Pathomechanisms of TDP‐43 in neurodegeneration
Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and...
Saved in:
Published in | Journal of neurochemistry Vol. 146; no. 1; pp. 7 - 20 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.07.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-3042 1471-4159 1471-4159 |
DOI | 10.1111/jnc.14327 |
Cover
Loading…
Abstract | Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). There is no cure or treatment available that can prevent or reverse neurodegenerative conditions. The causes of neurodegeneration in these diseases remain largely unknown; yet, an extremely small proportion of these devastating diseases are associated with genetic mutations in proteins involved in a wide range of cellular pathways and processes. Over the past decade, it has become increasingly clear that the most notable neurodegenerative diseases, such as ALS, FTLD, and AD, share a common prominent pathological feature known as TAR DNA‐binding protein 43 (TDP‐43) proteinopathy, which is usually characterized by the presence of aberrant phosphorylation, ubiquitination, cleavage and/or nuclear depletion of TDP‐43 in neurons and glial cells. The role of TDP‐43 as a neurotoxicity trigger has been well documented in different in vitro and in vivo experimental models. As such, the investigation of TDP‐43 pathomechanisms in various major neurodegenerative diseases is on the rise. Here, after a discussion of stages of TDP‐43 proteinopathy during disease progression in various major neurodegenerative diseases, we review previous and most recent studies about the potential pathomechanisms with a particular emphasis on ALS, FTLD, and AD, and discuss the possibility of targeting TDP‐43 as a common therapeutic approach to treat neurodegenerative diseases.
TAR DNA‐binding protein 43 (TDP‐43) proteinopathy is a prominent pathological feature of various major neurodegenerative diseases. In this issue, we first introduce the reader to stages of TDP‐43 proteinopathy during disease progression in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and Alzheimer disease (AD), then extensively review our understanding about the potential pathomechanisms underlying TDP‐43 proteinopathy, and finally discuss the possibility of targeting TDP‐43 for the treatment of neurodegenerative diseases. |
---|---|
AbstractList | Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). There is no cure or treatment available that can prevent or reverse neurodegenerative conditions. The causes of neurodegeneration in these diseases remain largely unknown; yet, an extremely small proportion of these devastating diseases are associated with genetic mutations in proteins involved in a wide range of cellular pathways and processes. Over the past decade, it has become increasingly clear that the most notable neurodegenerative diseases, such as ALS, FTLD, and AD, share a common prominent pathological feature known as TAR DNA‐binding protein 43 (TDP‐43) proteinopathy, which is usually characterized by the presence of aberrant phosphorylation, ubiquitination, cleavage and/or nuclear depletion of TDP‐43 in neurons and glial cells. The role of TDP‐43 as a neurotoxicity trigger has been well documented in different in vitro and in vivo experimental models. As such, the investigation of TDP‐43 pathomechanisms in various major neurodegenerative diseases is on the rise. Here, after a discussion of stages of TDP‐43 proteinopathy during disease progression in various major neurodegenerative diseases, we review previous and most recent studies about the potential pathomechanisms with a particular emphasis on ALS, FTLD, and AD, and discuss the possibility of targeting TDP‐43 as a common therapeutic approach to treat neurodegenerative diseases. Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). There is no cure or treatment available that can prevent or reverse neurodegenerative conditions. The causes of neurodegeneration in these diseases remain largely unknown; yet, an extremely small proportion of these devastating diseases are associated with genetic mutations in proteins involved in a wide range of cellular pathways and processes. Over the past decade, it has become increasingly clear that the most notable neurodegenerative diseases, such as ALS, FTLD, and AD, share a common prominent pathological feature known as TAR DNA‐binding protein 43 (TDP‐43) proteinopathy, which is usually characterized by the presence of aberrant phosphorylation, ubiquitination, cleavage and/or nuclear depletion of TDP‐43 in neurons and glial cells. The role of TDP‐43 as a neurotoxicity trigger has been well documented in different in vitro and in vivo experimental models. As such, the investigation of TDP‐43 pathomechanisms in various major neurodegenerative diseases is on the rise. Here, after a discussion of stages of TDP‐43 proteinopathy during disease progression in various major neurodegenerative diseases, we review previous and most recent studies about the potential pathomechanisms with a particular emphasis on ALS, FTLD, and AD, and discuss the possibility of targeting TDP‐43 as a common therapeutic approach to treat neurodegenerative diseases. TAR DNA‐binding protein 43 (TDP‐43) proteinopathy is a prominent pathological feature of various major neurodegenerative diseases. In this issue, we first introduce the reader to stages of TDP‐43 proteinopathy during disease progression in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and Alzheimer disease (AD), then extensively review our understanding about the potential pathomechanisms underlying TDP‐43 proteinopathy, and finally discuss the possibility of targeting TDP‐43 for the treatment of neurodegenerative diseases. Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). There is no cure or treatment available that can prevent or reverse neurodegenerative conditions. The causes of neurodegeneration in these diseases remain largely unknown; yet, an extremely small proportion of these devastating diseases are associated with genetic mutations in proteins involved in a wide range of cellular pathways and processes. Over the past decade, it has become increasingly clear that the most notable neurodegenerative diseases, such as ALS, FTLD, and AD, share a common prominent pathological feature known as TAR DNA-binding protein 43 (TDP-43) proteinopathy, which is usually characterized by the presence of aberrant phosphorylation, ubiquitination, cleavage and/or nuclear depletion of TDP-43 in neurons and glial cells. The role of TDP-43 as a neurotoxicity trigger has been well documented in different in vitro and in vivo experimental models. As such, the investigation of TDP-43 pathomechanisms in various major neurodegenerative diseases is on the rise. Here, after a discussion of stages of TDP-43 proteinopathy during disease progression in various major neurodegenerative diseases, we review previous and most recent studies about the potential pathomechanisms with a particular emphasis on ALS, FTLD, and AD, and discuss the possibility of targeting TDP-43 as a common therapeutic approach to treat neurodegenerative diseases.Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). There is no cure or treatment available that can prevent or reverse neurodegenerative conditions. The causes of neurodegeneration in these diseases remain largely unknown; yet, an extremely small proportion of these devastating diseases are associated with genetic mutations in proteins involved in a wide range of cellular pathways and processes. Over the past decade, it has become increasingly clear that the most notable neurodegenerative diseases, such as ALS, FTLD, and AD, share a common prominent pathological feature known as TAR DNA-binding protein 43 (TDP-43) proteinopathy, which is usually characterized by the presence of aberrant phosphorylation, ubiquitination, cleavage and/or nuclear depletion of TDP-43 in neurons and glial cells. The role of TDP-43 as a neurotoxicity trigger has been well documented in different in vitro and in vivo experimental models. As such, the investigation of TDP-43 pathomechanisms in various major neurodegenerative diseases is on the rise. Here, after a discussion of stages of TDP-43 proteinopathy during disease progression in various major neurodegenerative diseases, we review previous and most recent studies about the potential pathomechanisms with a particular emphasis on ALS, FTLD, and AD, and discuss the possibility of targeting TDP-43 as a common therapeutic approach to treat neurodegenerative diseases. Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). There is no cure or treatment available that can prevent or reverse neurodegenerative conditions. The causes of neurodegeneration in these diseases remain largely unknown; yet, an extremely small proportion of these devastating diseases are associated with genetic mutations in proteins involved in a wide range of cellular pathways and processes. Over the past decade, it has become increasingly clear that the most notable neurodegenerative diseases, such as ALS, FTLD, and AD, share a common prominent pathological feature known as TAR DNA-binding protein 43 (TDP-43) proteinopathy, which is usually characterized by the presence of aberrant phosphorylation, ubiquitination, cleavage and/or nuclear depletion of TDP-43 in neurons and glial cells. The role of TDP-43 as a neurotoxicity trigger has been well documented in different in vitro and in vivo experimental models. As such, the investigation of TDP-43 pathomechanisms in various major neurodegenerative diseases is on the rise. Here, after a discussion of stages of TDP-43 proteinopathy during disease progression in various major neurodegenerative diseases, we review previous and most recent studies about the potential pathomechanisms with a particular emphasis on ALS, FTLD, and AD, and discuss the possibility of targeting TDP-43 as a common therapeutic approach to treat neurodegenerative diseases. Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). There is no cure or treatment available that can prevent or reverse neurodegenerative conditions. The causes of neurodegeneration in these diseases remain largely unknown; yet, an extremely small proportion of these devastating diseases are associated with genetic mutations in proteins involved in a wide range of cellular pathways and processes. Over the past decade, it has become increasingly clear that the most notable neurodegenerative diseases, such as ALS, FTLD, and AD, share a common prominent pathological feature known as TAR DNA-binding protein 43 (TDP-43) proteinopathy, which is usually characterized by the presence of aberrant phosphorylation, ubiquitination, cleavage and/or nuclear depletion of TDP-43 in neurons and glial cells. The role of TDP-43 as a neurotoxicity trigger has been well documented in different in vitro and in vivo experimental models. As such, the investigation of TDP-43 pathomechanisms in various major neurodegenerative diseases is on the rise. Here, after a discussion of stages of TDP-43 proteinopathy during disease progression in various major neurodegenerative diseases, we review previous and most recent studies about the potential pathomechanisms with a particular emphasis on ALS, FTLD, and AD, and discuss the possibility of targeting TDP-43 as a common therapeutic approach to treat neurodegenerative diseases. |
Author | Wang, Luwen Huntley, Mikayla L. Wang, Xinglong Perry, George Gao, Ju |
AuthorAffiliation | College of Sciences, University of Texas at San Antonio, San Antonio, Texas, USA Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA |
AuthorAffiliation_xml | – name: Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA – name: College of Sciences, University of Texas at San Antonio, San Antonio, Texas, USA |
Author_xml | – sequence: 1 givenname: Ju surname: Gao fullname: Gao, Ju organization: Case Western Reserve University – sequence: 2 givenname: Luwen surname: Wang fullname: Wang, Luwen organization: Case Western Reserve University – sequence: 3 givenname: Mikayla L. surname: Huntley fullname: Huntley, Mikayla L. organization: Case Western Reserve University – sequence: 4 givenname: George surname: Perry fullname: Perry, George organization: University of Texas at San Antonio – sequence: 5 givenname: Xinglong surname: Wang fullname: Wang, Xinglong email: xinglong.wang@case.edu organization: Case Western Reserve University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29486049$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kclOHDEQhi0EgmE58ALRSLmQQ0N56cWXSNEkYRFKOMzd8rjLjEfdNrG7g7jlEfKMeZIYBhAgJXWpQ3311_Lvkk0fPBJySOGY5jhZeXNMBWf1BplQUdNC0FJukgkAYwUHwXbIbkorAFqJim6THSZFU4GQEwJXeliGHs1Se5f6NA12Ov989efXb8Gnzk89jjG0eI0eox5c8Ptky-ou4cFj3iPzr1_ms7Pi8vvp-ezTZWFKkHVhKwOWM1YZzmwtWt0sGpCylEi5FdjUC4sGLXBjacua1khaQ1XalskSBeV75ONa9mZc9Nga9EPUnbqJrtfxTgXt1OuKd0t1HX6qitI8h2eBo0eBGH6MmAbVu2Sw67THMCbFACSjvII6o-_foKswRp-vy1TNgDPJWabevdzoeZWnX2bgwxowMaQU0T4jFNS9Tyr7pB58yuzJG9a44eG_-RjX_a_j1nV4929pdfFttu74C37FozA |
CitedBy_id | crossref_primary_10_1016_j_molcel_2021_10_010 crossref_primary_10_3390_cells9122642 crossref_primary_10_3390_ijms23042147 crossref_primary_10_1111_nan_12668 crossref_primary_10_3389_fcell_2022_931968 crossref_primary_10_1016_j_dnarep_2019_102669 crossref_primary_10_1016_j_arr_2024_102413 crossref_primary_10_3390_biom11081109 crossref_primary_10_3390_ijms23094653 crossref_primary_10_3389_fmolb_2021_773234 crossref_primary_10_3390_antiox10071012 crossref_primary_10_1172_jci_insight_140420 crossref_primary_10_3390_antiox11010082 crossref_primary_10_4103_1673_5374_300983 crossref_primary_10_1016_j_bbrc_2023_05_046 crossref_primary_10_1007_s12640_021_00455_6 crossref_primary_10_1186_s40035_020_00219_w crossref_primary_10_1007_s00401_022_02466_9 crossref_primary_10_1016_j_ejmech_2025_117491 crossref_primary_10_1038_s41583_021_00431_1 crossref_primary_10_1016_j_drudis_2023_103769 crossref_primary_10_3390_genes15091197 crossref_primary_10_1007_s00401_020_02246_3 crossref_primary_10_1016_j_cbpa_2018_05_018 crossref_primary_10_3389_fncel_2021_625665 crossref_primary_10_3389_fmolb_2021_668821 crossref_primary_10_3390_brainsci14100978 crossref_primary_10_1007_s00062_022_01150_5 crossref_primary_10_3390_ph17040468 crossref_primary_10_1111_acel_13687 crossref_primary_10_1002_mds_29153 crossref_primary_10_1007_s12035_018_1411_3 crossref_primary_10_3390_ijms222111853 crossref_primary_10_1038_s42004_021_00547_6 crossref_primary_10_3389_fnmol_2019_00262 crossref_primary_10_3389_fncel_2020_00117 crossref_primary_10_1007_s12035_022_02869_5 crossref_primary_10_3389_fncel_2020_594561 crossref_primary_10_1083_jcb_202309036 crossref_primary_10_3389_fphar_2021_643254 crossref_primary_10_1016_j_jmb_2021_166953 crossref_primary_10_1186_s13024_020_00386_4 crossref_primary_10_1007_s12035_022_02847_x crossref_primary_10_3390_ijms20071728 crossref_primary_10_14336_AD_2024_0440 crossref_primary_10_1021_acs_jcim_1c01224 crossref_primary_10_1126_scitranslmed_abe1923 crossref_primary_10_1186_s40478_025_01962_9 crossref_primary_10_37349_ent_2025_100498 crossref_primary_10_3390_bios14120578 crossref_primary_10_2174_1389200223666220310113110 crossref_primary_10_1038_s41467_022_28822_7 crossref_primary_10_3390_ijms222212193 crossref_primary_10_1093_braincomms_fcae442 crossref_primary_10_3390_biomedicines10020295 crossref_primary_10_1093_brain_awae078 crossref_primary_10_1007_s11357_024_01111_5 crossref_primary_10_3390_ijms232012508 crossref_primary_10_1021_acs_jcim_4c01140 crossref_primary_10_1016_j_yjmcc_2022_01_004 crossref_primary_10_7717_peerj_13703 crossref_primary_10_1016_j_nbd_2021_105360 crossref_primary_10_3389_fnins_2020_00824 crossref_primary_10_1002_alz_13808 crossref_primary_10_1038_s12276_022_00761_9 crossref_primary_10_1093_braincomms_fcac315 crossref_primary_10_1007_s00401_019_02093_x crossref_primary_10_1007_s12035_023_03455_z crossref_primary_10_1016_j_ejmech_2020_112968 crossref_primary_10_1042_BST20210862 crossref_primary_10_3389_fnins_2020_00145 crossref_primary_10_1016_j_phrs_2018_08_010 crossref_primary_10_1111_jnc_15327 crossref_primary_10_1016_j_neuint_2018_12_009 crossref_primary_10_1186_s13024_021_00503_x crossref_primary_10_3389_fnins_2024_1505029 crossref_primary_10_1261_rna_079514_122 crossref_primary_10_1021_acs_biochem_9b00780 crossref_primary_10_1186_s40478_023_01705_8 crossref_primary_10_7554_eLife_85921 crossref_primary_10_1038_s41598_022_08068_5 crossref_primary_10_1016_j_arr_2019_100937 crossref_primary_10_1002_mds_29449 crossref_primary_10_1007_s00894_019_4066_8 crossref_primary_10_1016_j_nbd_2019_104562 crossref_primary_10_1073_pnas_2021368118 crossref_primary_10_1007_s12035_021_02505_8 crossref_primary_10_1093_braincomms_fcac242 crossref_primary_10_1136_jnnp_2020_322983 crossref_primary_10_1007_s11064_019_02832_2 crossref_primary_10_1016_j_tips_2021_11_015 crossref_primary_10_1016_j_jbc_2022_102498 crossref_primary_10_1038_s41598_021_89973_z crossref_primary_10_1038_s41388_022_02539_9 crossref_primary_10_3389_fgene_2023_881638 crossref_primary_10_1186_s13024_023_00621_8 crossref_primary_10_1021_acschemneuro_9b00026 crossref_primary_10_1186_s13100_018_0138_z crossref_primary_10_4103_1673_5374_382233 crossref_primary_10_1038_s42003_025_07456_7 crossref_primary_10_1111_nan_12599 crossref_primary_10_1016_j_bbadis_2023_166716 crossref_primary_10_1016_j_arr_2024_102441 crossref_primary_10_1126_scitranslmed_adp5730 crossref_primary_10_1042_BST20230599 crossref_primary_10_1038_s41582_023_00846_7 crossref_primary_10_1016_j_tcb_2020_08_007 crossref_primary_10_1186_s40035_024_00419_8 crossref_primary_10_1016_j_jagp_2023_08_017 crossref_primary_10_1007_s12652_018_1080_0 crossref_primary_10_1016_j_conb_2021_10_001 crossref_primary_10_3390_ijms22105292 crossref_primary_10_1007_s13311_023_01361_9 crossref_primary_10_1016_j_addr_2022_114569 crossref_primary_10_1016_j_nbd_2020_105130 crossref_primary_10_1016_j_nicl_2020_102327 crossref_primary_10_1242_dmm_049323 crossref_primary_10_1016_j_pneurobio_2025_102742 crossref_primary_10_1177_2472555218818065 crossref_primary_10_1186_s40478_021_01148_z crossref_primary_10_1126_sciadv_ade1282 crossref_primary_10_1016_j_arr_2024_102357 crossref_primary_10_7554_eLife_85921_3 crossref_primary_10_3390_ijms22094705 crossref_primary_10_1038_s41598_020_74800_8 crossref_primary_10_1242_dmm_039552 crossref_primary_10_3390_microorganisms10122418 crossref_primary_10_3389_fnins_2023_1300705 crossref_primary_10_1002_j_2769_2795_2021_tb00074_x crossref_primary_10_1093_braincomms_fcaf060 crossref_primary_10_1007_s00216_018_1437_4 crossref_primary_10_1007_s00401_022_02449_w crossref_primary_10_1002_glia_24096 crossref_primary_10_14814_phy2_14072 crossref_primary_10_1016_j_jmgm_2022_108377 crossref_primary_10_3390_ijms23116180 crossref_primary_10_1093_jnen_nlae032 crossref_primary_10_3389_fnmol_2018_00463 crossref_primary_10_1007_s12035_023_03472_y crossref_primary_10_1186_s40478_023_01656_0 crossref_primary_10_3390_ijms22157781 crossref_primary_10_3390_cells10092247 crossref_primary_10_3390_ijms252212380 crossref_primary_10_1021_acsomega_4c04119 crossref_primary_10_1016_j_bcp_2023_115923 |
Cites_doi | 10.1385/MN:31:1-3:205 10.1159/000273591 10.1093/brain/aww237 10.1074/jbc.M112.419945 10.1073/pnas.1211577110 10.1523/JNEUROSCI.3421-07.2007 10.1038/375061a0 10.1002/ana.21425 10.1016/j.brainresbull.2012.09.005 10.1007/s00401-008-0372-4 10.1007/s00401-011-0862-7 10.1126/science.1134108 10.3390/antiox6020025 10.1016/j.febslet.2006.01.052 10.1073/pnas.0900688106 10.1016/S0301-0082(99)00033-7 10.1126/science.1166066 10.1074/jbc.M203065200 10.1016/j.jmb.2005.02.038 10.1097/WAD.0b013e31820f8f50 10.1073/pnas.0400182101 10.1186/s12920-017-0274-1 10.1002/jnr.23081 10.1093/brain/aww224 10.1007/s00401-012-1005-5 10.1016/j.sbi.2008.04.002 10.1136/jnnp.2007.131334 10.1016/j.brainres.2009.09.105 10.1523/JNEUROSCI.0248-14.2014 10.1523/JNEUROSCI.1630-10.2010 10.1093/nar/gkr1082 10.1074/jbc.M110.194852 10.1002/ana.23937 10.3109/09540261.2013.776523 10.1186/s40478-016-0340-5 10.1371/journal.pgen.1000193 10.1007/s00401-009-0526-z 10.1091/mbc.E06-12-1120 10.1038/s41598-017-06953-y 10.1155/2015/647408 10.1093/emboj/20.7.1774 10.1016/j.bbadis.2006.04.002 10.1093/hmg/ddt319 10.1038/4553 10.1093/hmg/ddu211 10.1016/S0065-2660(09)66001-6 10.1111/j.1750-3639.2011.00546.x 10.1002/jnr.10389 10.1038/ncomms15558 10.1007/s12031-011-9545-z 10.1007/s00401-017-1701-2 10.1038/icb.2016.89 10.1002/1531-8249(20010201)49:2<165::AID-ANA36>3.0.CO;2-3 10.1111/j.1471-4159.2009.06211.x 10.1073/pnas.1317317111 10.1101/cshperspect.a012286 10.1093/hmg/ddv491 10.1007/s00401-008-0480-1 10.1007/s00401-011-0932-x 10.1038/nature22038 10.1007/s00401-007-0223-8 10.1007/s00401-008-0396-9 10.1523/JNEUROSCI.0996-12.2012 10.1093/hmg/ddt528 10.1126/science.1105681 10.1126/science.aab0983 10.1073/pnas.1301608110 10.1016/S0074-7742(08)60607-8 10.1016/S0925-4439(00)00028-4 10.1371/journal.pone.0013250 10.1093/oxfordjournals.hmg.a018919 10.1038/nature21695 10.1007/s11940-014-0319-0 10.1093/hmg/dds205 10.1111/j.1471-4159.2007.05190.x 10.1007/s00401-015-1412-5 10.1016/j.brainres.2007.09.048 10.1007/s00401-007-0261-2 10.1016/S1474-4422(10)70195-2 10.1038/ncomms2303 10.1016/j.bbagrm.2015.10.015 10.1371/journal.pone.0086513 10.1186/1750-1326-8-28 10.1083/jcb.201504057 10.1016/j.neuron.2010.07.019 10.1016/j.neuron.2004.06.016 10.4161/auto.22526 10.1016/j.str.2016.07.007 10.1038/nn.2779 10.1074/jbc.M809462200 10.1111/j.1471-4159.2010.07098.x 10.1093/hmg/ddr021 10.1073/pnas.1222809110 10.2741/2727 10.1002/ana.21154 10.1016/j.brainres.2012.02.032 10.1074/jbc.M113.515940 10.1074/jbc.M111.333450 10.1016/j.celrep.2013.06.007 10.1097/NEN.0000000000000102 10.1126/science.1232927 10.1074/jbc.M109.010264 10.1073/pnas.1206362109 10.1074/jbc.M111.328757 10.1111/jnc.12630 10.1186/s40478-017-0493-x 10.1074/jbc.M112.417600 10.18632/oncotarget.13805 10.1073/pnas.0602046103 10.18632/oncotarget.4680 10.1038/nchembio.1563 10.1371/journal.pone.0022850 10.1016/j.neuron.2014.10.019 10.1038/ncomms7183 10.1080/15216540601047767 10.1016/j.pneurobio.2011.06.003 10.1007/s00401-016-1537-1 10.1212/WNL.58.11.1615 10.1126/science.1154584 10.1038/nrn1971 10.1093/nar/gkx175 10.1038/nature09320 10.1126/science.1165942 10.1111/jnc.12014 10.1016/j.ymthe.2016.10.013 10.7150/ijbs.7.234 10.1007/s00401-013-1211-9 10.1186/s13024-017-0180-1 10.1002/ana.21147 10.1016/j.biopsych.2015.03.028 10.1186/1750-1326-6-73 10.1093/nar/gkv814 10.1186/2047-9158-2-8 10.1038/nm.4130 10.1007/s00401-014-1299-6 10.1093/hmg/dds485 10.1016/j.neurobiolaging.2015.09.022 10.1074/jbc.M112.398099 10.1523/JNEUROSCI.1357-09.2009 10.1111/j.1471-4159.2009.06383.x 10.1038/ng.132 10.1016/S0304-3940(01)02314-X 10.1074/jbc.M104236200 10.1371/journal.pone.0043120 10.1111/j.1365-2990.2010.01060.x 10.1074/jbc.M110.125039 10.1016/j.tibs.2012.03.003 10.1016/j.bbrc.2006.10.093 10.1097/NEN.0b013e31818e8951 10.1074/jbc.M110.197483 10.2353/ajpath.2007.070182 10.1016/S1474-4422(13)70061-9 10.1186/s40478-016-0345-0 10.1523/JNEUROSCI.4988-09.2010 10.1074/jbc.M109.031278 10.1038/ng.2853 10.1016/j.neuron.2011.09.011 10.1038/s41598-017-06263-3 10.1128/jvi.69.6.3584-3596.1995 10.1523/JNEUROSCI.5461-05.2006 10.1038/emboj.2010.310 10.1007/s00401-012-1055-8 10.1016/j.neulet.2009.11.055 10.1007/s12031-011-9589-0 10.1074/jbc.M505557200 10.1093/nar/gki897 10.1186/1750-1326-7-54 10.1186/1750-1326-7-56 10.1007/s00401-006-0189-y 10.1016/j.neuron.2013.12.018 10.1016/j.neures.2009.10.004 10.1074/jbc.M500356200 10.1038/nrn3121 10.1093/brain/awv308 10.1074/jbc.M117.783498 10.1093/brain/awr053 |
ContentType | Journal Article |
Copyright | 2018 International Society for Neurochemistry 2018 International Society for Neurochemistry. Copyright © 2018 International Society for Neurochemistry |
Copyright_xml | – notice: 2018 International Society for Neurochemistry – notice: 2018 International Society for Neurochemistry. – notice: Copyright © 2018 International Society for Neurochemistry |
DBID | AAYXX CITATION NPM 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 5PM |
DOI | 10.1111/jnc.14327 |
DatabaseName | CrossRef PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Toxicology Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1471-4159 |
EndPage | 20 |
ExternalDocumentID | PMC6110993 29486049 10_1111_jnc_14327 JNC14327 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Alzheimer's Association funderid: AARG‐17‐499682 – fundername: National Institutes of Health funderid: 1R01NS089604 – fundername: NINDS NIH HHS grantid: R01 NS089604 |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29L 2WC 31~ 33P 36B 3SF 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYJJ AAZKR ABCQN ABCUV ABEML ABIVO ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC FZ0 G-S G.N GAKWD GODZA GX1 H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TWZ UB1 V8K VH1 W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ X7M XG1 XJT YFH YNH YOC YUY ZGI ZXP ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 5PM |
ID | FETCH-LOGICAL-c5097-f6c0f3226c32f74da8b809959e13f4e87bfecef03cf1d28dc917065fd295e413 |
IEDL.DBID | DR2 |
ISSN | 0022-3042 1471-4159 |
IngestDate | Thu Aug 21 14:06:05 EDT 2025 Thu Jul 10 23:14:05 EDT 2025 Fri Jul 25 19:33:53 EDT 2025 Mon Jul 21 05:42:23 EDT 2025 Thu Apr 24 22:59:00 EDT 2025 Tue Jul 01 04:39:22 EDT 2025 Wed Jan 22 16:19:13 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | neurodegeneration Neurodegenerative diseases Alzheimer's disease amyotrophic lateral sclerosis TDP-43 frontotemporal lobar degeneration |
Language | English |
License | 2018 International Society for Neurochemistry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5097-f6c0f3226c32f74da8b809959e13f4e87bfecef03cf1d28dc917065fd295e413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jnc.14327 |
PMID | 29486049 |
PQID | 2072032932 |
PQPubID | 31528 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6110993 proquest_miscellaneous_2009213607 proquest_journals_2072032932 pubmed_primary_29486049 crossref_primary_10_1111_jnc_14327 crossref_citationtrail_10_1111_jnc_14327 wiley_primary_10_1111_jnc_14327_JNC14327 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2018 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: July 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Journal of neurochemistry |
PublicationTitleAlternate | J Neurochem |
PublicationYear | 2018 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2011; 116 2015; 78 2013; 4 2012; 123 2013; 2 2012; 124 2010; 469 2010; 466 2002; 277 2009; 110 2009; 111 2013; 125 2008; 105 2001; 49 1995; 375 2009; 118 2013; 8 2017a; 292 2016; 37 2014; 23 2012; 97 2013; 9 2009; 117 2014; 129 2015; 130 2014; 127 2014; 128 2007; 171 2005; 348 2006; 26 2011; 72 2014; 16 2000; 1502 2008; 116 2007; 61 2013; 110 2010; 5 2012; 22 2010; 30 2010; 7 2012; 21 2011; 122 2014; 10 2010; 9 2004; 43 2009; 66 2007; 18 2012; 1462 2010; 36 2006; 58 2006; 351 2010; 285 2014; 46 2012; 37 2017; 133 2011; 6 2012; 32 2011; 134 2011; 7 2001; 20 2012; 109 2001; 276 2016; 4 2016; 7 2013; 339 2015; 1849 2013; 74 2015; 2015 2006; 580 2002; 70 2008; 40 2017; 543 2017; 544 2016; 25 2014; 34 2016; 24 2001; 315 2006; 103 2012; 40 2016; 22 2009; 106 2017; 5 2017; 6 2017; 7 2002; 58 2017; 8 2012; 287 2007; 1184 2013; 25 2017b; 45 2013; 22 2000; 9 2013; 288 2008; 79 2011; 13 2006; 1762 2015; 349 2011; 14 2008; 4 1998; 42 2010; 67 2010; 66 2013; 12 1995; 69 2015; 211 2015; 43 2008; 319 2011; 20 2008; 67 2005; 307 2005; 31 2000; 60 2009; 284 2008; 64 2011; 25 2014; 9 2009; 323 2005; 33 2011; 286 2014; 289 2007; 27 2004; 101 2009; 1305 2015; 6 2017; 25 2008; 18 2006; 7 2011; 30 2008; 13 1999; 2 2006; 314 2014; 111 2014; 84 2009; 29 2007; 114 2017; 95 2005; 280 2007; 113 2014; 81 2012; 90 2012; 3 2013b; 22 2017; 10 2017; 12 2016; 139 2011; 45 2012; 7 2014; 73 2012; 4 2012; 89 2016; 131 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_18_1 e_1_2_9_160_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_157_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_172_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 Mackenzie I. R. (e_1_2_9_102_1) 2017; 95 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 Tan Q. M. (e_1_2_9_147_1) 2016; 25 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 Orru S. (e_1_2_9_124_1) 2016; 25 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_136_1 e_1_2_9_178_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_174_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_161_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_173_1 e_1_2_9_48_1 e_1_2_9_29_1 e_1_2_9_150_1 |
References_xml | – volume: 123 start-page: 395 year: 2012 end-page: 407 article-title: Microglial activation and TDP‐43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis publication-title: Acta Neuropathol. – volume: 73 start-page: 837 year: 2014 end-page: 845 article-title: Poly‐A binding protein‐1 localization to a subset of TDP‐43 inclusions in amyotrophic lateral sclerosis occurs more frequently in patients harboring an expansion in C9orf72 publication-title: J. Neuropathol. Exp. Neurol. – volume: 25 start-page: 534 year: 2016 end-page: 545 article-title: TDP‐43 functions within a network of hnRNP proteins to inhibit the production of a truncated human SORT1 receptor publication-title: Hum. Mol. Genet. – volume: 7 start-page: 54 year: 2012 end-page: 68 article-title: Endogenous TDP‐43, but not FUS, contributes to stress granule assembly via G3BP publication-title: Molecular Neurodegeneration – volume: 40 start-page: 2668 year: 2012 end-page: 2682 article-title: TDP‐43 regulates global translational yield by splicing of exon junction complex component SKAR publication-title: Nucleic Acids Res. – volume: 46 start-page: 152 year: 2014 end-page: 160 article-title: Therapeutic modulation of eIF2alpha phosphorylation rescues TDP‐43 toxicity in amyotrophic lateral sclerosis disease models publication-title: Nat. Genet. – volume: 118 start-page: 359 year: 2009 end-page: 369 article-title: TDP‐43 in ubiquitinated inclusions in the inferior olives in frontotemporal lobar degeneration and in other neurodegenerative diseases: a degenerative process distinct from normal ageing publication-title: Acta Neuropathol. – volume: 1762 start-page: 1094 year: 2006 end-page: 1108 article-title: Axonal transport and neurodegenerative disease publication-title: Biochem. Biophys. Acta. – volume: 110 start-page: 4439 year: 2013 end-page: 4440 article-title: Glia as primary drivers of neuropathology in TDP‐43 proteinopathies publication-title: Proc. Natl Acad. Sci. USA – volume: 45 start-page: 390 year: 2011 end-page: 401 article-title: TDP‐43 variants of frontotemporal lobar degeneration publication-title: J. Mol. Neurosci. – volume: 116 start-page: 25 year: 2008 end-page: 35 article-title: Clinical, neuropathological and genotypic variability in SNCA A53T familial Parkinson's disease. Variability in familial Parkinson's disease publication-title: Acta Neuropathol. – volume: 284 start-page: 27416 year: 2009 end-page: 27424 article-title: Rapamycin rescues TDP‐43 mislocalization and the associated low molecular mass neurofilament instability publication-title: J. Biol. Chem. – volume: 109 start-page: 21510 year: 2012 end-page: 21515 article-title: Misregulation of human sortilin splicing leads to the generation of a nonfunctional progranulin receptor publication-title: Proc. Natl Acad. Sci. USA – volume: 9 start-page: 2281 year: 2000 end-page: 2289 article-title: Alzheimer's disease‐associated presenilin 2 interacts with DRAL, an LIM‐domain protein publication-title: Hum. Mol. Genet. – volume: 20 start-page: 1774 year: 2001 end-page: 1784 article-title: Nuclear factor TDP‐43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping publication-title: EMBO J. – volume: 27 start-page: 10530 year: 2007 end-page: 10534 article-title: Progranulin mediates caspase‐dependent cleavage of TAR DNA binding protein‐43 publication-title: J. Neurosci. – volume: 58 start-page: 686 year: 2006 end-page: 694 article-title: Mitochondrial A beta: a potential cause of metabolic dysfunction in Alzheimer's disease publication-title: IUBMB Life – volume: 7 start-page: 7709 year: 2017 article-title: TDP‐43 stabilises the processing intermediates of mitochondrial transcripts publication-title: Sci. Rep. – volume: 16 start-page: 319 year: 2014 article-title: Treatment of frontotemporal dementia publication-title: Curr. Treat Options Neurol. – volume: 103 start-page: 7142 year: 2006 end-page: 7147 article-title: Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria publication-title: Proc. Natl Acad. Sci. USA – volume: 5 start-page: e13250 year: 2010 article-title: Tar DNA binding protein‐43 (TDP‐43) associates with stress granules: analysis of cultured cells and pathological brain tissue publication-title: PLoS ONE – volume: 7 start-page: 56 year: 2012 article-title: Regulated protein aggregation: stress granules and neurodegeneration publication-title: Mol. Neurodegener. – volume: 171 start-page: 227 year: 2007 end-page: 240 article-title: TDP‐43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions publication-title: Am. J. Pathol. – volume: 12 start-page: 435 year: 2013 end-page: 442 article-title: An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first‐in‐man study publication-title: Lancet Neurol. – volume: 6 start-page: 24178 year: 2015 end-page: 24191 article-title: Exposure to ALS‐FTD‐CSF generates TDP‐43 aggregates in glioblastoma cells through exosomes and TNTs‐like structure publication-title: Oncotarget – volume: 1462 start-page: 16 year: 2012 end-page: 25 article-title: TDP‐43 aggregation in neurodegeneration: are stress granules the key? publication-title: Brain Res. – volume: 277 start-page: 29626 year: 2002 end-page: 29633 article-title: Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice publication-title: J. Biol. Chem. – volume: 287 start-page: 41310 year: 2012 end-page: 41323 article-title: Roles of ataxin‐2 in pathological cascades mediated by TAR DNA‐binding protein 43 (TDP‐43) and Fused in Sarcoma (FUS) publication-title: J. Biol. Chem. – volume: 2015 start-page: 647408 year: 2015 end-page: 647419 article-title: Molecular integrity of mitochondria alters by potassium chloride publication-title: Inter J. Proteomics – volume: 284 start-page: 8516 year: 2009 end-page: 8524 article-title: Expression of TDP‐43 C‐terminal fragments in vitro recapitulates pathological features of TDP‐43 proteinopathies publication-title: J. Biol. Chem. – volume: 2 start-page: 8 year: 2013 article-title: Clinic, neuropathology and molecular genetics of frontotemporal dementia: a mini‐review publication-title: Transl Neurodegener – volume: 543 start-page: 443 year: 2017 end-page: 446 article-title: Cytosolic proteostasis through importing of misfolded proteins into mitochondria publication-title: Nature – volume: 1184 start-page: 284 year: 2007 end-page: 294 article-title: Concurrence of TDP‐43, tau and alpha‐synuclein pathology in brains of Alzheimer's disease and dementia with Lewy bodies publication-title: Brain Res. – volume: 95 start-page: 207 year: 2017 end-page: 214 article-title: Impaired activation of ALS monocytes by exosomes publication-title: Immunol. Cell Biol. – volume: 74 start-page: 20 year: 2013 end-page: 38 article-title: Stages of pTDP‐43 pathology in amyotrophic lateral sclerosis publication-title: Ann. Neurol. – volume: 211 start-page: 897 year: 2015 end-page: 911 article-title: TDP‐43 is intercellularly transmitted across axon terminals publication-title: J. Cell Biol. – volume: 323 start-page: 1208 year: 2009 end-page: 1211 article-title: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6 publication-title: Science – volume: 22 start-page: 869 year: 2016 end-page: 878 article-title: The inhibition of TDP‐43 mitochondrial localization blocks its neuronal toxicity publication-title: Nat. Med. – volume: 43 start-page: 8990 year: 2015 end-page: 9005 article-title: TDP‐43 affects splicing profiles and isoform production of genes involved in the apoptotic and mitotic cellular pathways publication-title: Nucleic Acids Res. – volume: 30 start-page: 10851 year: 2010 end-page: 10859 article-title: Wild‐type human TDP‐43 expression causes TDP‐43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice publication-title: J. Neurosci. – volume: 66 start-page: 1 year: 2009 end-page: 34 article-title: The molecular links between TDP‐43 dysfunction and neurodegeneration publication-title: Adv. Genet. – volume: 45 start-page: 6177 year: 2017b end-page: 6193 article-title: TDP‐43 suppresses tau expression via promoting its mRNA instability publication-title: Nucleic Acids Res. – volume: 109 start-page: 15024 year: 2012 end-page: 15029 article-title: Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA‐binding protein 43 publication-title: Proc. Natl Acad. Sci. USA – volume: 139 start-page: 2983 year: 2016 end-page: 2993 article-title: TDP‐43 stage, mixed pathologies, and clinical Alzheimer's‐type dementia publication-title: Brain – volume: 1502 start-page: 1 year: 2000 end-page: 15 article-title: Presenilin structure, function and role in Alzheimer disease publication-title: Biochem. Biophys. Acta. – volume: 110 start-page: E736 year: 2013 end-page: E745 article-title: ALS‐linked TDP‐43 mutations produce aberrant RNA splicing and adult‐onset motor neuron disease without aggregation or loss of nuclear TDP‐43 publication-title: Proc. Natl Acad. Sci. USA – volume: 139 start-page: 86 year: 2016 end-page: 100 article-title: MTHFSD and DDX58 are novel RNA‐binding proteins abnormally regulated in amyotrophic lateral sclerosis publication-title: Brain – volume: 123 start-page: 406 year: 2012 end-page: 416 article-title: XBP1 depletion precedes ubiquitin aggregation and Golgi fragmentation in TDP‐43 transgenic rats publication-title: J. Neurochem. – volume: 45 start-page: 384 year: 2011 end-page: 389 article-title: Neuropathology of frontotemporal lobar degeneration‐tau (FTLD‐tau) publication-title: J. Mol. Neurosci. – volume: 319 start-page: 1668 year: 2008 end-page: 1672 article-title: TDP‐43 mutations in familial and sporadic amyotrophic lateral sclerosis publication-title: Science – volume: 466 start-page: 1069 year: 2010 end-page: 1075 article-title: Ataxin‐2 intermediate‐length polyglutamine expansions are associated with increased risk for ALS publication-title: Nature – volume: 37 start-page: 237 year: 2012 end-page: 247 article-title: TDP‐43: gumming up neurons through protein‐protein and protein‐RNA interactions publication-title: Trends Biochem. Sci. – volume: 314 start-page: 130 year: 2006 end-page: 133 article-title: Ubiquitinated TDP‐43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis publication-title: Science – volume: 81 start-page: 536 year: 2014 end-page: 543 article-title: Axonal transport of TDP‐43 mRNA granules is impaired by ALS‐causing mutations publication-title: Neuron – volume: 7 start-page: 260 year: 2010 end-page: 264 article-title: TDP43‐positive intraneuronal inclusions in a patient with motor neuron disease and Parkinson's disease publication-title: Neurodegener. Dis. – volume: 7 start-page: e43120 year: 2012 article-title: Alteration of POLDIP3 splicing associated with loss of function of TDP‐43 in tissues affected with ALS publication-title: PLoS ONE – volume: 70 start-page: 357 year: 2002 end-page: 360 article-title: Role of mitochondrial dysfunction in Alzheimer's disease publication-title: J. Neurosci. Res. – volume: 287 start-page: 15635 year: 2012 end-page: 15647 article-title: TDP‐43 and FUS RNA‐binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post‐transcriptional fate in motoneuron‐like cells publication-title: J. Biol. Chem. – volume: 117 start-page: 125 year: 2009 end-page: 136 article-title: Phosphorylated TDP‐43 in Alzheimer's disease and dementia with Lewy bodies publication-title: Acta Neuropathol. – volume: 40 start-page: 572 year: 2008 end-page: 574 article-title: TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis publication-title: Nat. Genet. – volume: 134 start-page: 1506 year: 2011 end-page: 1518 article-title: Hippocampal sclerosis in advanced age: clinical and pathological features publication-title: Brain – volume: 7 start-page: 83833 year: 2016 end-page: 83834 article-title: p62 at the crossroad of the ubiquitin‐proteasome system and autophagy publication-title: Oncotarget – volume: 61 start-page: 427 year: 2007 end-page: 434 article-title: Pathological TDP‐43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations publication-title: Ann. Neurol. – volume: 72 start-page: 245 year: 2011 end-page: 256 article-title: Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p‐linked FTD and ALS publication-title: Neuron – volume: 23 start-page: 4960 year: 2014 end-page: 4969 article-title: Parkin‐mediated reduction of nuclear and soluble TDP‐43 reverses behavioral decline in symptomatic mice publication-title: Hum. Mol. Genet. – volume: 10 start-page: 677 year: 2014 end-page: 685 article-title: Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models publication-title: Nat. Chem. Biol. – volume: 375 start-page: 61 year: 1995 end-page: 64 article-title: Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis publication-title: Nature – volume: 116 start-page: 193 year: 2008 end-page: 203 article-title: Maturation process of TDP‐43‐positive neuronal cytoplasmic inclusions in amyotrophic lateral sclerosis with and without dementia publication-title: Acta Neuropathol. – volume: 128 start-page: 423 year: 2014 end-page: 437 article-title: TDP‐43 pathology and neuronal loss in amyotrophic lateral sclerosis spinal cord publication-title: Acta Neuropathol. – volume: 25 start-page: 5083 year: 2016 end-page: 5093 article-title: Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models publication-title: Hum. Mol. Genet. – volume: 60 start-page: 363 year: 2000 end-page: 384 article-title: Presenilins and Alzheimer's disease: biological functions and pathogenic mechanisms publication-title: Prog. Neurobiol. – volume: 25 start-page: 130 year: 2013 end-page: 137 article-title: The epidemiology of frontotemporal dementia publication-title: Int Rev Psychiatry – volume: 42 start-page: 1 year: 1998 end-page: 54 article-title: Alzheimer disease publication-title: Int. Rev. Neurobiol. – volume: 307 start-page: 1282 year: 2005 end-page: 1288 article-title: Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease publication-title: Science – volume: 289 start-page: 10769 year: 2014 end-page: 10784 article-title: Mitochondrial dysfunction and decrease in body weight of a transgenic knock‐in mouse model for TDP‐43 publication-title: J. Biol. Chem. – volume: 544 start-page: 367 year: 2017 end-page: 371 article-title: Therapeutic reduction of ataxin‐2 extends lifespan and reduces pathology in TDP‐43 mice publication-title: Nature – volume: 4 start-page: 124 year: 2013 end-page: 134 article-title: Prion‐like properties of pathological TDP‐43 aggregates from diseased brains publication-title: Cell Rep. – volume: 348 start-page: 575 year: 2005 end-page: 588 article-title: Human, Drosophila, and C.elegans TDP43: nucleic acid binding properties and splicing regulatory function publication-title: J. Mol. Biol. – volume: 1305 start-page: 168 year: 2009 end-page: 182 article-title: Tar DNA binding protein of 43 kDa (TDP‐43), 14‐3‐3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS) publication-title: Brain Res. – volume: 24 start-page: 1537 year: 2016 end-page: 1549 article-title: ALS mutations disrupt phase separation mediated by alpha‐helical structure in the TDP‐43 low‐complexity C‐terminal domain publication-title: Structure – volume: 67 start-page: 1159 year: 2008 end-page: 1165 article-title: Colocalization of transactivation‐responsive DNA‐binding protein 43 and huntingtin in inclusions of Huntington disease publication-title: J. Neuropathol. Exp. Neurol. – volume: 5 start-page: 96 year: 2017 article-title: Clinical and neuropathological features of ALS/FTD with TIA1 mutations publication-title: Acta Neuropatho.l Commun. – volume: 280 start-page: 37572 year: 2005 end-page: 37584 article-title: TDP‐43 binds heterogeneous nuclear ribonucleoprotein A/B through its C‐terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing publication-title: J. Biol. Chem. – volume: 114 start-page: 49 year: 2007 end-page: 54 article-title: The neuropathology and clinical phenotype of FTD with progranulin mutations publication-title: Acta Neuropathol. – volume: 69 start-page: 3584 year: 1995 end-page: 3596 article-title: Cloning and characterization of a novel cellular protein, TDP‐43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs publication-title: J. Virol. – volume: 31 start-page: 205 year: 2005 end-page: 217 article-title: Oxidative imbalance in Alzheimer's disease publication-title: Mol. Neurobiol. – volume: 29 start-page: 9090 year: 2009 end-page: 9103 article-title: Impaired balance of mitochondrial fission and fusion in Alzheimer's disease publication-title: J. Neurosci. – volume: 78 start-page: 684 year: 2015 end-page: 692 article-title: Psychiatric symptoms in frontotemporal dementia: epidemiology, phenotypes, and differential diagnosis publication-title: Biol. Psychiatry – volume: 323 start-page: 1205 year: 2009 end-page: 1208 article-title: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis publication-title: Science – volume: 36 start-page: 97 year: 2010 end-page: 112 article-title: Review: transactive response DNA‐binding protein 43 (TDP‐43): mechanisms of neurodegeneration publication-title: Neuropathol. Appl. Neurobiol. – volume: 292 start-page: 10600 year: 2017a end-page: 10612 article-title: Transactive response DNA‐binding protein 43 (TDP‐43) regulates alternative splicing of tau exon 10: Implications for the pathogenesis of tauopathies publication-title: J. Biol. Chem. – volume: 64 start-page: 60 year: 2008 end-page: 70 article-title: Phosphorylated TDP‐43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis publication-title: Ann. Neurol. – volume: 25 start-page: 364 year: 2011 end-page: 368 article-title: Hippocampal sclerosis in the elderly: genetic and pathologic findings, some mimicking Alzheimer disease clinically publication-title: Alzheimer Dis. Assoc. Disord. – volume: 22 start-page: 4706 year: 2013b end-page: 4719 article-title: The ALS disease‐associated mutant TDP‐43 impairs mitochondrial dynamics and function in motor neurons publication-title: Hum. Mol. Genet. – volume: 116 start-page: 248 year: 2011 end-page: 259 article-title: Regulation of TDP‐43 aggregation by phosphorylation and p62/SQSTM1 publication-title: J. Neurochem. – volume: 18 start-page: 1385 year: 2007 end-page: 1396 article-title: Ataxin‐2 interacts with the DEAD/H‐box RNA helicase DDX6 and interferes with P‐bodies and stress granules publication-title: Mol. Biol. Cell – volume: 12 start-page: 37 year: 2017 article-title: Mutant TDP‐43 does not impair mitochondrial bioenergetics in vitro and in vivo publication-title: Mol. Neurodegener. – volume: 124 start-page: 749 year: 2012 end-page: 760 article-title: Coexistence of Huntington's disease and amyotrophic lateral sclerosis: a clinicopathologic study publication-title: Acta Neuropathol. – volume: 4 start-page: 70 year: 2016 article-title: From animal models to human disease: a genetic approach for personalized medicine in ALS publication-title: Acta Neuropathol Commun – volume: 6 start-page: e22850 year: 2011 article-title: Cytoplasmic accumulation and aggregation of TDP‐43 upon proteasome inhibition in cultured neurons publication-title: PLoS ONE – volume: 95 start-page: e809 issue: 808–816 year: 2017 article-title: TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics publication-title: Neuron – volume: 125 start-page: 121 year: 2013 end-page: 131 article-title: TDP‐43 skeins show properties of amyloid in a subset of ALS cases publication-title: Acta Neuropathol. – volume: 25 start-page: 127 year: 2017 end-page: 139 article-title: Motor‐coordinative and cognitive dysfunction caused by mutant TDP‐43 could be reversed by inhibiting its mitochondrial localization publication-title: Mol. Therapy – volume: 1849 start-page: 1398 year: 2015 end-page: 1410 article-title: From transcriptomic to protein level changes in TDP‐43 and FUS loss‐of‐function cell models publication-title: Biochim. Biophys. Acta – volume: 10 start-page: 38 year: 2017 end-page: 54 article-title: Quantitative analysis of cryptic splicing associated with TDP‐43 depletion publication-title: Bmc Med. Genomics. – volume: 7 start-page: 234 year: 2011 end-page: 243 article-title: TDP‐43 potentiates alpha‐synuclein toxicity to dopaminergic neurons in transgenic mice publication-title: Inter. J. Biol. Sci. – volume: 84 start-page: 292 year: 2014 end-page: 309 article-title: Axonal transport: cargo‐specific mechanisms of motility and regulation publication-title: Neuron – volume: 32 start-page: 9133 year: 2012 end-page: 9142 article-title: ALS‐associated ataxin 2 polyQ expansions enhance stress‐induced caspase 3 activation and increase TDP‐43 pathological modifications publication-title: J. Neurosci. – volume: 127 start-page: 441 year: 2014 end-page: 450 article-title: Staging TDP‐43 pathology in Alzheimer's disease publication-title: Acta Neuropathol. – volume: 288 start-page: 4103 year: 2013 end-page: 4115 article-title: Parkin ubiquitinates Tar‐DNA binding protein‐43 (TDP‐43) and promotes its cytosolic accumulation via interaction with histone deacetylase 6 (HDAC6) publication-title: J. Biol. Chem. – volume: 7 start-page: 6196 year: 2017 end-page: 5207 article-title: The N‐terminal dimerization is required for TDP‐43 splicing activity publication-title: Scientific reports – volume: 8 start-page: 15558 year: 2017 article-title: Loss of function CHCHD10 mutations in cytoplasmic TDP‐43 accumulation and synaptic integrity publication-title: Nat. Commun. – volume: 66 start-page: 131 year: 2010 end-page: 133 article-title: The RNA‐binding protein FUS/TLS is a common aggregate‐interacting protein in polyglutamine diseases publication-title: Neurosci. Res. – volume: 287 start-page: 23079 year: 2012 end-page: 23094 article-title: Requirements for stress granule recruitment of fused in sarcoma (FUS) and TAR DNA‐binding protein of 43 kDa (TDP‐43) publication-title: J. Biol. Chem. – volume: 22 start-page: 782 year: 2013 end-page: 794 article-title: Reduction of polyglutamine toxicity by TDP‐43, FUS and progranulin in Huntington's disease models publication-title: Hum. Mol. Genet. – volume: 315 start-page: 21 year: 2001 end-page: 24 article-title: Tau protein expression in frontotemporal dementias publication-title: Neurosci. Lett. – volume: 106 start-page: 7607 year: 2009 end-page: 7612 article-title: Aberrant cleavage of TDP‐43 enhances aggregation and cellular toxicity publication-title: Proc. Natl Acad. Sci. USA – volume: 351 start-page: 602 year: 2006 end-page: 611 article-title: TDP‐43 is a component of ubiquitin‐positive tau‐negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis publication-title: Biochem. Biophys. Res. Commun. – volume: 131 start-page: 571 year: 2016 end-page: 585 article-title: Updated TDP‐43 in Alzheimer's disease staging scheme publication-title: Acta Neuropathol. – volume: 43 start-page: 5 year: 2004 end-page: 17 article-title: Toxicity of familial ALS‐linked SOD1 mutants from selective recruitment to spinal mitochondria publication-title: Neuron – volume: 9 start-page: 239 year: 2013 end-page: 240 article-title: Autophagy activation ameliorates neuronal pathogenesis of FTLD‐U mice: a new light for treatment of TARDBP/TDP‐43 proteinopathies publication-title: Autophagy – volume: 276 start-page: 36337 year: 2001 end-page: 36343 article-title: Characterization and functional implications of the RNA binding properties of nuclear factor TDP‐43, a novel splicing regulator of CFTR exon 9 publication-title: J. Biol. Chem. – volume: 89 start-page: 185 year: 2012 end-page: 190 article-title: Mitochondrial dysfunction in human TDP‐43 transfected NSC34 cell lines and the protective effect of dimethoxy curcumin publication-title: Brain Res. Bull. – volume: 30 start-page: 277 year: 2011 end-page: 288 article-title: TDP‐43 regulates its mRNA levels through a negative feedback loop publication-title: EMBO J. – volume: 3 start-page: 1307 year: 2012 article-title: A role for calpain‐dependent cleavage of TDP‐43 in amyotrophic lateral sclerosis pathology publication-title: Nat. Commun. – volume: 339 start-page: 1335 year: 2013 end-page: 1338 article-title: The C9orf72 GGGGCC repeat is translated into aggregating dipeptide‐repeat proteins in FTLD/ALS publication-title: Science – volume: 22 start-page: 110 year: 2012 end-page: 116 article-title: Autophagy dysregulation in amyotrophic lateral sclerosis publication-title: Brain Pathol. – volume: 133 start-page: 923 year: 2017 end-page: 931 article-title: Cryptic exon incorporation occurs in Alzheimer's brain lacking TDP‐43 inclusion but exhibiting nuclear clearance of TDP‐43 publication-title: Acta Neuropathol. – volume: 130 start-page: 49 year: 2015 end-page: 61 article-title: Low molecular weight species of TDP‐43 generated by abnormal splicing form inclusions in amyotrophic lateral sclerosis and result in motor neuron death publication-title: Acta Neuropathol. – volume: 23 start-page: 1413 year: 2014 end-page: 1424 article-title: Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models publication-title: Hum. Mol. Genet. – volume: 6 start-page: 6183 year: 2015 article-title: The cleavage pattern of TDP‐43 determines its rate of clearance and cytotoxicity publication-title: Nat. Commun. – volume: 14 start-page: 459 year: 2011 end-page: 468 article-title: Long pre‐mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP‐43 publication-title: Nat. Neurosci. – volume: 114 start-page: 221 year: 2007 end-page: 229 article-title: Co‐morbidity of TDP‐43 proteinopathy in Lewy body related diseases publication-title: Acta Neuropathol. – volume: 580 start-page: 1339 year: 2006 end-page: 1344 article-title: TDP43 depletion rescues aberrant CFTR exon 9 skipping publication-title: FEBS Lett. – volume: 4 start-page: 74 year: 2016 end-page: 87 article-title: Reduced Tau protein expression is associated with frontotemporal degeneration with progranulin mutation publication-title: Acta Neuropathol Com – volume: 49 start-page: 165 year: 2001 end-page: 175 article-title: Loss of brain tau defines novel sporadic and familial tauopathies with frontotemporal dementia publication-title: Ann. Neurol. – volume: 90 start-page: 2034 year: 2012 end-page: 2042 article-title: p62/sequestosome 1 binds to TDP‐43 in brains with frontotemporal lobar degeneration with TDP‐43 inclusions publication-title: J. Neurosci. Res. – volume: 26 start-page: 4147 year: 2006 end-page: 4154 article-title: Overloading of stable and exclusion of unstable human superoxide dismutase‐1 variants in mitochondria of murine amyotrophic lateral sclerosis models publication-title: J. Neurosci. – volume: 9 start-page: e86513 year: 2014 article-title: Divergent phenotypes in mutant TDP‐43 transgenic mice highlight potential confounds in TDP‐43 transgenic modeling publication-title: PLoS ONE – volume: 113 start-page: 521 year: 2007 end-page: 533 article-title: Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA‐binding protein, TDP‐43 publication-title: Acta Neuropathol. – volume: 2 start-page: 50 year: 1999 end-page: 56 article-title: Slowing of axonal transport is a very early event in the toxicity of ALS‐linked SOD1 mutants to motor neurons publication-title: Nat. Neurosci. – volume: 111 start-page: 1051 year: 2009 end-page: 1061 article-title: TDP‐43 is recruited to stress granules in conditions of oxidative insult publication-title: J. Neurochem. – volume: 21 start-page: 3703 year: 2012 end-page: 3718 article-title: The ALS disease protein TDP‐43 is actively transported in motor neuron axons and regulates axon outgrowth publication-title: Hum. Mol. Genet. – volume: 9 start-page: 995 year: 2010 end-page: 1007 article-title: TDP‐43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia publication-title: Lancet Neurol. – volume: 105 start-page: 797 year: 2008 end-page: 806 article-title: TDP‐43, the signature protein of FTLD‐U, is a neuronal activity‐responsive factor publication-title: J. Neurochem. – volume: 7 start-page: 710 year: 2006 end-page: 723 article-title: Molecular biology of amyotrophic lateral sclerosis: insights from genetics publication-title: Nat. Rev. Neurosci. – volume: 285 start-page: 26304 year: 2010 end-page: 26314 article-title: Interaction with polyglutamine aggregates reveals a Q/N‐rich domain in TDP‐43 publication-title: J. Biol. Chem. – volume: 139 start-page: 3187 year: 2016 end-page: 3201 article-title: Exosome secretion is a key pathway for clearance of pathological TDP‐43 publication-title: Brain – volume: 25 start-page: 4473 year: 2016 end-page: 4483 article-title: Reduced stress granule formation and cell death in fibroblasts with the A382T mutation of TARDBP gene: evidence for loss of TDP‐43 nuclear function publication-title: Hum. Mol. Genet. – volume: 18 start-page: 290 year: 2008 end-page: 298 article-title: RNA recognition motifs: boring? Not quite publication-title: Curr. Opin. Struct. Biol. – volume: 101 start-page: 3504 year: 2004 end-page: 3509 article-title: A variable dinucleotide repeat in the CFTR gene contributes to phenotype diversity by forming RNA secondary structures that alter splicing publication-title: Proc. Natl Acad. Sci. USA – volume: 129 start-page: 350 year: 2014 end-page: 361 article-title: Parkin reverses TDP‐43‐induced cell death and failure of amino acid homeostasis publication-title: J. Neurochem. – volume: 13 start-page: 38 year: 2011 end-page: 50 article-title: Gains or losses: molecular mechanisms of TDP43‐mediated neurodegeneration publication-title: Nat. Rev. Neurosci. – volume: 67 start-page: 575 year: 2010 end-page: 587 article-title: Misfolded mutant SOD1 directly inhibits VDAC1 conductance in a mouse model of inherited ALS publication-title: Neuron – volume: 4 start-page: e1000193 year: 2008 article-title: Novel mutations in TARDBP (TDP‐43) in patients with familial amyotrophic lateral sclerosis publication-title: PLoS Genet. – volume: 4 start-page: a012286 year: 2012 article-title: P‐bodies and stress granules: possible roles in the control of translation and mRNA degradation publication-title: Cold Spring Harb. Perspect. Biol. – volume: 122 start-page: 375 year: 2011 end-page: 378 article-title: Spinocerebellar ataxia type 2 (SCA2) is associated with TDP‐43 pathology publication-title: Acta Neuropathol. – volume: 8 start-page: 28 year: 2013 article-title: Genetics of amyotrophic lateral sclerosis: an update publication-title: Mol. Neurodegener. – volume: 34 start-page: 6448 year: 2014 end-page: 6458 article-title: Astrocytic TDP‐43 pathology in Alexander disease publication-title: J. Neurosci. – volume: 20 start-page: 1400 year: 2011 end-page: 1410 article-title: TAR DNA‐binding protein 43 (TDP‐43) regulates stress granule dynamics via differential regulation of G3BP and TIA‐1 publication-title: Hum. Mol. Genet. – volume: 280 start-page: 23802 year: 2005 end-page: 23814 article-title: Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L Tau transgenic mice publication-title: J. Biol. Chem. – volume: 6 start-page: 73 year: 2011 article-title: Expression of mutant TDP‐43 induces neuronal dysfunction in transgenic mice publication-title: Mol. Neurodegener. – volume: 469 start-page: 112 year: 2010 end-page: 116 article-title: Degradation of TDP‐43 and its pathogenic form by autophagy and the ubiquitin‐proteasome system publication-title: Neurosci. Lett. – volume: 97 start-page: 54 year: 2012 end-page: 66 article-title: Mitochondrial dysfunction in ALS publication-title: Prog. Neurobiol. – volume: 79 start-page: 1186 year: 2008 end-page: 1189 article-title: TDP‐43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 349 start-page: 650 year: 2015 end-page: 655 article-title: TDP‐43 repression of nonconserved cryptic exons is compromised in ALS‐FTD publication-title: Science – volume: 30 start-page: 639 year: 2010 end-page: 649 article-title: Cytoplasmic Mislocalization of TDP‐43 Is Toxic to Neurons and Enhanced by a Mutation Associated with Familial Amyotrophic Lateral Sclerosis publication-title: J. Neurosci. – volume: 37 start-page: 45 year: 2016 end-page: 46 article-title: Lack of association between TDP‐43 pathology and tau mis‐splicing in Alzheimer's disease publication-title: Neurobiol. Aging – volume: 286 start-page: 19958 year: 2011 end-page: 19972 article-title: Neurotoxic 43‐kDa TAR DNA‐binding protein (TDP‐43) triggers mitochondrion‐dependent programmed cell death in yeast publication-title: J. Biol. Chem. – volume: 286 start-page: 13171 year: 2011 end-page: 13183 article-title: TDP‐43‐induced death is associated with altered regulation of BIM and Bcl‐xL and attenuated by caspase‐mediated TDP‐43 cleavage publication-title: J. Biol. Chem. – volume: 61 start-page: 435 year: 2007 end-page: 445 article-title: TDP‐43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease publication-title: Ann. Neurol. – volume: 287 start-page: 42984 year: 2012 end-page: 42994 article-title: Motor neuron‐specific disruption of proteasomes, but not autophagy, replicates amyotrophic lateral sclerosis publication-title: J. Biol. Chem. – volume: 111 start-page: 4309 year: 2014 end-page: 4314 article-title: Disease causing mutants of TDP‐43 nucleic acid binding domains are resistant to aggregation and have increased stability and half‐life publication-title: Proc. Natl Acad. Sci. USA – volume: 33 start-page: 6000 year: 2005 end-page: 6010 article-title: Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA‐II gene publication-title: Nucleic Acids Res. – volume: 110 start-page: 1082 year: 2009 end-page: 1094 article-title: Proteolytic processing of TAR DNA binding protein‐43 by caspases produces C‐terminal fragments with disease defining properties independent of progranulin publication-title: J. Neurochem. – volume: 58 start-page: 1615 year: 2002 end-page: 1621 article-title: The prevalence of frontotemporal dementia publication-title: Neurology – volume: 6 start-page: 25 year: 2017 end-page: 43 article-title: Abnormalities of mitochondrial dynamics in neurodegenerative diseases publication-title: Antioxidants (Basel) – volume: 13 start-page: 867 year: 2008 end-page: 878 article-title: Multiple roles of TDP‐43 in gene expression, splicing regulation, and human disease publication-title: Front Biosci. – volume: 284 start-page: 20329 year: 2009 end-page: 20339 article-title: TDP‐43 is intrinsically aggregation‐prone, and amyotrophic lateral sclerosis‐linked mutations accelerate aggregation and increase toxicity publication-title: J. Biol. Chem. – ident: e_1_2_9_178_1 doi: 10.1385/MN:31:1-3:205 – ident: e_1_2_9_33_1 doi: 10.1159/000273591 – ident: e_1_2_9_82_1 doi: 10.1093/brain/aww237 – ident: e_1_2_9_74_1 doi: 10.1074/jbc.M112.419945 – ident: e_1_2_9_132_1 doi: 10.1073/pnas.1211577110 – ident: e_1_2_9_176_1 doi: 10.1523/JNEUROSCI.3421-07.2007 – ident: e_1_2_9_40_1 doi: 10.1038/375061a0 – ident: e_1_2_9_73_1 doi: 10.1002/ana.21425 – ident: e_1_2_9_98_1 doi: 10.1016/j.brainresbull.2012.09.005 – ident: e_1_2_9_106_1 doi: 10.1007/s00401-008-0372-4 – ident: e_1_2_9_154_1 doi: 10.1007/s00401-011-0862-7 – ident: e_1_2_9_118_1 doi: 10.1126/science.1134108 – ident: e_1_2_9_68_1 doi: 10.3390/antiox6020025 – ident: e_1_2_9_11_1 doi: 10.1016/j.febslet.2006.01.052 – ident: e_1_2_9_177_1 doi: 10.1073/pnas.0900688106 – ident: e_1_2_9_46_1 doi: 10.1016/S0301-0082(99)00033-7 – ident: e_1_2_9_92_1 doi: 10.1126/science.1166066 – ident: e_1_2_9_107_1 doi: 10.1074/jbc.M203065200 – ident: e_1_2_9_10_1 doi: 10.1016/j.jmb.2005.02.038 – ident: e_1_2_9_127_1 doi: 10.1097/WAD.0b013e31820f8f50 – ident: e_1_2_9_76_1 doi: 10.1073/pnas.0400182101 – ident: e_1_2_9_80_1 doi: 10.1186/s12920-017-0274-1 – ident: e_1_2_9_149_1 doi: 10.1002/jnr.23081 – ident: e_1_2_9_85_1 doi: 10.1093/brain/aww224 – ident: e_1_2_9_146_1 doi: 10.1007/s00401-012-1005-5 – ident: e_1_2_9_38_1 doi: 10.1016/j.sbi.2008.04.002 – ident: e_1_2_9_167_1 doi: 10.1136/jnnp.2007.131334 – ident: e_1_2_9_157_1 doi: 10.1016/j.brainres.2009.09.105 – ident: e_1_2_9_158_1 doi: 10.1523/JNEUROSCI.0248-14.2014 – ident: e_1_2_9_173_1 doi: 10.1523/JNEUROSCI.1630-10.2010 – ident: e_1_2_9_64_1 doi: 10.1093/nar/gkr1082 – ident: e_1_2_9_20_1 doi: 10.1074/jbc.M110.194852 – ident: e_1_2_9_22_1 doi: 10.1002/ana.23937 – ident: e_1_2_9_123_1 doi: 10.3109/09540261.2013.776523 – ident: e_1_2_9_130_1 doi: 10.1186/s40478-016-0340-5 – ident: e_1_2_9_136_1 doi: 10.1371/journal.pgen.1000193 – ident: e_1_2_9_50_1 doi: 10.1007/s00401-009-0526-z – ident: e_1_2_9_122_1 doi: 10.1091/mbc.E06-12-1120 – ident: e_1_2_9_84_1 doi: 10.1038/s41598-017-06953-y – ident: e_1_2_9_112_1 doi: 10.1155/2015/647408 – ident: e_1_2_9_28_1 doi: 10.1093/emboj/20.7.1774 – ident: e_1_2_9_37_1 doi: 10.1016/j.bbadis.2006.04.002 – ident: e_1_2_9_164_1 doi: 10.1093/hmg/ddt319 – ident: e_1_2_9_169_1 doi: 10.1038/4553 – ident: e_1_2_9_168_1 doi: 10.1093/hmg/ddu211 – ident: e_1_2_9_26_1 doi: 10.1016/S0065-2660(09)66001-6 – ident: e_1_2_9_35_1 doi: 10.1111/j.1750-3639.2011.00546.x – ident: e_1_2_9_32_1 doi: 10.1002/jnr.10389 – ident: e_1_2_9_171_1 doi: 10.1038/ncomms15558 – ident: e_1_2_9_18_1 doi: 10.1007/s12031-011-9545-z – ident: e_1_2_9_144_1 doi: 10.1007/s00401-017-1701-2 – ident: e_1_2_9_180_1 doi: 10.1038/icb.2016.89 – ident: e_1_2_9_179_1 doi: 10.1002/1531-8249(20010201)49:2<165::AID-ANA36>3.0.CO;2-3 – ident: e_1_2_9_59_1 doi: 10.1111/j.1471-4159.2009.06211.x – ident: e_1_2_9_9_1 doi: 10.1073/pnas.1317317111 – ident: e_1_2_9_52_1 doi: 10.1101/cshperspect.a012286 – ident: e_1_2_9_113_1 doi: 10.1093/hmg/ddv491 – ident: e_1_2_9_6_1 doi: 10.1007/s00401-008-0480-1 – ident: e_1_2_9_21_1 doi: 10.1007/s00401-011-0932-x – ident: e_1_2_9_15_1 doi: 10.1038/nature22038 – ident: e_1_2_9_99_1 doi: 10.1007/s00401-007-0223-8 – ident: e_1_2_9_114_1 doi: 10.1007/s00401-008-0396-9 – ident: e_1_2_9_72_1 doi: 10.1523/JNEUROSCI.0996-12.2012 – ident: e_1_2_9_105_1 doi: 10.1093/hmg/ddt528 – ident: e_1_2_9_142_1 doi: 10.1126/science.1105681 – ident: e_1_2_9_95_1 doi: 10.1126/science.aab0983 – ident: e_1_2_9_139_1 doi: 10.1073/pnas.1301608110 – ident: e_1_2_9_140_1 doi: 10.1016/S0074-7742(08)60607-8 – ident: e_1_2_9_65_1 doi: 10.1016/S0925-4439(00)00028-4 – ident: e_1_2_9_97_1 doi: 10.1371/journal.pone.0013250 – ident: e_1_2_9_148_1 doi: 10.1093/oxfordjournals.hmg.a018919 – ident: e_1_2_9_135_1 doi: 10.1038/nature21695 – ident: e_1_2_9_155_1 doi: 10.1007/s11940-014-0319-0 – ident: e_1_2_9_62_1 doi: 10.1093/hmg/dds205 – volume: 25 start-page: 4473 year: 2016 ident: e_1_2_9_124_1 article-title: Reduced stress granule formation and cell death in fibroblasts with the A382T mutation of TARDBP gene: evidence for loss of TDP‐43 nuclear function publication-title: Hum. Mol. Genet. – ident: e_1_2_9_159_1 doi: 10.1111/j.1471-4159.2007.05190.x – ident: e_1_2_9_172_1 doi: 10.1007/s00401-015-1412-5 – volume: 25 start-page: 5083 year: 2016 ident: e_1_2_9_147_1 article-title: Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models publication-title: Hum. Mol. Genet. – ident: e_1_2_9_78_1 doi: 10.1016/j.brainres.2007.09.048 – ident: e_1_2_9_116_1 doi: 10.1007/s00401-007-0261-2 – ident: e_1_2_9_101_1 doi: 10.1016/S1474-4422(10)70195-2 – ident: e_1_2_9_175_1 doi: 10.1038/ncomms2303 – ident: e_1_2_9_43_1 doi: 10.1016/j.bbagrm.2015.10.015 – ident: e_1_2_9_47_1 doi: 10.1371/journal.pone.0086513 – ident: e_1_2_9_36_1 doi: 10.1186/1750-1326-8-28 – ident: e_1_2_9_63_1 doi: 10.1083/jcb.201504057 – ident: e_1_2_9_83_1 doi: 10.1016/j.neuron.2010.07.019 – ident: e_1_2_9_96_1 doi: 10.1016/j.neuron.2004.06.016 – ident: e_1_2_9_163_1 doi: 10.4161/auto.22526 – ident: e_1_2_9_44_1 doi: 10.1016/j.str.2016.07.007 – ident: e_1_2_9_131_1 doi: 10.1038/nn.2779 – ident: e_1_2_9_81_1 doi: 10.1074/jbc.M809462200 – ident: e_1_2_9_19_1 doi: 10.1111/j.1471-4159.2010.07098.x – ident: e_1_2_9_108_1 doi: 10.1093/hmg/ddr021 – ident: e_1_2_9_7_1 doi: 10.1073/pnas.1222809110 – ident: e_1_2_9_25_1 doi: 10.2741/2727 – ident: e_1_2_9_4_1 doi: 10.1002/ana.21154 – ident: e_1_2_9_55_1 doi: 10.1016/j.brainres.2012.02.032 – ident: e_1_2_9_143_1 doi: 10.1074/jbc.M113.515940 – ident: e_1_2_9_42_1 doi: 10.1074/jbc.M111.333450 – ident: e_1_2_9_121_1 doi: 10.1016/j.celrep.2013.06.007 – ident: e_1_2_9_109_1 doi: 10.1097/NEN.0000000000000102 – ident: e_1_2_9_115_1 doi: 10.1126/science.1232927 – ident: e_1_2_9_87_1 doi: 10.1074/jbc.M109.010264 – ident: e_1_2_9_162_1 doi: 10.1073/pnas.1206362109 – ident: e_1_2_9_16_1 doi: 10.1074/jbc.M111.328757 – ident: e_1_2_9_75_1 doi: 10.1111/jnc.12630 – ident: e_1_2_9_79_1 doi: 10.1186/s40478-017-0493-x – ident: e_1_2_9_150_1 doi: 10.1074/jbc.M112.417600 – ident: e_1_2_9_39_1 doi: 10.18632/oncotarget.13805 – ident: e_1_2_9_54_1 doi: 10.1073/pnas.0602046103 – ident: e_1_2_9_57_1 doi: 10.18632/oncotarget.4680 – ident: e_1_2_9_14_1 doi: 10.1038/nchembio.1563 – ident: e_1_2_9_60_1 doi: 10.1371/journal.pone.0022850 – ident: e_1_2_9_104_1 doi: 10.1016/j.neuron.2014.10.019 – ident: e_1_2_9_94_1 doi: 10.1038/ncomms7183 – ident: e_1_2_9_34_1 doi: 10.1080/15216540601047767 – ident: e_1_2_9_45_1 doi: 10.1016/j.pneurobio.2011.06.003 – ident: e_1_2_9_89_1 doi: 10.1007/s00401-016-1537-1 – ident: e_1_2_9_133_1 doi: 10.1212/WNL.58.11.1615 – ident: e_1_2_9_141_1 doi: 10.1126/science.1154584 – ident: e_1_2_9_129_1 doi: 10.1038/nrn1971 – ident: e_1_2_9_71_1 doi: 10.1093/nar/gkx175 – ident: e_1_2_9_61_1 doi: 10.1038/nature09320 – ident: e_1_2_9_156_1 doi: 10.1126/science.1165942 – ident: e_1_2_9_153_1 doi: 10.1111/jnc.12014 – ident: e_1_2_9_166_1 doi: 10.1016/j.ymthe.2016.10.013 – ident: e_1_2_9_152_1 doi: 10.7150/ijbs.7.234 – ident: e_1_2_9_88_1 doi: 10.1007/s00401-013-1211-9 – ident: e_1_2_9_77_1 doi: 10.1186/s13024-017-0180-1 – ident: e_1_2_9_100_1 doi: 10.1002/ana.21147 – ident: e_1_2_9_67_1 doi: 10.1016/j.biopsych.2015.03.028 – ident: e_1_2_9_174_1 doi: 10.1186/1750-1326-6-73 – ident: e_1_2_9_51_1 doi: 10.1093/nar/gkv814 – ident: e_1_2_9_126_1 doi: 10.1186/2047-9158-2-8 – ident: e_1_2_9_165_1 doi: 10.1038/nm.4130 – ident: e_1_2_9_23_1 doi: 10.1007/s00401-014-1299-6 – ident: e_1_2_9_151_1 doi: 10.1093/hmg/dds485 – ident: e_1_2_9_119_1 doi: 10.1016/j.neurobiolaging.2015.09.022 – ident: e_1_2_9_120_1 doi: 10.1074/jbc.M112.398099 – ident: e_1_2_9_160_1 doi: 10.1523/JNEUROSCI.1357-09.2009 – ident: e_1_2_9_41_1 doi: 10.1111/j.1471-4159.2009.06383.x – ident: e_1_2_9_90_1 doi: 10.1038/ng.132 – ident: e_1_2_9_2_1 doi: 10.1016/S0304-3940(01)02314-X – ident: e_1_2_9_24_1 doi: 10.1074/jbc.M104236200 – volume: 95 start-page: e809 issue: 808 year: 2017 ident: e_1_2_9_102_1 article-title: TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics publication-title: Neuron – ident: e_1_2_9_138_1 doi: 10.1371/journal.pone.0043120 – ident: e_1_2_9_69_1 doi: 10.1111/j.1365-2990.2010.01060.x – ident: e_1_2_9_66_1 doi: 10.1074/jbc.M110.125039 – ident: e_1_2_9_27_1 doi: 10.1016/j.tibs.2012.03.003 – ident: e_1_2_9_5_1 doi: 10.1016/j.bbrc.2006.10.093 – ident: e_1_2_9_137_1 doi: 10.1097/NEN.0b013e31818e8951 – ident: e_1_2_9_145_1 doi: 10.1074/jbc.M110.197483 – ident: e_1_2_9_31_1 doi: 10.2353/ajpath.2007.070182 – ident: e_1_2_9_111_1 doi: 10.1016/S1474-4422(13)70061-9 – ident: e_1_2_9_128_1 doi: 10.1186/s40478-016-0345-0 – ident: e_1_2_9_13_1 doi: 10.1523/JNEUROSCI.4988-09.2010 – ident: e_1_2_9_30_1 doi: 10.1074/jbc.M109.031278 – ident: e_1_2_9_91_1 doi: 10.1038/ng.2853 – ident: e_1_2_9_53_1 doi: 10.1016/j.neuron.2011.09.011 – ident: e_1_2_9_86_1 doi: 10.1038/s41598-017-06263-3 – ident: e_1_2_9_125_1 doi: 10.1128/jvi.69.6.3584-3596.1995 – ident: e_1_2_9_17_1 doi: 10.1523/JNEUROSCI.5461-05.2006 – ident: e_1_2_9_12_1 doi: 10.1038/emboj.2010.310 – ident: e_1_2_9_134_1 doi: 10.1007/s00401-012-1055-8 – ident: e_1_2_9_161_1 doi: 10.1016/j.neulet.2009.11.055 – ident: e_1_2_9_56_1 doi: 10.1007/s12031-011-9589-0 – ident: e_1_2_9_29_1 doi: 10.1074/jbc.M505557200 – ident: e_1_2_9_110_1 doi: 10.1093/nar/gki897 – ident: e_1_2_9_8_1 doi: 10.1186/1750-1326-7-54 – ident: e_1_2_9_170_1 doi: 10.1186/1750-1326-7-56 – ident: e_1_2_9_49_1 doi: 10.1007/s00401-006-0189-y – ident: e_1_2_9_3_1 doi: 10.1016/j.neuron.2013.12.018 – ident: e_1_2_9_58_1 doi: 10.1016/j.neures.2009.10.004 – ident: e_1_2_9_48_1 doi: 10.1074/jbc.M500356200 – ident: e_1_2_9_93_1 doi: 10.1038/nrn3121 – ident: e_1_2_9_103_1 doi: 10.1093/brain/awv308 – ident: e_1_2_9_70_1 doi: 10.1074/jbc.M117.783498 – ident: e_1_2_9_117_1 doi: 10.1093/brain/awr053 |
SSID | ssj0016461 |
Score | 2.6023488 |
SecondaryResourceType | review_article |
Snippet | Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7 |
SubjectTerms | Alzheimer's disease Amyotrophic lateral sclerosis Degeneration Deoxyribonucleic acid DNA Frontotemporal dementia frontotemporal lobar degeneration Glial cells Huntington's disease Huntingtons disease In vivo methods and tests Medical treatment Movement disorders Mutation Neurodegeneration Neurodegenerative diseases Neurological diseases Neuronal-glial interactions Neurons Neurotoxicity Parkinson's disease Phosphorylation Proteins Structure-function relationships TDP‐43 Ubiquitination |
Title | Pathomechanisms of TDP‐43 in neurodegeneration |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjnc.14327 https://www.ncbi.nlm.nih.gov/pubmed/29486049 https://www.proquest.com/docview/2072032932 https://www.proquest.com/docview/2009213607 https://pubmed.ncbi.nlm.nih.gov/PMC6110993 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC7Ei152fe3u-CLKInuJJJ1XN55kVERQZBnBgxCSTtfusE5GnJmDnvwJ_kZ_iVWdB44PkL2FpJL0o6rr6-6qrwF-CoxyaVTmJkGi3dDI0M2zDN1AJBGqIpRCcYLz6Vl8fBGeXEaXM7DX5MJU_BDtghtbhh2v2cCzfPTSyMl-yNkLziTnWC0GRL9b6iimzfJbpnDSzJpVyEbxNG9O-6I3APNtnORL_God0NFXuGqKXsWd_NudjPNdff-K1fE_67YAX2pg6uxXmrQIM6ZcguX9kiblgztnx7GhonYNfgnmus0xccvgnROGHA4MZxD3R4ORM0Snd3D-9PAYBk6_dCxhZmH-WHpr1oIV6B0d9rrHbn0Mg6sJTSQuxtpDsvtYBwKTsMhkLj2mKTN-gNS7SY5GG_QCjX4hZKEVU_JEWAgVGfKR32C2HJbmBzi-wgRjFIXMMaSRRaoIDSpJt_w4C-IO_Gr6I9U1RTmflHGdtlOVUqe2YTqw3YreVLwc7wmtN52a1qY5SoXHO8-EckQHttrH1Gi8U5KVZjhhGU8JUiqPPvG90oH2L0LxuV2h6kAypR2tABN2Tz8p-38tcXfM9K4qoGrazv-44OnJWdderH5edA3mCczJKpR4HWbHtxOzQYBpnG9ay9hkpxU9A7JSErQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VcigXflooCwUCQohLqsROYlviUm2pltKuKrRIvaAocTywgs0idvcAJx6BZ-RJmHF-1KUgIW5RMklsz4z92R5_A_BUYFpqZ4pQSWXDxOkkLIsCQylUiqZKtDB8wPl0nI3eJsfn6fkGvOjOwjT8EP2CG3uG76_ZwXlB-qKXkwPRaC_UFbjKGb05f8Hhm548iomz4p4rnGyz5RXycTzdq-uj0SWIeTlS8iKC9UPQ0Q141xW-iTz5uL9alvv222-8jv9bu5twvcWmwUFjTLdgw9XbsHNQ07x89jV4FvhoUb8Mvw1bwy5T3A5EZwQj5zPHh4ini9kimGMwOTz7-f1HIoNpHXjOzMq99wzXbAi3YXL0cjIchW0mhtASoFAhZjZCcv3MSoEqqQpd6oiZylwskRSsSnTWYSQtxpXQlTXMypNiJUzqaJi8A5v1vHZ3IYgNKsxQVLrEhDoXbVJ0aDTdirNCZgN43ikkty1LOSfL-JT3s5Xa5r5hBvCkF_3cUHP8SWiv02reeuciFxFvPhPQEQN43D-mRuPNkqJ28xXLREbEMovoE7uNEfR_EYZTdyVmAGrNPHoB5uxef1JPP3ju7owZXo2kanrt_73g-fF46C_u_bvoI9gaTU5P8pNX49f34RphO91EFu_B5vLLyj0g_LQsH3o3-QVHzRXo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXHi2PhQIBIcQlVWI7fohTtWVVCqxWaJF6QIoSxwMr2GzF7h7gxE_gN_JLGDsPdSlIiFuUTBLbM2N_tsffADxhmJXamSJWXNlYOC3isigw5kxlaCqhmfEHnN-M5dE7cXySnWzB8-4sTMMP0S-4ec8I_bV38NMKzzo5-Q8N9kxdgItCkrN4RPS2547yvFlpTxVOptnSCoUwnu7VzcHoHMI8Hyh5FsCGEWh0Dd53ZW8CTz7tr1flvv32G63jf1buOlxtkWl00JjSDdhy9Q7sHtQ0K59_jZ5GIVY0LMLvwOVhlyduF5IJgcjF3PkjxLPlfBktMJoeTn5-_yF4NKujwJhZuQ-B39qbwU2Yjl5Mh0dxm4chtgQnVIzSJkiOLy1nqERV6FInnqfMpRxJvapEZx0m3GJaMV1Z4zl5MqyYyRwNkrdgu17U7g5EqUGFElmlSxTUtWiToUOj6VYqCy4H8KzTR25bjnKfKuNz3s9VapuHhhnA4170tCHm-JPQXqfUvPXNZc4Sv_VMMIcN4FH_mBrNb5UUtVusvUxiWMplQp-43dhA_xdmfOIuYQagNqyjF_CM3ZtP6tnHwNwtPb-r4VTNoPy_Fzw_Hg_Dxd1_F30IlyaHo_z1y_Gre3CFgJ1uwor3YHv1Ze3uE3halQ-Ck_wCGOMUoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathomechanisms+of+TDP%E2%80%9043+in+neurodegeneration&rft.jtitle=Journal+of+neurochemistry&rft.au=Gao%2C+Ju&rft.au=Wang%2C+Luwen&rft.au=Huntley%2C+Mikayla+L&rft.au=Perry%2C+George&rft.date=2018-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-3042&rft.eissn=1471-4159&rft.volume=146&rft.issue=1&rft.spage=7&rft.epage=20&rft_id=info:doi/10.1111%2Fjnc.14327&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon |