Spontaneous activity in the visual cortex is organized by visual streams

Large‐scale functional networks have been extensively studied using resting state functional magnetic resonance imaging (fMRI). However, the pattern, organization, and function of fine‐scale network activity remain largely unknown. Here, we characterized the spontaneously emerging visual cortical ac...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 38; no. 9; pp. 4613 - 4630
Main Authors Lu, Kun‐Han, Jeong, Jun Young, Wen, Haiguang, Liu, Zhongming
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.09.2017
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.23687

Cover

Loading…
Abstract Large‐scale functional networks have been extensively studied using resting state functional magnetic resonance imaging (fMRI). However, the pattern, organization, and function of fine‐scale network activity remain largely unknown. Here, we characterized the spontaneously emerging visual cortical activity by applying independent component (IC) analysis to resting state fMRI signals exclusively within the visual cortex. In this subsystem scale, we observed about 50 spatially ICs that were reproducible within and across subjects, and analyzed their spatial patterns and temporal relationships to reveal the intrinsic parcellation and organization of the visual cortex. The resulting visual cortical parcels were aligned with the steepest gradient of cortical myelination, and were organized into functional modules segregated along the dorsal/ventral pathways and foveal/peripheral early visual areas. Cortical distance could partly explain intra‐hemispherical functional connectivity, but not interhemispherical connectivity; after discounting the effect of anatomical affinity, the fine‐scale functional connectivity still preserved a similar visual‐stream‐specific modular organization. Moreover, cortical retinotopy, folding, and cytoarchitecture impose limited constraints to the organization of resting state activity. Given these findings, we conclude that spontaneous activity patterns in the visual cortex are primarily organized by visual streams, likely reflecting feedback network interactions. Hum Brain Mapp 38:4613–4630, 2017. © 2017 Wiley Periodicals, Inc.
AbstractList Large-scale functional networks have been extensively studied using resting state functional magnetic resonance imaging (fMRI). However, the pattern, organization, and function of fine-scale network activity remain largely unknown. Here, we characterized the spontaneously emerging visual cortical activity by applying independent component (IC) analysis to resting state fMRI signals exclusively within the visual cortex. In this subsystem scale, we observed about 50 spatially ICs that were reproducible within and across subjects, and analyzed their spatial patterns and temporal relationships to reveal the intrinsic parcellation and organization of the visual cortex. The resulting visual cortical parcels were aligned with the steepest gradient of cortical myelination, and were organized into functional modules segregated along the dorsal/ventral pathways and foveal/peripheral early visual areas. Cortical distance could partly explain intra-hemispherical functional connectivity, but not interhemispherical connectivity; after discounting the effect of anatomical affinity, the fine-scale functional connectivity still preserved a similar visual-stream-specific modular organization. Moreover, cortical retinotopy, folding, and cytoarchitecture impose limited constraints to the organization of resting state activity. Given these findings, we conclude that spontaneous activity patterns in the visual cortex are primarily organized by visual streams, likely reflecting feedback network interactions. Hum Brain Mapp 38:4613-4630, 2017. © 2017 Wiley Periodicals, Inc.
Large-scale functional networks have been extensively studied using resting state functional magnetic resonance imaging (fMRI). However, the pattern, organization, and function of fine-scale network activity remain largely unknown. Here, we characterized the spontaneously emerging visual cortical activity by applying independent component (IC) analysis to resting state fMRI signals exclusively within the visual cortex. In this subsystem scale, we observed about 50 spatially ICs that were reproducible within and across subjects, and analyzed their spatial patterns and temporal relationships to reveal the intrinsic parcellation and organization of the visual cortex. The resulting visual cortical parcels were aligned with the steepest gradient of cortical myelination, and were organized into functional modules segregated along the dorsal/ventral pathways and foveal/peripheral early visual areas. Cortical distance could partly explain intra-hemispherical functional connectivity, but not interhemispherical connectivity; after discounting the effect of anatomical affinity, the fine-scale functional connectivity still preserved a similar visual-stream-specific modular organization. Moreover, cortical retinotopy, folding, and cytoarchitecture impose limited constraints to the organization of resting state activity. Given these findings, we conclude that spontaneous activity patterns in the visual cortex are primarily organized by visual streams, likely reflecting feedback network interactions. Hum Brain Mapp 38:4613-4630, 2017. © 2017 Wiley Periodicals, Inc.Large-scale functional networks have been extensively studied using resting state functional magnetic resonance imaging (fMRI). However, the pattern, organization, and function of fine-scale network activity remain largely unknown. Here, we characterized the spontaneously emerging visual cortical activity by applying independent component (IC) analysis to resting state fMRI signals exclusively within the visual cortex. In this subsystem scale, we observed about 50 spatially ICs that were reproducible within and across subjects, and analyzed their spatial patterns and temporal relationships to reveal the intrinsic parcellation and organization of the visual cortex. The resulting visual cortical parcels were aligned with the steepest gradient of cortical myelination, and were organized into functional modules segregated along the dorsal/ventral pathways and foveal/peripheral early visual areas. Cortical distance could partly explain intra-hemispherical functional connectivity, but not interhemispherical connectivity; after discounting the effect of anatomical affinity, the fine-scale functional connectivity still preserved a similar visual-stream-specific modular organization. Moreover, cortical retinotopy, folding, and cytoarchitecture impose limited constraints to the organization of resting state activity. Given these findings, we conclude that spontaneous activity patterns in the visual cortex are primarily organized by visual streams, likely reflecting feedback network interactions. Hum Brain Mapp 38:4613-4630, 2017. © 2017 Wiley Periodicals, Inc.
Large‐scale functional networks have been extensively studied using resting state functional magnetic resonance imaging (fMRI). However, the pattern, organization, and function of fine‐scale network activity remain largely unknown. Here, we characterized the spontaneously emerging visual cortical activity by applying independent component (IC) analysis to resting state fMRI signals exclusively within the visual cortex. In this subsystem scale, we observed about 50 spatially ICs that were reproducible within and across subjects, and analyzed their spatial patterns and temporal relationships to reveal the intrinsic parcellation and organization of the visual cortex. The resulting visual cortical parcels were aligned with the steepest gradient of cortical myelination, and were organized into functional modules segregated along the dorsal/ventral pathways and foveal/peripheral early visual areas. Cortical distance could partly explain intra‐hemispherical functional connectivity, but not interhemispherical connectivity; after discounting the effect of anatomical affinity, the fine‐scale functional connectivity still preserved a similar visual‐stream‐specific modular organization. Moreover, cortical retinotopy, folding, and cytoarchitecture impose limited constraints to the organization of resting state activity. Given these findings, we conclude that spontaneous activity patterns in the visual cortex are primarily organized by visual streams, likely reflecting feedback network interactions. Hum Brain Mapp 38:4613–4630, 2017 . © 2017 Wiley Periodicals, Inc.
Author Liu, Zhongming
Lu, Kun‐Han
Jeong, Jun Young
Wen, Haiguang
AuthorAffiliation 1 School of Electrical and Computer Engineering Purdue University West Lafayette Indiana
2 Purdue Institute for Integrative Neuroscience, Purdue University West Lafayette Indiana
3 Weldon School of Biomedical Engineering Purdue University West Lafayette Indiana
AuthorAffiliation_xml – name: 1 School of Electrical and Computer Engineering Purdue University West Lafayette Indiana
– name: 2 Purdue Institute for Integrative Neuroscience, Purdue University West Lafayette Indiana
– name: 3 Weldon School of Biomedical Engineering Purdue University West Lafayette Indiana
Author_xml – sequence: 1
  givenname: Kun‐Han
  surname: Lu
  fullname: Lu, Kun‐Han
  organization: Purdue Institute for Integrative Neuroscience, Purdue University
– sequence: 2
  givenname: Jun Young
  surname: Jeong
  fullname: Jeong, Jun Young
  organization: Purdue University
– sequence: 3
  givenname: Haiguang
  surname: Wen
  fullname: Wen, Haiguang
  organization: Purdue Institute for Integrative Neuroscience, Purdue University
– sequence: 4
  givenname: Zhongming
  orcidid: 0000-0002-8773-4204
  surname: Liu
  fullname: Liu, Zhongming
  email: zmliu@purdue.edu
  organization: Purdue University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28608643$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtvEzEUhS3Uij5gwR9AI7GBRVq_HxukUhVSqYgFsLY8Hk_jasYOtieQ_nockiBalZUt3e8cH99zAg5CDA6AVwieIQjx-aIdzzDhUjwDxwgqMYNIkYPNnbOZogIdgZOc7yBEiEH0HBxhyaHklByD-ddlDMUEF6fcGFv8ypd140NTFq5Z-TyZobExFfer8bmJ6dYEf--6pl3vp7kkZ8b8Ahz2Zsju5e48Bd8_Xn27nM9uvny6vry4mVm2SWZZr2QrJFYd7JiVorXCCGKJ4S22hioiWScdbjkmpMe2ZxT1ghteZZiynpyC91vf5dSOrrMulGQGvUx-NGmto_H64ST4hb6NK80Y5YrRavB2Z5Dij8nlokefrRuG7RI0UlDVt6ngFX3zCL2LUwr1e5XCnFLGmKzU638T_Y2yX3IFzreATTHn5HptfTHFx01AP2gE9aZGXWvUf2qsinePFHvTp9id-08_uPX_QT3_8Hmr-A2n5ax-
CitedBy_id crossref_primary_10_1177_0284185119864843
crossref_primary_10_7554_eLife_92119
crossref_primary_10_1016_j_neuroimage_2019_116257
crossref_primary_10_1016_j_brainres_2020_146874
crossref_primary_10_1097_WNR_0000000000001620
crossref_primary_10_1097_WNR_0000000000001200
crossref_primary_10_7554_eLife_92119_4
crossref_primary_10_1007_s00429_021_02330_8
Cites_doi 10.1146/annurev.psych.57.102904.190143
10.1006/nimg.1999.0516
10.1109/TMI.2003.822821
10.1038/ncomms9885
10.1016/S0042-6989(98)00319-8
10.1016/j.neuron.2013.04.023
10.1113/jphysiol.1962.sp006837
10.1016/j.bandc.2012.01.001
10.1038/nn.4244
10.1038/nn.4135
10.1162/neco.1995.7.6.1129
10.1007/s00429-014-0961-z
10.1016/j.neuroimage.2012.02.018
10.1016/j.neuroimage.2013.05.041
10.1073/pnas.1513773113
10.1093/cercor/1.1.1
10.1073/pnas.1302581110
10.1073/pnas.0601417103
10.1038/nrn4023
10.1073/pnas.0811168106
10.1038/343068a0
10.1089/brain.2014.0331
10.7554/eLife.03952
10.1038/21371
10.1177/1073858406293182
10.1016/j.neuroimage.2013.05.079
10.1038/nature03252
10.1002/mrm.20712
10.1016/j.neuroimage.2004.12.034
10.1073/pnas.0604187103
10.1126/science.aad8127
10.1093/brain/awv083
10.1016/j.neuroimage.2013.04.127
10.1371/journal.pone.0048847
10.1016/j.neuron.2014.05.014
10.1016/j.neuron.2009.02.024
10.1093/cercor/7.2.181
10.1002/cne.902260408
10.1016/j.neuroimage.2013.09.060
10.1038/nature02078
10.1016/j.neuroimage.2009.10.003
10.1016/j.neuroimage.2011.02.077
10.1093/cercor/bhv175
10.1073/pnas.95.3.818
10.1523/JNEUROSCI.5023-14.2015
10.1523/JNEUROSCI.4715-14.2015
10.3389/fnins.2014.00339
10.1038/4580
10.1016/S0042-6989(96)00209-X
10.1093/cercor/bhs270
10.1016/j.neuroimage.2013.03.060
10.1016/j.cub.2012.09.014
10.1146/annurev.ne.18.030195.001205
10.1152/physrev.1995.75.1.107
10.1016/j.neuroimage.2005.11.018
10.1038/nrn2201
10.1016/j.neuroimage.2013.05.081
10.1523/JNEUROSCI.2180-11.2011
10.1016/j.neuroimage.2012.07.046
10.1088/1742-5468/2008/10/P10008
10.1016/j.tics.2013.09.016
10.1152/jn.00338.2011
10.1073/pnas.0135058100
10.1016/j.neuroimage.2014.06.042
10.1016/0166-2236(92)90344-8
10.1152/jn.00783.2009
10.1093/cercor/bhr291
10.1007/s10548-013-0290-1
10.1038/nature18933
10.1038/nrn3476
10.1002/mrm.1910340409
10.1093/cercor/bhm225
10.1038/nrn2619
10.1523/JNEUROSCI.5587-06.2007
10.1016/j.neuroimage.2008.10.057
10.1016/j.neuron.2005.04.026
10.1016/j.neuroimage.2014.07.019
10.1152/jn.00895.2010
10.1073/pnas.0905267106
10.1016/j.neuron.2007.10.012
10.1038/nature09178
10.1016/j.neuroimage.2010.06.010
10.1073/pnas.0701519104
10.1111/ejn.12473
10.1002/hbm.20737
10.1073/pnas.1608587113
10.1016/0959-4388(94)90066-3
10.1016/j.neuroimage.2013.02.073
10.1523/JNEUROSCI.0363-13.2013
10.1523/JNEUROSCI.5487-07.2008
10.1126/science.1252304
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.23687
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Lu et al
EISSN 1097-0193
EndPage 4630
ExternalDocumentID PMC5546954
28608643
10_1002_hbm_23687
HBM23687
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Purdue University
– fundername: NIH
  funderid: R01MH104402
– fundername: NIMH NIH HHS
  grantid: R01 MH104402
– fundername: ;
– fundername: ;
  grantid: R01MH104402
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5097-c5f98b7829d0d5c87bc7a73c3a6b2ca49385d8e2b6233f2cf541f76a6f98245f3
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 13:58:28 EDT 2025
Fri Sep 05 10:28:57 EDT 2025
Sat Jul 26 02:24:43 EDT 2025
Mon Jul 21 05:51:32 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Tue Jul 01 01:10:47 EDT 2025
Wed Jan 22 16:40:15 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords independent component analysis
fine-scale networks
visual streams
functional parcellation
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5097-c5f98b7829d0d5c87bc7a73c3a6b2ca49385d8e2b6233f2cf541f76a6f98245f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8773-4204
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5546954
PMID 28608643
PQID 1926445558
PQPubID 996345
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5546954
proquest_miscellaneous_1909233476
proquest_journals_1926445558
pubmed_primary_28608643
crossref_citationtrail_10_1002_hbm_23687
crossref_primary_10_1002_hbm_23687
wiley_primary_10_1002_hbm_23687_HBM23687
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2017
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: September 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Antonio
– name: Hoboken
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2017
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2015; 35
2009; 45
1995; 75
2007; 104
2010; 53
2013; 26
2006; 30
2010; 466
2010; 103
1995; 34
2004; 23
2015; 220
1962; 160
2011; 56
1992; 15
1990; 343
2008; 2008
1997; 7
2005; 25
2013; 14
2009; 10
2013; 17
2015; 138
2000; 11
2008; 28
2007; 8
2016; 113
2016; 352
2013; 110
2014; 8
2012; 24
1998; 95
2012; 22
2010; 4
2014; 99
2012; 63
2007; 27
1991; 1
2015; 6
2009; 62
2015; 16
2015; 4
2015; 18
2016; 19
2006; 12
2017; 27
2008; 18
2012a; 22
2005; 433
1984; 226
2011; 31
1999; 2
1995; 18
2014; 84
2012; 79
2014; 83
2007; 56
2007; 58
2005; 46
2012b; 62
1995; 7
2011; 105
2014; 93 Pt 2
2016; 6
2009; 30
2003; 425
2011; 106
2013; 33
2016; 536
2013; 78
1999; 39
1997; 37
2013; 75
2013; 80
2013; 82
2005; 54
1999; 399
2014; 39
2012; 7
2014; 102 Pt 2
2016; 26
2003; 100
2010; 52
1994; 4
2006; 103
2014; 344
2009; 106
Tootell (10.1002/hbm.23687-BIB0081|hbm23687-cit-0081) 1998; 95
Gilbert (10.1002/hbm.23687-BIB0040|hbm23687-cit-0040) 2013; 14
Glasser (10.1002/hbm.23687-BIB0043|hbm23687-cit-0043) 2014; 93 Pt 2
Azzopardi (10.1002/hbm.23687-BIB0005|hbm23687-cit-0005) 1999; 39
Baldassano (10.1002/hbm.23687-BIB0006|hbm23687-cit-0006) 2012; 63
Yamins (10.1002/hbm.23687-BIB0091|hbm23687-cit-0091) 2016; 19
Dawson (10.1002/hbm.23687-BIB0023|hbm23687-cit-0023) 2016; 6
Finn (10.1002/hbm.23687-BIB0033|hbm23687-cit-0033) 2015; 18
Goodale (10.1002/hbm.23687-BIB0045|hbm23687-cit-0045) 1992; 15
Kenet (10.1002/hbm.23687-BIB0058|hbm23687-cit-0058) 2003; 425
Fox (10.1002/hbm.23687-BIB0035|hbm23687-cit-0035) 2010; 4
Amunts (10.1002/hbm.23687-BIB0002|hbm23687-cit-0002) 2000; 11
Benson (10.1002/hbm.23687-BIB0012|hbm23687-cit-0012) 2012; 22
Gotts (10.1002/hbm.23687-BIB0046|hbm23687-cit-0046) 2013; 110
Tavor (10.1002/hbm.23687-BIB0080|hbm23687-cit-0080) 2016; 352
Doucet (10.1002/hbm.23687-BIB0028|hbm23687-cit-0028) 2011; 105
Guclu (10.1002/hbm.23687-BIB0049|hbm23687-cit-0049) 2015; 35
Markov (10.1002/hbm.23687-BIB0061|hbm23687-cit-0061) 2012; 24
Damoiseaux (10.1002/hbm.23687-BIB0021|hbm23687-cit-0021) 2006; 103
Butt (10.1002/hbm.23687-BIB0017|hbm23687-cit-0017) 2013; 33
Wandell (10.1002/hbm.23687-BIB0088|hbm23687-cit-0088) 2007; 56
Yoshimura (10.1002/hbm.23687-BIB0093|hbm23687-cit-0093) 2005; 433
Fox (10.1002/hbm.23687-BIB0037|hbm23687-cit-0037) 2006; 103
Engel (10.1002/hbm.23687-BIB0030|hbm23687-cit-0030) 1997; 7
Arcaro (10.1002/hbm.23687-BIB0004|hbm23687-cit-0004) 2015; 4
Fischl (10.1002/hbm.23687-BIB0034|hbm23687-cit-0034) 2008; 18
Glasser (10.1002/hbm.23687-BIB0044|hbm23687-cit-0044) 2016; 536
Salin (10.1002/hbm.23687-BIB0073|hbm23687-cit-0073) 1995; 75
Fox (10.1002/hbm.23687-BIB0036|hbm23687-cit-0036) 2007; 8
Bock (10.1002/hbm.23687-BIB0015|hbm23687-cit-0015) 2015; 35
Rubinov (10.1002/hbm.23687-BIB0072|hbm23687-cit-0072) 2010; 52
Baseler (10.1002/hbm.23687-BIB0008|hbm23687-cit-0008) 1997; 37
Essen (10.1002/hbm.23687-BIB0085|hbm23687-cit-0085) 2012a; 22
Poldrack (10.1002/hbm.23687-BIB0067|hbm23687-cit-0067) 2015; 6
Dijk (10.1002/hbm.23687-BIB0084|hbm23687-cit-0084) 2010; 103
Connolly (10.1002/hbm.23687-BIB0020|hbm23687-cit-0020) 1984; 226
Shen (10.1002/hbm.23687-BIB0076|hbm23687-cit-0076) 2013; 82
Hutchison (10.1002/hbm.23687-BIB0056|hbm23687-cit-0056) 2013; 80
Lewis (10.1002/hbm.23687-BIB0059|hbm23687-cit-0059) 2016; 113
Smith (10.1002/hbm.23687-BIB0078|hbm23687-cit-0078) 2013; 17
Raemaekers (10.1002/hbm.23687-BIB0068|hbm23687-cit-0068) 2014; 84
Gravel (10.1002/hbm.23687-BIB0047|hbm23687-cit-0047) 2014; 8
Hunt (10.1002/hbm.23687-BIB0055|hbm23687-cit-0055) 2016; 113
Hubel (10.1002/hbm.23687-BIB0054|hbm23687-cit-0054) 1962; 160
Rossion (10.1002/hbm.23687-BIB0071|hbm23687-cit-0071) 2012; 79
Honey (10.1002/hbm.23687-BIB0053|hbm23687-cit-0053) 2007; 104
Essen (10.1002/hbm.23687-BIB0086|hbm23687-cit-0086) 2012b; 62
Cole (10.1002/hbm.23687-BIB0019|hbm23687-cit-0019) 2014; 83
Parkes (10.1002/hbm.23687-BIB0066|hbm23687-cit-0066) 2005; 54
Greicius (10.1002/hbm.23687-BIB0048|hbm23687-cit-0048) 2003; 100
Glasser (10.1002/hbm.23687-BIB0041|hbm23687-cit-0041) 2011; 31
Felleman (10.1002/hbm.23687-BIB0031|hbm23687-cit-0031) 1991; 1
Ohiorhenuan (10.1002/hbm.23687-BIB0065|hbm23687-cit-0065) 2010; 466
Genc (10.1002/hbm.23687-BIB0038|hbm23687-cit-0038) 2016; 26
Smith (10.1002/hbm.23687-BIB0077|hbm23687-cit-0077) 2009; 106
Eickhoff (10.1002/hbm.23687-BIB0029|hbm23687-cit-0029) 2005; 25
Bassett (10.1002/hbm.23687-BIB0009|hbm23687-cit-0009) 2006; 12
Beckmann (10.1002/hbm.23687-BIB0010|hbm23687-cit-0010) 2004; 23
Destrieux (10.1002/hbm.23687-BIB0027|hbm23687-cit-0027) 2010; 53
Gibson (10.1002/hbm.23687-BIB0039|hbm23687-cit-0039) 2014; 344
Long (10.1002/hbm.23687-BIB0060|hbm23687-cit-0060) 2014; 39
Honey (10.1002/hbm.23687-BIB0052|hbm23687-cit-0052) 2009; 106
Wang (10.1002/hbm.23687-BIB0089|hbm23687-cit-0089) 2013; 78
Abdollahi (10.1002/hbm.23687-BIB0001|hbm23687-cit-0001) 2014; 99
Briggs (10.1002/hbm.23687-BIB0016|hbm23687-cit-0016) 2009; 62
Desimone (10.1002/hbm.23687-BIB0026|hbm23687-cit-0026) 1995; 18
Angela (10.1002/hbm.23687-BIB0003|hbm23687-cit-0003) 2005; 46
Jo (10.1002/hbm.23687-BIB0057|hbm23687-cit-0057) 2012; 7
Nir (10.1002/hbm.23687-BIB0064|hbm23687-cit-0064) 2006; 30
Den Heuvel (10.1002/hbm.23687-BIB0083|hbm23687-cit-0083) 2009; 30
Bell (10.1002/hbm.23687-BIB0011|hbm23687-cit-0011) 1995; 7
Striem-Amit (10.1002/hbm.23687-BIB0079|hbm23687-cit-0079) 2015; 138
Seeley (10.1002/hbm.23687-BIB0075|hbm23687-cit-0075) 2007; 27
Glasser (10.1002/hbm.23687-BIB0042|hbm23687-cit-0042) 2013; 80
Denison (10.1002/hbm.23687-BIB0025|hbm23687-cit-0025) 2014; 102 Pt 2
Das (10.1002/hbm.23687-BIB0022|hbm23687-cit-0022) 1999; 399
Rao (10.1002/hbm.23687-BIB0069|hbm23687-cit-0069) 1999; 2
Fields (10.1002/hbm.23687-BIB0032|hbm23687-cit-0032) 2015; 16
Biswal (10.1002/hbm.23687-BIB0013|hbm23687-cit-0013) 1995; 34
Calhoun (10.1002/hbm.23687-BIB0018|hbm23687-cit-0018) 2009; 45
Zwart (10.1002/hbm.23687-BIB0024|hbm23687-cit-0024) 2013; 26
Essen (10.1002/hbm.23687-BIB0087|hbm23687-cit-0087) 2013; 80
Heinzle (10.1002/hbm.23687-BIB0051|hbm23687-cit-0051) 2011; 56
Baldassano (10.1002/hbm.23687-BIB0007|hbm23687-cit-0007) 2013; 75
Hasson (10.1002/hbm.23687-BIB0050|hbm23687-cit-0050) 2008; 28
Ronan (10.1002/hbm.23687-BIB0070|hbm23687-cit-0070) 2015; 220
Blondel (10.1002/hbm.23687-BIB0014|hbm23687-cit-0014) 2008; 2008
Schiller (10.1002/hbm.23687-BIB0074|hbm23687-cit-0074) 1990; 343
Yeo (10.1002/hbm.23687-BIB0092|hbm23687-cit-0092) 2011; 106
Ungerleider (10.1002/hbm.23687-BIB0082|hbm23687-cit-0082) 1994; 4
Martin (10.1002/hbm.23687-BIB0062|hbm23687-cit-0062) 2007; 58
Wilf (10.1002/hbm.23687-BIB0090|hbm23687-cit-0090) 2017; 27
Nassi (10.1002/hbm.23687-BIB0063|hbm23687-cit-0063) 2009; 10
15944135 - Neuron. 2005 May 19;46(4):681-92
19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
23507385 - Neuroimage. 2013 Jul 15;75:228-37
26648521 - Nat Commun. 2015 Dec 09;6:8885
1374953 - Trends Neurosci. 1992 Jan;15(1):20-5
23747961 - Neuroimage. 2013 Nov 15;82:403-15
17329432 - J Neurosci. 2007 Feb 28;27(9):2349-56
24727982 - Science. 2014 May 2;344(6183):1252304
22846660 - Neuroimage. 2012 Nov 15;63(3):1099-106
24107953 - J Neurosci. 2013 Oct 9;33(41):16209-19
19889849 - J Neurophysiol. 2010 Jan;103(1):297-321
23707587 - Neuroimage. 2013 Oct 15;80:360-78
26906502 - Nat Neurosci. 2016 Mar;19(3):356-65
24971513 - Neuroimage. 2014 Oct 1;99:509-24
23660870 - Brain Topogr. 2013 Oct;26(4):525-37
7584893 - Neural Comput. 1995 Nov;7(6):1129-59
18079129 - Cereb Cortex. 2008 Aug;18(8):1973-80
26157000 - J Neurosci. 2015 Jul 8;35(27):10005-14
21376818 - Neuroimage. 2011 Jun 1;56(3):1426-36
23684880 - Neuroimage. 2013 Oct 15;80:62-79
10385116 - Nature. 1999 Jun 17;399(6737):655-61
15729343 - Nature. 2005 Feb 24;433(7028):868-73
19059344 - Neuroimage. 2009 Mar;45(1 Suppl):S163-72
24099850 - Neuroimage. 2014 Jan 1;84:911-21
23010748 - Cereb Cortex. 2014 Jan;24(1):17-36
20601940 - Nature. 2010 Jul 29;466(7306):617-21
18322098 - J Neurosci. 2008 Mar 5;28(10):2539-50
7831395 - Physiol Rev. 1995 Jan;75(1):107-54
17964252 - Neuron. 2007 Oct 25;56(2):366-83
27830650 - Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):13510-13515
7605061 - Annu Rev Neurosci. 1995;18:193-222
10195184 - Nat Neurosci. 1999 Jan;2(1):79-87
8524021 - Magn Reson Med. 1995 Oct;34(4):537-41
16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53
19235882 - Hum Brain Mapp. 2009 Oct;30(10):3127-41
25400541 - Front Neurosci. 2014 Oct 31;8:339
27124457 - Science. 2016 Apr 8;352(6282):216-20
19188601 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40
26787906 - Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):E606-15
22366334 - Neuroimage. 2012 Oct 1;62(4):2222-31
23791200 - Neuron. 2013 Jun 19;78(6):1116-26
2296292 - Nature. 1990 Jan 4;343(6253):68-70
16276507 - Magn Reson Med. 2005 Dec;54(6):1465-72
23567887 - Neuroimage. 2014 Jun;93 Pt 2:165-75
27437579 - Nature. 2016 Aug 11;536(7615):171-178
17079517 - Neuroscientist. 2006 Dec;12(6):512-23
24238796 - Trends Cogn Sci. 2013 Dec;17(12):666-82
6747034 - J Comp Neurol. 1984 Jul 10;226(4):544-64
25869851 - Brain. 2015 Jun;138(Pt 6):1679-95
25038435 - Neuroimage. 2014 Nov 15;102 Pt 2:358-69
14964560 - IEEE Trans Med Imaging. 2004 Feb;23(2):137-52
25695154 - Elife. 2015 Feb 19;4:null
9448246 - Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):818-24
1822724 - Cereb Cortex. 1991 Jan-Feb;1(1):1-47
20592951 - Front Syst Neurosci. 2010 Jun 17;4:19
17548818 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10240-5
10686118 - Neuroimage. 2000 Jan;11(1):66-84
16788060 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10046-51
22330606 - Brain Cogn. 2012 Jul;79(2):138-57
19819337 - Neuroimage. 2010 Sep;52(3):1059-69
9156212 - Vision Res. 1997 Mar;37(6):675-90
20547229 - Neuroimage. 2010 Oct 15;53(1):1-15
26457551 - Nat Neurosci. 2015 Nov;18(11):1664-71
25511709 - Brain Struct Funct. 2015 Sep;220(5):2475-83
24417550 - Eur J Neurosci. 2014 Apr;39(8):1332-42
9087826 - Cereb Cortex. 1997 Mar;7(2):181-92
12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8
26574501 - Cereb Cortex. 2017 Jan 1;27(1):750-763
23144995 - PLoS One. 2012;7(11):e48847
14449617 - J Physiol. 1962 Jan;160:106-54
19376073 - Neuron. 2009 Apr 16;62(1):135-46
23668970 - Neuroimage. 2013 Oct 15;80:105-24
26354906 - J Neurosci. 2015 Sep 9;35(36):12366-82
8038571 - Curr Opin Neurobiol. 1994 Apr;4(2):157-65
10343800 - Vision Res. 1999 Jun;39(13):2179-89
21653723 - J Neurophysiol. 2011 Sep;106(3):1125-65
17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11
26271111 - Cereb Cortex. 2016 Sep;26(9):3719-3731
22047963 - Cereb Cortex. 2012 Oct;22(10):2241-62
16413791 - Neuroimage. 2006 May 1;30(4):1313-24
21832190 - J Neurosci. 2011 Aug 10;31(32):11597-616
21430278 - J Neurophysiol. 2011 Jun;105(6):2753-63
26415043 - Brain Connect. 2016 Feb;6(1):57-75
26585800 - Nat Rev Neurosci. 2015 Dec;16(12 ):756-67
14586468 - Nature. 2003 Oct 30;425(6961):954-6
23041195 - Curr Biol. 2012 Nov 6;22(21):2081-5
15850749 - Neuroimage. 2005 May 1;25(4):1325-35
24991964 - Neuron. 2014 Jul 2;83(1):238-51
23959883 - Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):E3435-44
23595013 - Nat Rev Neurosci. 2013 May;14(5):350-63
16968210 - Annu Rev Psychol. 2007;58:25-45
19352403 - Nat Rev Neurosci. 2009 May;10(5):360-72
References_xml – volume: 46
  start-page: 681
  year: 2005
  end-page: 692
  article-title: Uncertainty, neuromodulation, and attention
  publication-title: Neuron
– volume: 103
  start-page: 13848
  year: 2006
  end-page: 13853
  article-title: Consistent resting‐state networks across healthy subjects
  publication-title: Proc Natl Acad Sci USA
– volume: 79
  start-page: 138
  year: 2012
  end-page: 157
  article-title: Defining face perception areas in the human brain: A large‐scale factorial fMRI face localizer analysis
  publication-title: Brain Cogn
– volume: 83
  start-page: 238
  year: 2014
  end-page: 251
  article-title: Intrinsic and task‐evoked network architectures of the human brain
  publication-title: Neuron
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar mri
  publication-title: Magn Reson Med
– volume: 103
  start-page: 10046
  year: 2006
  end-page: 10051
  article-title: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems
  publication-title: Proc Natl Acad Sci USA
– volume: 78
  start-page: 1116
  year: 2013
  end-page: 1126
  article-title: The relationship of anatomical and functional connectivity to resting‐state connectivity in primate somatosensory cortex
  publication-title: Neuron
– volume: 2008
  start-page: P10008
  year: 2008
  article-title: Fast unfolding of communities in large networks
  publication-title: J Stat Mech‐Theory Exp
– volume: 56
  start-page: 366
  year: 2007
  end-page: 383
  article-title: Visual field maps in human cortex
  publication-title: Neuron
– volume: 26
  start-page: 525
  year: 2013
  end-page: 537
  article-title: Independent sources of spontaneous BOLD fluctuation along the visual pathway
  publication-title: Brain Topogr
– volume: 53
  start-page: 1
  year: 2010
  end-page: 15
  article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature
  publication-title: Neuroimage
– volume: 10
  start-page: 360
  year: 2009
  end-page: 372
  article-title: Parallel processing strategies of the primate visual system
  publication-title: Nat Rev Neurosci
– volume: 106
  start-page: 1125
  year: 2011
  end-page: 1165
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J Neurophysiol
– volume: 8
  start-page: 700
  year: 2007
  end-page: 711
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nat Rev Neurosci
– volume: 138
  start-page: 1679
  year: 2015
  end-page: 1695
  article-title: Functional connectivity of visual cortex in the blind follows retinotopic organization principles
  publication-title: Brain
– volume: 4
  start-page: 157
  year: 1994
  end-page: 165
  article-title: What’ and ‘where’ in the human brain
  publication-title: Curr Opin Neurobiol
– volume: 63
  start-page: 1099
  year: 2012
  end-page: 1106
  article-title: Voxel‐level functional connectivity using spatial regularization
  publication-title: Neuroimage
– volume: 45
  start-page: S163
  year: 2009
  end-page: S172
  article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
  publication-title: Neuroimage
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc Natl Acad Sci USA
– volume: 26
  start-page: 3719
  year: 2016
  end-page: 3731
  article-title: Functional Connectivity Patterns of Visual Cortex Reflect its Anatomical Organization
  publication-title: Cereb Cortex
– volume: 35
  start-page: 12366
  year: 2015
  end-page: 12382
  article-title: Resting‐State Retinotopic Organization in the Absence of Retinal Input and Visual Experience
  publication-title: J Neurosci
– volume: 110
  start-page: E3435
  year: 2013
  end-page: E3444
  article-title: Two distinct forms of functional lateralization in the human brain
  publication-title: Proc Natl Acad Sci USA
– volume: 106
  start-page: 2035
  year: 2009
  end-page: 2040
  article-title: Predicting human resting‐state functional connectivity from structural connectivity
  publication-title: Proc Natl Acad Sci USA
– volume: 433
  start-page: 868
  year: 2005
  end-page: 873
  article-title: Excitatory cortical neurons form fine‐scale functional networks
  publication-title: Nature
– volume: 75
  start-page: 228
  year: 2013
  end-page: 237
  article-title: Differential connectivity within the Parahippocampal Place Area
  publication-title: Neuroimage
– volume: 6
  year: 2015
  article-title: Long‐term neural and physiological phenotyping of a single human
  publication-title: Nat Commun
– volume: 17
  start-page: 666
  year: 2013
  end-page: 682
  article-title: Functional connectomics from resting‐state fMRI
  publication-title: Trends Cogn Sci
– volume: 103
  start-page: 297
  year: 2010
  end-page: 321
  article-title: Intrinsic functional connectivity as a tool for human connectomics: Theory, properties, and optimization
  publication-title: J Neurophysiol
– volume: 160
  start-page: 106
  year: 1962
  end-page: 154
  article-title: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
  publication-title: J Physiol
– volume: 226
  start-page: 544
  year: 1984
  end-page: 564
  article-title: The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey
  publication-title: J Comp Neurol
– volume: 15
  start-page: 20
  year: 1992
  end-page: 25
  article-title: Separate visual pathways for perception and action
  publication-title: Trends Neurosci
– volume: 2
  start-page: 79
  year: 1999
  end-page: 87
  article-title: Predictive coding in the visual cortex: A functional interpretation of some extra‐classical receptive‐field effects
  publication-title: Nat Neurosci
– volume: 4
  year: 2015
  article-title: Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization
  publication-title: Elife
– volume: 39
  start-page: 2179
  year: 1999
  end-page: 2189
  article-title: Uneven mapping of magnocellular and parvocellular projections from the lateral geniculate nucleus to the striate cortex in the macaque monkey
  publication-title: Vis Res
– volume: 24
  start-page: 17
  year: 2012
  end-page: 36
  article-title: A weighted and directed interareal connectivity matrix for macaque cerebral cortex
  publication-title: Cereb Cortex
– volume: 33
  start-page: 16209
  year: 2013
  end-page: 16219
  article-title: The fine‐scale functional correlation of striate cortex in sighted and blind people
  publication-title: J Neurosci
– volume: 56
  start-page: 1426
  year: 2011
  end-page: 1436
  article-title: Topographically specific functional connectivity between visual field maps in the human brain
  publication-title: Neuroimage
– volume: 75
  start-page: 107
  year: 1995
  end-page: 154
  article-title: Corticocortical connections in the visual system: Structure and function
  publication-title: Physiol Rev
– volume: 105
  start-page: 2753
  year: 2011
  end-page: 2763
  article-title: Brain activity at rest: A multiscale hierarchical functional organization
  publication-title: J Neurophysiol
– volume: 82
  start-page: 403
  year: 2013
  end-page: 415
  article-title: Groupwise whole‐brain parcellation from resting‐state fMRI data for network node identification
  publication-title: Neuroimage
– volume: 11
  start-page: 66
  year: 2000
  end-page: 84
  article-title: Brodmann's areas 17 and 18 brought into stereotaxic space‐where and how variable?
  publication-title: Neuroimage
– volume: 99
  start-page: 509
  year: 2014
  end-page: 524
  article-title: Correspondences between retinotopic areas and myelin maps in human visual cortex
  publication-title: Neuroimage
– volume: 93 Pt 2
  start-page: 165
  year: 2014
  end-page: 175
  article-title: Trends and properties of human cerebral cortex: Correlations with cortical myelin content
  publication-title: Neuroimage
– volume: 37
  start-page: 675
  year: 1997
  end-page: 690
  article-title: M and P components of the VEP and their visual field distribution
  publication-title: Vis Res
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  article-title: The WU‐Minn Human Connectome Project: An overview
  publication-title: Neuroimage
– volume: 399
  start-page: 655
  year: 1999
  end-page: 661
  article-title: Topography of contextual modulations mediated by short‐range interactions in primary visual cortex
  publication-title: Nature
– volume: 30
  start-page: 1313
  year: 2006
  end-page: 1324
  article-title: Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation
  publication-title: Neuroimage
– volume: 23
  start-page: 137
  year: 2004
  end-page: 152
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE Trans Med Imaging
– volume: 22
  start-page: 2081
  year: 2012
  end-page: 2085
  article-title: The retinotopic organization of striate cortex is well predicted by surface topology
  publication-title: Curr Biol
– volume: 95
  start-page: 818
  year: 1998
  end-page: 824
  article-title: The representation of the ipsilateral visual field in human cerebral cortex
  publication-title: Proc Natl Acad Sci USA
– volume: 425
  start-page: 954
  year: 2003
  end-page: 956
  article-title: Spontaneously emerging cortical representations of visual attributes
  publication-title: Nature
– volume: 344
  start-page: 1252304
  year: 2014
  article-title: Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain
  publication-title: Science
– volume: 27
  start-page: 2349
  year: 2007
  end-page: 2356
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control
  publication-title: J Neurosci
– volume: 54
  start-page: 1465
  year: 2005
  end-page: 1472
  article-title: Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla
  publication-title: Magn Reson Med
– volume: 62
  start-page: 2222
  year: 2012b
  end-page: 2231
  article-title: The Human Connectome Project: A data acquisition perspective
  publication-title: Neuroimage
– volume: 113
  start-page: E606
  year: 2016
  end-page: E615
  article-title: Stimulus‐induced visual cortical networks are recapitulated by spontaneous local and interareal synchronization
  publication-title: Proc Natl Acad Sci USA
– volume: 31
  start-page: 11597
  year: 2011
  end-page: 11616
  article-title: Mapping human cortical areas in vivo based on myelin content as revealed by T1‐ and T2‐weighted MRI
  publication-title: J Neurosci
– volume: 22
  start-page: 2241
  year: 2012a
  end-page: 2262
  article-title: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface‐based atlases
  publication-title: Cereb Cortex
– volume: 8
  start-page: 339
  year: 2014
  article-title: Cortical connective field estimates from resting state fMRI activity
  publication-title: Front Neurosci
– volume: 352
  start-page: 216
  year: 2016
  end-page: 220
  article-title: Task‐free MRI predicts individual differences in brain activity during task performance
  publication-title: Science
– volume: 18
  start-page: 1973
  year: 2008
  end-page: 1980
  article-title: Cortical folding patterns and predicting cytoarchitecture
  publication-title: Cereb Cortex
– volume: 39
  start-page: 1332
  year: 2014
  end-page: 1342
  article-title: Functional connectivity‐based parcellation of the human sensorimotor cortex
  publication-title: Eur J Neurosci
– volume: 80
  start-page: 360
  year: 2013
  end-page: 378
  article-title: Dynamic functional connectivity: Promise, issues, and interpretations
  publication-title: Neuroimage
– volume: 536
  start-page: 171
  year: 2016
  end-page: 178
  article-title: A multi‐modal parcellation of human cerebral cortex
  publication-title: Nature
– volume: 35
  start-page: 10005
  year: 2015
  end-page: 10014
  article-title: Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream
  publication-title: J Neurosci
– volume: 30
  start-page: 3127
  year: 2009
  end-page: 3141
  article-title: Functionally linked resting‐state networks reflect the underlying structural connectivity architecture of the human brain
  publication-title: Hum Brain Mapp
– volume: 12
  start-page: 512
  year: 2006
  end-page: 523
  article-title: Small‐world brain networks
  publication-title: Neuroscientist
– volume: 62
  start-page: 135
  year: 2009
  end-page: 146
  article-title: Parallel processing in the corticogeniculate pathway of the macaque monkey
  publication-title: Neuron
– volume: 58
  start-page: 25
  year: 2007
  end-page: 45
  article-title: The representation of object concepts in the brain
  publication-title: Annu Rev Psychol
– volume: 18
  start-page: 1664
  year: 2015
  end-page: 1671
  article-title: Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity
  publication-title: Nat Neurosci
– volume: 113
  start-page: 13510
  year: 2016
  end-page: 13515
  article-title: Relationships between cortical myeloarchitecture and electrophysiological networks
  publication-title: Proc Natl Acad Sci USA
– volume: 343
  start-page: 68
  year: 1990
  end-page: 70
  article-title: Functions of the colour‐opponent and broad‐band channels of the visual system
  publication-title: Nature
– volume: 18
  start-page: 193
  year: 1995
  end-page: 222
  article-title: Neural mechanisms of selective visual attention
  publication-title: Annu Rev Neurosci
– volume: 7
  start-page: e48847
  year: 2012
  article-title: Quantifying agreement between anatomical and functional interhemispheric correspondences in the resting brain
  publication-title: PloS One
– volume: 19
  start-page: 356
  year: 2016
  end-page: 365
  article-title: Using goal‐driven deep learning models to understand sensory cortex
  publication-title: Nat Neurosci
– volume: 104
  start-page: 10240
  year: 2007
  end-page: 10245
  article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales
  publication-title: Proc Natl Acad Sci USA
– volume: 25
  start-page: 1325
  year: 2005
  end-page: 1335
  article-title: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data
  publication-title: Neuroimage
– volume: 1
  start-page: 1
  year: 1991
  end-page: 47
  article-title: Distributed hierarchical processing in the primate cerebral cortex
  publication-title: Cereb Cortex
– volume: 14
  start-page: 350
  year: 2013
  end-page: 363
  article-title: Top‐down influences on visual processing
  publication-title: Nat Rev Neurosci
– volume: 100
  start-page: 253
  year: 2003
  end-page: 258
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: 181
  year: 1997
  end-page: 192
  article-title: Retinotopic organization in human visual cortex and the spatial precision of functional MRI
  publication-title: Cereb Cortex
– volume: 6
  start-page: 57
  year: 2016
  end-page: 75
  article-title: Partial Correlation‐Based Retinotopically Organized Resting‐State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance
  publication-title: Brain Connect
– volume: 4
  start-page: 19
  year: 2010
  article-title: Clinical applications of resting state functional connectivity
  publication-title: Front Syst Neurosci
– volume: 52
  start-page: 1059
  year: 2010
  end-page: 1069
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: Neuroimage
– volume: 466
  start-page: 617
  year: 2010
  end-page: 621
  article-title: Sparse coding and high‐order correlations in fine‐scale cortical networks
  publication-title: Nature
– volume: 28
  start-page: 2539
  year: 2008
  end-page: 2550
  article-title: A hierarchy of temporal receptive windows in human cortex
  publication-title: J Neurosci
– volume: 7
  start-page: 1129
  year: 1995
  end-page: 1159
  article-title: An information‐maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput
– volume: 84
  start-page: 911
  year: 2014
  end-page: 921
  article-title: Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study
  publication-title: Neuroimage
– volume: 220
  start-page: 2475
  year: 2015
  end-page: 2483
  article-title: From genes to folds: A review of cortical gyrification theory
  publication-title: Brain Struct Funct
– volume: 102 Pt 2
  start-page: 358
  year: 2014
  end-page: 369
  article-title: Functional mapping of the magnocellular and parvocellular subdivisions of human LGN
  publication-title: Neuroimage
– volume: 16
  start-page: 756
  year: 2015
  end-page: 767
  article-title: A new mechanism of nervous system plasticity: Activity‐dependent myelination
  publication-title: Nat Rev Neurosci
– volume: 27
  start-page: 750
  year: 2017
  end-page: 763
  article-title: Spontaneously Emerging Patterns in Human Visual Cortex Reflect Responses to Naturalistic Sensory Stimuli
  publication-title: Cereb Cortex
– volume: 58
  start-page: 25
  year: 2007
  ident: 10.1002/hbm.23687-BIB0062|hbm23687-cit-0062
  article-title: The representation of object concepts in the brain
  publication-title: Annu Rev Psychol
  doi: 10.1146/annurev.psych.57.102904.190143
– volume: 11
  start-page: 66
  year: 2000
  ident: 10.1002/hbm.23687-BIB0002|hbm23687-cit-0002
  article-title: Brodmann's areas 17 and 18 brought into stereotaxic space-where and how variable?
  publication-title: Neuroimage
  doi: 10.1006/nimg.1999.0516
– volume: 23
  start-page: 137
  year: 2004
  ident: 10.1002/hbm.23687-BIB0010|hbm23687-cit-0010
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2003.822821
– volume: 6
  year: 2015
  ident: 10.1002/hbm.23687-BIB0067|hbm23687-cit-0067
  article-title: Long-term neural and physiological phenotyping of a single human
  publication-title: Nat Commun
  doi: 10.1038/ncomms9885
– volume: 39
  start-page: 2179
  year: 1999
  ident: 10.1002/hbm.23687-BIB0005|hbm23687-cit-0005
  article-title: Uneven mapping of magnocellular and parvocellular projections from the lateral geniculate nucleus to the striate cortex in the macaque monkey
  publication-title: Vis Res
  doi: 10.1016/S0042-6989(98)00319-8
– volume: 78
  start-page: 1116
  year: 2013
  ident: 10.1002/hbm.23687-BIB0089|hbm23687-cit-0089
  article-title: The relationship of anatomical and functional connectivity to resting-state connectivity in primate somatosensory cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.04.023
– volume: 160
  start-page: 106
  year: 1962
  ident: 10.1002/hbm.23687-BIB0054|hbm23687-cit-0054
  article-title: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1962.sp006837
– volume: 79
  start-page: 138
  year: 2012
  ident: 10.1002/hbm.23687-BIB0071|hbm23687-cit-0071
  article-title: Defining face perception areas in the human brain: A large-scale factorial fMRI face localizer analysis
  publication-title: Brain Cogn
  doi: 10.1016/j.bandc.2012.01.001
– volume: 19
  start-page: 356
  year: 2016
  ident: 10.1002/hbm.23687-BIB0091|hbm23687-cit-0091
  article-title: Using goal-driven deep learning models to understand sensory cortex
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4244
– volume: 18
  start-page: 1664
  year: 2015
  ident: 10.1002/hbm.23687-BIB0033|hbm23687-cit-0033
  article-title: Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4135
– volume: 27
  start-page: 750
  year: 2017
  ident: 10.1002/hbm.23687-BIB0090|hbm23687-cit-0090
  article-title: Spontaneously Emerging Patterns in Human Visual Cortex Reflect Responses to Naturalistic Sensory Stimuli
  publication-title: Cereb Cortex
– volume: 7
  start-page: 1129
  year: 1995
  ident: 10.1002/hbm.23687-BIB0011|hbm23687-cit-0011
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput
  doi: 10.1162/neco.1995.7.6.1129
– volume: 220
  start-page: 2475
  year: 2015
  ident: 10.1002/hbm.23687-BIB0070|hbm23687-cit-0070
  article-title: From genes to folds: A review of cortical gyrification theory
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-014-0961-z
– volume: 62
  start-page: 2222
  year: 2012b
  ident: 10.1002/hbm.23687-BIB0086|hbm23687-cit-0086
  article-title: The Human Connectome Project: A data acquisition perspective
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.018
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1002/hbm.23687-BIB0087|hbm23687-cit-0087
  article-title: The WU-Minn Human Connectome Project: An overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 113
  start-page: E606
  year: 2016
  ident: 10.1002/hbm.23687-BIB0059|hbm23687-cit-0059
  article-title: Stimulus-induced visual cortical networks are recapitulated by spontaneous local and interareal synchronization
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1513773113
– volume: 1
  start-page: 1
  year: 1991
  ident: 10.1002/hbm.23687-BIB0031|hbm23687-cit-0031
  article-title: Distributed hierarchical processing in the primate cerebral cortex
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/1.1.1
– volume: 110
  start-page: E3435
  year: 2013
  ident: 10.1002/hbm.23687-BIB0046|hbm23687-cit-0046
  article-title: Two distinct forms of functional lateralization in the human brain
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1302581110
– volume: 103
  start-page: 13848
  year: 2006
  ident: 10.1002/hbm.23687-BIB0021|hbm23687-cit-0021
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0601417103
– volume: 16
  start-page: 756
  year: 2015
  ident: 10.1002/hbm.23687-BIB0032|hbm23687-cit-0032
  article-title: A new mechanism of nervous system plasticity: Activity-dependent myelination
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn4023
– volume: 106
  start-page: 2035
  year: 2009
  ident: 10.1002/hbm.23687-BIB0052|hbm23687-cit-0052
  article-title: Predicting human resting-state functional connectivity from structural connectivity
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0811168106
– volume: 343
  start-page: 68
  year: 1990
  ident: 10.1002/hbm.23687-BIB0074|hbm23687-cit-0074
  article-title: Functions of the colour-opponent and broad-band channels of the visual system
  publication-title: Nature
  doi: 10.1038/343068a0
– volume: 6
  start-page: 57
  year: 2016
  ident: 10.1002/hbm.23687-BIB0023|hbm23687-cit-0023
  article-title: Partial Correlation-Based Retinotopically Organized Resting-State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance
  publication-title: Brain Connect
  doi: 10.1089/brain.2014.0331
– volume: 4
  year: 2015
  ident: 10.1002/hbm.23687-BIB0004|hbm23687-cit-0004
  article-title: Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization
  publication-title: Elife
  doi: 10.7554/eLife.03952
– volume: 399
  start-page: 655
  year: 1999
  ident: 10.1002/hbm.23687-BIB0022|hbm23687-cit-0022
  article-title: Topography of contextual modulations mediated by short-range interactions in primary visual cortex
  publication-title: Nature
  doi: 10.1038/21371
– volume: 12
  start-page: 512
  year: 2006
  ident: 10.1002/hbm.23687-BIB0009|hbm23687-cit-0009
  article-title: Small-world brain networks
  publication-title: Neuroscientist
  doi: 10.1177/1073858406293182
– volume: 80
  start-page: 360
  year: 2013
  ident: 10.1002/hbm.23687-BIB0056|hbm23687-cit-0056
  article-title: Dynamic functional connectivity: Promise, issues, and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.079
– volume: 433
  start-page: 868
  year: 2005
  ident: 10.1002/hbm.23687-BIB0093|hbm23687-cit-0093
  article-title: Excitatory cortical neurons form fine-scale functional networks
  publication-title: Nature
  doi: 10.1038/nature03252
– volume: 54
  start-page: 1465
  year: 2005
  ident: 10.1002/hbm.23687-BIB0066|hbm23687-cit-0066
  article-title: Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20712
– volume: 25
  start-page: 1325
  year: 2005
  ident: 10.1002/hbm.23687-BIB0029|hbm23687-cit-0029
  article-title: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.12.034
– volume: 103
  start-page: 10046
  year: 2006
  ident: 10.1002/hbm.23687-BIB0037|hbm23687-cit-0037
  article-title: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0604187103
– volume: 352
  start-page: 216
  year: 2016
  ident: 10.1002/hbm.23687-BIB0080|hbm23687-cit-0080
  article-title: Task-free MRI predicts individual differences in brain activity during task performance
  publication-title: Science
  doi: 10.1126/science.aad8127
– volume: 138
  start-page: 1679
  year: 2015
  ident: 10.1002/hbm.23687-BIB0079|hbm23687-cit-0079
  article-title: Functional connectivity of visual cortex in the blind follows retinotopic organization principles
  publication-title: Brain
  doi: 10.1093/brain/awv083
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1002/hbm.23687-BIB0042|hbm23687-cit-0042
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 7
  start-page: e48847
  year: 2012
  ident: 10.1002/hbm.23687-BIB0057|hbm23687-cit-0057
  article-title: Quantifying agreement between anatomical and functional interhemispheric correspondences in the resting brain
  publication-title: PloS One
  doi: 10.1371/journal.pone.0048847
– volume: 83
  start-page: 238
  year: 2014
  ident: 10.1002/hbm.23687-BIB0019|hbm23687-cit-0019
  article-title: Intrinsic and task-evoked network architectures of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.05.014
– volume: 62
  start-page: 135
  year: 2009
  ident: 10.1002/hbm.23687-BIB0016|hbm23687-cit-0016
  article-title: Parallel processing in the corticogeniculate pathway of the macaque monkey
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.02.024
– volume: 7
  start-page: 181
  year: 1997
  ident: 10.1002/hbm.23687-BIB0030|hbm23687-cit-0030
  article-title: Retinotopic organization in human visual cortex and the spatial precision of functional MRI
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/7.2.181
– volume: 226
  start-page: 544
  year: 1984
  ident: 10.1002/hbm.23687-BIB0020|hbm23687-cit-0020
  article-title: The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey
  publication-title: J Comp Neurol
  doi: 10.1002/cne.902260408
– volume: 84
  start-page: 911
  year: 2014
  ident: 10.1002/hbm.23687-BIB0068|hbm23687-cit-0068
  article-title: Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.09.060
– volume: 425
  start-page: 954
  year: 2003
  ident: 10.1002/hbm.23687-BIB0058|hbm23687-cit-0058
  article-title: Spontaneously emerging cortical representations of visual attributes
  publication-title: Nature
  doi: 10.1038/nature02078
– volume: 52
  start-page: 1059
  year: 2010
  ident: 10.1002/hbm.23687-BIB0072|hbm23687-cit-0072
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 56
  start-page: 1426
  year: 2011
  ident: 10.1002/hbm.23687-BIB0051|hbm23687-cit-0051
  article-title: Topographically specific functional connectivity between visual field maps in the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.02.077
– volume: 26
  start-page: 3719
  year: 2016
  ident: 10.1002/hbm.23687-BIB0038|hbm23687-cit-0038
  article-title: Functional Connectivity Patterns of Visual Cortex Reflect its Anatomical Organization
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhv175
– volume: 4
  start-page: 19
  year: 2010
  ident: 10.1002/hbm.23687-BIB0035|hbm23687-cit-0035
  article-title: Clinical applications of resting state functional connectivity
  publication-title: Front Syst Neurosci
– volume: 95
  start-page: 818
  year: 1998
  ident: 10.1002/hbm.23687-BIB0081|hbm23687-cit-0081
  article-title: The representation of the ipsilateral visual field in human cerebral cortex
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.3.818
– volume: 35
  start-page: 10005
  year: 2015
  ident: 10.1002/hbm.23687-BIB0049|hbm23687-cit-0049
  article-title: Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5023-14.2015
– volume: 35
  start-page: 12366
  year: 2015
  ident: 10.1002/hbm.23687-BIB0015|hbm23687-cit-0015
  article-title: Resting-State Retinotopic Organization in the Absence of Retinal Input and Visual Experience
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4715-14.2015
– volume: 8
  start-page: 339
  year: 2014
  ident: 10.1002/hbm.23687-BIB0047|hbm23687-cit-0047
  article-title: Cortical connective field estimates from resting state fMRI activity
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2014.00339
– volume: 2
  start-page: 79
  year: 1999
  ident: 10.1002/hbm.23687-BIB0069|hbm23687-cit-0069
  article-title: Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects
  publication-title: Nat Neurosci
  doi: 10.1038/4580
– volume: 37
  start-page: 675
  year: 1997
  ident: 10.1002/hbm.23687-BIB0008|hbm23687-cit-0008
  article-title: M and P components of the VEP and their visual field distribution
  publication-title: Vis Res
  doi: 10.1016/S0042-6989(96)00209-X
– volume: 24
  start-page: 17
  year: 2012
  ident: 10.1002/hbm.23687-BIB0061|hbm23687-cit-0061
  article-title: A weighted and directed interareal connectivity matrix for macaque cerebral cortex
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhs270
– volume: 93 Pt 2
  start-page: 165
  year: 2014
  ident: 10.1002/hbm.23687-BIB0043|hbm23687-cit-0043
  article-title: Trends and properties of human cerebral cortex: Correlations with cortical myelin content
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.060
– volume: 22
  start-page: 2081
  year: 2012
  ident: 10.1002/hbm.23687-BIB0012|hbm23687-cit-0012
  article-title: The retinotopic organization of striate cortex is well predicted by surface topology
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2012.09.014
– volume: 18
  start-page: 193
  year: 1995
  ident: 10.1002/hbm.23687-BIB0026|hbm23687-cit-0026
  article-title: Neural mechanisms of selective visual attention
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.ne.18.030195.001205
– volume: 75
  start-page: 107
  year: 1995
  ident: 10.1002/hbm.23687-BIB0073|hbm23687-cit-0073
  article-title: Corticocortical connections in the visual system: Structure and function
  publication-title: Physiol Rev
  doi: 10.1152/physrev.1995.75.1.107
– volume: 30
  start-page: 1313
  year: 2006
  ident: 10.1002/hbm.23687-BIB0064|hbm23687-cit-0064
  article-title: Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.11.018
– volume: 8
  start-page: 700
  year: 2007
  ident: 10.1002/hbm.23687-BIB0036|hbm23687-cit-0036
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2201
– volume: 82
  start-page: 403
  year: 2013
  ident: 10.1002/hbm.23687-BIB0076|hbm23687-cit-0076
  article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.081
– volume: 31
  start-page: 11597
  year: 2011
  ident: 10.1002/hbm.23687-BIB0041|hbm23687-cit-0041
  article-title: Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2180-11.2011
– volume: 63
  start-page: 1099
  year: 2012
  ident: 10.1002/hbm.23687-BIB0006|hbm23687-cit-0006
  article-title: Voxel-level functional connectivity using spatial regularization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.07.046
– volume: 2008
  start-page: P10008
  year: 2008
  ident: 10.1002/hbm.23687-BIB0014|hbm23687-cit-0014
  article-title: Fast unfolding of communities in large networks
  publication-title: J Stat Mech-Theory Exp
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 17
  start-page: 666
  year: 2013
  ident: 10.1002/hbm.23687-BIB0078|hbm23687-cit-0078
  article-title: Functional connectomics from resting-state fMRI
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2013.09.016
– volume: 106
  start-page: 1125
  year: 2011
  ident: 10.1002/hbm.23687-BIB0092|hbm23687-cit-0092
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00338.2011
– volume: 100
  start-page: 253
  year: 2003
  ident: 10.1002/hbm.23687-BIB0048|hbm23687-cit-0048
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0135058100
– volume: 99
  start-page: 509
  year: 2014
  ident: 10.1002/hbm.23687-BIB0001|hbm23687-cit-0001
  article-title: Correspondences between retinotopic areas and myelin maps in human visual cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.06.042
– volume: 15
  start-page: 20
  year: 1992
  ident: 10.1002/hbm.23687-BIB0045|hbm23687-cit-0045
  article-title: Separate visual pathways for perception and action
  publication-title: Trends Neurosci
  doi: 10.1016/0166-2236(92)90344-8
– volume: 103
  start-page: 297
  year: 2010
  ident: 10.1002/hbm.23687-BIB0084|hbm23687-cit-0084
  article-title: Intrinsic functional connectivity as a tool for human connectomics: Theory, properties, and optimization
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00783.2009
– volume: 22
  start-page: 2241
  year: 2012a
  ident: 10.1002/hbm.23687-BIB0085|hbm23687-cit-0085
  article-title: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhr291
– volume: 26
  start-page: 525
  year: 2013
  ident: 10.1002/hbm.23687-BIB0024|hbm23687-cit-0024
  article-title: Independent sources of spontaneous BOLD fluctuation along the visual pathway
  publication-title: Brain Topogr
  doi: 10.1007/s10548-013-0290-1
– volume: 536
  start-page: 171
  year: 2016
  ident: 10.1002/hbm.23687-BIB0044|hbm23687-cit-0044
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
  doi: 10.1038/nature18933
– volume: 14
  start-page: 350
  year: 2013
  ident: 10.1002/hbm.23687-BIB0040|hbm23687-cit-0040
  article-title: Top-down influences on visual processing
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3476
– volume: 34
  start-page: 537
  year: 1995
  ident: 10.1002/hbm.23687-BIB0013|hbm23687-cit-0013
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar mri
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910340409
– volume: 18
  start-page: 1973
  year: 2008
  ident: 10.1002/hbm.23687-BIB0034|hbm23687-cit-0034
  article-title: Cortical folding patterns and predicting cytoarchitecture
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhm225
– volume: 10
  start-page: 360
  year: 2009
  ident: 10.1002/hbm.23687-BIB0063|hbm23687-cit-0063
  article-title: Parallel processing strategies of the primate visual system
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2619
– volume: 27
  start-page: 2349
  year: 2007
  ident: 10.1002/hbm.23687-BIB0075|hbm23687-cit-0075
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5587-06.2007
– volume: 45
  start-page: S163
  year: 2009
  ident: 10.1002/hbm.23687-BIB0018|hbm23687-cit-0018
  article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.057
– volume: 46
  start-page: 681
  year: 2005
  ident: 10.1002/hbm.23687-BIB0003|hbm23687-cit-0003
  article-title: Uncertainty, neuromodulation, and attention
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.04.026
– volume: 102 Pt 2
  start-page: 358
  year: 2014
  ident: 10.1002/hbm.23687-BIB0025|hbm23687-cit-0025
  article-title: Functional mapping of the magnocellular and parvocellular subdivisions of human LGN
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.07.019
– volume: 105
  start-page: 2753
  year: 2011
  ident: 10.1002/hbm.23687-BIB0028|hbm23687-cit-0028
  article-title: Brain activity at rest: A multiscale hierarchical functional organization
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00895.2010
– volume: 106
  start-page: 13040
  year: 2009
  ident: 10.1002/hbm.23687-BIB0077|hbm23687-cit-0077
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0905267106
– volume: 56
  start-page: 366
  year: 2007
  ident: 10.1002/hbm.23687-BIB0088|hbm23687-cit-0088
  article-title: Visual field maps in human cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.10.012
– volume: 466
  start-page: 617
  year: 2010
  ident: 10.1002/hbm.23687-BIB0065|hbm23687-cit-0065
  article-title: Sparse coding and high-order correlations in fine-scale cortical networks
  publication-title: Nature
  doi: 10.1038/nature09178
– volume: 53
  start-page: 1
  year: 2010
  ident: 10.1002/hbm.23687-BIB0027|hbm23687-cit-0027
  article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.010
– volume: 104
  start-page: 10240
  year: 2007
  ident: 10.1002/hbm.23687-BIB0053|hbm23687-cit-0053
  article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0701519104
– volume: 39
  start-page: 1332
  year: 2014
  ident: 10.1002/hbm.23687-BIB0060|hbm23687-cit-0060
  article-title: Functional connectivity-based parcellation of the human sensorimotor cortex
  publication-title: Eur J Neurosci
  doi: 10.1111/ejn.12473
– volume: 30
  start-page: 3127
  year: 2009
  ident: 10.1002/hbm.23687-BIB0083|hbm23687-cit-0083
  article-title: Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20737
– volume: 113
  start-page: 13510
  year: 2016
  ident: 10.1002/hbm.23687-BIB0055|hbm23687-cit-0055
  article-title: Relationships between cortical myeloarchitecture and electrophysiological networks
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1608587113
– volume: 4
  start-page: 157
  year: 1994
  ident: 10.1002/hbm.23687-BIB0082|hbm23687-cit-0082
  article-title: What’ and ‘where’ in the human brain
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/0959-4388(94)90066-3
– volume: 75
  start-page: 228
  year: 2013
  ident: 10.1002/hbm.23687-BIB0007|hbm23687-cit-0007
  article-title: Differential connectivity within the Parahippocampal Place Area
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.02.073
– volume: 33
  start-page: 16209
  year: 2013
  ident: 10.1002/hbm.23687-BIB0017|hbm23687-cit-0017
  article-title: The fine-scale functional correlation of striate cortex in sighted and blind people
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0363-13.2013
– volume: 28
  start-page: 2539
  year: 2008
  ident: 10.1002/hbm.23687-BIB0050|hbm23687-cit-0050
  article-title: A hierarchy of temporal receptive windows in human cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5487-07.2008
– volume: 344
  start-page: 1252304
  year: 2014
  ident: 10.1002/hbm.23687-BIB0039|hbm23687-cit-0039
  article-title: Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain
  publication-title: Science
  doi: 10.1126/science.1252304
– reference: 14964560 - IEEE Trans Med Imaging. 2004 Feb;23(2):137-52
– reference: 23791200 - Neuron. 2013 Jun 19;78(6):1116-26
– reference: 19235882 - Hum Brain Mapp. 2009 Oct;30(10):3127-41
– reference: 17964252 - Neuron. 2007 Oct 25;56(2):366-83
– reference: 27830650 - Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):13510-13515
– reference: 24991964 - Neuron. 2014 Jul 2;83(1):238-51
– reference: 26415043 - Brain Connect. 2016 Feb;6(1):57-75
– reference: 20601940 - Nature. 2010 Jul 29;466(7306):617-21
– reference: 21653723 - J Neurophysiol. 2011 Sep;106(3):1125-65
– reference: 24238796 - Trends Cogn Sci. 2013 Dec;17(12):666-82
– reference: 19059344 - Neuroimage. 2009 Mar;45(1 Suppl):S163-72
– reference: 23959883 - Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):E3435-44
– reference: 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53
– reference: 14449617 - J Physiol. 1962 Jan;160:106-54
– reference: 25695154 - Elife. 2015 Feb 19;4:null
– reference: 6747034 - J Comp Neurol. 1984 Jul 10;226(4):544-64
– reference: 7831395 - Physiol Rev. 1995 Jan;75(1):107-54
– reference: 9087826 - Cereb Cortex. 1997 Mar;7(2):181-92
– reference: 21430278 - J Neurophysiol. 2011 Jun;105(6):2753-63
– reference: 22846660 - Neuroimage. 2012 Nov 15;63(3):1099-106
– reference: 26574501 - Cereb Cortex. 2017 Jan 1;27(1):750-763
– reference: 24971513 - Neuroimage. 2014 Oct 1;99:509-24
– reference: 26354906 - J Neurosci. 2015 Sep 9;35(36):12366-82
– reference: 23747961 - Neuroimage. 2013 Nov 15;82:403-15
– reference: 23668970 - Neuroimage. 2013 Oct 15;80:105-24
– reference: 15944135 - Neuron. 2005 May 19;46(4):681-92
– reference: 19376073 - Neuron. 2009 Apr 16;62(1):135-46
– reference: 26271111 - Cereb Cortex. 2016 Sep;26(9):3719-3731
– reference: 21376818 - Neuroimage. 2011 Jun 1;56(3):1426-36
– reference: 16413791 - Neuroimage. 2006 May 1;30(4):1313-24
– reference: 7605061 - Annu Rev Neurosci. 1995;18:193-222
– reference: 22047963 - Cereb Cortex. 2012 Oct;22(10):2241-62
– reference: 25038435 - Neuroimage. 2014 Nov 15;102 Pt 2:358-69
– reference: 23707587 - Neuroimage. 2013 Oct 15;80:360-78
– reference: 10385116 - Nature. 1999 Jun 17;399(6737):655-61
– reference: 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8
– reference: 23684880 - Neuroimage. 2013 Oct 15;80:62-79
– reference: 24727982 - Science. 2014 May 2;344(6183):1252304
– reference: 16968210 - Annu Rev Psychol. 2007;58:25-45
– reference: 26906502 - Nat Neurosci. 2016 Mar;19(3):356-65
– reference: 25400541 - Front Neurosci. 2014 Oct 31;8:339
– reference: 19188601 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40
– reference: 23144995 - PLoS One. 2012;7(11):e48847
– reference: 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
– reference: 24417550 - Eur J Neurosci. 2014 Apr;39(8):1332-42
– reference: 19352403 - Nat Rev Neurosci. 2009 May;10(5):360-72
– reference: 17329432 - J Neurosci. 2007 Feb 28;27(9):2349-56
– reference: 27437579 - Nature. 2016 Aug 11;536(7615):171-178
– reference: 16276507 - Magn Reson Med. 2005 Dec;54(6):1465-72
– reference: 23660870 - Brain Topogr. 2013 Oct;26(4):525-37
– reference: 22330606 - Brain Cogn. 2012 Jul;79(2):138-57
– reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41
– reference: 19819337 - Neuroimage. 2010 Sep;52(3):1059-69
– reference: 15850749 - Neuroimage. 2005 May 1;25(4):1325-35
– reference: 16788060 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10046-51
– reference: 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11
– reference: 10686118 - Neuroimage. 2000 Jan;11(1):66-84
– reference: 18079129 - Cereb Cortex. 2008 Aug;18(8):1973-80
– reference: 10195184 - Nat Neurosci. 1999 Jan;2(1):79-87
– reference: 25869851 - Brain. 2015 Jun;138(Pt 6):1679-95
– reference: 9448246 - Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):818-24
– reference: 17548818 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10240-5
– reference: 25511709 - Brain Struct Funct. 2015 Sep;220(5):2475-83
– reference: 15729343 - Nature. 2005 Feb 24;433(7028):868-73
– reference: 21832190 - J Neurosci. 2011 Aug 10;31(32):11597-616
– reference: 24107953 - J Neurosci. 2013 Oct 9;33(41):16209-19
– reference: 17079517 - Neuroscientist. 2006 Dec;12(6):512-23
– reference: 23507385 - Neuroimage. 2013 Jul 15;75:228-37
– reference: 1822724 - Cereb Cortex. 1991 Jan-Feb;1(1):1-47
– reference: 20592951 - Front Syst Neurosci. 2010 Jun 17;4:19
– reference: 23567887 - Neuroimage. 2014 Jun;93 Pt 2:165-75
– reference: 23010748 - Cereb Cortex. 2014 Jan;24(1):17-36
– reference: 7584893 - Neural Comput. 1995 Nov;7(6):1129-59
– reference: 1374953 - Trends Neurosci. 1992 Jan;15(1):20-5
– reference: 2296292 - Nature. 1990 Jan 4;343(6253):68-70
– reference: 8038571 - Curr Opin Neurobiol. 1994 Apr;4(2):157-65
– reference: 26157000 - J Neurosci. 2015 Jul 8;35(27):10005-14
– reference: 10343800 - Vision Res. 1999 Jun;39(13):2179-89
– reference: 19889849 - J Neurophysiol. 2010 Jan;103(1):297-321
– reference: 20547229 - Neuroimage. 2010 Oct 15;53(1):1-15
– reference: 27124457 - Science. 2016 Apr 8;352(6282):216-20
– reference: 22366334 - Neuroimage. 2012 Oct 1;62(4):2222-31
– reference: 9156212 - Vision Res. 1997 Mar;37(6):675-90
– reference: 26787906 - Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):E606-15
– reference: 23595013 - Nat Rev Neurosci. 2013 May;14(5):350-63
– reference: 14586468 - Nature. 2003 Oct 30;425(6961):954-6
– reference: 26457551 - Nat Neurosci. 2015 Nov;18(11):1664-71
– reference: 26648521 - Nat Commun. 2015 Dec 09;6:8885
– reference: 26585800 - Nat Rev Neurosci. 2015 Dec;16(12 ):756-67
– reference: 24099850 - Neuroimage. 2014 Jan 1;84:911-21
– reference: 18322098 - J Neurosci. 2008 Mar 5;28(10):2539-50
– reference: 23041195 - Curr Biol. 2012 Nov 6;22(21):2081-5
SSID ssj0011501
Score 2.2784908
Snippet Large‐scale functional networks have been extensively studied using resting state functional magnetic resonance imaging (fMRI). However, the pattern,...
Large-scale functional networks have been extensively studied using resting state functional magnetic resonance imaging (fMRI). However, the pattern,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4613
SubjectTerms Activity patterns
Brain
Brain architecture
Brain mapping
Connectome - methods
Cortex (temporal)
Feedback
fine‐scale networks
Functional magnetic resonance imaging
functional parcellation
Humans
independent component analysis
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Modules
Myelination
Neural networks
Neuroimaging
Reproducibility of Results
Rest
Streams
Topography
Visual cortex
Visual Cortex - diagnostic imaging
Visual Cortex - physiology
Visual observation
Visual pathways
Visual Pathways - diagnostic imaging
Visual Pathways - physiology
Visual perception
Visual Perception - physiology
Visual signals
visual streams
Visual task performance
Title Spontaneous activity in the visual cortex is organized by visual streams
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23687
https://www.ncbi.nlm.nih.gov/pubmed/28608643
https://www.proquest.com/docview/1926445558
https://www.proquest.com/docview/1909233476
https://pubmed.ncbi.nlm.nih.gov/PMC5546954
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPSAu0AePhRYZhBCXbBPbcWL1VB7VCmk5AJV6QIpsx1FXZbNVs4va_npmnAcsBQlxiSJ5nPg19jf2zGeAl65UeZKamM4Hq0iaJIkM-bqiwSJtrhWuGhSNPP2oJifyw2l6ugGHfSxMyw8xbLiRZoT5mhTc2ObgJ2nomZ2PuVA5RZInQhFv_rtPA3UUAZ1gbOESG2mcgXtWoZgfDDnX16JbAPO2n-Sv-DUsQMf34Wtf9Nbv5Hy8Wtqxu_mN1fE_67YF9zpgyo7akbQNG77egd2jGo3y-TV7xYKraNiD34E70-5Efhcmny8WNQJMv1g1jIIk6C4KNqsZAkv2fdas8JuOHHqv2Kxh7R1SN75k9rpPpWgVM28ewMnx-y9vJ1F3O0PkEGRk-Kx0bhFg6DIuU5dn1mUmE04YZbkzUos8LXPPLQIsUXFXpTKpMmUUZuMyrcRD2KwXtX8MrHTG-hTbmaONHCtrdZJXidOV8Np4p0bwuu-nwnXU5XSDxreiJV3mBTZYERpsBC8G0YuWr-NPQnt9ZxedyjYFQl3EhkR_NoLnQzIqG52gtM2IMjECYiEzLNKjdmwMf-G5QvNQihFka6NmECAi7_WUenYWCL3JU1CnEqsZBsXfC15M3kzDy5N_F30KdzlBkeAXtweby8uV30cgtbTPgsb8APpIGp8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXHi2PhQIGIcQl28R2HFviUh5VgG4P0Eq9VJHtOOoKNluRXUT76xk7D1gKEuISRfI4scce-xt7_BngmS2FTFId-_3BKuI6SSLtY13RYeFGKoGzhj-NPNkX-SF_f5QercHL_ixMyw8xLLh5ywjjtTdwvyC9_ZM19MTMxpQJmV2CyxyBhne93nwcyKM81AnuFk6ykcIxuOcViun2kHV1NroAMS9GSv6KYMMUtHsDjvvCt5Enn8fLhRnb8994Hf-3djfheodNyU7bmW7Bmqs3YHOnRr98dkaekxAtGpbhN-DKpNuU34T80-m8Rozp5suG-HMS_joKMq0JYkvybdos8ZvWx_R-J9OGtNdInbuSmLM-1R9Y0bPmNhzuvj14nUfdBQ2RRZyR4bNS0iDGUGVcplZmxmY6Y5ZpYajVXDGZltJRgxiLVdRWKU-qTGiB2ShPK3YH1ut57e4BKa02LkVFU3STY2GMSmSVWFUxp7SzYgQv-oYqbMde7i_R-FK0vMu0QIUVQWEjeDqInraUHX8S2upbu-istikQ7SI89AxoI3gyJKO9-U2UVo0oEyMmZjzDIt1tO8fwFyoFeoicjSBb6TaDgOfyXk2ppyeB09sHC6qUYzVDr_h7wYv81SS83P930cdwNT-Y7BV77_Y_PIBr1COTECa3BeuLr0v3EHHVwjwK5vMDkLUevg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bb9MwFIePxpAmXrhsXAoDDEKIl3SJ4zi2eBqXqlw6IWDSHpAi27G1amtakRax_fUcOxcoAwnxElXySeM458Sf4-OfAZ6YkoskU7GfH3QRU0kSKZ_rigMWpoXk2Gv41ciTAz4-ZG-PsqMNeN6thWn0IfoPbj4ywvvaB_iidHs_RUOP9WxIUy7yS3CZcSQJT0Qfe-0oTzphtIV9bCTxFdzJCsV0rz91vTO6QJgXEyV_BdjQA42uwZeu7k3iyclwtdRDc_6brON_3tx1uNqSKdlvXOkGbNhqG3b2KxyVz87IUxJyRcNH-G3YmrRT8jsw_rSYV0iYdr6qiV8l4TejINOKIFmSb9N6hf9pfEbvdzKtSbOJ1LktiT7rSv1yFTWrb8Lh6PXnl-Oo3Z4hMkgZOR6dFBoJQ5ZxmRmRa5OrPDWp4poaxWQqslJYqpGwUkeNy1jicq44nkZZ5tJbsFnNK3sHSGmUthm2M8VBcsy1lolwiZEutVJZwwfwrHtOhWm1y_0WGqdFo7pMC2ywIjTYAB73potGsONPRrvdwy7amK0LZF2EQ69_NoBHfTFGm59CaZoRbWIk4pTlWKXbjW_0V6ECvRABbwD5mtf0Bl7Je72kmh4HRW-fKigzhrcZnOLvFS_GLybhx91_N30IWx9ejYr3bw7e3YMr1GNJyJHbhc3l15W9j1C11A9C8PwAJ10dbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spontaneous+activity+in+the+visual+cortex+is+organized+by+visual+streams&rft.jtitle=Human+brain+mapping&rft.au=Lu%2C+Kun-Han&rft.au=Jeong%2C+Jun+Young&rft.au=Wen%2C+Haiguang&rft.au=Liu%2C+Zhongming&rft.date=2017-09-01&rft.issn=1097-0193&rft.eissn=1097-0193&rft.volume=38&rft.issue=9&rft.spage=4613&rft_id=info:doi/10.1002%2Fhbm.23687&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon