+trajectories+for+accelerated+cardiac+4D+flow+MRI+against+a+particle+imaging+velocimetry+reference&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Corrado%2C+Philip+A.&rft.au=Medero%2C+Rafael&rft.au=Johnson%2C+Kevin+M.&rft.au=Fran%C3%A7ois%2C+Christopher+J.&rft.date=2021-07-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=86&rft.issue=1&rft.spage=363&rft.epage=371&rft_id=info:doi/10.1002%2Fmrm.28698&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_28698 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |