Pathomechanisms of TDP‐43 in neurodegeneration

Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurochemistry Vol. 146; no. 1; pp. 7 - 20
Main Authors Gao, Ju, Wang, Luwen, Huntley, Mikayla L., Perry, George, Wang, Xinglong
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.07.2018
Subjects
Online AccessGet full text
ISSN0022-3042
1471-4159
1471-4159
DOI10.1111/jnc.14327

Cover

Loading…
Abstract Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). There is no cure or treatment available that can prevent or reverse neurodegenerative conditions. The causes of neurodegeneration in these diseases remain largely unknown; yet, an extremely small proportion of these devastating diseases are associated with genetic mutations in proteins involved in a wide range of cellular pathways and processes. Over the past decade, it has become increasingly clear that the most notable neurodegenerative diseases, such as ALS, FTLD, and AD, share a common prominent pathological feature known as TAR DNA‐binding protein 43 (TDP‐43) proteinopathy, which is usually characterized by the presence of aberrant phosphorylation, ubiquitination, cleavage and/or nuclear depletion of TDP‐43 in neurons and glial cells. The role of TDP‐43 as a neurotoxicity trigger has been well documented in different in vitro and in vivo experimental models. As such, the investigation of TDP‐43 pathomechanisms in various major neurodegenerative diseases is on the rise. Here, after a discussion of stages of TDP‐43 proteinopathy during disease progression in various major neurodegenerative diseases, we review previous and most recent studies about the potential pathomechanisms with a particular emphasis on ALS, FTLD, and AD, and discuss the possibility of targeting TDP‐43 as a common therapeutic approach to treat neurodegenerative diseases. TAR DNA‐binding protein 43 (TDP‐43) proteinopathy is a prominent pathological feature of various major neurodegenerative diseases. In this issue, we first introduce the reader to stages of TDP‐43 proteinopathy during disease progression in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and Alzheimer disease (AD), then extensively review our understanding about the potential pathomechanisms underlying TDP‐43 proteinopathy, and finally discuss the possibility of targeting TDP‐43 for the treatment of neurodegenerative diseases.
AbstractList Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). There is no cure or treatment available that can prevent or reverse neurodegenerative conditions. The causes of neurodegeneration in these diseases remain largely unknown; yet, an extremely small proportion of these devastating diseases are associated with genetic mutations in proteins involved in a wide range of cellular pathways and processes. Over the past decade, it has become increasingly clear that the most notable neurodegenerative diseases, such as ALS, FTLD, and AD, share a common prominent pathological feature known as TAR DNA‐binding protein 43 (TDP‐43) proteinopathy, which is usually characterized by the presence of aberrant phosphorylation, ubiquitination, cleavage and/or nuclear depletion of TDP‐43 in neurons and glial cells. The role of TDP‐43 as a neurotoxicity trigger has been well documented in different in vitro and in vivo experimental models. As such, the investigation of TDP‐43 pathomechanisms in various major neurodegenerative diseases is on the rise. Here, after a discussion of stages of TDP‐43 proteinopathy during disease progression in various major neurodegenerative diseases, we review previous and most recent studies about the potential pathomechanisms with a particular emphasis on ALS, FTLD, and AD, and discuss the possibility of targeting TDP‐43 as a common therapeutic approach to treat neurodegenerative diseases.
Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). There is no cure or treatment available that can prevent or reverse neurodegenerative conditions. The causes of neurodegeneration in these diseases remain largely unknown; yet, an extremely small proportion of these devastating diseases are associated with genetic mutations in proteins involved in a wide range of cellular pathways and processes. Over the past decade, it has become increasingly clear that the most notable neurodegenerative diseases, such as ALS, FTLD, and AD, share a common prominent pathological feature known as TAR DNA‐binding protein 43 (TDP‐43) proteinopathy, which is usually characterized by the presence of aberrant phosphorylation, ubiquitination, cleavage and/or nuclear depletion of TDP‐43 in neurons and glial cells. The role of TDP‐43 as a neurotoxicity trigger has been well documented in different in vitro and in vivo experimental models. As such, the investigation of TDP‐43 pathomechanisms in various major neurodegenerative diseases is on the rise. Here, after a discussion of stages of TDP‐43 proteinopathy during disease progression in various major neurodegenerative diseases, we review previous and most recent studies about the potential pathomechanisms with a particular emphasis on ALS, FTLD, and AD, and discuss the possibility of targeting TDP‐43 as a common therapeutic approach to treat neurodegenerative diseases. TAR DNA‐binding protein 43 (TDP‐43) proteinopathy is a prominent pathological feature of various major neurodegenerative diseases. In this issue, we first introduce the reader to stages of TDP‐43 proteinopathy during disease progression in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and Alzheimer disease (AD), then extensively review our understanding about the potential pathomechanisms underlying TDP‐43 proteinopathy, and finally discuss the possibility of targeting TDP‐43 for the treatment of neurodegenerative diseases.
Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). There is no cure or treatment available that can prevent or reverse neurodegenerative conditions. The causes of neurodegeneration in these diseases remain largely unknown; yet, an extremely small proportion of these devastating diseases are associated with genetic mutations in proteins involved in a wide range of cellular pathways and processes. Over the past decade, it has become increasingly clear that the most notable neurodegenerative diseases, such as ALS, FTLD, and AD, share a common prominent pathological feature known as TAR DNA-binding protein 43 (TDP-43) proteinopathy, which is usually characterized by the presence of aberrant phosphorylation, ubiquitination, cleavage and/or nuclear depletion of TDP-43 in neurons and glial cells. The role of TDP-43 as a neurotoxicity trigger has been well documented in different in vitro and in vivo experimental models. As such, the investigation of TDP-43 pathomechanisms in various major neurodegenerative diseases is on the rise. Here, after a discussion of stages of TDP-43 proteinopathy during disease progression in various major neurodegenerative diseases, we review previous and most recent studies about the potential pathomechanisms with a particular emphasis on ALS, FTLD, and AD, and discuss the possibility of targeting TDP-43 as a common therapeutic approach to treat neurodegenerative diseases.Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). There is no cure or treatment available that can prevent or reverse neurodegenerative conditions. The causes of neurodegeneration in these diseases remain largely unknown; yet, an extremely small proportion of these devastating diseases are associated with genetic mutations in proteins involved in a wide range of cellular pathways and processes. Over the past decade, it has become increasingly clear that the most notable neurodegenerative diseases, such as ALS, FTLD, and AD, share a common prominent pathological feature known as TAR DNA-binding protein 43 (TDP-43) proteinopathy, which is usually characterized by the presence of aberrant phosphorylation, ubiquitination, cleavage and/or nuclear depletion of TDP-43 in neurons and glial cells. The role of TDP-43 as a neurotoxicity trigger has been well documented in different in vitro and in vivo experimental models. As such, the investigation of TDP-43 pathomechanisms in various major neurodegenerative diseases is on the rise. Here, after a discussion of stages of TDP-43 proteinopathy during disease progression in various major neurodegenerative diseases, we review previous and most recent studies about the potential pathomechanisms with a particular emphasis on ALS, FTLD, and AD, and discuss the possibility of targeting TDP-43 as a common therapeutic approach to treat neurodegenerative diseases.
Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). There is no cure or treatment available that can prevent or reverse neurodegenerative conditions. The causes of neurodegeneration in these diseases remain largely unknown; yet, an extremely small proportion of these devastating diseases are associated with genetic mutations in proteins involved in a wide range of cellular pathways and processes. Over the past decade, it has become increasingly clear that the most notable neurodegenerative diseases, such as ALS, FTLD, and AD, share a common prominent pathological feature known as TAR DNA-binding protein 43 (TDP-43) proteinopathy, which is usually characterized by the presence of aberrant phosphorylation, ubiquitination, cleavage and/or nuclear depletion of TDP-43 in neurons and glial cells. The role of TDP-43 as a neurotoxicity trigger has been well documented in different in vitro and in vivo experimental models. As such, the investigation of TDP-43 pathomechanisms in various major neurodegenerative diseases is on the rise. Here, after a discussion of stages of TDP-43 proteinopathy during disease progression in various major neurodegenerative diseases, we review previous and most recent studies about the potential pathomechanisms with a particular emphasis on ALS, FTLD, and AD, and discuss the possibility of targeting TDP-43 as a common therapeutic approach to treat neurodegenerative diseases.
Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). There is no cure or treatment available that can prevent or reverse neurodegenerative conditions. The causes of neurodegeneration in these diseases remain largely unknown; yet, an extremely small proportion of these devastating diseases are associated with genetic mutations in proteins involved in a wide range of cellular pathways and processes. Over the past decade, it has become increasingly clear that the most notable neurodegenerative diseases, such as ALS, FTLD, and AD, share a common prominent pathological feature known as TAR DNA-binding protein 43 (TDP-43) proteinopathy, which is usually characterized by the presence of aberrant phosphorylation, ubiquitination, cleavage and/or nuclear depletion of TDP-43 in neurons and glial cells. The role of TDP-43 as a neurotoxicity trigger has been well documented in different in vitro and in vivo experimental models. As such, the investigation of TDP-43 pathomechanisms in various major neurodegenerative diseases is on the rise. Here, after a discussion of stages of TDP-43 proteinopathy during disease progression in various major neurodegenerative diseases, we review previous and most recent studies about the potential pathomechanisms with a particular emphasis on ALS, FTLD, and AD, and discuss the possibility of targeting TDP-43 as a common therapeutic approach to treat neurodegenerative diseases.
Author Wang, Luwen
Huntley, Mikayla L.
Wang, Xinglong
Perry, George
Gao, Ju
AuthorAffiliation College of Sciences, University of Texas at San Antonio, San Antonio, Texas, USA
Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
AuthorAffiliation_xml – name: Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
– name: College of Sciences, University of Texas at San Antonio, San Antonio, Texas, USA
Author_xml – sequence: 1
  givenname: Ju
  surname: Gao
  fullname: Gao, Ju
  organization: Case Western Reserve University
– sequence: 2
  givenname: Luwen
  surname: Wang
  fullname: Wang, Luwen
  organization: Case Western Reserve University
– sequence: 3
  givenname: Mikayla L.
  surname: Huntley
  fullname: Huntley, Mikayla L.
  organization: Case Western Reserve University
– sequence: 4
  givenname: George
  surname: Perry
  fullname: Perry, George
  organization: University of Texas at San Antonio
– sequence: 5
  givenname: Xinglong
  surname: Wang
  fullname: Wang, Xinglong
  email: xinglong.wang@case.edu
  organization: Case Western Reserve University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29486049$$D View this record in MEDLINE/PubMed
BookMark eNp9kclOHDEQhi0EgmE58ALRSLmQQ0N56cWXSNEkYRFKOMzd8rjLjEfdNrG7g7jlEfKMeZIYBhAgJXWpQ3311_Lvkk0fPBJySOGY5jhZeXNMBWf1BplQUdNC0FJukgkAYwUHwXbIbkorAFqJim6THSZFU4GQEwJXeliGHs1Se5f6NA12Ov989efXb8Gnzk89jjG0eI0eox5c8Ptky-ou4cFj3iPzr1_ms7Pi8vvp-ezTZWFKkHVhKwOWM1YZzmwtWt0sGpCylEi5FdjUC4sGLXBjacua1khaQ1XalskSBeV75ONa9mZc9Nga9EPUnbqJrtfxTgXt1OuKd0t1HX6qitI8h2eBo0eBGH6MmAbVu2Sw67THMCbFACSjvII6o-_foKswRp-vy1TNgDPJWabevdzoeZWnX2bgwxowMaQU0T4jFNS9Tyr7pB58yuzJG9a44eG_-RjX_a_j1nV4929pdfFttu74C37FozA
CitedBy_id crossref_primary_10_1016_j_molcel_2021_10_010
crossref_primary_10_3390_cells9122642
crossref_primary_10_3390_ijms23042147
crossref_primary_10_1111_nan_12668
crossref_primary_10_3389_fcell_2022_931968
crossref_primary_10_1016_j_dnarep_2019_102669
crossref_primary_10_1016_j_arr_2024_102413
crossref_primary_10_3390_biom11081109
crossref_primary_10_3390_ijms23094653
crossref_primary_10_3389_fmolb_2021_773234
crossref_primary_10_3390_antiox10071012
crossref_primary_10_1172_jci_insight_140420
crossref_primary_10_3390_antiox11010082
crossref_primary_10_4103_1673_5374_300983
crossref_primary_10_1016_j_bbrc_2023_05_046
crossref_primary_10_1007_s12640_021_00455_6
crossref_primary_10_1186_s40035_020_00219_w
crossref_primary_10_1007_s00401_022_02466_9
crossref_primary_10_1016_j_ejmech_2025_117491
crossref_primary_10_1038_s41583_021_00431_1
crossref_primary_10_1016_j_drudis_2023_103769
crossref_primary_10_3390_genes15091197
crossref_primary_10_1007_s00401_020_02246_3
crossref_primary_10_1016_j_cbpa_2018_05_018
crossref_primary_10_3389_fncel_2021_625665
crossref_primary_10_3389_fmolb_2021_668821
crossref_primary_10_3390_brainsci14100978
crossref_primary_10_1007_s00062_022_01150_5
crossref_primary_10_3390_ph17040468
crossref_primary_10_1111_acel_13687
crossref_primary_10_1002_mds_29153
crossref_primary_10_1007_s12035_018_1411_3
crossref_primary_10_3390_ijms222111853
crossref_primary_10_1038_s42004_021_00547_6
crossref_primary_10_3389_fnmol_2019_00262
crossref_primary_10_3389_fncel_2020_00117
crossref_primary_10_1007_s12035_022_02869_5
crossref_primary_10_3389_fncel_2020_594561
crossref_primary_10_1083_jcb_202309036
crossref_primary_10_3389_fphar_2021_643254
crossref_primary_10_1016_j_jmb_2021_166953
crossref_primary_10_1186_s13024_020_00386_4
crossref_primary_10_1007_s12035_022_02847_x
crossref_primary_10_3390_ijms20071728
crossref_primary_10_14336_AD_2024_0440
crossref_primary_10_1021_acs_jcim_1c01224
crossref_primary_10_1126_scitranslmed_abe1923
crossref_primary_10_1186_s40478_025_01962_9
crossref_primary_10_37349_ent_2025_100498
crossref_primary_10_3390_bios14120578
crossref_primary_10_2174_1389200223666220310113110
crossref_primary_10_1038_s41467_022_28822_7
crossref_primary_10_3390_ijms222212193
crossref_primary_10_1093_braincomms_fcae442
crossref_primary_10_3390_biomedicines10020295
crossref_primary_10_1093_brain_awae078
crossref_primary_10_1007_s11357_024_01111_5
crossref_primary_10_3390_ijms232012508
crossref_primary_10_1021_acs_jcim_4c01140
crossref_primary_10_1016_j_yjmcc_2022_01_004
crossref_primary_10_7717_peerj_13703
crossref_primary_10_1016_j_nbd_2021_105360
crossref_primary_10_3389_fnins_2020_00824
crossref_primary_10_1002_alz_13808
crossref_primary_10_1038_s12276_022_00761_9
crossref_primary_10_1093_braincomms_fcac315
crossref_primary_10_1007_s00401_019_02093_x
crossref_primary_10_1007_s12035_023_03455_z
crossref_primary_10_1016_j_ejmech_2020_112968
crossref_primary_10_1042_BST20210862
crossref_primary_10_3389_fnins_2020_00145
crossref_primary_10_1016_j_phrs_2018_08_010
crossref_primary_10_1111_jnc_15327
crossref_primary_10_1016_j_neuint_2018_12_009
crossref_primary_10_1186_s13024_021_00503_x
crossref_primary_10_3389_fnins_2024_1505029
crossref_primary_10_1261_rna_079514_122
crossref_primary_10_1021_acs_biochem_9b00780
crossref_primary_10_1186_s40478_023_01705_8
crossref_primary_10_7554_eLife_85921
crossref_primary_10_1038_s41598_022_08068_5
crossref_primary_10_1016_j_arr_2019_100937
crossref_primary_10_1002_mds_29449
crossref_primary_10_1007_s00894_019_4066_8
crossref_primary_10_1016_j_nbd_2019_104562
crossref_primary_10_1073_pnas_2021368118
crossref_primary_10_1007_s12035_021_02505_8
crossref_primary_10_1093_braincomms_fcac242
crossref_primary_10_1136_jnnp_2020_322983
crossref_primary_10_1007_s11064_019_02832_2
crossref_primary_10_1016_j_tips_2021_11_015
crossref_primary_10_1016_j_jbc_2022_102498
crossref_primary_10_1038_s41598_021_89973_z
crossref_primary_10_1038_s41388_022_02539_9
crossref_primary_10_3389_fgene_2023_881638
crossref_primary_10_1186_s13024_023_00621_8
crossref_primary_10_1021_acschemneuro_9b00026
crossref_primary_10_1186_s13100_018_0138_z
crossref_primary_10_4103_1673_5374_382233
crossref_primary_10_1038_s42003_025_07456_7
crossref_primary_10_1111_nan_12599
crossref_primary_10_1016_j_bbadis_2023_166716
crossref_primary_10_1016_j_arr_2024_102441
crossref_primary_10_1126_scitranslmed_adp5730
crossref_primary_10_1042_BST20230599
crossref_primary_10_1038_s41582_023_00846_7
crossref_primary_10_1016_j_tcb_2020_08_007
crossref_primary_10_1186_s40035_024_00419_8
crossref_primary_10_1016_j_jagp_2023_08_017
crossref_primary_10_1007_s12652_018_1080_0
crossref_primary_10_1016_j_conb_2021_10_001
crossref_primary_10_3390_ijms22105292
crossref_primary_10_1007_s13311_023_01361_9
crossref_primary_10_1016_j_addr_2022_114569
crossref_primary_10_1016_j_nbd_2020_105130
crossref_primary_10_1016_j_nicl_2020_102327
crossref_primary_10_1242_dmm_049323
crossref_primary_10_1016_j_pneurobio_2025_102742
crossref_primary_10_1177_2472555218818065
crossref_primary_10_1186_s40478_021_01148_z
crossref_primary_10_1126_sciadv_ade1282
crossref_primary_10_1016_j_arr_2024_102357
crossref_primary_10_7554_eLife_85921_3
crossref_primary_10_3390_ijms22094705
crossref_primary_10_1038_s41598_020_74800_8
crossref_primary_10_1242_dmm_039552
crossref_primary_10_3390_microorganisms10122418
crossref_primary_10_3389_fnins_2023_1300705
crossref_primary_10_1002_j_2769_2795_2021_tb00074_x
crossref_primary_10_1093_braincomms_fcaf060
crossref_primary_10_1007_s00216_018_1437_4
crossref_primary_10_1007_s00401_022_02449_w
crossref_primary_10_1002_glia_24096
crossref_primary_10_14814_phy2_14072
crossref_primary_10_1016_j_jmgm_2022_108377
crossref_primary_10_3390_ijms23116180
crossref_primary_10_1093_jnen_nlae032
crossref_primary_10_3389_fnmol_2018_00463
crossref_primary_10_1007_s12035_023_03472_y
crossref_primary_10_1186_s40478_023_01656_0
crossref_primary_10_3390_ijms22157781
crossref_primary_10_3390_cells10092247
crossref_primary_10_3390_ijms252212380
crossref_primary_10_1021_acsomega_4c04119
crossref_primary_10_1016_j_bcp_2023_115923
Cites_doi 10.1385/MN:31:1-3:205
10.1159/000273591
10.1093/brain/aww237
10.1074/jbc.M112.419945
10.1073/pnas.1211577110
10.1523/JNEUROSCI.3421-07.2007
10.1038/375061a0
10.1002/ana.21425
10.1016/j.brainresbull.2012.09.005
10.1007/s00401-008-0372-4
10.1007/s00401-011-0862-7
10.1126/science.1134108
10.3390/antiox6020025
10.1016/j.febslet.2006.01.052
10.1073/pnas.0900688106
10.1016/S0301-0082(99)00033-7
10.1126/science.1166066
10.1074/jbc.M203065200
10.1016/j.jmb.2005.02.038
10.1097/WAD.0b013e31820f8f50
10.1073/pnas.0400182101
10.1186/s12920-017-0274-1
10.1002/jnr.23081
10.1093/brain/aww224
10.1007/s00401-012-1005-5
10.1016/j.sbi.2008.04.002
10.1136/jnnp.2007.131334
10.1016/j.brainres.2009.09.105
10.1523/JNEUROSCI.0248-14.2014
10.1523/JNEUROSCI.1630-10.2010
10.1093/nar/gkr1082
10.1074/jbc.M110.194852
10.1002/ana.23937
10.3109/09540261.2013.776523
10.1186/s40478-016-0340-5
10.1371/journal.pgen.1000193
10.1007/s00401-009-0526-z
10.1091/mbc.E06-12-1120
10.1038/s41598-017-06953-y
10.1155/2015/647408
10.1093/emboj/20.7.1774
10.1016/j.bbadis.2006.04.002
10.1093/hmg/ddt319
10.1038/4553
10.1093/hmg/ddu211
10.1016/S0065-2660(09)66001-6
10.1111/j.1750-3639.2011.00546.x
10.1002/jnr.10389
10.1038/ncomms15558
10.1007/s12031-011-9545-z
10.1007/s00401-017-1701-2
10.1038/icb.2016.89
10.1002/1531-8249(20010201)49:2<165::AID-ANA36>3.0.CO;2-3
10.1111/j.1471-4159.2009.06211.x
10.1073/pnas.1317317111
10.1101/cshperspect.a012286
10.1093/hmg/ddv491
10.1007/s00401-008-0480-1
10.1007/s00401-011-0932-x
10.1038/nature22038
10.1007/s00401-007-0223-8
10.1007/s00401-008-0396-9
10.1523/JNEUROSCI.0996-12.2012
10.1093/hmg/ddt528
10.1126/science.1105681
10.1126/science.aab0983
10.1073/pnas.1301608110
10.1016/S0074-7742(08)60607-8
10.1016/S0925-4439(00)00028-4
10.1371/journal.pone.0013250
10.1093/oxfordjournals.hmg.a018919
10.1038/nature21695
10.1007/s11940-014-0319-0
10.1093/hmg/dds205
10.1111/j.1471-4159.2007.05190.x
10.1007/s00401-015-1412-5
10.1016/j.brainres.2007.09.048
10.1007/s00401-007-0261-2
10.1016/S1474-4422(10)70195-2
10.1038/ncomms2303
10.1016/j.bbagrm.2015.10.015
10.1371/journal.pone.0086513
10.1186/1750-1326-8-28
10.1083/jcb.201504057
10.1016/j.neuron.2010.07.019
10.1016/j.neuron.2004.06.016
10.4161/auto.22526
10.1016/j.str.2016.07.007
10.1038/nn.2779
10.1074/jbc.M809462200
10.1111/j.1471-4159.2010.07098.x
10.1093/hmg/ddr021
10.1073/pnas.1222809110
10.2741/2727
10.1002/ana.21154
10.1016/j.brainres.2012.02.032
10.1074/jbc.M113.515940
10.1074/jbc.M111.333450
10.1016/j.celrep.2013.06.007
10.1097/NEN.0000000000000102
10.1126/science.1232927
10.1074/jbc.M109.010264
10.1073/pnas.1206362109
10.1074/jbc.M111.328757
10.1111/jnc.12630
10.1186/s40478-017-0493-x
10.1074/jbc.M112.417600
10.18632/oncotarget.13805
10.1073/pnas.0602046103
10.18632/oncotarget.4680
10.1038/nchembio.1563
10.1371/journal.pone.0022850
10.1016/j.neuron.2014.10.019
10.1038/ncomms7183
10.1080/15216540601047767
10.1016/j.pneurobio.2011.06.003
10.1007/s00401-016-1537-1
10.1212/WNL.58.11.1615
10.1126/science.1154584
10.1038/nrn1971
10.1093/nar/gkx175
10.1038/nature09320
10.1126/science.1165942
10.1111/jnc.12014
10.1016/j.ymthe.2016.10.013
10.7150/ijbs.7.234
10.1007/s00401-013-1211-9
10.1186/s13024-017-0180-1
10.1002/ana.21147
10.1016/j.biopsych.2015.03.028
10.1186/1750-1326-6-73
10.1093/nar/gkv814
10.1186/2047-9158-2-8
10.1038/nm.4130
10.1007/s00401-014-1299-6
10.1093/hmg/dds485
10.1016/j.neurobiolaging.2015.09.022
10.1074/jbc.M112.398099
10.1523/JNEUROSCI.1357-09.2009
10.1111/j.1471-4159.2009.06383.x
10.1038/ng.132
10.1016/S0304-3940(01)02314-X
10.1074/jbc.M104236200
10.1371/journal.pone.0043120
10.1111/j.1365-2990.2010.01060.x
10.1074/jbc.M110.125039
10.1016/j.tibs.2012.03.003
10.1016/j.bbrc.2006.10.093
10.1097/NEN.0b013e31818e8951
10.1074/jbc.M110.197483
10.2353/ajpath.2007.070182
10.1016/S1474-4422(13)70061-9
10.1186/s40478-016-0345-0
10.1523/JNEUROSCI.4988-09.2010
10.1074/jbc.M109.031278
10.1038/ng.2853
10.1016/j.neuron.2011.09.011
10.1038/s41598-017-06263-3
10.1128/jvi.69.6.3584-3596.1995
10.1523/JNEUROSCI.5461-05.2006
10.1038/emboj.2010.310
10.1007/s00401-012-1055-8
10.1016/j.neulet.2009.11.055
10.1007/s12031-011-9589-0
10.1074/jbc.M505557200
10.1093/nar/gki897
10.1186/1750-1326-7-54
10.1186/1750-1326-7-56
10.1007/s00401-006-0189-y
10.1016/j.neuron.2013.12.018
10.1016/j.neures.2009.10.004
10.1074/jbc.M500356200
10.1038/nrn3121
10.1093/brain/awv308
10.1074/jbc.M117.783498
10.1093/brain/awr053
ContentType Journal Article
Copyright 2018 International Society for Neurochemistry
2018 International Society for Neurochemistry.
Copyright © 2018 International Society for Neurochemistry
Copyright_xml – notice: 2018 International Society for Neurochemistry
– notice: 2018 International Society for Neurochemistry.
– notice: Copyright © 2018 International Society for Neurochemistry
DBID AAYXX
CITATION
NPM
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
5PM
DOI 10.1111/jnc.14327
DatabaseName CrossRef
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Toxicology Abstracts
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1471-4159
EndPage 20
ExternalDocumentID PMC6110993
29486049
10_1111_jnc_14327
JNC14327
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Alzheimer's Association
  funderid: AARG‐17‐499682
– fundername: National Institutes of Health
  funderid: 1R01NS089604
– fundername: NINDS NIH HHS
  grantid: R01 NS089604
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29L
2WC
31~
33P
36B
3SF
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
GX1
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
V8K
VH1
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
X7M
XG1
XJT
YFH
YNH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
5PM
ID FETCH-LOGICAL-c5097-f6c0f3226c32f74da8b809959e13f4e87bfecef03cf1d28dc917065fd295e413
IEDL.DBID DR2
ISSN 0022-3042
1471-4159
IngestDate Thu Aug 21 14:06:05 EDT 2025
Thu Jul 10 23:14:05 EDT 2025
Fri Jul 25 19:33:53 EDT 2025
Mon Jul 21 05:42:23 EDT 2025
Thu Apr 24 22:59:00 EDT 2025
Tue Jul 01 04:39:22 EDT 2025
Wed Jan 22 16:19:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords neurodegeneration
Neurodegenerative diseases
Alzheimer's disease
amyotrophic lateral sclerosis
TDP-43
frontotemporal lobar degeneration
Language English
License 2018 International Society for Neurochemistry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5097-f6c0f3226c32f74da8b809959e13f4e87bfecef03cf1d28dc917065fd295e413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jnc.14327
PMID 29486049
PQID 2072032932
PQPubID 31528
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6110993
proquest_miscellaneous_2009213607
proquest_journals_2072032932
pubmed_primary_29486049
crossref_primary_10_1111_jnc_14327
crossref_citationtrail_10_1111_jnc_14327
wiley_primary_10_1111_jnc_14327_JNC14327
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2018
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Journal of neurochemistry
PublicationTitleAlternate J Neurochem
PublicationYear 2018
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2011; 116
2015; 78
2013; 4
2012; 123
2013; 2
2012; 124
2010; 469
2010; 466
2002; 277
2009; 110
2009; 111
2013; 125
2008; 105
2001; 49
1995; 375
2009; 118
2013; 8
2017a; 292
2016; 37
2014; 23
2012; 97
2013; 9
2009; 117
2014; 129
2015; 130
2014; 127
2014; 128
2007; 171
2005; 348
2006; 26
2011; 72
2014; 16
2000; 1502
2008; 116
2007; 61
2013; 110
2010; 5
2012; 22
2010; 30
2010; 7
2012; 21
2011; 122
2014; 10
2010; 9
2004; 43
2009; 66
2007; 18
2012; 1462
2010; 36
2006; 58
2006; 351
2010; 285
2014; 46
2012; 37
2017; 133
2011; 6
2012; 32
2011; 134
2011; 7
2001; 20
2012; 109
2001; 276
2016; 4
2016; 7
2013; 339
2015; 1849
2013; 74
2015; 2015
2006; 580
2002; 70
2008; 40
2017; 543
2017; 544
2016; 25
2014; 34
2016; 24
2001; 315
2006; 103
2012; 40
2016; 22
2009; 106
2017; 5
2017; 6
2017; 7
2002; 58
2017; 8
2012; 287
2007; 1184
2013; 25
2017b; 45
2013; 22
2000; 9
2013; 288
2008; 79
2011; 13
2006; 1762
2015; 349
2011; 14
2008; 4
1998; 42
2010; 67
2010; 66
2013; 12
1995; 69
2015; 211
2015; 43
2008; 319
2011; 20
2008; 67
2005; 307
2005; 31
2000; 60
2009; 284
2008; 64
2011; 25
2014; 9
2009; 323
2005; 33
2011; 286
2014; 289
2007; 27
2004; 101
2009; 1305
2015; 6
2017; 25
2008; 18
2006; 7
2011; 30
2008; 13
1999; 2
2006; 314
2014; 111
2014; 84
2009; 29
2007; 114
2017; 95
2005; 280
2007; 113
2014; 81
2012; 90
2012; 3
2013b; 22
2017; 10
2017; 12
2016; 139
2011; 45
2012; 7
2014; 73
2012; 4
2012; 89
2016; 131
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_18_1
e_1_2_9_160_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_157_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_172_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_148_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
Mackenzie I. R. (e_1_2_9_102_1) 2017; 95
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
Tan Q. M. (e_1_2_9_147_1) 2016; 25
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
Orru S. (e_1_2_9_124_1) 2016; 25
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_136_1
e_1_2_9_178_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_174_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_104_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_161_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_173_1
e_1_2_9_48_1
e_1_2_9_29_1
e_1_2_9_150_1
References_xml – volume: 123
  start-page: 395
  year: 2012
  end-page: 407
  article-title: Microglial activation and TDP‐43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis
  publication-title: Acta Neuropathol.
– volume: 73
  start-page: 837
  year: 2014
  end-page: 845
  article-title: Poly‐A binding protein‐1 localization to a subset of TDP‐43 inclusions in amyotrophic lateral sclerosis occurs more frequently in patients harboring an expansion in C9orf72
  publication-title: J. Neuropathol. Exp. Neurol.
– volume: 25
  start-page: 534
  year: 2016
  end-page: 545
  article-title: TDP‐43 functions within a network of hnRNP proteins to inhibit the production of a truncated human SORT1 receptor
  publication-title: Hum. Mol. Genet.
– volume: 7
  start-page: 54
  year: 2012
  end-page: 68
  article-title: Endogenous TDP‐43, but not FUS, contributes to stress granule assembly via G3BP
  publication-title: Molecular Neurodegeneration
– volume: 40
  start-page: 2668
  year: 2012
  end-page: 2682
  article-title: TDP‐43 regulates global translational yield by splicing of exon junction complex component SKAR
  publication-title: Nucleic Acids Res.
– volume: 46
  start-page: 152
  year: 2014
  end-page: 160
  article-title: Therapeutic modulation of eIF2alpha phosphorylation rescues TDP‐43 toxicity in amyotrophic lateral sclerosis disease models
  publication-title: Nat. Genet.
– volume: 118
  start-page: 359
  year: 2009
  end-page: 369
  article-title: TDP‐43 in ubiquitinated inclusions in the inferior olives in frontotemporal lobar degeneration and in other neurodegenerative diseases: a degenerative process distinct from normal ageing
  publication-title: Acta Neuropathol.
– volume: 1762
  start-page: 1094
  year: 2006
  end-page: 1108
  article-title: Axonal transport and neurodegenerative disease
  publication-title: Biochem. Biophys. Acta.
– volume: 110
  start-page: 4439
  year: 2013
  end-page: 4440
  article-title: Glia as primary drivers of neuropathology in TDP‐43 proteinopathies
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 45
  start-page: 390
  year: 2011
  end-page: 401
  article-title: TDP‐43 variants of frontotemporal lobar degeneration
  publication-title: J. Mol. Neurosci.
– volume: 116
  start-page: 25
  year: 2008
  end-page: 35
  article-title: Clinical, neuropathological and genotypic variability in SNCA A53T familial Parkinson's disease. Variability in familial Parkinson's disease
  publication-title: Acta Neuropathol.
– volume: 284
  start-page: 27416
  year: 2009
  end-page: 27424
  article-title: Rapamycin rescues TDP‐43 mislocalization and the associated low molecular mass neurofilament instability
  publication-title: J. Biol. Chem.
– volume: 109
  start-page: 21510
  year: 2012
  end-page: 21515
  article-title: Misregulation of human sortilin splicing leads to the generation of a nonfunctional progranulin receptor
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 9
  start-page: 2281
  year: 2000
  end-page: 2289
  article-title: Alzheimer's disease‐associated presenilin 2 interacts with DRAL, an LIM‐domain protein
  publication-title: Hum. Mol. Genet.
– volume: 20
  start-page: 1774
  year: 2001
  end-page: 1784
  article-title: Nuclear factor TDP‐43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping
  publication-title: EMBO J.
– volume: 27
  start-page: 10530
  year: 2007
  end-page: 10534
  article-title: Progranulin mediates caspase‐dependent cleavage of TAR DNA binding protein‐43
  publication-title: J. Neurosci.
– volume: 58
  start-page: 686
  year: 2006
  end-page: 694
  article-title: Mitochondrial A beta: a potential cause of metabolic dysfunction in Alzheimer's disease
  publication-title: IUBMB Life
– volume: 7
  start-page: 7709
  year: 2017
  article-title: TDP‐43 stabilises the processing intermediates of mitochondrial transcripts
  publication-title: Sci. Rep.
– volume: 16
  start-page: 319
  year: 2014
  article-title: Treatment of frontotemporal dementia
  publication-title: Curr. Treat Options Neurol.
– volume: 103
  start-page: 7142
  year: 2006
  end-page: 7147
  article-title: Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 5
  start-page: e13250
  year: 2010
  article-title: Tar DNA binding protein‐43 (TDP‐43) associates with stress granules: analysis of cultured cells and pathological brain tissue
  publication-title: PLoS ONE
– volume: 7
  start-page: 56
  year: 2012
  article-title: Regulated protein aggregation: stress granules and neurodegeneration
  publication-title: Mol. Neurodegener.
– volume: 171
  start-page: 227
  year: 2007
  end-page: 240
  article-title: TDP‐43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions
  publication-title: Am. J. Pathol.
– volume: 12
  start-page: 435
  year: 2013
  end-page: 442
  article-title: An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first‐in‐man study
  publication-title: Lancet Neurol.
– volume: 6
  start-page: 24178
  year: 2015
  end-page: 24191
  article-title: Exposure to ALS‐FTD‐CSF generates TDP‐43 aggregates in glioblastoma cells through exosomes and TNTs‐like structure
  publication-title: Oncotarget
– volume: 1462
  start-page: 16
  year: 2012
  end-page: 25
  article-title: TDP‐43 aggregation in neurodegeneration: are stress granules the key?
  publication-title: Brain Res.
– volume: 277
  start-page: 29626
  year: 2002
  end-page: 29633
  article-title: Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice
  publication-title: J. Biol. Chem.
– volume: 287
  start-page: 41310
  year: 2012
  end-page: 41323
  article-title: Roles of ataxin‐2 in pathological cascades mediated by TAR DNA‐binding protein 43 (TDP‐43) and Fused in Sarcoma (FUS)
  publication-title: J. Biol. Chem.
– volume: 2015
  start-page: 647408
  year: 2015
  end-page: 647419
  article-title: Molecular integrity of mitochondria alters by potassium chloride
  publication-title: Inter J. Proteomics
– volume: 284
  start-page: 8516
  year: 2009
  end-page: 8524
  article-title: Expression of TDP‐43 C‐terminal fragments in vitro recapitulates pathological features of TDP‐43 proteinopathies
  publication-title: J. Biol. Chem.
– volume: 2
  start-page: 8
  year: 2013
  article-title: Clinic, neuropathology and molecular genetics of frontotemporal dementia: a mini‐review
  publication-title: Transl Neurodegener
– volume: 543
  start-page: 443
  year: 2017
  end-page: 446
  article-title: Cytosolic proteostasis through importing of misfolded proteins into mitochondria
  publication-title: Nature
– volume: 1184
  start-page: 284
  year: 2007
  end-page: 294
  article-title: Concurrence of TDP‐43, tau and alpha‐synuclein pathology in brains of Alzheimer's disease and dementia with Lewy bodies
  publication-title: Brain Res.
– volume: 95
  start-page: 207
  year: 2017
  end-page: 214
  article-title: Impaired activation of ALS monocytes by exosomes
  publication-title: Immunol. Cell Biol.
– volume: 74
  start-page: 20
  year: 2013
  end-page: 38
  article-title: Stages of pTDP‐43 pathology in amyotrophic lateral sclerosis
  publication-title: Ann. Neurol.
– volume: 211
  start-page: 897
  year: 2015
  end-page: 911
  article-title: TDP‐43 is intercellularly transmitted across axon terminals
  publication-title: J. Cell Biol.
– volume: 323
  start-page: 1208
  year: 2009
  end-page: 1211
  article-title: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6
  publication-title: Science
– volume: 22
  start-page: 869
  year: 2016
  end-page: 878
  article-title: The inhibition of TDP‐43 mitochondrial localization blocks its neuronal toxicity
  publication-title: Nat. Med.
– volume: 43
  start-page: 8990
  year: 2015
  end-page: 9005
  article-title: TDP‐43 affects splicing profiles and isoform production of genes involved in the apoptotic and mitotic cellular pathways
  publication-title: Nucleic Acids Res.
– volume: 30
  start-page: 10851
  year: 2010
  end-page: 10859
  article-title: Wild‐type human TDP‐43 expression causes TDP‐43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice
  publication-title: J. Neurosci.
– volume: 66
  start-page: 1
  year: 2009
  end-page: 34
  article-title: The molecular links between TDP‐43 dysfunction and neurodegeneration
  publication-title: Adv. Genet.
– volume: 45
  start-page: 6177
  year: 2017b
  end-page: 6193
  article-title: TDP‐43 suppresses tau expression via promoting its mRNA instability
  publication-title: Nucleic Acids Res.
– volume: 109
  start-page: 15024
  year: 2012
  end-page: 15029
  article-title: Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA‐binding protein 43
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 139
  start-page: 2983
  year: 2016
  end-page: 2993
  article-title: TDP‐43 stage, mixed pathologies, and clinical Alzheimer's‐type dementia
  publication-title: Brain
– volume: 1502
  start-page: 1
  year: 2000
  end-page: 15
  article-title: Presenilin structure, function and role in Alzheimer disease
  publication-title: Biochem. Biophys. Acta.
– volume: 110
  start-page: E736
  year: 2013
  end-page: E745
  article-title: ALS‐linked TDP‐43 mutations produce aberrant RNA splicing and adult‐onset motor neuron disease without aggregation or loss of nuclear TDP‐43
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 139
  start-page: 86
  year: 2016
  end-page: 100
  article-title: MTHFSD and DDX58 are novel RNA‐binding proteins abnormally regulated in amyotrophic lateral sclerosis
  publication-title: Brain
– volume: 123
  start-page: 406
  year: 2012
  end-page: 416
  article-title: XBP1 depletion precedes ubiquitin aggregation and Golgi fragmentation in TDP‐43 transgenic rats
  publication-title: J. Neurochem.
– volume: 45
  start-page: 384
  year: 2011
  end-page: 389
  article-title: Neuropathology of frontotemporal lobar degeneration‐tau (FTLD‐tau)
  publication-title: J. Mol. Neurosci.
– volume: 319
  start-page: 1668
  year: 2008
  end-page: 1672
  article-title: TDP‐43 mutations in familial and sporadic amyotrophic lateral sclerosis
  publication-title: Science
– volume: 466
  start-page: 1069
  year: 2010
  end-page: 1075
  article-title: Ataxin‐2 intermediate‐length polyglutamine expansions are associated with increased risk for ALS
  publication-title: Nature
– volume: 37
  start-page: 237
  year: 2012
  end-page: 247
  article-title: TDP‐43: gumming up neurons through protein‐protein and protein‐RNA interactions
  publication-title: Trends Biochem. Sci.
– volume: 314
  start-page: 130
  year: 2006
  end-page: 133
  article-title: Ubiquitinated TDP‐43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis
  publication-title: Science
– volume: 81
  start-page: 536
  year: 2014
  end-page: 543
  article-title: Axonal transport of TDP‐43 mRNA granules is impaired by ALS‐causing mutations
  publication-title: Neuron
– volume: 7
  start-page: 260
  year: 2010
  end-page: 264
  article-title: TDP43‐positive intraneuronal inclusions in a patient with motor neuron disease and Parkinson's disease
  publication-title: Neurodegener. Dis.
– volume: 7
  start-page: e43120
  year: 2012
  article-title: Alteration of POLDIP3 splicing associated with loss of function of TDP‐43 in tissues affected with ALS
  publication-title: PLoS ONE
– volume: 70
  start-page: 357
  year: 2002
  end-page: 360
  article-title: Role of mitochondrial dysfunction in Alzheimer's disease
  publication-title: J. Neurosci. Res.
– volume: 287
  start-page: 15635
  year: 2012
  end-page: 15647
  article-title: TDP‐43 and FUS RNA‐binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post‐transcriptional fate in motoneuron‐like cells
  publication-title: J. Biol. Chem.
– volume: 117
  start-page: 125
  year: 2009
  end-page: 136
  article-title: Phosphorylated TDP‐43 in Alzheimer's disease and dementia with Lewy bodies
  publication-title: Acta Neuropathol.
– volume: 40
  start-page: 572
  year: 2008
  end-page: 574
  article-title: TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis
  publication-title: Nat. Genet.
– volume: 134
  start-page: 1506
  year: 2011
  end-page: 1518
  article-title: Hippocampal sclerosis in advanced age: clinical and pathological features
  publication-title: Brain
– volume: 7
  start-page: 83833
  year: 2016
  end-page: 83834
  article-title: p62 at the crossroad of the ubiquitin‐proteasome system and autophagy
  publication-title: Oncotarget
– volume: 61
  start-page: 427
  year: 2007
  end-page: 434
  article-title: Pathological TDP‐43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations
  publication-title: Ann. Neurol.
– volume: 72
  start-page: 245
  year: 2011
  end-page: 256
  article-title: Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p‐linked FTD and ALS
  publication-title: Neuron
– volume: 23
  start-page: 4960
  year: 2014
  end-page: 4969
  article-title: Parkin‐mediated reduction of nuclear and soluble TDP‐43 reverses behavioral decline in symptomatic mice
  publication-title: Hum. Mol. Genet.
– volume: 10
  start-page: 677
  year: 2014
  end-page: 685
  article-title: Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models
  publication-title: Nat. Chem. Biol.
– volume: 375
  start-page: 61
  year: 1995
  end-page: 64
  article-title: Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis
  publication-title: Nature
– volume: 116
  start-page: 193
  year: 2008
  end-page: 203
  article-title: Maturation process of TDP‐43‐positive neuronal cytoplasmic inclusions in amyotrophic lateral sclerosis with and without dementia
  publication-title: Acta Neuropathol.
– volume: 128
  start-page: 423
  year: 2014
  end-page: 437
  article-title: TDP‐43 pathology and neuronal loss in amyotrophic lateral sclerosis spinal cord
  publication-title: Acta Neuropathol.
– volume: 25
  start-page: 5083
  year: 2016
  end-page: 5093
  article-title: Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models
  publication-title: Hum. Mol. Genet.
– volume: 60
  start-page: 363
  year: 2000
  end-page: 384
  article-title: Presenilins and Alzheimer's disease: biological functions and pathogenic mechanisms
  publication-title: Prog. Neurobiol.
– volume: 25
  start-page: 130
  year: 2013
  end-page: 137
  article-title: The epidemiology of frontotemporal dementia
  publication-title: Int Rev Psychiatry
– volume: 42
  start-page: 1
  year: 1998
  end-page: 54
  article-title: Alzheimer disease
  publication-title: Int. Rev. Neurobiol.
– volume: 307
  start-page: 1282
  year: 2005
  end-page: 1288
  article-title: Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease
  publication-title: Science
– volume: 289
  start-page: 10769
  year: 2014
  end-page: 10784
  article-title: Mitochondrial dysfunction and decrease in body weight of a transgenic knock‐in mouse model for TDP‐43
  publication-title: J. Biol. Chem.
– volume: 544
  start-page: 367
  year: 2017
  end-page: 371
  article-title: Therapeutic reduction of ataxin‐2 extends lifespan and reduces pathology in TDP‐43 mice
  publication-title: Nature
– volume: 4
  start-page: 124
  year: 2013
  end-page: 134
  article-title: Prion‐like properties of pathological TDP‐43 aggregates from diseased brains
  publication-title: Cell Rep.
– volume: 348
  start-page: 575
  year: 2005
  end-page: 588
  article-title: Human, Drosophila, and C.elegans TDP43: nucleic acid binding properties and splicing regulatory function
  publication-title: J. Mol. Biol.
– volume: 1305
  start-page: 168
  year: 2009
  end-page: 182
  article-title: Tar DNA binding protein of 43 kDa (TDP‐43), 14‐3‐3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS)
  publication-title: Brain Res.
– volume: 24
  start-page: 1537
  year: 2016
  end-page: 1549
  article-title: ALS mutations disrupt phase separation mediated by alpha‐helical structure in the TDP‐43 low‐complexity C‐terminal domain
  publication-title: Structure
– volume: 67
  start-page: 1159
  year: 2008
  end-page: 1165
  article-title: Colocalization of transactivation‐responsive DNA‐binding protein 43 and huntingtin in inclusions of Huntington disease
  publication-title: J. Neuropathol. Exp. Neurol.
– volume: 5
  start-page: 96
  year: 2017
  article-title: Clinical and neuropathological features of ALS/FTD with TIA1 mutations
  publication-title: Acta Neuropatho.l Commun.
– volume: 280
  start-page: 37572
  year: 2005
  end-page: 37584
  article-title: TDP‐43 binds heterogeneous nuclear ribonucleoprotein A/B through its C‐terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing
  publication-title: J. Biol. Chem.
– volume: 114
  start-page: 49
  year: 2007
  end-page: 54
  article-title: The neuropathology and clinical phenotype of FTD with progranulin mutations
  publication-title: Acta Neuropathol.
– volume: 69
  start-page: 3584
  year: 1995
  end-page: 3596
  article-title: Cloning and characterization of a novel cellular protein, TDP‐43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs
  publication-title: J. Virol.
– volume: 31
  start-page: 205
  year: 2005
  end-page: 217
  article-title: Oxidative imbalance in Alzheimer's disease
  publication-title: Mol. Neurobiol.
– volume: 29
  start-page: 9090
  year: 2009
  end-page: 9103
  article-title: Impaired balance of mitochondrial fission and fusion in Alzheimer's disease
  publication-title: J. Neurosci.
– volume: 78
  start-page: 684
  year: 2015
  end-page: 692
  article-title: Psychiatric symptoms in frontotemporal dementia: epidemiology, phenotypes, and differential diagnosis
  publication-title: Biol. Psychiatry
– volume: 323
  start-page: 1205
  year: 2009
  end-page: 1208
  article-title: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis
  publication-title: Science
– volume: 36
  start-page: 97
  year: 2010
  end-page: 112
  article-title: Review: transactive response DNA‐binding protein 43 (TDP‐43): mechanisms of neurodegeneration
  publication-title: Neuropathol. Appl. Neurobiol.
– volume: 292
  start-page: 10600
  year: 2017a
  end-page: 10612
  article-title: Transactive response DNA‐binding protein 43 (TDP‐43) regulates alternative splicing of tau exon 10: Implications for the pathogenesis of tauopathies
  publication-title: J. Biol. Chem.
– volume: 64
  start-page: 60
  year: 2008
  end-page: 70
  article-title: Phosphorylated TDP‐43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis
  publication-title: Ann. Neurol.
– volume: 25
  start-page: 364
  year: 2011
  end-page: 368
  article-title: Hippocampal sclerosis in the elderly: genetic and pathologic findings, some mimicking Alzheimer disease clinically
  publication-title: Alzheimer Dis. Assoc. Disord.
– volume: 22
  start-page: 4706
  year: 2013b
  end-page: 4719
  article-title: The ALS disease‐associated mutant TDP‐43 impairs mitochondrial dynamics and function in motor neurons
  publication-title: Hum. Mol. Genet.
– volume: 116
  start-page: 248
  year: 2011
  end-page: 259
  article-title: Regulation of TDP‐43 aggregation by phosphorylation and p62/SQSTM1
  publication-title: J. Neurochem.
– volume: 18
  start-page: 1385
  year: 2007
  end-page: 1396
  article-title: Ataxin‐2 interacts with the DEAD/H‐box RNA helicase DDX6 and interferes with P‐bodies and stress granules
  publication-title: Mol. Biol. Cell
– volume: 12
  start-page: 37
  year: 2017
  article-title: Mutant TDP‐43 does not impair mitochondrial bioenergetics in vitro and in vivo
  publication-title: Mol. Neurodegener.
– volume: 124
  start-page: 749
  year: 2012
  end-page: 760
  article-title: Coexistence of Huntington's disease and amyotrophic lateral sclerosis: a clinicopathologic study
  publication-title: Acta Neuropathol.
– volume: 4
  start-page: 70
  year: 2016
  article-title: From animal models to human disease: a genetic approach for personalized medicine in ALS
  publication-title: Acta Neuropathol Commun
– volume: 6
  start-page: e22850
  year: 2011
  article-title: Cytoplasmic accumulation and aggregation of TDP‐43 upon proteasome inhibition in cultured neurons
  publication-title: PLoS ONE
– volume: 95
  start-page: e809
  issue: 808–816
  year: 2017
  article-title: TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics
  publication-title: Neuron
– volume: 125
  start-page: 121
  year: 2013
  end-page: 131
  article-title: TDP‐43 skeins show properties of amyloid in a subset of ALS cases
  publication-title: Acta Neuropathol.
– volume: 25
  start-page: 127
  year: 2017
  end-page: 139
  article-title: Motor‐coordinative and cognitive dysfunction caused by mutant TDP‐43 could be reversed by inhibiting its mitochondrial localization
  publication-title: Mol. Therapy
– volume: 1849
  start-page: 1398
  year: 2015
  end-page: 1410
  article-title: From transcriptomic to protein level changes in TDP‐43 and FUS loss‐of‐function cell models
  publication-title: Biochim. Biophys. Acta
– volume: 10
  start-page: 38
  year: 2017
  end-page: 54
  article-title: Quantitative analysis of cryptic splicing associated with TDP‐43 depletion
  publication-title: Bmc Med. Genomics.
– volume: 7
  start-page: 234
  year: 2011
  end-page: 243
  article-title: TDP‐43 potentiates alpha‐synuclein toxicity to dopaminergic neurons in transgenic mice
  publication-title: Inter. J. Biol. Sci.
– volume: 84
  start-page: 292
  year: 2014
  end-page: 309
  article-title: Axonal transport: cargo‐specific mechanisms of motility and regulation
  publication-title: Neuron
– volume: 32
  start-page: 9133
  year: 2012
  end-page: 9142
  article-title: ALS‐associated ataxin 2 polyQ expansions enhance stress‐induced caspase 3 activation and increase TDP‐43 pathological modifications
  publication-title: J. Neurosci.
– volume: 127
  start-page: 441
  year: 2014
  end-page: 450
  article-title: Staging TDP‐43 pathology in Alzheimer's disease
  publication-title: Acta Neuropathol.
– volume: 288
  start-page: 4103
  year: 2013
  end-page: 4115
  article-title: Parkin ubiquitinates Tar‐DNA binding protein‐43 (TDP‐43) and promotes its cytosolic accumulation via interaction with histone deacetylase 6 (HDAC6)
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: 6196
  year: 2017
  end-page: 5207
  article-title: The N‐terminal dimerization is required for TDP‐43 splicing activity
  publication-title: Scientific reports
– volume: 8
  start-page: 15558
  year: 2017
  article-title: Loss of function CHCHD10 mutations in cytoplasmic TDP‐43 accumulation and synaptic integrity
  publication-title: Nat. Commun.
– volume: 66
  start-page: 131
  year: 2010
  end-page: 133
  article-title: The RNA‐binding protein FUS/TLS is a common aggregate‐interacting protein in polyglutamine diseases
  publication-title: Neurosci. Res.
– volume: 287
  start-page: 23079
  year: 2012
  end-page: 23094
  article-title: Requirements for stress granule recruitment of fused in sarcoma (FUS) and TAR DNA‐binding protein of 43 kDa (TDP‐43)
  publication-title: J. Biol. Chem.
– volume: 22
  start-page: 782
  year: 2013
  end-page: 794
  article-title: Reduction of polyglutamine toxicity by TDP‐43, FUS and progranulin in Huntington's disease models
  publication-title: Hum. Mol. Genet.
– volume: 315
  start-page: 21
  year: 2001
  end-page: 24
  article-title: Tau protein expression in frontotemporal dementias
  publication-title: Neurosci. Lett.
– volume: 106
  start-page: 7607
  year: 2009
  end-page: 7612
  article-title: Aberrant cleavage of TDP‐43 enhances aggregation and cellular toxicity
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 351
  start-page: 602
  year: 2006
  end-page: 611
  article-title: TDP‐43 is a component of ubiquitin‐positive tau‐negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 131
  start-page: 571
  year: 2016
  end-page: 585
  article-title: Updated TDP‐43 in Alzheimer's disease staging scheme
  publication-title: Acta Neuropathol.
– volume: 43
  start-page: 5
  year: 2004
  end-page: 17
  article-title: Toxicity of familial ALS‐linked SOD1 mutants from selective recruitment to spinal mitochondria
  publication-title: Neuron
– volume: 9
  start-page: 239
  year: 2013
  end-page: 240
  article-title: Autophagy activation ameliorates neuronal pathogenesis of FTLD‐U mice: a new light for treatment of TARDBP/TDP‐43 proteinopathies
  publication-title: Autophagy
– volume: 276
  start-page: 36337
  year: 2001
  end-page: 36343
  article-title: Characterization and functional implications of the RNA binding properties of nuclear factor TDP‐43, a novel splicing regulator of CFTR exon 9
  publication-title: J. Biol. Chem.
– volume: 89
  start-page: 185
  year: 2012
  end-page: 190
  article-title: Mitochondrial dysfunction in human TDP‐43 transfected NSC34 cell lines and the protective effect of dimethoxy curcumin
  publication-title: Brain Res. Bull.
– volume: 30
  start-page: 277
  year: 2011
  end-page: 288
  article-title: TDP‐43 regulates its mRNA levels through a negative feedback loop
  publication-title: EMBO J.
– volume: 3
  start-page: 1307
  year: 2012
  article-title: A role for calpain‐dependent cleavage of TDP‐43 in amyotrophic lateral sclerosis pathology
  publication-title: Nat. Commun.
– volume: 339
  start-page: 1335
  year: 2013
  end-page: 1338
  article-title: The C9orf72 GGGGCC repeat is translated into aggregating dipeptide‐repeat proteins in FTLD/ALS
  publication-title: Science
– volume: 22
  start-page: 110
  year: 2012
  end-page: 116
  article-title: Autophagy dysregulation in amyotrophic lateral sclerosis
  publication-title: Brain Pathol.
– volume: 133
  start-page: 923
  year: 2017
  end-page: 931
  article-title: Cryptic exon incorporation occurs in Alzheimer's brain lacking TDP‐43 inclusion but exhibiting nuclear clearance of TDP‐43
  publication-title: Acta Neuropathol.
– volume: 130
  start-page: 49
  year: 2015
  end-page: 61
  article-title: Low molecular weight species of TDP‐43 generated by abnormal splicing form inclusions in amyotrophic lateral sclerosis and result in motor neuron death
  publication-title: Acta Neuropathol.
– volume: 23
  start-page: 1413
  year: 2014
  end-page: 1424
  article-title: Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models
  publication-title: Hum. Mol. Genet.
– volume: 6
  start-page: 6183
  year: 2015
  article-title: The cleavage pattern of TDP‐43 determines its rate of clearance and cytotoxicity
  publication-title: Nat. Commun.
– volume: 14
  start-page: 459
  year: 2011
  end-page: 468
  article-title: Long pre‐mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP‐43
  publication-title: Nat. Neurosci.
– volume: 114
  start-page: 221
  year: 2007
  end-page: 229
  article-title: Co‐morbidity of TDP‐43 proteinopathy in Lewy body related diseases
  publication-title: Acta Neuropathol.
– volume: 580
  start-page: 1339
  year: 2006
  end-page: 1344
  article-title: TDP43 depletion rescues aberrant CFTR exon 9 skipping
  publication-title: FEBS Lett.
– volume: 4
  start-page: 74
  year: 2016
  end-page: 87
  article-title: Reduced Tau protein expression is associated with frontotemporal degeneration with progranulin mutation
  publication-title: Acta Neuropathol Com
– volume: 49
  start-page: 165
  year: 2001
  end-page: 175
  article-title: Loss of brain tau defines novel sporadic and familial tauopathies with frontotemporal dementia
  publication-title: Ann. Neurol.
– volume: 90
  start-page: 2034
  year: 2012
  end-page: 2042
  article-title: p62/sequestosome 1 binds to TDP‐43 in brains with frontotemporal lobar degeneration with TDP‐43 inclusions
  publication-title: J. Neurosci. Res.
– volume: 26
  start-page: 4147
  year: 2006
  end-page: 4154
  article-title: Overloading of stable and exclusion of unstable human superoxide dismutase‐1 variants in mitochondria of murine amyotrophic lateral sclerosis models
  publication-title: J. Neurosci.
– volume: 9
  start-page: e86513
  year: 2014
  article-title: Divergent phenotypes in mutant TDP‐43 transgenic mice highlight potential confounds in TDP‐43 transgenic modeling
  publication-title: PLoS ONE
– volume: 113
  start-page: 521
  year: 2007
  end-page: 533
  article-title: Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA‐binding protein, TDP‐43
  publication-title: Acta Neuropathol.
– volume: 2
  start-page: 50
  year: 1999
  end-page: 56
  article-title: Slowing of axonal transport is a very early event in the toxicity of ALS‐linked SOD1 mutants to motor neurons
  publication-title: Nat. Neurosci.
– volume: 111
  start-page: 1051
  year: 2009
  end-page: 1061
  article-title: TDP‐43 is recruited to stress granules in conditions of oxidative insult
  publication-title: J. Neurochem.
– volume: 21
  start-page: 3703
  year: 2012
  end-page: 3718
  article-title: The ALS disease protein TDP‐43 is actively transported in motor neuron axons and regulates axon outgrowth
  publication-title: Hum. Mol. Genet.
– volume: 9
  start-page: 995
  year: 2010
  end-page: 1007
  article-title: TDP‐43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia
  publication-title: Lancet Neurol.
– volume: 105
  start-page: 797
  year: 2008
  end-page: 806
  article-title: TDP‐43, the signature protein of FTLD‐U, is a neuronal activity‐responsive factor
  publication-title: J. Neurochem.
– volume: 7
  start-page: 710
  year: 2006
  end-page: 723
  article-title: Molecular biology of amyotrophic lateral sclerosis: insights from genetics
  publication-title: Nat. Rev. Neurosci.
– volume: 285
  start-page: 26304
  year: 2010
  end-page: 26314
  article-title: Interaction with polyglutamine aggregates reveals a Q/N‐rich domain in TDP‐43
  publication-title: J. Biol. Chem.
– volume: 139
  start-page: 3187
  year: 2016
  end-page: 3201
  article-title: Exosome secretion is a key pathway for clearance of pathological TDP‐43
  publication-title: Brain
– volume: 25
  start-page: 4473
  year: 2016
  end-page: 4483
  article-title: Reduced stress granule formation and cell death in fibroblasts with the A382T mutation of TARDBP gene: evidence for loss of TDP‐43 nuclear function
  publication-title: Hum. Mol. Genet.
– volume: 18
  start-page: 290
  year: 2008
  end-page: 298
  article-title: RNA recognition motifs: boring? Not quite
  publication-title: Curr. Opin. Struct. Biol.
– volume: 101
  start-page: 3504
  year: 2004
  end-page: 3509
  article-title: A variable dinucleotide repeat in the CFTR gene contributes to phenotype diversity by forming RNA secondary structures that alter splicing
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 129
  start-page: 350
  year: 2014
  end-page: 361
  article-title: Parkin reverses TDP‐43‐induced cell death and failure of amino acid homeostasis
  publication-title: J. Neurochem.
– volume: 13
  start-page: 38
  year: 2011
  end-page: 50
  article-title: Gains or losses: molecular mechanisms of TDP43‐mediated neurodegeneration
  publication-title: Nat. Rev. Neurosci.
– volume: 67
  start-page: 575
  year: 2010
  end-page: 587
  article-title: Misfolded mutant SOD1 directly inhibits VDAC1 conductance in a mouse model of inherited ALS
  publication-title: Neuron
– volume: 4
  start-page: e1000193
  year: 2008
  article-title: Novel mutations in TARDBP (TDP‐43) in patients with familial amyotrophic lateral sclerosis
  publication-title: PLoS Genet.
– volume: 4
  start-page: a012286
  year: 2012
  article-title: P‐bodies and stress granules: possible roles in the control of translation and mRNA degradation
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 122
  start-page: 375
  year: 2011
  end-page: 378
  article-title: Spinocerebellar ataxia type 2 (SCA2) is associated with TDP‐43 pathology
  publication-title: Acta Neuropathol.
– volume: 8
  start-page: 28
  year: 2013
  article-title: Genetics of amyotrophic lateral sclerosis: an update
  publication-title: Mol. Neurodegener.
– volume: 34
  start-page: 6448
  year: 2014
  end-page: 6458
  article-title: Astrocytic TDP‐43 pathology in Alexander disease
  publication-title: J. Neurosci.
– volume: 20
  start-page: 1400
  year: 2011
  end-page: 1410
  article-title: TAR DNA‐binding protein 43 (TDP‐43) regulates stress granule dynamics via differential regulation of G3BP and TIA‐1
  publication-title: Hum. Mol. Genet.
– volume: 280
  start-page: 23802
  year: 2005
  end-page: 23814
  article-title: Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L Tau transgenic mice
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: 73
  year: 2011
  article-title: Expression of mutant TDP‐43 induces neuronal dysfunction in transgenic mice
  publication-title: Mol. Neurodegener.
– volume: 469
  start-page: 112
  year: 2010
  end-page: 116
  article-title: Degradation of TDP‐43 and its pathogenic form by autophagy and the ubiquitin‐proteasome system
  publication-title: Neurosci. Lett.
– volume: 97
  start-page: 54
  year: 2012
  end-page: 66
  article-title: Mitochondrial dysfunction in ALS
  publication-title: Prog. Neurobiol.
– volume: 79
  start-page: 1186
  year: 2008
  end-page: 1189
  article-title: TDP‐43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 349
  start-page: 650
  year: 2015
  end-page: 655
  article-title: TDP‐43 repression of nonconserved cryptic exons is compromised in ALS‐FTD
  publication-title: Science
– volume: 30
  start-page: 639
  year: 2010
  end-page: 649
  article-title: Cytoplasmic Mislocalization of TDP‐43 Is Toxic to Neurons and Enhanced by a Mutation Associated with Familial Amyotrophic Lateral Sclerosis
  publication-title: J. Neurosci.
– volume: 37
  start-page: 45
  year: 2016
  end-page: 46
  article-title: Lack of association between TDP‐43 pathology and tau mis‐splicing in Alzheimer's disease
  publication-title: Neurobiol. Aging
– volume: 286
  start-page: 19958
  year: 2011
  end-page: 19972
  article-title: Neurotoxic 43‐kDa TAR DNA‐binding protein (TDP‐43) triggers mitochondrion‐dependent programmed cell death in yeast
  publication-title: J. Biol. Chem.
– volume: 286
  start-page: 13171
  year: 2011
  end-page: 13183
  article-title: TDP‐43‐induced death is associated with altered regulation of BIM and Bcl‐xL and attenuated by caspase‐mediated TDP‐43 cleavage
  publication-title: J. Biol. Chem.
– volume: 61
  start-page: 435
  year: 2007
  end-page: 445
  article-title: TDP‐43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease
  publication-title: Ann. Neurol.
– volume: 287
  start-page: 42984
  year: 2012
  end-page: 42994
  article-title: Motor neuron‐specific disruption of proteasomes, but not autophagy, replicates amyotrophic lateral sclerosis
  publication-title: J. Biol. Chem.
– volume: 111
  start-page: 4309
  year: 2014
  end-page: 4314
  article-title: Disease causing mutants of TDP‐43 nucleic acid binding domains are resistant to aggregation and have increased stability and half‐life
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 33
  start-page: 6000
  year: 2005
  end-page: 6010
  article-title: Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA‐II gene
  publication-title: Nucleic Acids Res.
– volume: 110
  start-page: 1082
  year: 2009
  end-page: 1094
  article-title: Proteolytic processing of TAR DNA binding protein‐43 by caspases produces C‐terminal fragments with disease defining properties independent of progranulin
  publication-title: J. Neurochem.
– volume: 58
  start-page: 1615
  year: 2002
  end-page: 1621
  article-title: The prevalence of frontotemporal dementia
  publication-title: Neurology
– volume: 6
  start-page: 25
  year: 2017
  end-page: 43
  article-title: Abnormalities of mitochondrial dynamics in neurodegenerative diseases
  publication-title: Antioxidants (Basel)
– volume: 13
  start-page: 867
  year: 2008
  end-page: 878
  article-title: Multiple roles of TDP‐43 in gene expression, splicing regulation, and human disease
  publication-title: Front Biosci.
– volume: 284
  start-page: 20329
  year: 2009
  end-page: 20339
  article-title: TDP‐43 is intrinsically aggregation‐prone, and amyotrophic lateral sclerosis‐linked mutations accelerate aggregation and increase toxicity
  publication-title: J. Biol. Chem.
– ident: e_1_2_9_178_1
  doi: 10.1385/MN:31:1-3:205
– ident: e_1_2_9_33_1
  doi: 10.1159/000273591
– ident: e_1_2_9_82_1
  doi: 10.1093/brain/aww237
– ident: e_1_2_9_74_1
  doi: 10.1074/jbc.M112.419945
– ident: e_1_2_9_132_1
  doi: 10.1073/pnas.1211577110
– ident: e_1_2_9_176_1
  doi: 10.1523/JNEUROSCI.3421-07.2007
– ident: e_1_2_9_40_1
  doi: 10.1038/375061a0
– ident: e_1_2_9_73_1
  doi: 10.1002/ana.21425
– ident: e_1_2_9_98_1
  doi: 10.1016/j.brainresbull.2012.09.005
– ident: e_1_2_9_106_1
  doi: 10.1007/s00401-008-0372-4
– ident: e_1_2_9_154_1
  doi: 10.1007/s00401-011-0862-7
– ident: e_1_2_9_118_1
  doi: 10.1126/science.1134108
– ident: e_1_2_9_68_1
  doi: 10.3390/antiox6020025
– ident: e_1_2_9_11_1
  doi: 10.1016/j.febslet.2006.01.052
– ident: e_1_2_9_177_1
  doi: 10.1073/pnas.0900688106
– ident: e_1_2_9_46_1
  doi: 10.1016/S0301-0082(99)00033-7
– ident: e_1_2_9_92_1
  doi: 10.1126/science.1166066
– ident: e_1_2_9_107_1
  doi: 10.1074/jbc.M203065200
– ident: e_1_2_9_10_1
  doi: 10.1016/j.jmb.2005.02.038
– ident: e_1_2_9_127_1
  doi: 10.1097/WAD.0b013e31820f8f50
– ident: e_1_2_9_76_1
  doi: 10.1073/pnas.0400182101
– ident: e_1_2_9_80_1
  doi: 10.1186/s12920-017-0274-1
– ident: e_1_2_9_149_1
  doi: 10.1002/jnr.23081
– ident: e_1_2_9_85_1
  doi: 10.1093/brain/aww224
– ident: e_1_2_9_146_1
  doi: 10.1007/s00401-012-1005-5
– ident: e_1_2_9_38_1
  doi: 10.1016/j.sbi.2008.04.002
– ident: e_1_2_9_167_1
  doi: 10.1136/jnnp.2007.131334
– ident: e_1_2_9_157_1
  doi: 10.1016/j.brainres.2009.09.105
– ident: e_1_2_9_158_1
  doi: 10.1523/JNEUROSCI.0248-14.2014
– ident: e_1_2_9_173_1
  doi: 10.1523/JNEUROSCI.1630-10.2010
– ident: e_1_2_9_64_1
  doi: 10.1093/nar/gkr1082
– ident: e_1_2_9_20_1
  doi: 10.1074/jbc.M110.194852
– ident: e_1_2_9_22_1
  doi: 10.1002/ana.23937
– ident: e_1_2_9_123_1
  doi: 10.3109/09540261.2013.776523
– ident: e_1_2_9_130_1
  doi: 10.1186/s40478-016-0340-5
– ident: e_1_2_9_136_1
  doi: 10.1371/journal.pgen.1000193
– ident: e_1_2_9_50_1
  doi: 10.1007/s00401-009-0526-z
– ident: e_1_2_9_122_1
  doi: 10.1091/mbc.E06-12-1120
– ident: e_1_2_9_84_1
  doi: 10.1038/s41598-017-06953-y
– ident: e_1_2_9_112_1
  doi: 10.1155/2015/647408
– ident: e_1_2_9_28_1
  doi: 10.1093/emboj/20.7.1774
– ident: e_1_2_9_37_1
  doi: 10.1016/j.bbadis.2006.04.002
– ident: e_1_2_9_164_1
  doi: 10.1093/hmg/ddt319
– ident: e_1_2_9_169_1
  doi: 10.1038/4553
– ident: e_1_2_9_168_1
  doi: 10.1093/hmg/ddu211
– ident: e_1_2_9_26_1
  doi: 10.1016/S0065-2660(09)66001-6
– ident: e_1_2_9_35_1
  doi: 10.1111/j.1750-3639.2011.00546.x
– ident: e_1_2_9_32_1
  doi: 10.1002/jnr.10389
– ident: e_1_2_9_171_1
  doi: 10.1038/ncomms15558
– ident: e_1_2_9_18_1
  doi: 10.1007/s12031-011-9545-z
– ident: e_1_2_9_144_1
  doi: 10.1007/s00401-017-1701-2
– ident: e_1_2_9_180_1
  doi: 10.1038/icb.2016.89
– ident: e_1_2_9_179_1
  doi: 10.1002/1531-8249(20010201)49:2<165::AID-ANA36>3.0.CO;2-3
– ident: e_1_2_9_59_1
  doi: 10.1111/j.1471-4159.2009.06211.x
– ident: e_1_2_9_9_1
  doi: 10.1073/pnas.1317317111
– ident: e_1_2_9_52_1
  doi: 10.1101/cshperspect.a012286
– ident: e_1_2_9_113_1
  doi: 10.1093/hmg/ddv491
– ident: e_1_2_9_6_1
  doi: 10.1007/s00401-008-0480-1
– ident: e_1_2_9_21_1
  doi: 10.1007/s00401-011-0932-x
– ident: e_1_2_9_15_1
  doi: 10.1038/nature22038
– ident: e_1_2_9_99_1
  doi: 10.1007/s00401-007-0223-8
– ident: e_1_2_9_114_1
  doi: 10.1007/s00401-008-0396-9
– ident: e_1_2_9_72_1
  doi: 10.1523/JNEUROSCI.0996-12.2012
– ident: e_1_2_9_105_1
  doi: 10.1093/hmg/ddt528
– ident: e_1_2_9_142_1
  doi: 10.1126/science.1105681
– ident: e_1_2_9_95_1
  doi: 10.1126/science.aab0983
– ident: e_1_2_9_139_1
  doi: 10.1073/pnas.1301608110
– ident: e_1_2_9_140_1
  doi: 10.1016/S0074-7742(08)60607-8
– ident: e_1_2_9_65_1
  doi: 10.1016/S0925-4439(00)00028-4
– ident: e_1_2_9_97_1
  doi: 10.1371/journal.pone.0013250
– ident: e_1_2_9_148_1
  doi: 10.1093/oxfordjournals.hmg.a018919
– ident: e_1_2_9_135_1
  doi: 10.1038/nature21695
– ident: e_1_2_9_155_1
  doi: 10.1007/s11940-014-0319-0
– ident: e_1_2_9_62_1
  doi: 10.1093/hmg/dds205
– volume: 25
  start-page: 4473
  year: 2016
  ident: e_1_2_9_124_1
  article-title: Reduced stress granule formation and cell death in fibroblasts with the A382T mutation of TARDBP gene: evidence for loss of TDP‐43 nuclear function
  publication-title: Hum. Mol. Genet.
– ident: e_1_2_9_159_1
  doi: 10.1111/j.1471-4159.2007.05190.x
– ident: e_1_2_9_172_1
  doi: 10.1007/s00401-015-1412-5
– volume: 25
  start-page: 5083
  year: 2016
  ident: e_1_2_9_147_1
  article-title: Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models
  publication-title: Hum. Mol. Genet.
– ident: e_1_2_9_78_1
  doi: 10.1016/j.brainres.2007.09.048
– ident: e_1_2_9_116_1
  doi: 10.1007/s00401-007-0261-2
– ident: e_1_2_9_101_1
  doi: 10.1016/S1474-4422(10)70195-2
– ident: e_1_2_9_175_1
  doi: 10.1038/ncomms2303
– ident: e_1_2_9_43_1
  doi: 10.1016/j.bbagrm.2015.10.015
– ident: e_1_2_9_47_1
  doi: 10.1371/journal.pone.0086513
– ident: e_1_2_9_36_1
  doi: 10.1186/1750-1326-8-28
– ident: e_1_2_9_63_1
  doi: 10.1083/jcb.201504057
– ident: e_1_2_9_83_1
  doi: 10.1016/j.neuron.2010.07.019
– ident: e_1_2_9_96_1
  doi: 10.1016/j.neuron.2004.06.016
– ident: e_1_2_9_163_1
  doi: 10.4161/auto.22526
– ident: e_1_2_9_44_1
  doi: 10.1016/j.str.2016.07.007
– ident: e_1_2_9_131_1
  doi: 10.1038/nn.2779
– ident: e_1_2_9_81_1
  doi: 10.1074/jbc.M809462200
– ident: e_1_2_9_19_1
  doi: 10.1111/j.1471-4159.2010.07098.x
– ident: e_1_2_9_108_1
  doi: 10.1093/hmg/ddr021
– ident: e_1_2_9_7_1
  doi: 10.1073/pnas.1222809110
– ident: e_1_2_9_25_1
  doi: 10.2741/2727
– ident: e_1_2_9_4_1
  doi: 10.1002/ana.21154
– ident: e_1_2_9_55_1
  doi: 10.1016/j.brainres.2012.02.032
– ident: e_1_2_9_143_1
  doi: 10.1074/jbc.M113.515940
– ident: e_1_2_9_42_1
  doi: 10.1074/jbc.M111.333450
– ident: e_1_2_9_121_1
  doi: 10.1016/j.celrep.2013.06.007
– ident: e_1_2_9_109_1
  doi: 10.1097/NEN.0000000000000102
– ident: e_1_2_9_115_1
  doi: 10.1126/science.1232927
– ident: e_1_2_9_87_1
  doi: 10.1074/jbc.M109.010264
– ident: e_1_2_9_162_1
  doi: 10.1073/pnas.1206362109
– ident: e_1_2_9_16_1
  doi: 10.1074/jbc.M111.328757
– ident: e_1_2_9_75_1
  doi: 10.1111/jnc.12630
– ident: e_1_2_9_79_1
  doi: 10.1186/s40478-017-0493-x
– ident: e_1_2_9_150_1
  doi: 10.1074/jbc.M112.417600
– ident: e_1_2_9_39_1
  doi: 10.18632/oncotarget.13805
– ident: e_1_2_9_54_1
  doi: 10.1073/pnas.0602046103
– ident: e_1_2_9_57_1
  doi: 10.18632/oncotarget.4680
– ident: e_1_2_9_14_1
  doi: 10.1038/nchembio.1563
– ident: e_1_2_9_60_1
  doi: 10.1371/journal.pone.0022850
– ident: e_1_2_9_104_1
  doi: 10.1016/j.neuron.2014.10.019
– ident: e_1_2_9_94_1
  doi: 10.1038/ncomms7183
– ident: e_1_2_9_34_1
  doi: 10.1080/15216540601047767
– ident: e_1_2_9_45_1
  doi: 10.1016/j.pneurobio.2011.06.003
– ident: e_1_2_9_89_1
  doi: 10.1007/s00401-016-1537-1
– ident: e_1_2_9_133_1
  doi: 10.1212/WNL.58.11.1615
– ident: e_1_2_9_141_1
  doi: 10.1126/science.1154584
– ident: e_1_2_9_129_1
  doi: 10.1038/nrn1971
– ident: e_1_2_9_71_1
  doi: 10.1093/nar/gkx175
– ident: e_1_2_9_61_1
  doi: 10.1038/nature09320
– ident: e_1_2_9_156_1
  doi: 10.1126/science.1165942
– ident: e_1_2_9_153_1
  doi: 10.1111/jnc.12014
– ident: e_1_2_9_166_1
  doi: 10.1016/j.ymthe.2016.10.013
– ident: e_1_2_9_152_1
  doi: 10.7150/ijbs.7.234
– ident: e_1_2_9_88_1
  doi: 10.1007/s00401-013-1211-9
– ident: e_1_2_9_77_1
  doi: 10.1186/s13024-017-0180-1
– ident: e_1_2_9_100_1
  doi: 10.1002/ana.21147
– ident: e_1_2_9_67_1
  doi: 10.1016/j.biopsych.2015.03.028
– ident: e_1_2_9_174_1
  doi: 10.1186/1750-1326-6-73
– ident: e_1_2_9_51_1
  doi: 10.1093/nar/gkv814
– ident: e_1_2_9_126_1
  doi: 10.1186/2047-9158-2-8
– ident: e_1_2_9_165_1
  doi: 10.1038/nm.4130
– ident: e_1_2_9_23_1
  doi: 10.1007/s00401-014-1299-6
– ident: e_1_2_9_151_1
  doi: 10.1093/hmg/dds485
– ident: e_1_2_9_119_1
  doi: 10.1016/j.neurobiolaging.2015.09.022
– ident: e_1_2_9_120_1
  doi: 10.1074/jbc.M112.398099
– ident: e_1_2_9_160_1
  doi: 10.1523/JNEUROSCI.1357-09.2009
– ident: e_1_2_9_41_1
  doi: 10.1111/j.1471-4159.2009.06383.x
– ident: e_1_2_9_90_1
  doi: 10.1038/ng.132
– ident: e_1_2_9_2_1
  doi: 10.1016/S0304-3940(01)02314-X
– ident: e_1_2_9_24_1
  doi: 10.1074/jbc.M104236200
– volume: 95
  start-page: e809
  issue: 808
  year: 2017
  ident: e_1_2_9_102_1
  article-title: TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics
  publication-title: Neuron
– ident: e_1_2_9_138_1
  doi: 10.1371/journal.pone.0043120
– ident: e_1_2_9_69_1
  doi: 10.1111/j.1365-2990.2010.01060.x
– ident: e_1_2_9_66_1
  doi: 10.1074/jbc.M110.125039
– ident: e_1_2_9_27_1
  doi: 10.1016/j.tibs.2012.03.003
– ident: e_1_2_9_5_1
  doi: 10.1016/j.bbrc.2006.10.093
– ident: e_1_2_9_137_1
  doi: 10.1097/NEN.0b013e31818e8951
– ident: e_1_2_9_145_1
  doi: 10.1074/jbc.M110.197483
– ident: e_1_2_9_31_1
  doi: 10.2353/ajpath.2007.070182
– ident: e_1_2_9_111_1
  doi: 10.1016/S1474-4422(13)70061-9
– ident: e_1_2_9_128_1
  doi: 10.1186/s40478-016-0345-0
– ident: e_1_2_9_13_1
  doi: 10.1523/JNEUROSCI.4988-09.2010
– ident: e_1_2_9_30_1
  doi: 10.1074/jbc.M109.031278
– ident: e_1_2_9_91_1
  doi: 10.1038/ng.2853
– ident: e_1_2_9_53_1
  doi: 10.1016/j.neuron.2011.09.011
– ident: e_1_2_9_86_1
  doi: 10.1038/s41598-017-06263-3
– ident: e_1_2_9_125_1
  doi: 10.1128/jvi.69.6.3584-3596.1995
– ident: e_1_2_9_17_1
  doi: 10.1523/JNEUROSCI.5461-05.2006
– ident: e_1_2_9_12_1
  doi: 10.1038/emboj.2010.310
– ident: e_1_2_9_134_1
  doi: 10.1007/s00401-012-1055-8
– ident: e_1_2_9_161_1
  doi: 10.1016/j.neulet.2009.11.055
– ident: e_1_2_9_56_1
  doi: 10.1007/s12031-011-9589-0
– ident: e_1_2_9_29_1
  doi: 10.1074/jbc.M505557200
– ident: e_1_2_9_110_1
  doi: 10.1093/nar/gki897
– ident: e_1_2_9_8_1
  doi: 10.1186/1750-1326-7-54
– ident: e_1_2_9_170_1
  doi: 10.1186/1750-1326-7-56
– ident: e_1_2_9_49_1
  doi: 10.1007/s00401-006-0189-y
– ident: e_1_2_9_3_1
  doi: 10.1016/j.neuron.2013.12.018
– ident: e_1_2_9_58_1
  doi: 10.1016/j.neures.2009.10.004
– ident: e_1_2_9_48_1
  doi: 10.1074/jbc.M500356200
– ident: e_1_2_9_93_1
  doi: 10.1038/nrn3121
– ident: e_1_2_9_103_1
  doi: 10.1093/brain/awv308
– ident: e_1_2_9_70_1
  doi: 10.1074/jbc.M117.783498
– ident: e_1_2_9_117_1
  doi: 10.1093/brain/awr053
SSID ssj0016461
Score 2.6023488
SecondaryResourceType review_article
Snippet Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7
SubjectTerms Alzheimer's disease
Amyotrophic lateral sclerosis
Degeneration
Deoxyribonucleic acid
DNA
Frontotemporal dementia
frontotemporal lobar degeneration
Glial cells
Huntington's disease
Huntingtons disease
In vivo methods and tests
Medical treatment
Movement disorders
Mutation
Neurodegeneration
Neurodegenerative diseases
Neurological diseases
Neuronal-glial interactions
Neurons
Neurotoxicity
Parkinson's disease
Phosphorylation
Proteins
Structure-function relationships
TDP‐43
Ubiquitination
Title Pathomechanisms of TDP‐43 in neurodegeneration
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjnc.14327
https://www.ncbi.nlm.nih.gov/pubmed/29486049
https://www.proquest.com/docview/2072032932
https://www.proquest.com/docview/2009213607
https://pubmed.ncbi.nlm.nih.gov/PMC6110993
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC7Ei152fe3u-CLKInuJJJ1XN55kVERQZBnBgxCSTtfusE5GnJmDnvwJ_kZ_iVWdB44PkL2FpJL0o6rr6-6qrwF-CoxyaVTmJkGi3dDI0M2zDN1AJBGqIpRCcYLz6Vl8fBGeXEaXM7DX5MJU_BDtghtbhh2v2cCzfPTSyMl-yNkLziTnWC0GRL9b6iimzfJbpnDSzJpVyEbxNG9O-6I3APNtnORL_God0NFXuGqKXsWd_NudjPNdff-K1fE_67YAX2pg6uxXmrQIM6ZcguX9kiblgztnx7GhonYNfgnmus0xccvgnROGHA4MZxD3R4ORM0Snd3D-9PAYBk6_dCxhZmH-WHpr1oIV6B0d9rrHbn0Mg6sJTSQuxtpDsvtYBwKTsMhkLj2mKTN-gNS7SY5GG_QCjX4hZKEVU_JEWAgVGfKR32C2HJbmBzi-wgRjFIXMMaSRRaoIDSpJt_w4C-IO_Gr6I9U1RTmflHGdtlOVUqe2YTqw3YreVLwc7wmtN52a1qY5SoXHO8-EckQHttrH1Gi8U5KVZjhhGU8JUiqPPvG90oH2L0LxuV2h6kAypR2tABN2Tz8p-38tcXfM9K4qoGrazv-44OnJWdderH5edA3mCczJKpR4HWbHtxOzQYBpnG9ay9hkpxU9A7JSErQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VcigXflooCwUCQohLqsROYlviUm2pltKuKrRIvaAocTywgs0idvcAJx6BZ-RJmHF-1KUgIW5RMklsz4z92R5_A_BUYFpqZ4pQSWXDxOkkLIsCQylUiqZKtDB8wPl0nI3eJsfn6fkGvOjOwjT8EP2CG3uG76_ZwXlB-qKXkwPRaC_UFbjKGb05f8Hhm548iomz4p4rnGyz5RXycTzdq-uj0SWIeTlS8iKC9UPQ0Q141xW-iTz5uL9alvv222-8jv9bu5twvcWmwUFjTLdgw9XbsHNQ07x89jV4FvhoUb8Mvw1bwy5T3A5EZwQj5zPHh4ini9kimGMwOTz7-f1HIoNpHXjOzMq99wzXbAi3YXL0cjIchW0mhtASoFAhZjZCcv3MSoEqqQpd6oiZylwskRSsSnTWYSQtxpXQlTXMypNiJUzqaJi8A5v1vHZ3IYgNKsxQVLrEhDoXbVJ0aDTdirNCZgN43ikkty1LOSfL-JT3s5Xa5r5hBvCkF_3cUHP8SWiv02reeuciFxFvPhPQEQN43D-mRuPNkqJ28xXLREbEMovoE7uNEfR_EYZTdyVmAGrNPHoB5uxef1JPP3ju7owZXo2kanrt_73g-fF46C_u_bvoI9gaTU5P8pNX49f34RphO91EFu_B5vLLyj0g_LQsH3o3-QVHzRXo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXHi2PhQIBIcQlVWI7fohTtWVVCqxWaJF6QIoSxwMr2GzF7h7gxE_gN_JLGDsPdSlIiFuUTBLbM2N_tsffADxhmJXamSJWXNlYOC3isigw5kxlaCqhmfEHnN-M5dE7cXySnWzB8-4sTMMP0S-4ec8I_bV38NMKzzo5-Q8N9kxdgItCkrN4RPS2547yvFlpTxVOptnSCoUwnu7VzcHoHMI8Hyh5FsCGEWh0Dd53ZW8CTz7tr1flvv32G63jf1buOlxtkWl00JjSDdhy9Q7sHtQ0K59_jZ5GIVY0LMLvwOVhlyduF5IJgcjF3PkjxLPlfBktMJoeTn5-_yF4NKujwJhZuQ-B39qbwU2Yjl5Mh0dxm4chtgQnVIzSJkiOLy1nqERV6FInnqfMpRxJvapEZx0m3GJaMV1Z4zl5MqyYyRwNkrdgu17U7g5EqUGFElmlSxTUtWiToUOj6VYqCy4H8KzTR25bjnKfKuNz3s9VapuHhhnA4170tCHm-JPQXqfUvPXNZc4Sv_VMMIcN4FH_mBrNb5UUtVusvUxiWMplQp-43dhA_xdmfOIuYQagNqyjF_CM3ZtP6tnHwNwtPb-r4VTNoPy_Fzw_Hg_Dxd1_F30IlyaHo_z1y_Gre3CFgJ1uwor3YHv1Ze3uE3halQ-Ck_wCGOMUoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathomechanisms+of+TDP%E2%80%9043+in+neurodegeneration&rft.jtitle=Journal+of+neurochemistry&rft.au=Gao%2C+Ju&rft.au=Wang%2C+Luwen&rft.au=Huntley%2C+Mikayla+L&rft.au=Perry%2C+George&rft.date=2018-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-3042&rft.eissn=1471-4159&rft.volume=146&rft.issue=1&rft.spage=7&rft.epage=20&rft_id=info:doi/10.1111%2Fjnc.14327&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon