Spontaneous activity in the visual cortex is organized by visual streams
Large‐scale functional networks have been extensively studied using resting state functional magnetic resonance imaging (fMRI). However, the pattern, organization, and function of fine‐scale network activity remain largely unknown. Here, we characterized the spontaneously emerging visual cortical ac...
Saved in:
Published in | Human brain mapping Vol. 38; no. 9; pp. 4613 - 4630 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.09.2017
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1065-9471 1097-0193 1097-0193 |
DOI | 10.1002/hbm.23687 |
Cover
Loading…
Abstract | Large‐scale functional networks have been extensively studied using resting state functional magnetic resonance imaging (fMRI). However, the pattern, organization, and function of fine‐scale network activity remain largely unknown. Here, we characterized the spontaneously emerging visual cortical activity by applying independent component (IC) analysis to resting state fMRI signals exclusively within the visual cortex. In this subsystem scale, we observed about 50 spatially ICs that were reproducible within and across subjects, and analyzed their spatial patterns and temporal relationships to reveal the intrinsic parcellation and organization of the visual cortex. The resulting visual cortical parcels were aligned with the steepest gradient of cortical myelination, and were organized into functional modules segregated along the dorsal/ventral pathways and foveal/peripheral early visual areas. Cortical distance could partly explain intra‐hemispherical functional connectivity, but not interhemispherical connectivity; after discounting the effect of anatomical affinity, the fine‐scale functional connectivity still preserved a similar visual‐stream‐specific modular organization. Moreover, cortical retinotopy, folding, and cytoarchitecture impose limited constraints to the organization of resting state activity. Given these findings, we conclude that spontaneous activity patterns in the visual cortex are primarily organized by visual streams, likely reflecting feedback network interactions. Hum Brain Mapp 38:4613–4630, 2017. © 2017 Wiley Periodicals, Inc. |
---|---|
AbstractList | Large-scale functional networks have been extensively studied using resting state functional magnetic resonance imaging (fMRI). However, the pattern, organization, and function of fine-scale network activity remain largely unknown. Here, we characterized the spontaneously emerging visual cortical activity by applying independent component (IC) analysis to resting state fMRI signals exclusively within the visual cortex. In this subsystem scale, we observed about 50 spatially ICs that were reproducible within and across subjects, and analyzed their spatial patterns and temporal relationships to reveal the intrinsic parcellation and organization of the visual cortex. The resulting visual cortical parcels were aligned with the steepest gradient of cortical myelination, and were organized into functional modules segregated along the dorsal/ventral pathways and foveal/peripheral early visual areas. Cortical distance could partly explain intra-hemispherical functional connectivity, but not interhemispherical connectivity; after discounting the effect of anatomical affinity, the fine-scale functional connectivity still preserved a similar visual-stream-specific modular organization. Moreover, cortical retinotopy, folding, and cytoarchitecture impose limited constraints to the organization of resting state activity. Given these findings, we conclude that spontaneous activity patterns in the visual cortex are primarily organized by visual streams, likely reflecting feedback network interactions. Hum Brain Mapp 38:4613-4630, 2017. © 2017 Wiley Periodicals, Inc. Large-scale functional networks have been extensively studied using resting state functional magnetic resonance imaging (fMRI). However, the pattern, organization, and function of fine-scale network activity remain largely unknown. Here, we characterized the spontaneously emerging visual cortical activity by applying independent component (IC) analysis to resting state fMRI signals exclusively within the visual cortex. In this subsystem scale, we observed about 50 spatially ICs that were reproducible within and across subjects, and analyzed their spatial patterns and temporal relationships to reveal the intrinsic parcellation and organization of the visual cortex. The resulting visual cortical parcels were aligned with the steepest gradient of cortical myelination, and were organized into functional modules segregated along the dorsal/ventral pathways and foveal/peripheral early visual areas. Cortical distance could partly explain intra-hemispherical functional connectivity, but not interhemispherical connectivity; after discounting the effect of anatomical affinity, the fine-scale functional connectivity still preserved a similar visual-stream-specific modular organization. Moreover, cortical retinotopy, folding, and cytoarchitecture impose limited constraints to the organization of resting state activity. Given these findings, we conclude that spontaneous activity patterns in the visual cortex are primarily organized by visual streams, likely reflecting feedback network interactions. Hum Brain Mapp 38:4613-4630, 2017. © 2017 Wiley Periodicals, Inc.Large-scale functional networks have been extensively studied using resting state functional magnetic resonance imaging (fMRI). However, the pattern, organization, and function of fine-scale network activity remain largely unknown. Here, we characterized the spontaneously emerging visual cortical activity by applying independent component (IC) analysis to resting state fMRI signals exclusively within the visual cortex. In this subsystem scale, we observed about 50 spatially ICs that were reproducible within and across subjects, and analyzed their spatial patterns and temporal relationships to reveal the intrinsic parcellation and organization of the visual cortex. The resulting visual cortical parcels were aligned with the steepest gradient of cortical myelination, and were organized into functional modules segregated along the dorsal/ventral pathways and foveal/peripheral early visual areas. Cortical distance could partly explain intra-hemispherical functional connectivity, but not interhemispherical connectivity; after discounting the effect of anatomical affinity, the fine-scale functional connectivity still preserved a similar visual-stream-specific modular organization. Moreover, cortical retinotopy, folding, and cytoarchitecture impose limited constraints to the organization of resting state activity. Given these findings, we conclude that spontaneous activity patterns in the visual cortex are primarily organized by visual streams, likely reflecting feedback network interactions. Hum Brain Mapp 38:4613-4630, 2017. © 2017 Wiley Periodicals, Inc. Large‐scale functional networks have been extensively studied using resting state functional magnetic resonance imaging (fMRI). However, the pattern, organization, and function of fine‐scale network activity remain largely unknown. Here, we characterized the spontaneously emerging visual cortical activity by applying independent component (IC) analysis to resting state fMRI signals exclusively within the visual cortex. In this subsystem scale, we observed about 50 spatially ICs that were reproducible within and across subjects, and analyzed their spatial patterns and temporal relationships to reveal the intrinsic parcellation and organization of the visual cortex. The resulting visual cortical parcels were aligned with the steepest gradient of cortical myelination, and were organized into functional modules segregated along the dorsal/ventral pathways and foveal/peripheral early visual areas. Cortical distance could partly explain intra‐hemispherical functional connectivity, but not interhemispherical connectivity; after discounting the effect of anatomical affinity, the fine‐scale functional connectivity still preserved a similar visual‐stream‐specific modular organization. Moreover, cortical retinotopy, folding, and cytoarchitecture impose limited constraints to the organization of resting state activity. Given these findings, we conclude that spontaneous activity patterns in the visual cortex are primarily organized by visual streams, likely reflecting feedback network interactions. Hum Brain Mapp 38:4613–4630, 2017 . © 2017 Wiley Periodicals, Inc. |
Author | Liu, Zhongming Lu, Kun‐Han Jeong, Jun Young Wen, Haiguang |
AuthorAffiliation | 1 School of Electrical and Computer Engineering Purdue University West Lafayette Indiana 2 Purdue Institute for Integrative Neuroscience, Purdue University West Lafayette Indiana 3 Weldon School of Biomedical Engineering Purdue University West Lafayette Indiana |
AuthorAffiliation_xml | – name: 1 School of Electrical and Computer Engineering Purdue University West Lafayette Indiana – name: 2 Purdue Institute for Integrative Neuroscience, Purdue University West Lafayette Indiana – name: 3 Weldon School of Biomedical Engineering Purdue University West Lafayette Indiana |
Author_xml | – sequence: 1 givenname: Kun‐Han surname: Lu fullname: Lu, Kun‐Han organization: Purdue Institute for Integrative Neuroscience, Purdue University – sequence: 2 givenname: Jun Young surname: Jeong fullname: Jeong, Jun Young organization: Purdue University – sequence: 3 givenname: Haiguang surname: Wen fullname: Wen, Haiguang organization: Purdue Institute for Integrative Neuroscience, Purdue University – sequence: 4 givenname: Zhongming orcidid: 0000-0002-8773-4204 surname: Liu fullname: Liu, Zhongming email: zmliu@purdue.edu organization: Purdue University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28608643$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtvEzEUhS3Uij5gwR9AI7GBRVq_HxukUhVSqYgFsLY8Hk_jasYOtieQ_nockiBalZUt3e8cH99zAg5CDA6AVwieIQjx-aIdzzDhUjwDxwgqMYNIkYPNnbOZogIdgZOc7yBEiEH0HBxhyaHklByD-ddlDMUEF6fcGFv8ypd140NTFq5Z-TyZobExFfer8bmJ6dYEf--6pl3vp7kkZ8b8Ahz2Zsju5e48Bd8_Xn27nM9uvny6vry4mVm2SWZZr2QrJFYd7JiVorXCCGKJ4S22hioiWScdbjkmpMe2ZxT1ghteZZiynpyC91vf5dSOrrMulGQGvUx-NGmto_H64ST4hb6NK80Y5YrRavB2Z5Dij8nlokefrRuG7RI0UlDVt6ngFX3zCL2LUwr1e5XCnFLGmKzU638T_Y2yX3IFzreATTHn5HptfTHFx01AP2gE9aZGXWvUf2qsinePFHvTp9id-08_uPX_QT3_8Hmr-A2n5ax- |
CitedBy_id | crossref_primary_10_1177_0284185119864843 crossref_primary_10_7554_eLife_92119 crossref_primary_10_1016_j_neuroimage_2019_116257 crossref_primary_10_1016_j_brainres_2020_146874 crossref_primary_10_1097_WNR_0000000000001620 crossref_primary_10_1097_WNR_0000000000001200 crossref_primary_10_7554_eLife_92119_4 crossref_primary_10_1007_s00429_021_02330_8 |
Cites_doi | 10.1146/annurev.psych.57.102904.190143 10.1006/nimg.1999.0516 10.1109/TMI.2003.822821 10.1038/ncomms9885 10.1016/S0042-6989(98)00319-8 10.1016/j.neuron.2013.04.023 10.1113/jphysiol.1962.sp006837 10.1016/j.bandc.2012.01.001 10.1038/nn.4244 10.1038/nn.4135 10.1162/neco.1995.7.6.1129 10.1007/s00429-014-0961-z 10.1016/j.neuroimage.2012.02.018 10.1016/j.neuroimage.2013.05.041 10.1073/pnas.1513773113 10.1093/cercor/1.1.1 10.1073/pnas.1302581110 10.1073/pnas.0601417103 10.1038/nrn4023 10.1073/pnas.0811168106 10.1038/343068a0 10.1089/brain.2014.0331 10.7554/eLife.03952 10.1038/21371 10.1177/1073858406293182 10.1016/j.neuroimage.2013.05.079 10.1038/nature03252 10.1002/mrm.20712 10.1016/j.neuroimage.2004.12.034 10.1073/pnas.0604187103 10.1126/science.aad8127 10.1093/brain/awv083 10.1016/j.neuroimage.2013.04.127 10.1371/journal.pone.0048847 10.1016/j.neuron.2014.05.014 10.1016/j.neuron.2009.02.024 10.1093/cercor/7.2.181 10.1002/cne.902260408 10.1016/j.neuroimage.2013.09.060 10.1038/nature02078 10.1016/j.neuroimage.2009.10.003 10.1016/j.neuroimage.2011.02.077 10.1093/cercor/bhv175 10.1073/pnas.95.3.818 10.1523/JNEUROSCI.5023-14.2015 10.1523/JNEUROSCI.4715-14.2015 10.3389/fnins.2014.00339 10.1038/4580 10.1016/S0042-6989(96)00209-X 10.1093/cercor/bhs270 10.1016/j.neuroimage.2013.03.060 10.1016/j.cub.2012.09.014 10.1146/annurev.ne.18.030195.001205 10.1152/physrev.1995.75.1.107 10.1016/j.neuroimage.2005.11.018 10.1038/nrn2201 10.1016/j.neuroimage.2013.05.081 10.1523/JNEUROSCI.2180-11.2011 10.1016/j.neuroimage.2012.07.046 10.1088/1742-5468/2008/10/P10008 10.1016/j.tics.2013.09.016 10.1152/jn.00338.2011 10.1073/pnas.0135058100 10.1016/j.neuroimage.2014.06.042 10.1016/0166-2236(92)90344-8 10.1152/jn.00783.2009 10.1093/cercor/bhr291 10.1007/s10548-013-0290-1 10.1038/nature18933 10.1038/nrn3476 10.1002/mrm.1910340409 10.1093/cercor/bhm225 10.1038/nrn2619 10.1523/JNEUROSCI.5587-06.2007 10.1016/j.neuroimage.2008.10.057 10.1016/j.neuron.2005.04.026 10.1016/j.neuroimage.2014.07.019 10.1152/jn.00895.2010 10.1073/pnas.0905267106 10.1016/j.neuron.2007.10.012 10.1038/nature09178 10.1016/j.neuroimage.2010.06.010 10.1073/pnas.0701519104 10.1111/ejn.12473 10.1002/hbm.20737 10.1073/pnas.1608587113 10.1016/0959-4388(94)90066-3 10.1016/j.neuroimage.2013.02.073 10.1523/JNEUROSCI.0363-13.2013 10.1523/JNEUROSCI.5487-07.2008 10.1126/science.1252304 |
ContentType | Journal Article |
Copyright | 2017 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2017 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.23687 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Lu et al |
EISSN | 1097-0193 |
EndPage | 4630 |
ExternalDocumentID | PMC5546954 28608643 10_1002_hbm_23687 HBM23687 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Purdue University – fundername: NIH funderid: R01MH104402 – fundername: NIMH NIH HHS grantid: R01 MH104402 – fundername: ; – fundername: ; grantid: R01MH104402 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c5097-c5f98b7829d0d5c87bc7a73c3a6b2ca49385d8e2b6233f2cf541f76a6f98245f3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 13:58:28 EDT 2025 Fri Sep 05 10:28:57 EDT 2025 Sat Jul 26 02:24:43 EDT 2025 Mon Jul 21 05:51:32 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Tue Jul 01 01:10:47 EDT 2025 Wed Jan 22 16:40:15 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | independent component analysis fine-scale networks visual streams functional parcellation |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5097-c5f98b7829d0d5c87bc7a73c3a6b2ca49385d8e2b6233f2cf541f76a6f98245f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8773-4204 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5546954 |
PMID | 28608643 |
PQID | 1926445558 |
PQPubID | 996345 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5546954 proquest_miscellaneous_1909233476 proquest_journals_1926445558 pubmed_primary_28608643 crossref_citationtrail_10_1002_hbm_23687 crossref_primary_10_1002_hbm_23687 wiley_primary_10_1002_hbm_23687_HBM23687 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2017 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: September 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Antonio – name: Hoboken |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2017 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2015; 35 2009; 45 1995; 75 2007; 104 2010; 53 2013; 26 2006; 30 2010; 466 2010; 103 1995; 34 2004; 23 2015; 220 1962; 160 2011; 56 1992; 15 1990; 343 2008; 2008 1997; 7 2005; 25 2013; 14 2009; 10 2013; 17 2015; 138 2000; 11 2008; 28 2007; 8 2016; 113 2016; 352 2013; 110 2014; 8 2012; 24 1998; 95 2012; 22 2010; 4 2014; 99 2012; 63 2007; 27 1991; 1 2015; 6 2009; 62 2015; 16 2015; 4 2015; 18 2016; 19 2006; 12 2017; 27 2008; 18 2012a; 22 2005; 433 1984; 226 2011; 31 1999; 2 1995; 18 2014; 84 2012; 79 2014; 83 2007; 56 2007; 58 2005; 46 2012b; 62 1995; 7 2011; 105 2014; 93 Pt 2 2016; 6 2009; 30 2003; 425 2011; 106 2013; 33 2016; 536 2013; 78 1999; 39 1997; 37 2013; 75 2013; 80 2013; 82 2005; 54 1999; 399 2014; 39 2012; 7 2014; 102 Pt 2 2016; 26 2003; 100 2010; 52 1994; 4 2006; 103 2014; 344 2009; 106 Tootell (10.1002/hbm.23687-BIB0081|hbm23687-cit-0081) 1998; 95 Gilbert (10.1002/hbm.23687-BIB0040|hbm23687-cit-0040) 2013; 14 Glasser (10.1002/hbm.23687-BIB0043|hbm23687-cit-0043) 2014; 93 Pt 2 Azzopardi (10.1002/hbm.23687-BIB0005|hbm23687-cit-0005) 1999; 39 Baldassano (10.1002/hbm.23687-BIB0006|hbm23687-cit-0006) 2012; 63 Yamins (10.1002/hbm.23687-BIB0091|hbm23687-cit-0091) 2016; 19 Dawson (10.1002/hbm.23687-BIB0023|hbm23687-cit-0023) 2016; 6 Finn (10.1002/hbm.23687-BIB0033|hbm23687-cit-0033) 2015; 18 Goodale (10.1002/hbm.23687-BIB0045|hbm23687-cit-0045) 1992; 15 Kenet (10.1002/hbm.23687-BIB0058|hbm23687-cit-0058) 2003; 425 Fox (10.1002/hbm.23687-BIB0035|hbm23687-cit-0035) 2010; 4 Amunts (10.1002/hbm.23687-BIB0002|hbm23687-cit-0002) 2000; 11 Benson (10.1002/hbm.23687-BIB0012|hbm23687-cit-0012) 2012; 22 Gotts (10.1002/hbm.23687-BIB0046|hbm23687-cit-0046) 2013; 110 Tavor (10.1002/hbm.23687-BIB0080|hbm23687-cit-0080) 2016; 352 Doucet (10.1002/hbm.23687-BIB0028|hbm23687-cit-0028) 2011; 105 Guclu (10.1002/hbm.23687-BIB0049|hbm23687-cit-0049) 2015; 35 Markov (10.1002/hbm.23687-BIB0061|hbm23687-cit-0061) 2012; 24 Damoiseaux (10.1002/hbm.23687-BIB0021|hbm23687-cit-0021) 2006; 103 Butt (10.1002/hbm.23687-BIB0017|hbm23687-cit-0017) 2013; 33 Wandell (10.1002/hbm.23687-BIB0088|hbm23687-cit-0088) 2007; 56 Yoshimura (10.1002/hbm.23687-BIB0093|hbm23687-cit-0093) 2005; 433 Fox (10.1002/hbm.23687-BIB0037|hbm23687-cit-0037) 2006; 103 Engel (10.1002/hbm.23687-BIB0030|hbm23687-cit-0030) 1997; 7 Arcaro (10.1002/hbm.23687-BIB0004|hbm23687-cit-0004) 2015; 4 Fischl (10.1002/hbm.23687-BIB0034|hbm23687-cit-0034) 2008; 18 Glasser (10.1002/hbm.23687-BIB0044|hbm23687-cit-0044) 2016; 536 Salin (10.1002/hbm.23687-BIB0073|hbm23687-cit-0073) 1995; 75 Fox (10.1002/hbm.23687-BIB0036|hbm23687-cit-0036) 2007; 8 Bock (10.1002/hbm.23687-BIB0015|hbm23687-cit-0015) 2015; 35 Rubinov (10.1002/hbm.23687-BIB0072|hbm23687-cit-0072) 2010; 52 Baseler (10.1002/hbm.23687-BIB0008|hbm23687-cit-0008) 1997; 37 Essen (10.1002/hbm.23687-BIB0085|hbm23687-cit-0085) 2012a; 22 Poldrack (10.1002/hbm.23687-BIB0067|hbm23687-cit-0067) 2015; 6 Dijk (10.1002/hbm.23687-BIB0084|hbm23687-cit-0084) 2010; 103 Connolly (10.1002/hbm.23687-BIB0020|hbm23687-cit-0020) 1984; 226 Shen (10.1002/hbm.23687-BIB0076|hbm23687-cit-0076) 2013; 82 Hutchison (10.1002/hbm.23687-BIB0056|hbm23687-cit-0056) 2013; 80 Lewis (10.1002/hbm.23687-BIB0059|hbm23687-cit-0059) 2016; 113 Smith (10.1002/hbm.23687-BIB0078|hbm23687-cit-0078) 2013; 17 Raemaekers (10.1002/hbm.23687-BIB0068|hbm23687-cit-0068) 2014; 84 Gravel (10.1002/hbm.23687-BIB0047|hbm23687-cit-0047) 2014; 8 Hunt (10.1002/hbm.23687-BIB0055|hbm23687-cit-0055) 2016; 113 Hubel (10.1002/hbm.23687-BIB0054|hbm23687-cit-0054) 1962; 160 Rossion (10.1002/hbm.23687-BIB0071|hbm23687-cit-0071) 2012; 79 Honey (10.1002/hbm.23687-BIB0053|hbm23687-cit-0053) 2007; 104 Essen (10.1002/hbm.23687-BIB0086|hbm23687-cit-0086) 2012b; 62 Cole (10.1002/hbm.23687-BIB0019|hbm23687-cit-0019) 2014; 83 Parkes (10.1002/hbm.23687-BIB0066|hbm23687-cit-0066) 2005; 54 Greicius (10.1002/hbm.23687-BIB0048|hbm23687-cit-0048) 2003; 100 Glasser (10.1002/hbm.23687-BIB0041|hbm23687-cit-0041) 2011; 31 Felleman (10.1002/hbm.23687-BIB0031|hbm23687-cit-0031) 1991; 1 Ohiorhenuan (10.1002/hbm.23687-BIB0065|hbm23687-cit-0065) 2010; 466 Genc (10.1002/hbm.23687-BIB0038|hbm23687-cit-0038) 2016; 26 Smith (10.1002/hbm.23687-BIB0077|hbm23687-cit-0077) 2009; 106 Eickhoff (10.1002/hbm.23687-BIB0029|hbm23687-cit-0029) 2005; 25 Bassett (10.1002/hbm.23687-BIB0009|hbm23687-cit-0009) 2006; 12 Beckmann (10.1002/hbm.23687-BIB0010|hbm23687-cit-0010) 2004; 23 Destrieux (10.1002/hbm.23687-BIB0027|hbm23687-cit-0027) 2010; 53 Gibson (10.1002/hbm.23687-BIB0039|hbm23687-cit-0039) 2014; 344 Long (10.1002/hbm.23687-BIB0060|hbm23687-cit-0060) 2014; 39 Honey (10.1002/hbm.23687-BIB0052|hbm23687-cit-0052) 2009; 106 Wang (10.1002/hbm.23687-BIB0089|hbm23687-cit-0089) 2013; 78 Abdollahi (10.1002/hbm.23687-BIB0001|hbm23687-cit-0001) 2014; 99 Briggs (10.1002/hbm.23687-BIB0016|hbm23687-cit-0016) 2009; 62 Desimone (10.1002/hbm.23687-BIB0026|hbm23687-cit-0026) 1995; 18 Angela (10.1002/hbm.23687-BIB0003|hbm23687-cit-0003) 2005; 46 Jo (10.1002/hbm.23687-BIB0057|hbm23687-cit-0057) 2012; 7 Nir (10.1002/hbm.23687-BIB0064|hbm23687-cit-0064) 2006; 30 Den Heuvel (10.1002/hbm.23687-BIB0083|hbm23687-cit-0083) 2009; 30 Bell (10.1002/hbm.23687-BIB0011|hbm23687-cit-0011) 1995; 7 Striem-Amit (10.1002/hbm.23687-BIB0079|hbm23687-cit-0079) 2015; 138 Seeley (10.1002/hbm.23687-BIB0075|hbm23687-cit-0075) 2007; 27 Glasser (10.1002/hbm.23687-BIB0042|hbm23687-cit-0042) 2013; 80 Denison (10.1002/hbm.23687-BIB0025|hbm23687-cit-0025) 2014; 102 Pt 2 Das (10.1002/hbm.23687-BIB0022|hbm23687-cit-0022) 1999; 399 Rao (10.1002/hbm.23687-BIB0069|hbm23687-cit-0069) 1999; 2 Fields (10.1002/hbm.23687-BIB0032|hbm23687-cit-0032) 2015; 16 Biswal (10.1002/hbm.23687-BIB0013|hbm23687-cit-0013) 1995; 34 Calhoun (10.1002/hbm.23687-BIB0018|hbm23687-cit-0018) 2009; 45 Zwart (10.1002/hbm.23687-BIB0024|hbm23687-cit-0024) 2013; 26 Essen (10.1002/hbm.23687-BIB0087|hbm23687-cit-0087) 2013; 80 Heinzle (10.1002/hbm.23687-BIB0051|hbm23687-cit-0051) 2011; 56 Baldassano (10.1002/hbm.23687-BIB0007|hbm23687-cit-0007) 2013; 75 Hasson (10.1002/hbm.23687-BIB0050|hbm23687-cit-0050) 2008; 28 Ronan (10.1002/hbm.23687-BIB0070|hbm23687-cit-0070) 2015; 220 Blondel (10.1002/hbm.23687-BIB0014|hbm23687-cit-0014) 2008; 2008 Schiller (10.1002/hbm.23687-BIB0074|hbm23687-cit-0074) 1990; 343 Yeo (10.1002/hbm.23687-BIB0092|hbm23687-cit-0092) 2011; 106 Ungerleider (10.1002/hbm.23687-BIB0082|hbm23687-cit-0082) 1994; 4 Martin (10.1002/hbm.23687-BIB0062|hbm23687-cit-0062) 2007; 58 Wilf (10.1002/hbm.23687-BIB0090|hbm23687-cit-0090) 2017; 27 Nassi (10.1002/hbm.23687-BIB0063|hbm23687-cit-0063) 2009; 10 15944135 - Neuron. 2005 May 19;46(4):681-92 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 23507385 - Neuroimage. 2013 Jul 15;75:228-37 26648521 - Nat Commun. 2015 Dec 09;6:8885 1374953 - Trends Neurosci. 1992 Jan;15(1):20-5 23747961 - Neuroimage. 2013 Nov 15;82:403-15 17329432 - J Neurosci. 2007 Feb 28;27(9):2349-56 24727982 - Science. 2014 May 2;344(6183):1252304 22846660 - Neuroimage. 2012 Nov 15;63(3):1099-106 24107953 - J Neurosci. 2013 Oct 9;33(41):16209-19 19889849 - J Neurophysiol. 2010 Jan;103(1):297-321 23707587 - Neuroimage. 2013 Oct 15;80:360-78 26906502 - Nat Neurosci. 2016 Mar;19(3):356-65 24971513 - Neuroimage. 2014 Oct 1;99:509-24 23660870 - Brain Topogr. 2013 Oct;26(4):525-37 7584893 - Neural Comput. 1995 Nov;7(6):1129-59 18079129 - Cereb Cortex. 2008 Aug;18(8):1973-80 26157000 - J Neurosci. 2015 Jul 8;35(27):10005-14 21376818 - Neuroimage. 2011 Jun 1;56(3):1426-36 23684880 - Neuroimage. 2013 Oct 15;80:62-79 10385116 - Nature. 1999 Jun 17;399(6737):655-61 15729343 - Nature. 2005 Feb 24;433(7028):868-73 19059344 - Neuroimage. 2009 Mar;45(1 Suppl):S163-72 24099850 - Neuroimage. 2014 Jan 1;84:911-21 23010748 - Cereb Cortex. 2014 Jan;24(1):17-36 20601940 - Nature. 2010 Jul 29;466(7306):617-21 18322098 - J Neurosci. 2008 Mar 5;28(10):2539-50 7831395 - Physiol Rev. 1995 Jan;75(1):107-54 17964252 - Neuron. 2007 Oct 25;56(2):366-83 27830650 - Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):13510-13515 7605061 - Annu Rev Neurosci. 1995;18:193-222 10195184 - Nat Neurosci. 1999 Jan;2(1):79-87 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 19235882 - Hum Brain Mapp. 2009 Oct;30(10):3127-41 25400541 - Front Neurosci. 2014 Oct 31;8:339 27124457 - Science. 2016 Apr 8;352(6282):216-20 19188601 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40 26787906 - Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):E606-15 22366334 - Neuroimage. 2012 Oct 1;62(4):2222-31 23791200 - Neuron. 2013 Jun 19;78(6):1116-26 2296292 - Nature. 1990 Jan 4;343(6253):68-70 16276507 - Magn Reson Med. 2005 Dec;54(6):1465-72 23567887 - Neuroimage. 2014 Jun;93 Pt 2:165-75 27437579 - Nature. 2016 Aug 11;536(7615):171-178 17079517 - Neuroscientist. 2006 Dec;12(6):512-23 24238796 - Trends Cogn Sci. 2013 Dec;17(12):666-82 6747034 - J Comp Neurol. 1984 Jul 10;226(4):544-64 25869851 - Brain. 2015 Jun;138(Pt 6):1679-95 25038435 - Neuroimage. 2014 Nov 15;102 Pt 2:358-69 14964560 - IEEE Trans Med Imaging. 2004 Feb;23(2):137-52 25695154 - Elife. 2015 Feb 19;4:null 9448246 - Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):818-24 1822724 - Cereb Cortex. 1991 Jan-Feb;1(1):1-47 20592951 - Front Syst Neurosci. 2010 Jun 17;4:19 17548818 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10240-5 10686118 - Neuroimage. 2000 Jan;11(1):66-84 16788060 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10046-51 22330606 - Brain Cogn. 2012 Jul;79(2):138-57 19819337 - Neuroimage. 2010 Sep;52(3):1059-69 9156212 - Vision Res. 1997 Mar;37(6):675-90 20547229 - Neuroimage. 2010 Oct 15;53(1):1-15 26457551 - Nat Neurosci. 2015 Nov;18(11):1664-71 25511709 - Brain Struct Funct. 2015 Sep;220(5):2475-83 24417550 - Eur J Neurosci. 2014 Apr;39(8):1332-42 9087826 - Cereb Cortex. 1997 Mar;7(2):181-92 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 26574501 - Cereb Cortex. 2017 Jan 1;27(1):750-763 23144995 - PLoS One. 2012;7(11):e48847 14449617 - J Physiol. 1962 Jan;160:106-54 19376073 - Neuron. 2009 Apr 16;62(1):135-46 23668970 - Neuroimage. 2013 Oct 15;80:105-24 26354906 - J Neurosci. 2015 Sep 9;35(36):12366-82 8038571 - Curr Opin Neurobiol. 1994 Apr;4(2):157-65 10343800 - Vision Res. 1999 Jun;39(13):2179-89 21653723 - J Neurophysiol. 2011 Sep;106(3):1125-65 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11 26271111 - Cereb Cortex. 2016 Sep;26(9):3719-3731 22047963 - Cereb Cortex. 2012 Oct;22(10):2241-62 16413791 - Neuroimage. 2006 May 1;30(4):1313-24 21832190 - J Neurosci. 2011 Aug 10;31(32):11597-616 21430278 - J Neurophysiol. 2011 Jun;105(6):2753-63 26415043 - Brain Connect. 2016 Feb;6(1):57-75 26585800 - Nat Rev Neurosci. 2015 Dec;16(12 ):756-67 14586468 - Nature. 2003 Oct 30;425(6961):954-6 23041195 - Curr Biol. 2012 Nov 6;22(21):2081-5 15850749 - Neuroimage. 2005 May 1;25(4):1325-35 24991964 - Neuron. 2014 Jul 2;83(1):238-51 23959883 - Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):E3435-44 23595013 - Nat Rev Neurosci. 2013 May;14(5):350-63 16968210 - Annu Rev Psychol. 2007;58:25-45 19352403 - Nat Rev Neurosci. 2009 May;10(5):360-72 |
References_xml | – volume: 46 start-page: 681 year: 2005 end-page: 692 article-title: Uncertainty, neuromodulation, and attention publication-title: Neuron – volume: 103 start-page: 13848 year: 2006 end-page: 13853 article-title: Consistent resting‐state networks across healthy subjects publication-title: Proc Natl Acad Sci USA – volume: 79 start-page: 138 year: 2012 end-page: 157 article-title: Defining face perception areas in the human brain: A large‐scale factorial fMRI face localizer analysis publication-title: Brain Cogn – volume: 83 start-page: 238 year: 2014 end-page: 251 article-title: Intrinsic and task‐evoked network architectures of the human brain publication-title: Neuron – volume: 34 start-page: 537 year: 1995 end-page: 541 article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar mri publication-title: Magn Reson Med – volume: 103 start-page: 10046 year: 2006 end-page: 10051 article-title: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems publication-title: Proc Natl Acad Sci USA – volume: 78 start-page: 1116 year: 2013 end-page: 1126 article-title: The relationship of anatomical and functional connectivity to resting‐state connectivity in primate somatosensory cortex publication-title: Neuron – volume: 2008 start-page: P10008 year: 2008 article-title: Fast unfolding of communities in large networks publication-title: J Stat Mech‐Theory Exp – volume: 56 start-page: 366 year: 2007 end-page: 383 article-title: Visual field maps in human cortex publication-title: Neuron – volume: 26 start-page: 525 year: 2013 end-page: 537 article-title: Independent sources of spontaneous BOLD fluctuation along the visual pathway publication-title: Brain Topogr – volume: 53 start-page: 1 year: 2010 end-page: 15 article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature publication-title: Neuroimage – volume: 10 start-page: 360 year: 2009 end-page: 372 article-title: Parallel processing strategies of the primate visual system publication-title: Nat Rev Neurosci – volume: 106 start-page: 1125 year: 2011 end-page: 1165 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J Neurophysiol – volume: 8 start-page: 700 year: 2007 end-page: 711 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nat Rev Neurosci – volume: 138 start-page: 1679 year: 2015 end-page: 1695 article-title: Functional connectivity of visual cortex in the blind follows retinotopic organization principles publication-title: Brain – volume: 4 start-page: 157 year: 1994 end-page: 165 article-title: What’ and ‘where’ in the human brain publication-title: Curr Opin Neurobiol – volume: 63 start-page: 1099 year: 2012 end-page: 1106 article-title: Voxel‐level functional connectivity using spatial regularization publication-title: Neuroimage – volume: 45 start-page: S163 year: 2009 end-page: S172 article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data publication-title: Neuroimage – volume: 106 start-page: 13040 year: 2009 end-page: 13045 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc Natl Acad Sci USA – volume: 26 start-page: 3719 year: 2016 end-page: 3731 article-title: Functional Connectivity Patterns of Visual Cortex Reflect its Anatomical Organization publication-title: Cereb Cortex – volume: 35 start-page: 12366 year: 2015 end-page: 12382 article-title: Resting‐State Retinotopic Organization in the Absence of Retinal Input and Visual Experience publication-title: J Neurosci – volume: 110 start-page: E3435 year: 2013 end-page: E3444 article-title: Two distinct forms of functional lateralization in the human brain publication-title: Proc Natl Acad Sci USA – volume: 106 start-page: 2035 year: 2009 end-page: 2040 article-title: Predicting human resting‐state functional connectivity from structural connectivity publication-title: Proc Natl Acad Sci USA – volume: 433 start-page: 868 year: 2005 end-page: 873 article-title: Excitatory cortical neurons form fine‐scale functional networks publication-title: Nature – volume: 75 start-page: 228 year: 2013 end-page: 237 article-title: Differential connectivity within the Parahippocampal Place Area publication-title: Neuroimage – volume: 6 year: 2015 article-title: Long‐term neural and physiological phenotyping of a single human publication-title: Nat Commun – volume: 17 start-page: 666 year: 2013 end-page: 682 article-title: Functional connectomics from resting‐state fMRI publication-title: Trends Cogn Sci – volume: 103 start-page: 297 year: 2010 end-page: 321 article-title: Intrinsic functional connectivity as a tool for human connectomics: Theory, properties, and optimization publication-title: J Neurophysiol – volume: 160 start-page: 106 year: 1962 end-page: 154 article-title: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex publication-title: J Physiol – volume: 226 start-page: 544 year: 1984 end-page: 564 article-title: The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey publication-title: J Comp Neurol – volume: 15 start-page: 20 year: 1992 end-page: 25 article-title: Separate visual pathways for perception and action publication-title: Trends Neurosci – volume: 2 start-page: 79 year: 1999 end-page: 87 article-title: Predictive coding in the visual cortex: A functional interpretation of some extra‐classical receptive‐field effects publication-title: Nat Neurosci – volume: 4 year: 2015 article-title: Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization publication-title: Elife – volume: 39 start-page: 2179 year: 1999 end-page: 2189 article-title: Uneven mapping of magnocellular and parvocellular projections from the lateral geniculate nucleus to the striate cortex in the macaque monkey publication-title: Vis Res – volume: 24 start-page: 17 year: 2012 end-page: 36 article-title: A weighted and directed interareal connectivity matrix for macaque cerebral cortex publication-title: Cereb Cortex – volume: 33 start-page: 16209 year: 2013 end-page: 16219 article-title: The fine‐scale functional correlation of striate cortex in sighted and blind people publication-title: J Neurosci – volume: 56 start-page: 1426 year: 2011 end-page: 1436 article-title: Topographically specific functional connectivity between visual field maps in the human brain publication-title: Neuroimage – volume: 75 start-page: 107 year: 1995 end-page: 154 article-title: Corticocortical connections in the visual system: Structure and function publication-title: Physiol Rev – volume: 105 start-page: 2753 year: 2011 end-page: 2763 article-title: Brain activity at rest: A multiscale hierarchical functional organization publication-title: J Neurophysiol – volume: 82 start-page: 403 year: 2013 end-page: 415 article-title: Groupwise whole‐brain parcellation from resting‐state fMRI data for network node identification publication-title: Neuroimage – volume: 11 start-page: 66 year: 2000 end-page: 84 article-title: Brodmann's areas 17 and 18 brought into stereotaxic space‐where and how variable? publication-title: Neuroimage – volume: 99 start-page: 509 year: 2014 end-page: 524 article-title: Correspondences between retinotopic areas and myelin maps in human visual cortex publication-title: Neuroimage – volume: 93 Pt 2 start-page: 165 year: 2014 end-page: 175 article-title: Trends and properties of human cerebral cortex: Correlations with cortical myelin content publication-title: Neuroimage – volume: 37 start-page: 675 year: 1997 end-page: 690 article-title: M and P components of the VEP and their visual field distribution publication-title: Vis Res – volume: 80 start-page: 105 year: 2013 end-page: 124 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage – volume: 80 start-page: 62 year: 2013 end-page: 79 article-title: The WU‐Minn Human Connectome Project: An overview publication-title: Neuroimage – volume: 399 start-page: 655 year: 1999 end-page: 661 article-title: Topography of contextual modulations mediated by short‐range interactions in primary visual cortex publication-title: Nature – volume: 30 start-page: 1313 year: 2006 end-page: 1324 article-title: Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation publication-title: Neuroimage – volume: 23 start-page: 137 year: 2004 end-page: 152 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans Med Imaging – volume: 22 start-page: 2081 year: 2012 end-page: 2085 article-title: The retinotopic organization of striate cortex is well predicted by surface topology publication-title: Curr Biol – volume: 95 start-page: 818 year: 1998 end-page: 824 article-title: The representation of the ipsilateral visual field in human cerebral cortex publication-title: Proc Natl Acad Sci USA – volume: 425 start-page: 954 year: 2003 end-page: 956 article-title: Spontaneously emerging cortical representations of visual attributes publication-title: Nature – volume: 344 start-page: 1252304 year: 2014 article-title: Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain publication-title: Science – volume: 27 start-page: 2349 year: 2007 end-page: 2356 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control publication-title: J Neurosci – volume: 54 start-page: 1465 year: 2005 end-page: 1472 article-title: Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla publication-title: Magn Reson Med – volume: 62 start-page: 2222 year: 2012b end-page: 2231 article-title: The Human Connectome Project: A data acquisition perspective publication-title: Neuroimage – volume: 113 start-page: E606 year: 2016 end-page: E615 article-title: Stimulus‐induced visual cortical networks are recapitulated by spontaneous local and interareal synchronization publication-title: Proc Natl Acad Sci USA – volume: 31 start-page: 11597 year: 2011 end-page: 11616 article-title: Mapping human cortical areas in vivo based on myelin content as revealed by T1‐ and T2‐weighted MRI publication-title: J Neurosci – volume: 22 start-page: 2241 year: 2012a end-page: 2262 article-title: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface‐based atlases publication-title: Cereb Cortex – volume: 8 start-page: 339 year: 2014 article-title: Cortical connective field estimates from resting state fMRI activity publication-title: Front Neurosci – volume: 352 start-page: 216 year: 2016 end-page: 220 article-title: Task‐free MRI predicts individual differences in brain activity during task performance publication-title: Science – volume: 18 start-page: 1973 year: 2008 end-page: 1980 article-title: Cortical folding patterns and predicting cytoarchitecture publication-title: Cereb Cortex – volume: 39 start-page: 1332 year: 2014 end-page: 1342 article-title: Functional connectivity‐based parcellation of the human sensorimotor cortex publication-title: Eur J Neurosci – volume: 80 start-page: 360 year: 2013 end-page: 378 article-title: Dynamic functional connectivity: Promise, issues, and interpretations publication-title: Neuroimage – volume: 536 start-page: 171 year: 2016 end-page: 178 article-title: A multi‐modal parcellation of human cerebral cortex publication-title: Nature – volume: 35 start-page: 10005 year: 2015 end-page: 10014 article-title: Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream publication-title: J Neurosci – volume: 30 start-page: 3127 year: 2009 end-page: 3141 article-title: Functionally linked resting‐state networks reflect the underlying structural connectivity architecture of the human brain publication-title: Hum Brain Mapp – volume: 12 start-page: 512 year: 2006 end-page: 523 article-title: Small‐world brain networks publication-title: Neuroscientist – volume: 62 start-page: 135 year: 2009 end-page: 146 article-title: Parallel processing in the corticogeniculate pathway of the macaque monkey publication-title: Neuron – volume: 58 start-page: 25 year: 2007 end-page: 45 article-title: The representation of object concepts in the brain publication-title: Annu Rev Psychol – volume: 18 start-page: 1664 year: 2015 end-page: 1671 article-title: Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity publication-title: Nat Neurosci – volume: 113 start-page: 13510 year: 2016 end-page: 13515 article-title: Relationships between cortical myeloarchitecture and electrophysiological networks publication-title: Proc Natl Acad Sci USA – volume: 343 start-page: 68 year: 1990 end-page: 70 article-title: Functions of the colour‐opponent and broad‐band channels of the visual system publication-title: Nature – volume: 18 start-page: 193 year: 1995 end-page: 222 article-title: Neural mechanisms of selective visual attention publication-title: Annu Rev Neurosci – volume: 7 start-page: e48847 year: 2012 article-title: Quantifying agreement between anatomical and functional interhemispheric correspondences in the resting brain publication-title: PloS One – volume: 19 start-page: 356 year: 2016 end-page: 365 article-title: Using goal‐driven deep learning models to understand sensory cortex publication-title: Nat Neurosci – volume: 104 start-page: 10240 year: 2007 end-page: 10245 article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales publication-title: Proc Natl Acad Sci USA – volume: 25 start-page: 1325 year: 2005 end-page: 1335 article-title: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data publication-title: Neuroimage – volume: 1 start-page: 1 year: 1991 end-page: 47 article-title: Distributed hierarchical processing in the primate cerebral cortex publication-title: Cereb Cortex – volume: 14 start-page: 350 year: 2013 end-page: 363 article-title: Top‐down influences on visual processing publication-title: Nat Rev Neurosci – volume: 100 start-page: 253 year: 2003 end-page: 258 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: 181 year: 1997 end-page: 192 article-title: Retinotopic organization in human visual cortex and the spatial precision of functional MRI publication-title: Cereb Cortex – volume: 6 start-page: 57 year: 2016 end-page: 75 article-title: Partial Correlation‐Based Retinotopically Organized Resting‐State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance publication-title: Brain Connect – volume: 4 start-page: 19 year: 2010 article-title: Clinical applications of resting state functional connectivity publication-title: Front Syst Neurosci – volume: 52 start-page: 1059 year: 2010 end-page: 1069 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: Neuroimage – volume: 466 start-page: 617 year: 2010 end-page: 621 article-title: Sparse coding and high‐order correlations in fine‐scale cortical networks publication-title: Nature – volume: 28 start-page: 2539 year: 2008 end-page: 2550 article-title: A hierarchy of temporal receptive windows in human cortex publication-title: J Neurosci – volume: 7 start-page: 1129 year: 1995 end-page: 1159 article-title: An information‐maximization approach to blind separation and blind deconvolution publication-title: Neural Comput – volume: 84 start-page: 911 year: 2014 end-page: 921 article-title: Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study publication-title: Neuroimage – volume: 220 start-page: 2475 year: 2015 end-page: 2483 article-title: From genes to folds: A review of cortical gyrification theory publication-title: Brain Struct Funct – volume: 102 Pt 2 start-page: 358 year: 2014 end-page: 369 article-title: Functional mapping of the magnocellular and parvocellular subdivisions of human LGN publication-title: Neuroimage – volume: 16 start-page: 756 year: 2015 end-page: 767 article-title: A new mechanism of nervous system plasticity: Activity‐dependent myelination publication-title: Nat Rev Neurosci – volume: 27 start-page: 750 year: 2017 end-page: 763 article-title: Spontaneously Emerging Patterns in Human Visual Cortex Reflect Responses to Naturalistic Sensory Stimuli publication-title: Cereb Cortex – volume: 58 start-page: 25 year: 2007 ident: 10.1002/hbm.23687-BIB0062|hbm23687-cit-0062 article-title: The representation of object concepts in the brain publication-title: Annu Rev Psychol doi: 10.1146/annurev.psych.57.102904.190143 – volume: 11 start-page: 66 year: 2000 ident: 10.1002/hbm.23687-BIB0002|hbm23687-cit-0002 article-title: Brodmann's areas 17 and 18 brought into stereotaxic space-where and how variable? publication-title: Neuroimage doi: 10.1006/nimg.1999.0516 – volume: 23 start-page: 137 year: 2004 ident: 10.1002/hbm.23687-BIB0010|hbm23687-cit-0010 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2003.822821 – volume: 6 year: 2015 ident: 10.1002/hbm.23687-BIB0067|hbm23687-cit-0067 article-title: Long-term neural and physiological phenotyping of a single human publication-title: Nat Commun doi: 10.1038/ncomms9885 – volume: 39 start-page: 2179 year: 1999 ident: 10.1002/hbm.23687-BIB0005|hbm23687-cit-0005 article-title: Uneven mapping of magnocellular and parvocellular projections from the lateral geniculate nucleus to the striate cortex in the macaque monkey publication-title: Vis Res doi: 10.1016/S0042-6989(98)00319-8 – volume: 78 start-page: 1116 year: 2013 ident: 10.1002/hbm.23687-BIB0089|hbm23687-cit-0089 article-title: The relationship of anatomical and functional connectivity to resting-state connectivity in primate somatosensory cortex publication-title: Neuron doi: 10.1016/j.neuron.2013.04.023 – volume: 160 start-page: 106 year: 1962 ident: 10.1002/hbm.23687-BIB0054|hbm23687-cit-0054 article-title: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex publication-title: J Physiol doi: 10.1113/jphysiol.1962.sp006837 – volume: 79 start-page: 138 year: 2012 ident: 10.1002/hbm.23687-BIB0071|hbm23687-cit-0071 article-title: Defining face perception areas in the human brain: A large-scale factorial fMRI face localizer analysis publication-title: Brain Cogn doi: 10.1016/j.bandc.2012.01.001 – volume: 19 start-page: 356 year: 2016 ident: 10.1002/hbm.23687-BIB0091|hbm23687-cit-0091 article-title: Using goal-driven deep learning models to understand sensory cortex publication-title: Nat Neurosci doi: 10.1038/nn.4244 – volume: 18 start-page: 1664 year: 2015 ident: 10.1002/hbm.23687-BIB0033|hbm23687-cit-0033 article-title: Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity publication-title: Nat Neurosci doi: 10.1038/nn.4135 – volume: 27 start-page: 750 year: 2017 ident: 10.1002/hbm.23687-BIB0090|hbm23687-cit-0090 article-title: Spontaneously Emerging Patterns in Human Visual Cortex Reflect Responses to Naturalistic Sensory Stimuli publication-title: Cereb Cortex – volume: 7 start-page: 1129 year: 1995 ident: 10.1002/hbm.23687-BIB0011|hbm23687-cit-0011 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput doi: 10.1162/neco.1995.7.6.1129 – volume: 220 start-page: 2475 year: 2015 ident: 10.1002/hbm.23687-BIB0070|hbm23687-cit-0070 article-title: From genes to folds: A review of cortical gyrification theory publication-title: Brain Struct Funct doi: 10.1007/s00429-014-0961-z – volume: 62 start-page: 2222 year: 2012b ident: 10.1002/hbm.23687-BIB0086|hbm23687-cit-0086 article-title: The Human Connectome Project: A data acquisition perspective publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.018 – volume: 80 start-page: 62 year: 2013 ident: 10.1002/hbm.23687-BIB0087|hbm23687-cit-0087 article-title: The WU-Minn Human Connectome Project: An overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 113 start-page: E606 year: 2016 ident: 10.1002/hbm.23687-BIB0059|hbm23687-cit-0059 article-title: Stimulus-induced visual cortical networks are recapitulated by spontaneous local and interareal synchronization publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1513773113 – volume: 1 start-page: 1 year: 1991 ident: 10.1002/hbm.23687-BIB0031|hbm23687-cit-0031 article-title: Distributed hierarchical processing in the primate cerebral cortex publication-title: Cereb Cortex doi: 10.1093/cercor/1.1.1 – volume: 110 start-page: E3435 year: 2013 ident: 10.1002/hbm.23687-BIB0046|hbm23687-cit-0046 article-title: Two distinct forms of functional lateralization in the human brain publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1302581110 – volume: 103 start-page: 13848 year: 2006 ident: 10.1002/hbm.23687-BIB0021|hbm23687-cit-0021 article-title: Consistent resting-state networks across healthy subjects publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0601417103 – volume: 16 start-page: 756 year: 2015 ident: 10.1002/hbm.23687-BIB0032|hbm23687-cit-0032 article-title: A new mechanism of nervous system plasticity: Activity-dependent myelination publication-title: Nat Rev Neurosci doi: 10.1038/nrn4023 – volume: 106 start-page: 2035 year: 2009 ident: 10.1002/hbm.23687-BIB0052|hbm23687-cit-0052 article-title: Predicting human resting-state functional connectivity from structural connectivity publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0811168106 – volume: 343 start-page: 68 year: 1990 ident: 10.1002/hbm.23687-BIB0074|hbm23687-cit-0074 article-title: Functions of the colour-opponent and broad-band channels of the visual system publication-title: Nature doi: 10.1038/343068a0 – volume: 6 start-page: 57 year: 2016 ident: 10.1002/hbm.23687-BIB0023|hbm23687-cit-0023 article-title: Partial Correlation-Based Retinotopically Organized Resting-State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance publication-title: Brain Connect doi: 10.1089/brain.2014.0331 – volume: 4 year: 2015 ident: 10.1002/hbm.23687-BIB0004|hbm23687-cit-0004 article-title: Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization publication-title: Elife doi: 10.7554/eLife.03952 – volume: 399 start-page: 655 year: 1999 ident: 10.1002/hbm.23687-BIB0022|hbm23687-cit-0022 article-title: Topography of contextual modulations mediated by short-range interactions in primary visual cortex publication-title: Nature doi: 10.1038/21371 – volume: 12 start-page: 512 year: 2006 ident: 10.1002/hbm.23687-BIB0009|hbm23687-cit-0009 article-title: Small-world brain networks publication-title: Neuroscientist doi: 10.1177/1073858406293182 – volume: 80 start-page: 360 year: 2013 ident: 10.1002/hbm.23687-BIB0056|hbm23687-cit-0056 article-title: Dynamic functional connectivity: Promise, issues, and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.079 – volume: 433 start-page: 868 year: 2005 ident: 10.1002/hbm.23687-BIB0093|hbm23687-cit-0093 article-title: Excitatory cortical neurons form fine-scale functional networks publication-title: Nature doi: 10.1038/nature03252 – volume: 54 start-page: 1465 year: 2005 ident: 10.1002/hbm.23687-BIB0066|hbm23687-cit-0066 article-title: Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla publication-title: Magn Reson Med doi: 10.1002/mrm.20712 – volume: 25 start-page: 1325 year: 2005 ident: 10.1002/hbm.23687-BIB0029|hbm23687-cit-0029 article-title: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.12.034 – volume: 103 start-page: 10046 year: 2006 ident: 10.1002/hbm.23687-BIB0037|hbm23687-cit-0037 article-title: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0604187103 – volume: 352 start-page: 216 year: 2016 ident: 10.1002/hbm.23687-BIB0080|hbm23687-cit-0080 article-title: Task-free MRI predicts individual differences in brain activity during task performance publication-title: Science doi: 10.1126/science.aad8127 – volume: 138 start-page: 1679 year: 2015 ident: 10.1002/hbm.23687-BIB0079|hbm23687-cit-0079 article-title: Functional connectivity of visual cortex in the blind follows retinotopic organization principles publication-title: Brain doi: 10.1093/brain/awv083 – volume: 80 start-page: 105 year: 2013 ident: 10.1002/hbm.23687-BIB0042|hbm23687-cit-0042 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 7 start-page: e48847 year: 2012 ident: 10.1002/hbm.23687-BIB0057|hbm23687-cit-0057 article-title: Quantifying agreement between anatomical and functional interhemispheric correspondences in the resting brain publication-title: PloS One doi: 10.1371/journal.pone.0048847 – volume: 83 start-page: 238 year: 2014 ident: 10.1002/hbm.23687-BIB0019|hbm23687-cit-0019 article-title: Intrinsic and task-evoked network architectures of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2014.05.014 – volume: 62 start-page: 135 year: 2009 ident: 10.1002/hbm.23687-BIB0016|hbm23687-cit-0016 article-title: Parallel processing in the corticogeniculate pathway of the macaque monkey publication-title: Neuron doi: 10.1016/j.neuron.2009.02.024 – volume: 7 start-page: 181 year: 1997 ident: 10.1002/hbm.23687-BIB0030|hbm23687-cit-0030 article-title: Retinotopic organization in human visual cortex and the spatial precision of functional MRI publication-title: Cereb Cortex doi: 10.1093/cercor/7.2.181 – volume: 226 start-page: 544 year: 1984 ident: 10.1002/hbm.23687-BIB0020|hbm23687-cit-0020 article-title: The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey publication-title: J Comp Neurol doi: 10.1002/cne.902260408 – volume: 84 start-page: 911 year: 2014 ident: 10.1002/hbm.23687-BIB0068|hbm23687-cit-0068 article-title: Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.09.060 – volume: 425 start-page: 954 year: 2003 ident: 10.1002/hbm.23687-BIB0058|hbm23687-cit-0058 article-title: Spontaneously emerging cortical representations of visual attributes publication-title: Nature doi: 10.1038/nature02078 – volume: 52 start-page: 1059 year: 2010 ident: 10.1002/hbm.23687-BIB0072|hbm23687-cit-0072 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 56 start-page: 1426 year: 2011 ident: 10.1002/hbm.23687-BIB0051|hbm23687-cit-0051 article-title: Topographically specific functional connectivity between visual field maps in the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.02.077 – volume: 26 start-page: 3719 year: 2016 ident: 10.1002/hbm.23687-BIB0038|hbm23687-cit-0038 article-title: Functional Connectivity Patterns of Visual Cortex Reflect its Anatomical Organization publication-title: Cereb Cortex doi: 10.1093/cercor/bhv175 – volume: 4 start-page: 19 year: 2010 ident: 10.1002/hbm.23687-BIB0035|hbm23687-cit-0035 article-title: Clinical applications of resting state functional connectivity publication-title: Front Syst Neurosci – volume: 95 start-page: 818 year: 1998 ident: 10.1002/hbm.23687-BIB0081|hbm23687-cit-0081 article-title: The representation of the ipsilateral visual field in human cerebral cortex publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.3.818 – volume: 35 start-page: 10005 year: 2015 ident: 10.1002/hbm.23687-BIB0049|hbm23687-cit-0049 article-title: Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5023-14.2015 – volume: 35 start-page: 12366 year: 2015 ident: 10.1002/hbm.23687-BIB0015|hbm23687-cit-0015 article-title: Resting-State Retinotopic Organization in the Absence of Retinal Input and Visual Experience publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4715-14.2015 – volume: 8 start-page: 339 year: 2014 ident: 10.1002/hbm.23687-BIB0047|hbm23687-cit-0047 article-title: Cortical connective field estimates from resting state fMRI activity publication-title: Front Neurosci doi: 10.3389/fnins.2014.00339 – volume: 2 start-page: 79 year: 1999 ident: 10.1002/hbm.23687-BIB0069|hbm23687-cit-0069 article-title: Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects publication-title: Nat Neurosci doi: 10.1038/4580 – volume: 37 start-page: 675 year: 1997 ident: 10.1002/hbm.23687-BIB0008|hbm23687-cit-0008 article-title: M and P components of the VEP and their visual field distribution publication-title: Vis Res doi: 10.1016/S0042-6989(96)00209-X – volume: 24 start-page: 17 year: 2012 ident: 10.1002/hbm.23687-BIB0061|hbm23687-cit-0061 article-title: A weighted and directed interareal connectivity matrix for macaque cerebral cortex publication-title: Cereb Cortex doi: 10.1093/cercor/bhs270 – volume: 93 Pt 2 start-page: 165 year: 2014 ident: 10.1002/hbm.23687-BIB0043|hbm23687-cit-0043 article-title: Trends and properties of human cerebral cortex: Correlations with cortical myelin content publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.060 – volume: 22 start-page: 2081 year: 2012 ident: 10.1002/hbm.23687-BIB0012|hbm23687-cit-0012 article-title: The retinotopic organization of striate cortex is well predicted by surface topology publication-title: Curr Biol doi: 10.1016/j.cub.2012.09.014 – volume: 18 start-page: 193 year: 1995 ident: 10.1002/hbm.23687-BIB0026|hbm23687-cit-0026 article-title: Neural mechanisms of selective visual attention publication-title: Annu Rev Neurosci doi: 10.1146/annurev.ne.18.030195.001205 – volume: 75 start-page: 107 year: 1995 ident: 10.1002/hbm.23687-BIB0073|hbm23687-cit-0073 article-title: Corticocortical connections in the visual system: Structure and function publication-title: Physiol Rev doi: 10.1152/physrev.1995.75.1.107 – volume: 30 start-page: 1313 year: 2006 ident: 10.1002/hbm.23687-BIB0064|hbm23687-cit-0064 article-title: Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.11.018 – volume: 8 start-page: 700 year: 2007 ident: 10.1002/hbm.23687-BIB0036|hbm23687-cit-0036 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nat Rev Neurosci doi: 10.1038/nrn2201 – volume: 82 start-page: 403 year: 2013 ident: 10.1002/hbm.23687-BIB0076|hbm23687-cit-0076 article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.081 – volume: 31 start-page: 11597 year: 2011 ident: 10.1002/hbm.23687-BIB0041|hbm23687-cit-0041 article-title: Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2180-11.2011 – volume: 63 start-page: 1099 year: 2012 ident: 10.1002/hbm.23687-BIB0006|hbm23687-cit-0006 article-title: Voxel-level functional connectivity using spatial regularization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.07.046 – volume: 2008 start-page: P10008 year: 2008 ident: 10.1002/hbm.23687-BIB0014|hbm23687-cit-0014 article-title: Fast unfolding of communities in large networks publication-title: J Stat Mech-Theory Exp doi: 10.1088/1742-5468/2008/10/P10008 – volume: 17 start-page: 666 year: 2013 ident: 10.1002/hbm.23687-BIB0078|hbm23687-cit-0078 article-title: Functional connectomics from resting-state fMRI publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2013.09.016 – volume: 106 start-page: 1125 year: 2011 ident: 10.1002/hbm.23687-BIB0092|hbm23687-cit-0092 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J Neurophysiol doi: 10.1152/jn.00338.2011 – volume: 100 start-page: 253 year: 2003 ident: 10.1002/hbm.23687-BIB0048|hbm23687-cit-0048 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0135058100 – volume: 99 start-page: 509 year: 2014 ident: 10.1002/hbm.23687-BIB0001|hbm23687-cit-0001 article-title: Correspondences between retinotopic areas and myelin maps in human visual cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.06.042 – volume: 15 start-page: 20 year: 1992 ident: 10.1002/hbm.23687-BIB0045|hbm23687-cit-0045 article-title: Separate visual pathways for perception and action publication-title: Trends Neurosci doi: 10.1016/0166-2236(92)90344-8 – volume: 103 start-page: 297 year: 2010 ident: 10.1002/hbm.23687-BIB0084|hbm23687-cit-0084 article-title: Intrinsic functional connectivity as a tool for human connectomics: Theory, properties, and optimization publication-title: J Neurophysiol doi: 10.1152/jn.00783.2009 – volume: 22 start-page: 2241 year: 2012a ident: 10.1002/hbm.23687-BIB0085|hbm23687-cit-0085 article-title: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases publication-title: Cereb Cortex doi: 10.1093/cercor/bhr291 – volume: 26 start-page: 525 year: 2013 ident: 10.1002/hbm.23687-BIB0024|hbm23687-cit-0024 article-title: Independent sources of spontaneous BOLD fluctuation along the visual pathway publication-title: Brain Topogr doi: 10.1007/s10548-013-0290-1 – volume: 536 start-page: 171 year: 2016 ident: 10.1002/hbm.23687-BIB0044|hbm23687-cit-0044 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature doi: 10.1038/nature18933 – volume: 14 start-page: 350 year: 2013 ident: 10.1002/hbm.23687-BIB0040|hbm23687-cit-0040 article-title: Top-down influences on visual processing publication-title: Nat Rev Neurosci doi: 10.1038/nrn3476 – volume: 34 start-page: 537 year: 1995 ident: 10.1002/hbm.23687-BIB0013|hbm23687-cit-0013 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar mri publication-title: Magn Reson Med doi: 10.1002/mrm.1910340409 – volume: 18 start-page: 1973 year: 2008 ident: 10.1002/hbm.23687-BIB0034|hbm23687-cit-0034 article-title: Cortical folding patterns and predicting cytoarchitecture publication-title: Cereb Cortex doi: 10.1093/cercor/bhm225 – volume: 10 start-page: 360 year: 2009 ident: 10.1002/hbm.23687-BIB0063|hbm23687-cit-0063 article-title: Parallel processing strategies of the primate visual system publication-title: Nat Rev Neurosci doi: 10.1038/nrn2619 – volume: 27 start-page: 2349 year: 2007 ident: 10.1002/hbm.23687-BIB0075|hbm23687-cit-0075 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5587-06.2007 – volume: 45 start-page: S163 year: 2009 ident: 10.1002/hbm.23687-BIB0018|hbm23687-cit-0018 article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.10.057 – volume: 46 start-page: 681 year: 2005 ident: 10.1002/hbm.23687-BIB0003|hbm23687-cit-0003 article-title: Uncertainty, neuromodulation, and attention publication-title: Neuron doi: 10.1016/j.neuron.2005.04.026 – volume: 102 Pt 2 start-page: 358 year: 2014 ident: 10.1002/hbm.23687-BIB0025|hbm23687-cit-0025 article-title: Functional mapping of the magnocellular and parvocellular subdivisions of human LGN publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.07.019 – volume: 105 start-page: 2753 year: 2011 ident: 10.1002/hbm.23687-BIB0028|hbm23687-cit-0028 article-title: Brain activity at rest: A multiscale hierarchical functional organization publication-title: J Neurophysiol doi: 10.1152/jn.00895.2010 – volume: 106 start-page: 13040 year: 2009 ident: 10.1002/hbm.23687-BIB0077|hbm23687-cit-0077 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0905267106 – volume: 56 start-page: 366 year: 2007 ident: 10.1002/hbm.23687-BIB0088|hbm23687-cit-0088 article-title: Visual field maps in human cortex publication-title: Neuron doi: 10.1016/j.neuron.2007.10.012 – volume: 466 start-page: 617 year: 2010 ident: 10.1002/hbm.23687-BIB0065|hbm23687-cit-0065 article-title: Sparse coding and high-order correlations in fine-scale cortical networks publication-title: Nature doi: 10.1038/nature09178 – volume: 53 start-page: 1 year: 2010 ident: 10.1002/hbm.23687-BIB0027|hbm23687-cit-0027 article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.010 – volume: 104 start-page: 10240 year: 2007 ident: 10.1002/hbm.23687-BIB0053|hbm23687-cit-0053 article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0701519104 – volume: 39 start-page: 1332 year: 2014 ident: 10.1002/hbm.23687-BIB0060|hbm23687-cit-0060 article-title: Functional connectivity-based parcellation of the human sensorimotor cortex publication-title: Eur J Neurosci doi: 10.1111/ejn.12473 – volume: 30 start-page: 3127 year: 2009 ident: 10.1002/hbm.23687-BIB0083|hbm23687-cit-0083 article-title: Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain publication-title: Hum Brain Mapp doi: 10.1002/hbm.20737 – volume: 113 start-page: 13510 year: 2016 ident: 10.1002/hbm.23687-BIB0055|hbm23687-cit-0055 article-title: Relationships between cortical myeloarchitecture and electrophysiological networks publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1608587113 – volume: 4 start-page: 157 year: 1994 ident: 10.1002/hbm.23687-BIB0082|hbm23687-cit-0082 article-title: What’ and ‘where’ in the human brain publication-title: Curr Opin Neurobiol doi: 10.1016/0959-4388(94)90066-3 – volume: 75 start-page: 228 year: 2013 ident: 10.1002/hbm.23687-BIB0007|hbm23687-cit-0007 article-title: Differential connectivity within the Parahippocampal Place Area publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.02.073 – volume: 33 start-page: 16209 year: 2013 ident: 10.1002/hbm.23687-BIB0017|hbm23687-cit-0017 article-title: The fine-scale functional correlation of striate cortex in sighted and blind people publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0363-13.2013 – volume: 28 start-page: 2539 year: 2008 ident: 10.1002/hbm.23687-BIB0050|hbm23687-cit-0050 article-title: A hierarchy of temporal receptive windows in human cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5487-07.2008 – volume: 344 start-page: 1252304 year: 2014 ident: 10.1002/hbm.23687-BIB0039|hbm23687-cit-0039 article-title: Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain publication-title: Science doi: 10.1126/science.1252304 – reference: 14964560 - IEEE Trans Med Imaging. 2004 Feb;23(2):137-52 – reference: 23791200 - Neuron. 2013 Jun 19;78(6):1116-26 – reference: 19235882 - Hum Brain Mapp. 2009 Oct;30(10):3127-41 – reference: 17964252 - Neuron. 2007 Oct 25;56(2):366-83 – reference: 27830650 - Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):13510-13515 – reference: 24991964 - Neuron. 2014 Jul 2;83(1):238-51 – reference: 26415043 - Brain Connect. 2016 Feb;6(1):57-75 – reference: 20601940 - Nature. 2010 Jul 29;466(7306):617-21 – reference: 21653723 - J Neurophysiol. 2011 Sep;106(3):1125-65 – reference: 24238796 - Trends Cogn Sci. 2013 Dec;17(12):666-82 – reference: 19059344 - Neuroimage. 2009 Mar;45(1 Suppl):S163-72 – reference: 23959883 - Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):E3435-44 – reference: 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 – reference: 14449617 - J Physiol. 1962 Jan;160:106-54 – reference: 25695154 - Elife. 2015 Feb 19;4:null – reference: 6747034 - J Comp Neurol. 1984 Jul 10;226(4):544-64 – reference: 7831395 - Physiol Rev. 1995 Jan;75(1):107-54 – reference: 9087826 - Cereb Cortex. 1997 Mar;7(2):181-92 – reference: 21430278 - J Neurophysiol. 2011 Jun;105(6):2753-63 – reference: 22846660 - Neuroimage. 2012 Nov 15;63(3):1099-106 – reference: 26574501 - Cereb Cortex. 2017 Jan 1;27(1):750-763 – reference: 24971513 - Neuroimage. 2014 Oct 1;99:509-24 – reference: 26354906 - J Neurosci. 2015 Sep 9;35(36):12366-82 – reference: 23747961 - Neuroimage. 2013 Nov 15;82:403-15 – reference: 23668970 - Neuroimage. 2013 Oct 15;80:105-24 – reference: 15944135 - Neuron. 2005 May 19;46(4):681-92 – reference: 19376073 - Neuron. 2009 Apr 16;62(1):135-46 – reference: 26271111 - Cereb Cortex. 2016 Sep;26(9):3719-3731 – reference: 21376818 - Neuroimage. 2011 Jun 1;56(3):1426-36 – reference: 16413791 - Neuroimage. 2006 May 1;30(4):1313-24 – reference: 7605061 - Annu Rev Neurosci. 1995;18:193-222 – reference: 22047963 - Cereb Cortex. 2012 Oct;22(10):2241-62 – reference: 25038435 - Neuroimage. 2014 Nov 15;102 Pt 2:358-69 – reference: 23707587 - Neuroimage. 2013 Oct 15;80:360-78 – reference: 10385116 - Nature. 1999 Jun 17;399(6737):655-61 – reference: 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8 – reference: 23684880 - Neuroimage. 2013 Oct 15;80:62-79 – reference: 24727982 - Science. 2014 May 2;344(6183):1252304 – reference: 16968210 - Annu Rev Psychol. 2007;58:25-45 – reference: 26906502 - Nat Neurosci. 2016 Mar;19(3):356-65 – reference: 25400541 - Front Neurosci. 2014 Oct 31;8:339 – reference: 19188601 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40 – reference: 23144995 - PLoS One. 2012;7(11):e48847 – reference: 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 – reference: 24417550 - Eur J Neurosci. 2014 Apr;39(8):1332-42 – reference: 19352403 - Nat Rev Neurosci. 2009 May;10(5):360-72 – reference: 17329432 - J Neurosci. 2007 Feb 28;27(9):2349-56 – reference: 27437579 - Nature. 2016 Aug 11;536(7615):171-178 – reference: 16276507 - Magn Reson Med. 2005 Dec;54(6):1465-72 – reference: 23660870 - Brain Topogr. 2013 Oct;26(4):525-37 – reference: 22330606 - Brain Cogn. 2012 Jul;79(2):138-57 – reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 – reference: 19819337 - Neuroimage. 2010 Sep;52(3):1059-69 – reference: 15850749 - Neuroimage. 2005 May 1;25(4):1325-35 – reference: 16788060 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10046-51 – reference: 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11 – reference: 10686118 - Neuroimage. 2000 Jan;11(1):66-84 – reference: 18079129 - Cereb Cortex. 2008 Aug;18(8):1973-80 – reference: 10195184 - Nat Neurosci. 1999 Jan;2(1):79-87 – reference: 25869851 - Brain. 2015 Jun;138(Pt 6):1679-95 – reference: 9448246 - Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):818-24 – reference: 17548818 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10240-5 – reference: 25511709 - Brain Struct Funct. 2015 Sep;220(5):2475-83 – reference: 15729343 - Nature. 2005 Feb 24;433(7028):868-73 – reference: 21832190 - J Neurosci. 2011 Aug 10;31(32):11597-616 – reference: 24107953 - J Neurosci. 2013 Oct 9;33(41):16209-19 – reference: 17079517 - Neuroscientist. 2006 Dec;12(6):512-23 – reference: 23507385 - Neuroimage. 2013 Jul 15;75:228-37 – reference: 1822724 - Cereb Cortex. 1991 Jan-Feb;1(1):1-47 – reference: 20592951 - Front Syst Neurosci. 2010 Jun 17;4:19 – reference: 23567887 - Neuroimage. 2014 Jun;93 Pt 2:165-75 – reference: 23010748 - Cereb Cortex. 2014 Jan;24(1):17-36 – reference: 7584893 - Neural Comput. 1995 Nov;7(6):1129-59 – reference: 1374953 - Trends Neurosci. 1992 Jan;15(1):20-5 – reference: 2296292 - Nature. 1990 Jan 4;343(6253):68-70 – reference: 8038571 - Curr Opin Neurobiol. 1994 Apr;4(2):157-65 – reference: 26157000 - J Neurosci. 2015 Jul 8;35(27):10005-14 – reference: 10343800 - Vision Res. 1999 Jun;39(13):2179-89 – reference: 19889849 - J Neurophysiol. 2010 Jan;103(1):297-321 – reference: 20547229 - Neuroimage. 2010 Oct 15;53(1):1-15 – reference: 27124457 - Science. 2016 Apr 8;352(6282):216-20 – reference: 22366334 - Neuroimage. 2012 Oct 1;62(4):2222-31 – reference: 9156212 - Vision Res. 1997 Mar;37(6):675-90 – reference: 26787906 - Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):E606-15 – reference: 23595013 - Nat Rev Neurosci. 2013 May;14(5):350-63 – reference: 14586468 - Nature. 2003 Oct 30;425(6961):954-6 – reference: 26457551 - Nat Neurosci. 2015 Nov;18(11):1664-71 – reference: 26648521 - Nat Commun. 2015 Dec 09;6:8885 – reference: 26585800 - Nat Rev Neurosci. 2015 Dec;16(12 ):756-67 – reference: 24099850 - Neuroimage. 2014 Jan 1;84:911-21 – reference: 18322098 - J Neurosci. 2008 Mar 5;28(10):2539-50 – reference: 23041195 - Curr Biol. 2012 Nov 6;22(21):2081-5 |
SSID | ssj0011501 |
Score | 2.2784908 |
Snippet | Large‐scale functional networks have been extensively studied using resting state functional magnetic resonance imaging (fMRI). However, the pattern,... Large-scale functional networks have been extensively studied using resting state functional magnetic resonance imaging (fMRI). However, the pattern,... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4613 |
SubjectTerms | Activity patterns Brain Brain architecture Brain mapping Connectome - methods Cortex (temporal) Feedback fine‐scale networks Functional magnetic resonance imaging functional parcellation Humans independent component analysis Magnetic resonance imaging Magnetic Resonance Imaging - methods Modules Myelination Neural networks Neuroimaging Reproducibility of Results Rest Streams Topography Visual cortex Visual Cortex - diagnostic imaging Visual Cortex - physiology Visual observation Visual pathways Visual Pathways - diagnostic imaging Visual Pathways - physiology Visual perception Visual Perception - physiology Visual signals visual streams Visual task performance |
Title | Spontaneous activity in the visual cortex is organized by visual streams |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23687 https://www.ncbi.nlm.nih.gov/pubmed/28608643 https://www.proquest.com/docview/1926445558 https://www.proquest.com/docview/1909233476 https://pubmed.ncbi.nlm.nih.gov/PMC5546954 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPSAu0AePhRYZhBCXbBPbcWL1VB7VCmk5AJV6QIpsx1FXZbNVs4va_npmnAcsBQlxiSJ5nPg19jf2zGeAl65UeZKamM4Hq0iaJIkM-bqiwSJtrhWuGhSNPP2oJifyw2l6ugGHfSxMyw8xbLiRZoT5mhTc2ObgJ2nomZ2PuVA5RZInQhFv_rtPA3UUAZ1gbOESG2mcgXtWoZgfDDnX16JbAPO2n-Sv-DUsQMf34Wtf9Nbv5Hy8Wtqxu_mN1fE_67YF9zpgyo7akbQNG77egd2jGo3y-TV7xYKraNiD34E70-5Efhcmny8WNQJMv1g1jIIk6C4KNqsZAkv2fdas8JuOHHqv2Kxh7R1SN75k9rpPpWgVM28ewMnx-y9vJ1F3O0PkEGRk-Kx0bhFg6DIuU5dn1mUmE04YZbkzUos8LXPPLQIsUXFXpTKpMmUUZuMyrcRD2KwXtX8MrHTG-hTbmaONHCtrdZJXidOV8Np4p0bwuu-nwnXU5XSDxreiJV3mBTZYERpsBC8G0YuWr-NPQnt9ZxedyjYFQl3EhkR_NoLnQzIqG52gtM2IMjECYiEzLNKjdmwMf-G5QvNQihFka6NmECAi7_WUenYWCL3JU1CnEqsZBsXfC15M3kzDy5N_F30KdzlBkeAXtweby8uV30cgtbTPgsb8APpIGp8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXHi2PhQIGIcQl28R2HFviUh5VgG4P0Eq9VJHtOOoKNluRXUT76xk7D1gKEuISRfI4scce-xt7_BngmS2FTFId-_3BKuI6SSLtY13RYeFGKoGzhj-NPNkX-SF_f5QercHL_ixMyw8xLLh5ywjjtTdwvyC9_ZM19MTMxpQJmV2CyxyBhne93nwcyKM81AnuFk6ykcIxuOcViun2kHV1NroAMS9GSv6KYMMUtHsDjvvCt5Enn8fLhRnb8994Hf-3djfheodNyU7bmW7Bmqs3YHOnRr98dkaekxAtGpbhN-DKpNuU34T80-m8Rozp5suG-HMS_joKMq0JYkvybdos8ZvWx_R-J9OGtNdInbuSmLM-1R9Y0bPmNhzuvj14nUfdBQ2RRZyR4bNS0iDGUGVcplZmxmY6Y5ZpYajVXDGZltJRgxiLVdRWKU-qTGiB2ShPK3YH1ut57e4BKa02LkVFU3STY2GMSmSVWFUxp7SzYgQv-oYqbMde7i_R-FK0vMu0QIUVQWEjeDqInraUHX8S2upbu-istikQ7SI89AxoI3gyJKO9-U2UVo0oEyMmZjzDIt1tO8fwFyoFeoicjSBb6TaDgOfyXk2ppyeB09sHC6qUYzVDr_h7wYv81SS83P930cdwNT-Y7BV77_Y_PIBr1COTECa3BeuLr0v3EHHVwjwK5vMDkLUevg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bb9MwFIePxpAmXrhsXAoDDEKIl3SJ4zi2eBqXqlw6IWDSHpAi27G1amtakRax_fUcOxcoAwnxElXySeM458Sf4-OfAZ6YkoskU7GfH3QRU0kSKZ_rigMWpoXk2Gv41ciTAz4-ZG-PsqMNeN6thWn0IfoPbj4ywvvaB_iidHs_RUOP9WxIUy7yS3CZcSQJT0Qfe-0oTzphtIV9bCTxFdzJCsV0rz91vTO6QJgXEyV_BdjQA42uwZeu7k3iyclwtdRDc_6brON_3tx1uNqSKdlvXOkGbNhqG3b2KxyVz87IUxJyRcNH-G3YmrRT8jsw_rSYV0iYdr6qiV8l4TejINOKIFmSb9N6hf9pfEbvdzKtSbOJ1LktiT7rSv1yFTWrb8Lh6PXnl-Oo3Z4hMkgZOR6dFBoJQ5ZxmRmRa5OrPDWp4poaxWQqslJYqpGwUkeNy1jicq44nkZZ5tJbsFnNK3sHSGmUthm2M8VBcsy1lolwiZEutVJZwwfwrHtOhWm1y_0WGqdFo7pMC2ywIjTYAB73potGsONPRrvdwy7amK0LZF2EQ69_NoBHfTFGm59CaZoRbWIk4pTlWKXbjW_0V6ECvRABbwD5mtf0Bl7Je72kmh4HRW-fKigzhrcZnOLvFS_GLybhx91_N30IWx9ejYr3bw7e3YMr1GNJyJHbhc3l15W9j1C11A9C8PwAJ10dbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spontaneous+activity+in+the+visual+cortex+is+organized+by+visual+streams&rft.jtitle=Human+brain+mapping&rft.au=Lu%2C+Kun-Han&rft.au=Jeong%2C+Jun+Young&rft.au=Wen%2C+Haiguang&rft.au=Liu%2C+Zhongming&rft.date=2017-09-01&rft.issn=1097-0193&rft.eissn=1097-0193&rft.volume=38&rft.issue=9&rft.spage=4613&rft_id=info:doi/10.1002%2Fhbm.23687&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |