The ontogeny of maximum bite force in humans
Ontogenetic changes in the human masticatory complex suggest that bite force, a key measure of chewing performance, increases throughout growth and development. Current published bite force values for humans exist for molar and incisal biting, but few studies measure bite forces across all tooth typ...
Saved in:
Published in | Journal of anatomy Vol. 237; no. 3; pp. 529 - 542 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.09.2020
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ontogenetic changes in the human masticatory complex suggest that bite force, a key measure of chewing performance, increases throughout growth and development. Current published bite force values for humans exist for molar and incisal biting, but few studies measure bite forces across all tooth types, or measure bite force potentials in subjects of different ages. In the absence of live data, models of bite force such as the Constrained Lever Model (CLM), are employed to predict bite force at different bite points for adults, but it is unclear whether such a model can accurately predict bite force potentials for juveniles or subadults. This study compares theoretically derived bite forces and live bite force data, and places these within an ontogenetic context in humans. Specifically, we test whether (1) patterns of maximum bite force increase along the tooth row throughout ontogeny, (2) bite force patterns estimated using the CLM match patterns observed from live bite force data, and (3) changes in bite forces along the tooth row and throughout ontogeny are associated with concomitant changes in adductor muscle leverage. Our findings show that maximum bite forces increase throughout ontogeny and change along the tooth row, with the highest forces occurring at the posterior dentition. These findings adhere to the expectations under the CLM and validate the model’s utility in predicting bite force values throughout development. Furthermore, adductor muscle leverage values reflect this pattern, with the greatest leverage values occurring at the posterior dentition throughout ontogeny. The CLM informs our study of mammalian chewing mechanics by providing a model of how morphological changes of the masticatory apparatus during ontogeny affect bite force distribution along the tooth row. Furthermore, the decreased bite force magnitudes observed in juveniles and subadults compared with adults suggest that differences in juvenile and subadult diets may partially be due to differences in bite force production potentials.
Using humans as a model, we measured how maximum bite forces changed across the tooth row throughout ontogeny. We found that the highest forces are produced by the posterior dentition, which supports the predictions under the Constrained Lever Model. By comparing live bite force data to predicted values from this model, we validated its utility to predict bite forces throughout growth and further contribute to our understanding of how the growing masticatory system produces increased bite force. |
---|---|
AbstractList | Ontogenetic changes in the human masticatory complex suggest that bite force, a key measure of chewing performance, increases throughout growth and development. Current published bite force values for humans exist for molar and incisal biting, but few studies measure bite forces across all tooth types, or measure bite force potentials in subjects of different ages. In the absence of live data, models of bite force such as the Constrained Lever Model (CLM), are employed to predict bite force at different bite points for adults, but it is unclear whether such a model can accurately predict bite force potentials for juveniles or subadults. This study compares theoretically derived bite forces and live bite force data, and places these within an ontogenetic context in humans. Specifically, we test whether (1) patterns of maximum bite force increase along the tooth row throughout ontogeny, (2) bite force patterns estimated using the CLM match patterns observed from live bite force data, and (3) changes in bite forces along the tooth row and throughout ontogeny are associated with concomitant changes in adductor muscle leverage. Our findings show that maximum bite forces increase throughout ontogeny and change along the tooth row, with the highest forces occurring at the posterior dentition. These findings adhere to the expectations under the CLM and validate the model’s utility in predicting bite force values throughout development. Furthermore, adductor muscle leverage values reflect this pattern, with the greatest leverage values occurring at the posterior dentition throughout ontogeny. The CLM informs our study of mammalian chewing mechanics by providing a model of how morphological changes of the masticatory apparatus during ontogeny affect bite force distribution along the tooth row. Furthermore, the decreased bite force magnitudes observed in juveniles and subadults compared with adults suggest that differences in juvenile and subadult diets may partially be due to differences in bite force production potentials.
Using humans as a model, we measured how maximum bite forces changed across the tooth row throughout ontogeny. We found that the highest forces are produced by the posterior dentition, which supports the predictions under the Constrained Lever Model. By comparing live bite force data to predicted values from this model, we validated its utility to predict bite forces throughout growth and further contribute to our understanding of how the growing masticatory system produces increased bite force. Ontogenetic changes in the human masticatory complex suggest that bite force, a key measure of chewing performance, increases throughout growth and development. Current published bite force values for humans exist for molar and incisal biting, but few studies measure bite forces across all tooth types, or measure bite force potentials in subjects of different ages. In the absence of live data, models of bite force such as the Constrained Lever Model (CLM), are employed to predict bite force at different bite points for adults, but it is unclear whether such a model can accurately predict bite force potentials for juveniles or subadults. This study compares theoretically derived bite forces and live bite force data, and places these within an ontogenetic context in humans. Specifically, we test whether (1) patterns of maximum bite force increase along the tooth row throughout ontogeny, (2) bite force patterns estimated using the CLM match patterns observed from live bite force data, and (3) changes in bite forces along the tooth row and throughout ontogeny are associated with concomitant changes in adductor muscle leverage. Our findings show that maximum bite forces increase throughout ontogeny and change along the tooth row, with the highest forces occurring at the posterior dentition. These findings adhere to the expectations under the CLM and validate the model's utility in predicting bite force values throughout development. Furthermore, adductor muscle leverage values reflect this pattern, with the greatest leverage values occurring at the posterior dentition throughout ontogeny. The CLM informs our study of mammalian chewing mechanics by providing a model of how morphological changes of the masticatory apparatus during ontogeny affect bite force distribution along the tooth row. Furthermore, the decreased bite force magnitudes observed in juveniles and subadults compared with adults suggest that differences in juvenile and subadult diets may partially be due to differences in bite force production potentials.Ontogenetic changes in the human masticatory complex suggest that bite force, a key measure of chewing performance, increases throughout growth and development. Current published bite force values for humans exist for molar and incisal biting, but few studies measure bite forces across all tooth types, or measure bite force potentials in subjects of different ages. In the absence of live data, models of bite force such as the Constrained Lever Model (CLM), are employed to predict bite force at different bite points for adults, but it is unclear whether such a model can accurately predict bite force potentials for juveniles or subadults. This study compares theoretically derived bite forces and live bite force data, and places these within an ontogenetic context in humans. Specifically, we test whether (1) patterns of maximum bite force increase along the tooth row throughout ontogeny, (2) bite force patterns estimated using the CLM match patterns observed from live bite force data, and (3) changes in bite forces along the tooth row and throughout ontogeny are associated with concomitant changes in adductor muscle leverage. Our findings show that maximum bite forces increase throughout ontogeny and change along the tooth row, with the highest forces occurring at the posterior dentition. These findings adhere to the expectations under the CLM and validate the model's utility in predicting bite force values throughout development. Furthermore, adductor muscle leverage values reflect this pattern, with the greatest leverage values occurring at the posterior dentition throughout ontogeny. The CLM informs our study of mammalian chewing mechanics by providing a model of how morphological changes of the masticatory apparatus during ontogeny affect bite force distribution along the tooth row. Furthermore, the decreased bite force magnitudes observed in juveniles and subadults compared with adults suggest that differences in juvenile and subadult diets may partially be due to differences in bite force production potentials. Ontogenetic changes in the human masticatory complex suggest that bite force, a key measure of chewing performance, increases throughout growth and development. Current published bite force values for humans exist for molar and incisal biting, but few studies measure bite forces across all tooth types, or measure bite force potentials in subjects of different ages. In the absence of live data, models of bite force such as the Constrained Lever Model (CLM), are employed to predict bite force at different bite points for adults, but it is unclear whether such a model can accurately predict bite force potentials for juveniles or subadults. This study compares theoretically derived bite forces and live bite force data, and places these within an ontogenetic context in humans. Specifically, we test whether (1) patterns of maximum bite force increase along the tooth row throughout ontogeny, (2) bite force patterns estimated using the CLM match patterns observed from live bite force data, and (3) changes in bite forces along the tooth row and throughout ontogeny are associated with concomitant changes in adductor muscle leverage. Our findings show that maximum bite forces increase throughout ontogeny and change along the tooth row, with the highest forces occurring at the posterior dentition. These findings adhere to the expectations under the CLM and validate the model’s utility in predicting bite force values throughout development. Furthermore, adductor muscle leverage values reflect this pattern, with the greatest leverage values occurring at the posterior dentition throughout ontogeny. The CLM informs our study of mammalian chewing mechanics by providing a model of how morphological changes of the masticatory apparatus during ontogeny affect bite force distribution along the tooth row. Furthermore, the decreased bite force magnitudes observed in juveniles and subadults compared with adults suggest that differences in juvenile and subadult diets may partially be due to differences in bite force production potentials. |
Author | Edmonds, Hallie M. Glowacka, Halszka |
AuthorAffiliation | 2 Department of Basic Medical Sciences University of Arizona College of Medicine‐Phoenix Phoenix AZ USA 1 Center for Evolution and Medicine Arizona State University Tempe AZ USA |
AuthorAffiliation_xml | – name: 2 Department of Basic Medical Sciences University of Arizona College of Medicine‐Phoenix Phoenix AZ USA – name: 1 Center for Evolution and Medicine Arizona State University Tempe AZ USA |
Author_xml | – sequence: 1 givenname: Hallie M. orcidid: 0000-0001-9295-7106 surname: Edmonds fullname: Edmonds, Hallie M. email: hedmonds@asu.edu organization: Arizona State University – sequence: 2 givenname: Halszka surname: Glowacka fullname: Glowacka, Halszka organization: University of Arizona College of Medicine‐Phoenix |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32406523$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctKxDAUhoMoOl4WvoAU3ChYza1NshFEvCK40XXIpKdOhjbRplXn7Y3OKCqaTRb5_o__5KyjZR88ILRN8CFJ52gazCFhlMglNCK8VLkoJF5GI4wpyaWQdA2txzjFmDCs-CpaY5TjsqBshA7uJpAF34cH8LMs1FlrXl07tNnY9ZDVobOQOZ9Nhtb4uIlWatNE2FrcG-j-_Ozu9DK_ub24Oj25yW2BlcwLJaGoRFUDtlZQJRgFQy2pxgZEgW1lVF2UtpbKUqusgRJTU1REClpRKWu2gY7n3sdh3EJlwfedafRj51rTzXQwTv988W6iH8KzFlyUFJdJsLcQdOFpgNjr1kULTWM8hCHqND7DjFOlErr7C52GofNpvERxzJmSnCdq53ujryqfH5mAozlguxBjB7W2rje9C-8FXaMJ1u-rSnKjP1aVEvu_Ep_Sv9iF_cU1MPsf1Ne3J_PEG7uCocg |
CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3539623 crossref_primary_10_3390_dj12090274 crossref_primary_10_5005_jp_journals_10024_3457 crossref_primary_10_1007_s00784_023_05199_5 crossref_primary_10_1016_j_ejpn_2025_03_008 crossref_primary_10_3390_biology12040566 crossref_primary_10_1002_jmor_21699 crossref_primary_10_1177_23202068251320732 crossref_primary_10_3389_fbioe_2021_798393 crossref_primary_10_1097_SCS_0000000000009710 crossref_primary_10_29254_2077_4214_2024_1_172_24_29 crossref_primary_10_1016_j_prosdent_2024_06_004 crossref_primary_10_1007_s00784_023_05038_7 crossref_primary_10_1242_jeb_245972 crossref_primary_10_36377_ET_0005 crossref_primary_10_36377_ET_0017 crossref_primary_10_1002_jmor_21705 crossref_primary_10_1039_D4TA03517H crossref_primary_10_3390_ma16051997 crossref_primary_10_1038_s41415_023_5984_5 crossref_primary_10_4012_dmj_2021_328 crossref_primary_10_2186_jpr_JPR_D_22_00115 crossref_primary_10_3390_ma16062228 crossref_primary_10_1016_j_cmpb_2023_107336 crossref_primary_10_2186_jpr_JPR_D_23_00253 crossref_primary_10_3390_biomedicines10071682 crossref_primary_10_1002_ajpa_24106 crossref_primary_10_1002_jbm_b_35081 crossref_primary_10_4103_denthyp_denthyp_42_23 crossref_primary_10_3390_s24020537 crossref_primary_10_1002_ajpa_24926 crossref_primary_10_1002_ajpa_70000 crossref_primary_10_1371_journal_pone_0280769 |
Cites_doi | 10.1002/ajpa.1330370608 10.1002/ajpa.1330910102 10.1242/jeb.00181 10.1016/j.archoralbio.2004.11.001 10.1016/j.archoralbio.2014.05.005 10.1002/1096-8644(200103)114:3<192::AID-AJPA1020>3.0.CO;2-Q 10.1177/00220345970760061201 10.1016/j.zool.2012.04.007 10.1111/j.1365-263X.2010.01098.x 10.1053/j.sodo.2006.01.005 10.1093/ejo/cjh090 10.1111/j.1469-7998.1978.tb03282.x 10.1111/j.1558-5646.1989.tb04266.x 10.1093/ejo/cjh069 10.1016/j.jhevol.2007.09.014 10.3109/00016357309004611 10.1002/ajpa.20025 10.1177/00220345990780010301 10.1016/j.jhevol.2007.12.005 10.1590/S0103-64402007000100014 10.1111/j.1600-0722.1990.tb00954.x 10.7717/peerj.2242 10.3109/00016359309040583 10.1093/icb/icn071 10.1590/2179-10742017v16i2808 10.1016/j.jhevol.2007.09.013 10.1098/rspb.2010.0509 10.1002/jmor.1051590208 10.1002/(SICI)1096-8644(199904)108:4<483::AID-AJPA7>3.0.CO;2-L 10.1016/j.jhevol.2018.02.010 10.1177/00220345990780070801 10.1006/jhev.1997.0180 10.1590/S1806-83242007000200009 10.1111/j.1601-6343.2007.00405.x 10.1016/j.jhevol.2005.01.006 10.1016/j.aanat.2009.10.002 10.3109/00016357709064128 10.1046/j.1365-263X.2001.00298.x 10.1111/j.1365-2842.2011.02278.x 10.1046/j.1365-2842.2002.00957.x 10.1016/0022-510X(73)90093-2 10.1016/S0003-9969(01)00023-1 10.1007/s007840000099 10.1046/j.1365-2842.1998.00293.x 10.1055/s-0034-1374647 10.1016/j.jhevol.2015.02.010 10.1073/pnas.0906206107 10.1046/j.1365-2842.1999.00364.x 10.1046/j.0305-182X.2003.01179.x 10.1055/s-0039-1697833 10.1590/S1678-77572006000600011 10.1016/S0003-9969(99)00008-4 10.1002/ajpa.22296 10.1038/ncomms10596 10.1002/ar.23073 10.1016/j.physbeh.2006.02.013 |
ContentType | Journal Article |
Copyright | 2020 Anatomical Society 2020 Anatomical Society. Journal of Anatomy © 2020 Anatomical Society |
Copyright_xml | – notice: 2020 Anatomical Society – notice: 2020 Anatomical Society. – notice: Journal of Anatomy © 2020 Anatomical Society |
DBID | AAYXX CITATION NPM 7QP 7QR 7SS 7TK 8FD FR3 K9. P64 7X8 5PM |
DOI | 10.1111/joa.13218 |
DatabaseName | CrossRef PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Entomology Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Entomology Abstracts PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
DocumentTitleAlternate | EDMONDS and GLOWACKA |
EISSN | 1469-7580 |
EndPage | 542 |
ExternalDocumentID | PMC7476206 32406523 10_1111_joa_13218 JOA13218 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Leakey Foundation – fundername: Donald C. Johanson Paleoanthropological Research Endowment – fundername: Elizabeth H. Harmon Research Endowment – fundername: ASU GPSA Jumpstart Grant – fundername: Wenner‐Gren Foundation Doctoral Fieldwork Grant – fundername: James F. Nacey Fellowship – fundername: NSF‐DDIG funderid: 1540338 – fundername: ; – fundername: NSF‐DDIG grantid: 1540338 |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OC 24P 29J 2WC 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABGDZ ABJNI ABLJU ABPVW ABQWH ABVKB ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACQPF ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HF~ HGLYW HYE HZI HZ~ H~9 IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBS OHT OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K RCA RIG ROL RPM RX1 SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WH7 WHG WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ X7M XG1 XOL YFH YUY ZGI ZXP ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7QP 7QR 7SS 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c5098-598e5d7dfe0cc729732ea2c1dbae750cda9f56cf89c2c9cae602a5d1872d288f3 |
IEDL.DBID | DR2 |
ISSN | 0021-8782 1469-7580 |
IngestDate | Thu Aug 21 14:30:26 EDT 2025 Fri Jul 11 09:59:37 EDT 2025 Wed Aug 13 02:55:50 EDT 2025 Thu Apr 03 06:58:35 EDT 2025 Tue Jul 01 04:30:14 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Wed Jan 22 16:37:11 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | bite force constrained lever model jaw adductors humans ontogeny |
Language | English |
License | 2020 Anatomical Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5098-598e5d7dfe0cc729732ea2c1dbae750cda9f56cf89c2c9cae602a5d1872d288f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9295-7106 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/joa.13218 |
PMID | 32406523 |
PQID | 2440439844 |
PQPubID | 1086345 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7476206 proquest_miscellaneous_2403034299 proquest_journals_2440439844 pubmed_primary_32406523 crossref_citationtrail_10_1111_joa_13218 crossref_primary_10_1111_joa_13218 wiley_primary_10_1111_joa_13218_JOA13218 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | Journal of anatomy |
PublicationTitleAlternate | J Anat |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 1990; 98 2006; 31 1989; 43 2010; 107 1978; 184 2000; 8 1999; 44 1972 1971 2016a; 4 2005; 27 2001; 46 1994; 102 2004; 31 1979; 159 1976; 35 2003; 206 1973a; 19 2015; 82 2015; 298 2010; 277 2014; 59 2011; 21 2013; 151 1994; 37 2010; 192 2014; 18 2001; 11 2007; 21 2016b; 7 2010; 4 2007; 18 2006; 12 2012 2006; 14 1999; 26 1997; 67 1995 2008; 54 1972; 65 1993; 91 2012; 39 2008; 55 2005; 48 2007; 10 1983; 79 1999; 108 1998; 25 1993; 101 2002; 29 1993; 51 2006; 89 1997; 76 2001; 5 2017; 16 2018; 118 2005; 127 1999; 78 2008; 48 2005; 50 2013 2012; 115 1973b; 31 1998; 34 2001; 114 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_49_1 Waltimo A. (e_1_2_8_64_1) 1994; 102 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 Shinogaya T. (e_1_2_8_46_1) 2000; 8 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 Marklund G. (e_1_2_8_34_1) 1972; 65 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Helle A. (e_1_2_8_19_1) 1983; 79 Kim K. (e_1_2_8_26_1) 2006; 31 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_53_1 Waltimo A. (e_1_2_8_63_1) 1993; 101 e_1_2_8_51_1 Ingervall B. (e_1_2_8_21_1) 1997; 67 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 21 start-page: 112 year: 2011 end-page: 118 article-title: Bite force measurement in children with primary dentition publication-title: International Journal of Paediatric Dentistry – volume: 7 start-page: 10596 year: 2016b article-title: Mechanical evidence that was limited in its ability to eat hard foods publication-title: Nature Communications – volume: 184 start-page: 271 year: 1978 end-page: 285 article-title: The jaw lever system in ungulates: a new model publication-title: Journal of Zoology – volume: 34 start-page: 25 year: 1998 end-page: 54 article-title: Force production in the primate masticatory system: electromyographic tests of biomechanical hypotheses publication-title: Journal of Human Evolution – volume: 114 start-page: 192 year: 2001 end-page: 214 article-title: Teeth, brains, and primate life histories publication-title: American Journal of Physical Anthropology – volume: 127 start-page: 129 year: 2005 end-page: 151 article-title: Bite force production capability and efficiency in neanderthals and modern humans publication-title: American Journal of Physical Anthropology – volume: 206 start-page: 923 year: 2003 end-page: 932 article-title: Ontogeny of feeding function in the gray short‐tailed opossum : Empirical support for the constrained model of jaw biomechanics publication-title: Journal of Experimental Biology – volume: 46 start-page: 641 year: 2001 end-page: 648 article-title: Determinants of masticatory performance in dentate adults publication-title: Archives of Oral Biology – volume: 12 start-page: 120 year: 2006 end-page: 126 article-title: Bite force and occlusion publication-title: Seminars in Orthodontics – volume: 8 start-page: 11 year: 2000 end-page: 15 article-title: Bite force and occlusal load in healthy young subjects – a methodological study publication-title: European Journal of Prosthodontics and Restorative Dentistry – volume: 5 start-page: 63 year: 2001 end-page: 68 article-title: Effects of ethnicity, gender and age on clenching force and load distribution publication-title: Clinical Oral Investigations – volume: 108 start-page: 483 year: 1999 end-page: 506 article-title: Constraints on masticatory system evolution in anthropoid primates publication-title: American Journal of Physical Anthropology – volume: 25 start-page: 681 year: 1998 end-page: 686 article-title: The variability of bite force measurement between sessions, in different positions within the dental arch publication-title: Journal of Oral Rehabilitation – year: 1971 – volume: 101 start-page: 171 year: 1993 article-title: Novel bite force recorder and maximal isometric bite force values for healthy young adults publication-title: Scandinavian Journal of Dental Research – volume: 51 start-page: 323 year: 1993 end-page: 331 article-title: The relationship between maximal bite force, bite force endurance, and facial morphology during growth: A cross‐sectional study publication-title: Acta Odontologica Scandinavica – volume: 4 start-page: 223 year: 2010 end-page: 232 article-title: Bite force and influential factors on bite force measurements: a literature review publication-title: European Journal of Dentistry – volume: 151 start-page: 544 year: 2013 end-page: 557 article-title: Bite force and occlusal stress production in hominin evolution publication-title: American Journal of Physical Anthropology – volume: 91 start-page: 1 year: 1993 end-page: 20 article-title: Biomechanical analysis of masticatory system configuration in Neandertals and Inuits publication-title: American Journal of Physical Anthropology – volume: 192 start-page: 23 year: 2010 end-page: 26 article-title: Changes in bite force, masticatory muscle thickness, and facial morphology between primary and mixed dentition in preschool children with normal occlusion publication-title: Annals of Anatomy – volume: 26 start-page: 223 year: 1999 end-page: 227 article-title: Comparison of biting forces in different age and sex groups: A study of biting efficiency with mobile and non‐mobile teeth publication-title: Journal of Oral Rehabilitation – volume: 29 start-page: 1174 year: 2002 end-page: 1180 article-title: Bite force determination in children with primary dentition publication-title: Journal of Oral Rehabilitation – year: 1972 – volume: 37 start-page: 177 year: 1994 end-page: 231 article-title: Ages of eruption of primate teeth: A compendium for aging individuals and comparing life histories’ publication-title: American Journal of Physical Anthropology – volume: 298 start-page: 145 year: 2015 end-page: 167 article-title: The feeding biomechanics and dietary ecology of publication-title: Anatomical Record – volume: 21 start-page: 146 year: 2007 end-page: 152 article-title: Masticatory performance and bite force in children with primary dentition publication-title: Brazilian Oral Research – volume: 98 start-page: 149 year: 1990 end-page: 158 article-title: Unilateral, isometric bite force in 8–68‐year‐old women and men related to occlusal factors publication-title: European Journal of Oral Sciences – volume: 50 start-page: 517 year: 2005 end-page: 526 article-title: Measurement of bite force variables related to human discrimination of left‐right hardness differences of silicone rubber samples placed between the incisors publication-title: Archives of Oral Biology – volume: 89 start-page: 28 year: 2006 end-page: 35 article-title: Adaptation of healthy mastication to factors pertaining to the individual or to the food publication-title: Physiology & Behavior – volume: 78 start-page: 31 year: 1999 end-page: 42 article-title: Contribution of jaw muscle size and craniofacial morphology to human bite force magnitude publication-title: Journal of Dental Research – volume: 35 start-page: 297 year: 1976 end-page: 303 article-title: Bite force and state of dentition publication-title: Acta Odontologica Scandinavica – volume: 48 start-page: 294 year: 2008 end-page: 311 article-title: Patterns of variation across primates in jaw‐muscle electromyography during mastication publication-title: Integrative and Comparative Biology – volume: 79 start-page: 151 year: 1983 end-page: 154 article-title: Maximum bite force values of children in different age groups publication-title: Proceedings of the Finnish Dental Society – volume: 65 start-page: 107 year: 1972 end-page: 110 article-title: A pilot study concerning the relation between manifest anxiety and bite force publication-title: Svensk Tandläkarforbunds Tidningen – volume: 31 start-page: 35 year: 1973b end-page: 42 article-title: Isometric bite force and its relation to dimensions of the facial skeleton publication-title: Acta Odontologica Scandinavica – volume: 48 start-page: 473 year: 2005 end-page: 492 article-title: Craniodental biomechanics and dietary toughness in the genus publication-title: Journal of Human Evolution – volume: 115 start-page: 354 year: 2012 end-page: 364 article-title: Feeding biomechanics and theoretical calculations of bite force in bull sharks ( ) during ontogeny publication-title: Zoology – volume: 19 start-page: 297 year: 1973a end-page: 305 article-title: Fibre sizes of human masseter muscle in relation to bite force publication-title: Journal of the Neurological Sciences – volume: 16 start-page: 434 year: 2017 end-page: 444 article-title: The force magnitude of a human bite measured at the molar intercuspidation using fiber Bragg gratings publication-title: Journal of Microwaves, Optoelectronics and Electromagnetic Applications – volume: 11 start-page: 281 year: 2001 end-page: 285 article-title: A study on the measurement of occlusal force and masticatory efficiency in school age Japanese children publication-title: International Journal of Paediatric Dentistry – volume: 55 start-page: 60 year: 2008 end-page: 74 article-title: Functional ecology and evolution of hominoid molar enamel thickness: and publication-title: Journal of Human Evolution – volume: 67 start-page: 415 year: 1997 end-page: 422 article-title: Correlation between maximum bite force and facial morphology in children publication-title: Angle Orthodontist – volume: 59 start-page: 1065 year: 2014 end-page: 1074 article-title: Masticatory efficiency and bite force in individuals with normal occlusion publication-title: Archives of Oral Biology – volume: 107 start-page: 1035 year: 2010 end-page: 1040 article-title: Dental development and life history in living African and Asian apes publication-title: Proceedings of the National Academy of Sciences USA – volume: 82 start-page: 137 year: 2015 end-page: 144 article-title: Dental eruption in East African wild chimpanzees publication-title: Journal of Human Evolution – volume: 102 start-page: 372 year: 1994 article-title: Bite force on single as opposed to all maxillary front teeth publication-title: Scandinavian Journal of Dental Research – volume: 78 start-page: 1336 year: 1999 end-page: 1344 article-title: Influence of clenching intensity on bite force balance, occlusal contact area, and average bite pressure publication-title: Journal of Dental Research – volume: 31 start-page: 265 year: 2006 end-page: 274 article-title: Bite force, occlusal contact area and occlusal pressure of patients with temporomandibular joint internal derangement publication-title: Journal of Oral Medicine and Pain – volume: 54 start-page: 196 year: 2008 end-page: 2004 article-title: Comparative observations on the tooth root morphology of publication-title: Journal of Human Evolution – volume: 4 year: 2016a article-title: Human feeding biomechanics: performance, variation, and functional constraints publication-title: PeerJ – volume: 39 start-page: 349 year: 2012 end-page: 356 article-title: Measurement of dynamic bite force during mastication publication-title: Journal of Oral Rehabilitation – volume: 27 start-page: 53 year: 2005 end-page: 57 article-title: A determination of bite force in northern Japanese children publication-title: European Journal of Orthodontics – volume: 18 start-page: 65 year: 2007 end-page: 68 article-title: Maximal bite force and its association with temporomandibular disorders publication-title: Brazilian Dental Journal – volume: 277 start-page: 3579 year: 2010 end-page: 3586 article-title: The craniomandibular mechanics of being human publication-title: Proceedings of the Royal Society B – year: 2012 – volume: 76 start-page: 1316 year: 1997 article-title: The association among occlusal contacts, clenching effort, and bite force distribution in man publication-title: Journal of Dental Research – volume: 14 start-page: 448 year: 2006 end-page: 453 article-title: The influence of gender and bruxism on the human maximum bite force publication-title: Journal of Applied Oral Science – volume: 44 start-page: 509 year: 1999 end-page: 518 article-title: Comparative data from young men and women on masseter muscle fibers, function and facial morphology publication-title: Archives of Oral Biology – volume: 27 start-page: 58 year: 2005 end-page: 63 article-title: Molar bite force in relation to occlusion, craniofacial dimensions, and head posture in pre‐orthodontic children publication-title: European Journal of Orthodontics – volume: 159 start-page: 253 year: 1979 end-page: 296 article-title: Mandibular function in and : An in vivo approach to stress analysis of the mandible publication-title: Journal of Morphology – volume: 43 start-page: 683 year: 1989 end-page: 688 article-title: Dental development as a measure of life history in primates publication-title: Evolution (NY) – year: 1995 – volume: 18 start-page: 272 year: 2014 end-page: 276 article-title: Maximum bite force analysis in different age groups publication-title: International Archives of Otorhinolaryngology – volume: 31 start-page: 18 year: 2004 end-page: 22 article-title: Single tooth bite forces in healthy young adults publication-title: Journal of Oral Rehabilitation – volume: 54 start-page: 187 year: 2008 end-page: 195 article-title: Three‐dimensional primate molar enamel thickness publication-title: Journal of Human Evolution – volume: 118 start-page: 56 year: 2018 end-page: 71 article-title: The biting performance of and publication-title: Journal of Human Evolution – volume: 10 start-page: 226 year: 2007 end-page: 234 article-title: Change in maximum occlusal force in association with maxillofacial growth publication-title: Orthodontics and Craniofacial Research – year: 2013 – volume: 31 start-page: 265 year: 2006 ident: e_1_2_8_26_1 article-title: Bite force, occlusal contact area and occlusal pressure of patients with temporomandibular joint internal derangement publication-title: Journal of Oral Medicine and Pain – ident: e_1_2_8_31_1 – ident: e_1_2_8_49_1 doi: 10.1002/ajpa.1330370608 – ident: e_1_2_8_55_1 doi: 10.1002/ajpa.1330910102 – ident: e_1_2_8_57_1 doi: 10.1242/jeb.00181 – ident: e_1_2_8_7_1 doi: 10.1016/j.archoralbio.2004.11.001 – ident: e_1_2_8_8_1 doi: 10.1016/j.archoralbio.2014.05.005 – ident: e_1_2_8_12_1 doi: 10.1002/1096-8644(200103)114:3<192::AID-AJPA1020>3.0.CO;2-Q – ident: e_1_2_8_24_1 doi: 10.1177/00220345970760061201 – ident: e_1_2_8_15_1 doi: 10.1016/j.zool.2012.04.007 – ident: e_1_2_8_36_1 doi: 10.1111/j.1365-263X.2010.01098.x – ident: e_1_2_8_3_1 doi: 10.1053/j.sodo.2006.01.005 – ident: e_1_2_8_22_1 doi: 10.1093/ejo/cjh090 – ident: e_1_2_8_14_1 doi: 10.1111/j.1469-7998.1978.tb03282.x – ident: e_1_2_8_40_1 – ident: e_1_2_8_48_1 doi: 10.1111/j.1558-5646.1989.tb04266.x – ident: e_1_2_8_51_1 doi: 10.1093/ejo/cjh069 – ident: e_1_2_8_38_1 doi: 10.1016/j.jhevol.2007.09.014 – ident: e_1_2_8_44_1 doi: 10.3109/00016357309004611 – ident: e_1_2_8_66_1 – ident: e_1_2_8_37_1 doi: 10.1002/ajpa.20025 – ident: e_1_2_8_41_1 doi: 10.1177/00220345990780010301 – ident: e_1_2_8_62_1 doi: 10.1016/j.jhevol.2007.12.005 – ident: e_1_2_8_39_1 doi: 10.1590/S0103-64402007000100014 – ident: e_1_2_8_4_1 doi: 10.1111/j.1600-0722.1990.tb00954.x – ident: e_1_2_8_29_1 doi: 10.7717/peerj.2242 – ident: e_1_2_8_25_1 doi: 10.3109/00016359309040583 – ident: e_1_2_8_61_1 doi: 10.1093/icb/icn071 – ident: e_1_2_8_2_1 doi: 10.1590/2179-10742017v16i2808 – ident: e_1_2_8_28_1 doi: 10.1016/j.jhevol.2007.09.013 – ident: e_1_2_8_69_1 doi: 10.1098/rspb.2010.0509 – ident: e_1_2_8_20_1 doi: 10.1002/jmor.1051590208 – ident: e_1_2_8_54_1 doi: 10.1002/(SICI)1096-8644(199904)108:4<483::AID-AJPA7>3.0.CO;2-L – volume: 79 start-page: 151 year: 1983 ident: e_1_2_8_19_1 article-title: Maximum bite force values of children in different age groups publication-title: Proceedings of the Finnish Dental Society – ident: e_1_2_8_13_1 doi: 10.1016/j.jhevol.2018.02.010 – ident: e_1_2_8_17_1 doi: 10.1177/00220345990780070801 – ident: e_1_2_8_53_1 doi: 10.1006/jhev.1997.0180 – ident: e_1_2_8_65_1 – ident: e_1_2_8_11_1 doi: 10.1590/S1806-83242007000200009 – ident: e_1_2_8_60_1 doi: 10.1111/j.1601-6343.2007.00405.x – ident: e_1_2_8_68_1 doi: 10.1016/j.jhevol.2005.01.006 – volume: 67 start-page: 415 year: 1997 ident: e_1_2_8_21_1 article-title: Correlation between maximum bite force and facial morphology in children publication-title: Angle Orthodontist – ident: e_1_2_8_6_1 doi: 10.1016/j.aanat.2009.10.002 – ident: e_1_2_8_18_1 doi: 10.3109/00016357709064128 – ident: e_1_2_8_33_1 doi: 10.1046/j.1365-263X.2001.00298.x – ident: e_1_2_8_45_1 doi: 10.1111/j.1365-2842.2011.02278.x – ident: e_1_2_8_42_1 doi: 10.1046/j.1365-2842.2002.00957.x – ident: e_1_2_8_43_1 doi: 10.1016/0022-510X(73)90093-2 – ident: e_1_2_8_16_1 doi: 10.1016/S0003-9969(01)00023-1 – ident: e_1_2_8_47_1 doi: 10.1007/s007840000099 – ident: e_1_2_8_58_1 doi: 10.1046/j.1365-2842.1998.00293.x – ident: e_1_2_8_56_1 doi: 10.1055/s-0034-1374647 – volume: 102 start-page: 372 year: 1994 ident: e_1_2_8_64_1 article-title: Bite force on single as opposed to all maxillary front teeth publication-title: Scandinavian Journal of Dental Research – ident: e_1_2_8_32_1 doi: 10.1016/j.jhevol.2015.02.010 – ident: e_1_2_8_23_1 doi: 10.1073/pnas.0906206107 – ident: e_1_2_8_35_1 doi: 10.1046/j.1365-2842.1999.00364.x – ident: e_1_2_8_10_1 doi: 10.1046/j.0305-182X.2003.01179.x – ident: e_1_2_8_52_1 – ident: e_1_2_8_27_1 doi: 10.1055/s-0039-1697833 – ident: e_1_2_8_5_1 doi: 10.1590/S1678-77572006000600011 – ident: e_1_2_8_59_1 doi: 10.1016/S0003-9969(99)00008-4 – volume: 65 start-page: 107 year: 1972 ident: e_1_2_8_34_1 article-title: A pilot study concerning the relation between manifest anxiety and bite force publication-title: Svensk Tandläkarforbunds Tidningen – ident: e_1_2_8_9_1 doi: 10.1002/ajpa.22296 – ident: e_1_2_8_30_1 doi: 10.1038/ncomms10596 – ident: e_1_2_8_50_1 doi: 10.1002/ar.23073 – ident: e_1_2_8_67_1 doi: 10.1016/j.physbeh.2006.02.013 – volume: 101 start-page: 171 year: 1993 ident: e_1_2_8_63_1 article-title: Novel bite force recorder and maximal isometric bite force values for healthy young adults publication-title: Scandinavian Journal of Dental Research – volume: 8 start-page: 11 year: 2000 ident: e_1_2_8_46_1 article-title: Bite force and occlusal load in healthy young subjects – a methodological study publication-title: European Journal of Prosthodontics and Restorative Dentistry |
SSID | ssj0013094 |
Score | 2.454852 |
Snippet | Ontogenetic changes in the human masticatory complex suggest that bite force, a key measure of chewing performance, increases throughout growth and... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 529 |
SubjectTerms | Adductor muscle bite force Biting Chewing constrained lever model Dentition humans jaw adductors Juveniles Mastication Minors Ontogeny Original Paper Original Papers Teeth |
Title | The ontogeny of maximum bite force in humans |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjoa.13218 https://www.ncbi.nlm.nih.gov/pubmed/32406523 https://www.proquest.com/docview/2440439844 https://www.proquest.com/docview/2403034299 https://pubmed.ncbi.nlm.nih.gov/PMC7476206 |
Volume | 237 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5EUHzxPupFFB98cJduegafRBQRVBAFEaGkSYqLbivuLqi_3pn00PUA8a0kU5p0Msk3yeQbgB3fZJ7BhaclNLoofkbZAGXgtlKBcEQpV3s2HdDZeXhy7Z_eBDdjsF_fhSn5IZoNN7IMO1-Tgcu0_9nIC9lGV6pDF30pVosA0SX_OEFwRcXA3EGLj3nFKmSjeOo3R9eibwDze5zkZ_xqF6DjGbirm17GnTy0h4O0rd6-sDr-s2-zMF0BU3ZQjqQ5GDP5PEyUqSpf52HyrDqEx8LbwhYuwB4OMkYECDgKX1mRsZ586faGPZYikGUIh5Vh3ZzZPID9Rbg-Pro6PGlV6RdaKiCW0UDEJtCRzoyrVEQ5rriRXHV0Kg3iDKWlyIJQZbFQXAklTehyGehOHHHN4zjzlmA8L3KzAiwUmZDaktX7fiQC6Sqi8YlD5UZplHoO7NaKSFTFTU4pMh6TxkcpZGL_iAPbjehTScjxk9B6rc2kssl-wokK0ROx7zuw1VSjNdERicxNMSQZnPQ8WqMdWC6V33yFqAtD9NsdiEaGRSNATN2jNXn33jJ2o88WcjfEblqt_97w5PTiwD6s_l10DaY4bQLYwLd1GB88D80GIqVBumlN4h3LEwzt |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_Uou2LrfZrW61R-uBD79jLfiXgi7TK-XEWREEEWbJJFg97u6XegfrXdyb7Ua9WKL4tySy72ZlJfpPM_gbgc2jzwOLC05EGQ5Qwp2qAKvI7mUQ4orVvAlcOaHAU90_D_bPobAa2mn9hKn6IdsONPMPN1-TgtCF938tL1cVYqidm4RlV9Cbm_G_H_M8Zgi9rDuYe-rzgNa-Qy-Npbp1ejR5AzIeZkvcRrFuCdl_CRfPyVebJVXcyzrr67i9ex6eO7hUs1tiUbVfGtAQztliG-apa5e0yLAzqc3hsPC9d42v4gnbGiAMBDfGWlTkbqZvhaDJiGWJZhohYWzYsmCsFeP0GTnd3Tr72O3UFho6OiGg0ksJGJjG59bVOqMwVt4rrnsmURaihjZJ5FOtcSM211MrGPleR6YmEGy5EHryFuaIs7HtgscylMo6vPgwTGSlfE5OPiLWfZEkWeLDZaCLVNT05Vcn4kbZhSqlS90U82GhFf1acHP8SWmnUmdZueZ1yYkMMpAhDD9bbbnQoOiVRhS0nJIPzXkDLtAfvKu23TyH2whhDdw-SKbtoBYise7qnGF460m4M22LuxzhMp_bHXzzd_77tLj78v-gaPO-fDA7Tw72jg4_wgtOegMuDW4G58a-JXUXgNM4-Of_4DY_LEQk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ8ARuKLKH6toBTDAw_cpdfd7bbhiYAXQEBDJCHEZNPtR7zo7RK5S8S_3mn3Q04wMbxt2tnsdmem_U07-xuAjcS62OLC05MGQ5TE-WqAKqW9QiIc0ZqaOJQDOj7h-2fJ4Xl6Pgfb7b8wNT9Et-HmPSPM197BL4276eSV6mMoNRDz8CDhVPq6DXun7M8RApUNBfMAXV6whlYopPG0t84uRrcQ5u1EyZsANqxAwyX40r57nXjyrT-dFH396y9ax3sO7gk8bpAp2alN6SnM2XIZHta1Kq-XYfG4OYXHxosqND6DLbQy4hkQ0AyvSeXIWP0cjadjUiCSJYiHtSWjkoRCgFfP4Wz4_vPufq-pv9DTqacZTaWwqcmMs1TrzBe5YlYxPTCFsgg0tFHSpVw7ITXTUivLKVOpGYiMGSaEi1_AQlmV9hUQLp1UJrDVJ0kmU0W15_ERXNOsyIo4gs1WEbluyMl9jYzveRekVCoPXySCd53oZc3IcZfQaqvNvHHKq5x5LsRYiiSJYL3rRnfyZySqtNXUy-CsF_tFOoKXtfK7p3juQo6BewTZjFl0Ap6qe7anHH0NlN0YtHFGOQ4zaP3fL54fftwJF6__X3QNFj_tDfOjg5MPK_CI-Q2BkAS3CguTH1P7BlHTpHgbvOM3UPMPuA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ontogeny+of+maximum+bite+force+in+humans&rft.jtitle=Journal+of+anatomy&rft.au=Edmonds%2C+Hallie+M.&rft.au=Glowacka%2C+Halszka&rft.date=2020-09-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0021-8782&rft.eissn=1469-7580&rft.volume=237&rft.issue=3&rft.spage=529&rft.epage=542&rft_id=info:doi/10.1111%2Fjoa.13218&rft_id=info%3Apmid%2F32406523&rft.externalDocID=PMC7476206 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8782&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8782&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8782&client=summon |