NMR visibility of deuterium‐labeled liver glycogen in vivo

Purpose Deuterium metabolic imaging (DMI) combined with [6,6’‐2H2]‐glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical shifts of [6,6’‐2H2]‐glucose and [6,6’‐2H2]‐glycogen in the 2H NMR spectrum make unambiguous detection and separation difficult in viv...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 86; no. 1; pp. 62 - 68
Main Authors De Feyter, Henk M., Thomas, Monique A., Behar, Kevin L., Graaf, Robin A.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Deuterium metabolic imaging (DMI) combined with [6,6’‐2H2]‐glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical shifts of [6,6’‐2H2]‐glucose and [6,6’‐2H2]‐glycogen in the 2H NMR spectrum make unambiguous detection and separation difficult in vivo, in contrast to comparable approaches using 13C MRS. Here the NMR visibility of 2H‐labeled glycogen is investigated to better understand its potential contribution to the observed signal in liver following administration of [6,6’‐2H2]‐glucose. Methods Mice were provided drinking water containing 2H‐labeled glucose. High‐resolution NMR analyses was performed of isolated liver glycogen in solution, before and after the addition of the glucose‐releasing enzyme amyloglucosidase. Results 2H‐labeled glycogen was barely detectable in solution using 2H NMR because of the very short T2 (<2 ms) of 2H‐labeled glycogen, giving a spectral line width that is more than five times as broad as that of 13C‐labeled glycogen (T2 = ~10 ms). Conclusion 2H‐labeled glycogen is not detectable with 2H MRS(I) under in vivo conditions, leaving 13C MRS as the preferred technique for in vivo detection of glycogen.
AbstractList Purpose Deuterium metabolic imaging (DMI) combined with [6,6’‐2H2]‐glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical shifts of [6,6’‐2H2]‐glucose and [6,6’‐2H2]‐glycogen in the 2H NMR spectrum make unambiguous detection and separation difficult in vivo, in contrast to comparable approaches using 13C MRS. Here the NMR visibility of 2H‐labeled glycogen is investigated to better understand its potential contribution to the observed signal in liver following administration of [6,6’‐2H2]‐glucose. Methods Mice were provided drinking water containing 2H‐labeled glucose. High‐resolution NMR analyses was performed of isolated liver glycogen in solution, before and after the addition of the glucose‐releasing enzyme amyloglucosidase. Results 2H‐labeled glycogen was barely detectable in solution using 2H NMR because of the very short T2 (<2 ms) of 2H‐labeled glycogen, giving a spectral line width that is more than five times as broad as that of 13C‐labeled glycogen (T2 = ~10 ms). Conclusion 2H‐labeled glycogen is not detectable with 2H MRS(I) under in vivo conditions, leaving 13C MRS as the preferred technique for in vivo detection of glycogen.
Deuterium metabolic imaging (DMI) combined with [6,6'-2 H2 ]-glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical shifts of [6,6'-2 H2 ]-glucose and [6,6'-2 H2 ]-glycogen in the 2 H NMR spectrum make unambiguous detection and separation difficult in vivo, in contrast to comparable approaches using 13 C MRS. Here the NMR visibility of 2 H-labeled glycogen is investigated to better understand its potential contribution to the observed signal in liver following administration of [6,6'-2 H2 ]-glucose.PURPOSEDeuterium metabolic imaging (DMI) combined with [6,6'-2 H2 ]-glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical shifts of [6,6'-2 H2 ]-glucose and [6,6'-2 H2 ]-glycogen in the 2 H NMR spectrum make unambiguous detection and separation difficult in vivo, in contrast to comparable approaches using 13 C MRS. Here the NMR visibility of 2 H-labeled glycogen is investigated to better understand its potential contribution to the observed signal in liver following administration of [6,6'-2 H2 ]-glucose.Mice were provided drinking water containing 2 H-labeled glucose. High-resolution NMR analyses was performed of isolated liver glycogen in solution, before and after the addition of the glucose-releasing enzyme amyloglucosidase.METHODSMice were provided drinking water containing 2 H-labeled glucose. High-resolution NMR analyses was performed of isolated liver glycogen in solution, before and after the addition of the glucose-releasing enzyme amyloglucosidase.2 H-labeled glycogen was barely detectable in solution using 2 H NMR because of the very short T2 (<2 ms) of 2 H-labeled glycogen, giving a spectral line width that is more than five times as broad as that of 13 C-labeled glycogen (T2 = ~10 ms).RESULTS2 H-labeled glycogen was barely detectable in solution using 2 H NMR because of the very short T2 (<2 ms) of 2 H-labeled glycogen, giving a spectral line width that is more than five times as broad as that of 13 C-labeled glycogen (T2 = ~10 ms).2 H-labeled glycogen is not detectable with 2 H MRS(I) under in vivo conditions, leaving 13 C MRS as the preferred technique for in vivo detection of glycogen.CONCLUSION2 H-labeled glycogen is not detectable with 2 H MRS(I) under in vivo conditions, leaving 13 C MRS as the preferred technique for in vivo detection of glycogen.
PurposeDeuterium metabolic imaging (DMI) combined with [6,6’‐2H2]‐glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical shifts of [6,6’‐2H2]‐glucose and [6,6’‐2H2]‐glycogen in the 2H NMR spectrum make unambiguous detection and separation difficult in vivo, in contrast to comparable approaches using 13C MRS. Here the NMR visibility of 2H‐labeled glycogen is investigated to better understand its potential contribution to the observed signal in liver following administration of [6,6’‐2H2]‐glucose.MethodsMice were provided drinking water containing 2H‐labeled glucose. High‐resolution NMR analyses was performed of isolated liver glycogen in solution, before and after the addition of the glucose‐releasing enzyme amyloglucosidase.Results2H‐labeled glycogen was barely detectable in solution using 2H NMR because of the very short T2 (<2 ms) of 2H‐labeled glycogen, giving a spectral line width that is more than five times as broad as that of 13C‐labeled glycogen (T2 = ~10 ms).Conclusion2H‐labeled glycogen is not detectable with 2H MRS(I) under in vivo conditions, leaving 13C MRS as the preferred technique for in vivo detection of glycogen.
Deuterium metabolic imaging (DMI) combined with [6,6'- H ]-glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical shifts of [6,6'- H ]-glucose and [6,6'- H ]-glycogen in the H NMR spectrum make unambiguous detection and separation difficult in vivo, in contrast to comparable approaches using C MRS. Here the NMR visibility of H-labeled glycogen is investigated to better understand its potential contribution to the observed signal in liver following administration of [6,6'- H ]-glucose. Mice were provided drinking water containing H-labeled glucose. High-resolution NMR analyses was performed of isolated liver glycogen in solution, before and after the addition of the glucose-releasing enzyme amyloglucosidase. H-labeled glycogen was barely detectable in solution using H NMR because of the very short T (<2 ms) of H-labeled glycogen, giving a spectral line width that is more than five times as broad as that of C-labeled glycogen (T = ~10 ms). H-labeled glycogen is not detectable with H MRS(I) under in vivo conditions, leaving C MRS as the preferred technique for in vivo detection of glycogen.
Author De Feyter, Henk M.
Graaf, Robin A.
Thomas, Monique A.
Behar, Kevin L.
Author_xml – sequence: 1
  givenname: Henk M.
  orcidid: 0000-0001-6111-0316
  surname: De Feyter
  fullname: De Feyter, Henk M.
  email: henk.defeyter@yale.edu
  organization: Yale University School of Medicine
– sequence: 2
  givenname: Monique A.
  surname: Thomas
  fullname: Thomas, Monique A.
  organization: Yale University School of Medicine
– sequence: 3
  givenname: Kevin L.
  surname: Behar
  fullname: Behar, Kevin L.
  organization: Yale University School of Medicine
– sequence: 4
  givenname: Robin A.
  surname: Graaf
  fullname: Graaf, Robin A.
  organization: Yale University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33590529$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9KHTEYxYMo9XrbhS9QBrqxi9H8m8kEiiBSbcHbgrTrkEm-uY1kJjaZuXJ3PkKfsU9i9Kq0QrvKIr9zOOc7e2h7CAMgtE_wIcGYHvWxP6SNIGILzUhFaUkrybfRDAuOS0Yk30V7KV1hjKUU_BXaZaySuKJyhj58WVwWK5dc67wb10XoCgvTCNFN_e_bX1634MEW3q0gFku_NmEJQ-GGrFmF12in0z7Bm8d3jr6fffx2-qm8-Hr--fTkojQVlqJs2wY3lQHGamF50zVW19TWjeVWcsGZrgXnRndS1KyVpG1IpQ1owYnVuRVnc3S88b2e2h6sgWGM2qvr6Hod1ypop_7-GdwPtQwr1WBc8Rpng4NHgxh-TpBG1btkwHs9QJiSolxiwnDNWUbfvUCvwhSHXE_R3IbWjOSYc_T2z0TPUZ4Om4H3G8DEkFKE7hkhWN2PpvJo6mG0zB69YI0b9ejCfRnn_6e4cR7W_7ZWi8vFRnEHyTWofg
CitedBy_id crossref_primary_10_1002_mrm_29696
crossref_primary_10_1002_nbm_5325
crossref_primary_10_1002_jmri_29437
crossref_primary_10_3390_metabo13040577
crossref_primary_10_1002_nbm_5123
crossref_primary_10_1002_nbm_4890
crossref_primary_10_1016_j_fmre_2022_10_010
crossref_primary_10_1002_mrm_29053
crossref_primary_10_3390_metabo12121223
crossref_primary_10_1002_bem_22382
crossref_primary_10_1002_nbm_5309
crossref_primary_10_3390_metabo11060376
crossref_primary_10_1016_j_ymeth_2022_07_014
crossref_primary_10_3390_ijms25094698
crossref_primary_10_1158_1078_0432_CCR_23_1635
crossref_primary_10_1002_asia_202201063
crossref_primary_10_3389_fphys_2023_1198578
crossref_primary_10_3390_metabo11110751
crossref_primary_10_1016_j_neuroimage_2021_118639
crossref_primary_10_1002_nbm_4926
crossref_primary_10_1002_nbm_4603
crossref_primary_10_1002_nbm_4989
crossref_primary_10_3390_metabo11090570
crossref_primary_10_1002_nbm_4569
crossref_primary_10_1186_s41747_024_00464_y
crossref_primary_10_1097_RLI_0000000000000820
crossref_primary_10_1111_dom_16001
Cites_doi 10.1006/jmra.1996.0110
10.1021/bi00481a009
10.1002/mrm.1910310518
10.1056/NEJM199001253220403
10.2337/db09-0226
10.1126/science.7292005
10.1038/s41366-020-0533-7
10.1126/sciadv.aat7314
10.1021/bi00274a015
10.1109/42.75611
10.1021/jp963338h
10.1021/ja00184a013
10.3389/fphy.2017.00021
10.1148/radiol.2019191242
10.1016/0008-6215(91)80001-4
10.1074/jbc.R117.802843
10.1177/0271678X17706444
10.1002/mrm.1910310602
ContentType Journal Article
Copyright 2021 International Society for Magnetic Resonance in Medicine
2021 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2021 International Society for Magnetic Resonance in Medicine
– notice: 2021 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.28717
DatabaseName CrossRef
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Biochemistry Abstracts 1
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 68
ExternalDocumentID PMC8005460
33590529
10_1002_mrm_28717
MRM28717
Genre technicalNote
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Cambridge Isotope Laboratories
– fundername: NIBIB
  funderid: R01‐EB025840
– fundername: NIBIB NIH HHS
  grantid: R01 EB025840
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c5097-bb8085ce3367d48f8da62d68d4d94743a6744caf9763b91b815acea741da87143
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 18:20:30 EDT 2025
Fri Jul 11 14:26:49 EDT 2025
Fri Jul 25 12:06:57 EDT 2025
Thu Apr 03 07:04:46 EDT 2025
Thu Apr 24 22:55:55 EDT 2025
Tue Jul 01 04:26:59 EDT 2025
Wed Aug 20 07:26:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords DMI
deuterium
glycogen
Language English
License 2021 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5097-bb8085ce3367d48f8da62d68d4d94743a6744caf9763b91b815acea741da87143
Notes Funding information
National Institutes of Health grant no. NIBIB R01‐EB025840, and a research grant program from Cambridge Isotope Laboratories
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6111-0316
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8005460
PMID 33590529
PQID 2509263176
PQPubID 1016391
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8005460
proquest_miscellaneous_2490130643
proquest_journals_2509263176
pubmed_primary_33590529
crossref_primary_10_1002_mrm_28717
crossref_citationtrail_10_1002_mrm_28717
wiley_primary_10_1002_mrm_28717_MRM28717
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
1991; 220
2009; 58
2018; 4
2018; 293
2017; 37
1981; 214
1991; 10
1990; 29
1997; 101
1989; 111
2008
1996
2020; 44
2019; 294
1990; 322
1983; 22
1994; 31
1988
e_1_2_6_21_1
e_1_2_6_10_1
e_1_2_6_20_1
Nelson DL (e_1_2_6_4_1) 2008
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
Bolinger L (e_1_2_6_11_1) 1988
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_3_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – volume: 111
  start-page: 481
  year: 1989
  end-page: 485
  article-title: Solution deuterium NMR quadrupolar relaxation study of heme mobility in myoglobin
  publication-title: J Am Chem Soc
– volume: 322
  start-page: 223
  year: 1990
  end-page: 228
  article-title: Quantitation of muscle glycogen synthesis in normal subjects and subjects with non‐insulin‐dependent diabetes by 13C nuclear magnetic resonance spectroscopy
  publication-title: N Engl J Med
– volume: 44
  start-page: 1417
  year: 2020
  end-page: 1427
  article-title: Glucose metabolism in brown adipose tissue determined by deuterium metabolic imaging in rats
  publication-title: Int J Obes
– start-page: 162
  year: 1988
  end-page: 166
  article-title: A multiple‐frequency coil with a highly uniform B1 field
  publication-title: JMR
– volume: 101
  start-page: 3246
  year: 1997
  end-page: 3250
  article-title: Direct determination of NMR correlation times from spin−lattice and spin−spin relaxation times
  publication-title: J Phys Chem A
– volume: 4
  year: 2018
  article-title: Deuterium metabolic imaging (DMI) for MRI‐based 3D mapping of metabolism in vivo
  publication-title: Sci Adv
– year: 2008
– volume: 214
  start-page: 660
  year: 1981
  end-page: 662
  article-title: In vivo carbon‐13 nuclear magnetic resonance studies of mammals
  publication-title: Science
– volume: 10
  start-page: 53
  year: 1991
  end-page: 65
  article-title: Parameter relations for the Shinnar‐Le Roux selective excitation pulse design algorithm [NMR imaging]
  publication-title: IEEE Trans Med Imaging
– volume: 22
  start-page: 1087
  year: 1983
  end-page: 1094
  article-title: Structure and metabolism of mammalian liver glycogen monitored by carbon‐13 nuclear magnetic resonance
  publication-title: Biochemistry
– volume: 37
  start-page: 3518
  year: 2017
  end-page: 3530
  article-title: Quantitative assessment of brain glucose metabolic rates using in vivo deuterium magnetic resonance spectroscopy
  publication-title: J Cereb Blood Flow Metab
– volume: 29
  start-page: 6815
  year: 1990
  end-page: 6820
  article-title: 13C NMR relaxation times of hepatic glycogen in vitro and in vivo
  publication-title: Biochemistry
– volume: 58
  start-page: 1978
  year: 2009
  end-page: 1985
  article-title: Human brain glycogen metabolism during and after hypoglycemia
  publication-title: Diabetes
– volume: 5
  year: 2017
  article-title: 13C MRS studies of the control of hepatic glycogen metabolism at high magnetic fields
  publication-title: Front Phys
– volume: 220
  start-page: 1
  year: 1991
  end-page: 9
  article-title: Assignment of the 1H chemical shifts of glycogen
  publication-title: Carbohyd Res
– volume: 293
  start-page: 7089
  year: 2018
  end-page: 7098
  article-title: The dynamic life of the glycogen granule
  publication-title: J Biol Chem
– volume: 31
  start-page: 576
  year: 1994
  end-page: 579
  article-title: Proton NMR observation of glycogen in vivo
  publication-title: Magn Reson Med
– volume: 31
  start-page: 583
  year: 1994
  end-page: 588
  article-title: Validation of 13C NMR measurements of liver glycogen in vivo
  publication-title: Magn Reson Med
– volume: 294
  start-page: 289
  year: 2019
  end-page: 296
  article-title: Measuring tumor glycolytic flux in vivo by using fast deuterium MRI
  publication-title: Radiology
– start-page: 133
  year: 1996
  end-page: 137
  article-title: Improved performance of frequency‐swept pulses using offset‐independent adiabaticity
  publication-title: J Magn Reson A
– ident: e_1_2_6_13_1
  doi: 10.1006/jmra.1996.0110
– ident: e_1_2_6_14_1
  doi: 10.1021/bi00481a009
– ident: e_1_2_6_10_1
  doi: 10.1002/mrm.1910310518
– ident: e_1_2_6_7_1
  doi: 10.1056/NEJM199001253220403
– ident: e_1_2_6_8_1
  doi: 10.2337/db09-0226
– ident: e_1_2_6_5_1
  doi: 10.1126/science.7292005
– ident: e_1_2_6_18_1
  doi: 10.1038/s41366-020-0533-7
– ident: e_1_2_6_2_1
  doi: 10.1126/sciadv.aat7314
– ident: e_1_2_6_21_1
  doi: 10.1021/bi00274a015
– volume-title: Lehninger Principles of Biochemistry
  year: 2008
  ident: e_1_2_6_4_1
– start-page: 162
  year: 1988
  ident: e_1_2_6_11_1
  article-title: A multiple‐frequency coil with a highly uniform B1 field
  publication-title: JMR
– ident: e_1_2_6_12_1
  doi: 10.1109/42.75611
– ident: e_1_2_6_15_1
  doi: 10.1021/jp963338h
– ident: e_1_2_6_16_1
  doi: 10.1021/ja00184a013
– ident: e_1_2_6_9_1
  doi: 10.3389/fphy.2017.00021
– ident: e_1_2_6_19_1
  doi: 10.1148/radiol.2019191242
– ident: e_1_2_6_20_1
  doi: 10.1016/0008-6215(91)80001-4
– ident: e_1_2_6_3_1
  doi: 10.1074/jbc.R117.802843
– ident: e_1_2_6_17_1
  doi: 10.1177/0271678X17706444
– ident: e_1_2_6_6_1
  doi: 10.1002/mrm.1910310602
SSID ssj0009974
Score 2.4900596
Snippet Purpose Deuterium metabolic imaging (DMI) combined with [6,6’‐2H2]‐glucose has the potential to detect glycogen synthesis in the liver. However, the similar...
Deuterium metabolic imaging (DMI) combined with [6,6'- H ]-glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical...
PurposeDeuterium metabolic imaging (DMI) combined with [6,6’‐2H2]‐glucose has the potential to detect glycogen synthesis in the liver. However, the similar...
Deuterium metabolic imaging (DMI) combined with [6,6'-2 H2 ]-glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 62
SubjectTerms Deuterium
DMI
Drinking water
Glucose
Glycogen
Glycogens
In vivo methods and tests
Line spectra
Liver
NMR
Nuclear magnetic resonance
Spectral line width
Title NMR visibility of deuterium‐labeled liver glycogen in vivo
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28717
https://www.ncbi.nlm.nih.gov/pubmed/33590529
https://www.proquest.com/docview/2509263176
https://www.proquest.com/docview/2490130643
https://pubmed.ncbi.nlm.nih.gov/PMC8005460
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5CIOLFxPiaGGUUD15ms-nu7Z5GLyKGIEwOi4EchKFfq4u7M5LdFeLJn5DfmF9iVc8jrlEQbwNdzXR3VXV_M1X9FcALVLOZ6AnLWFA8EzrwTFtmMoVngVLe8TxWayhO5PGpeH82OtuAV91dmIYfov_hRp4R92tycGMXB9ekofPz-YDgPt0kp1wtAkTja-oorRsGZiVon9GiYxUasoO-5_pZdANg3syT_BW_xgPoaBs-dkNv8k6-DFZLO3Dff2N1_M-57cCdFpimbxpLugsbodqFW0Ubet-FrZgr6hb34PVJMU7pTnrMq71I60nqA1WGmK7mVz8u0azwKPPpjDI-0k-zC1ejkabTCvt8q-_D6dG7D2-Ps7YIQ-YQS6jM2hxRmQucS-VFPsm9kczL3AuvBcIPI5UQDvWNG5XVhzY_HBkXDAIVb3Iqrv4ANqu6Co8gtbgXDEPQSgcvpDHWUMVRxi03-J1pXQIvO3WUrmUop0IZs7LhVmYlrksZ1yWB573o14aW409C-51Oy9YzFyVCPs0koiaZwLO-GX2KAiWmCvUKZYSmgC6CtQQeNibQv4XzkaboaAJqzTh6AeLrXm-ppp8jb3dO-FgOcZpR938feFmMi_iw9--ij-E2o3SbmEm8D5vL81V4gnhpaZ9Gx_gJDkIRwg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIigXHuUVKBAQBy7Zbm1vHEu9IKBaoNnDqpV6QZFfC6vuJqjdRSonfgK_kV_CjPMoS0FC3CJ5rDieGfuLZ_wNwHNUs56oCUuYlzwRyvNEGaYTiXuBlM7yLFRryEfp8FC8OxocrcFuexem5ofoDtzIM8J6TQ5OB9Lb56yh85N5j_C-vASXqaI3Mee_Hp-TRylVczBLQSuNEi2vUJ9td11Xd6MLEPNipuSvCDZsQXs34EM7-Drz5Li3XJie_fobr-P_ft1NuN5g0_hlbUy3YM2Xm3A1b6Lvm3AlpIva09uwO8rHMV1LD6m1Z3E1iZ2n4hDT5fzHt-9oWbibuXhGSR_xx9mZrdBO42mJfb5Ud-Bw783Bq2HS1GFILMIJmRiTITCznvNUOpFNMqdT5tLMCacEIhCdSiEsqhzXKqN2TLYz0NZrxCpOZ1Rf_S6sl1Xp70NscDnoe6-k8k6kWhtNRUcZN1zjr6axEbxo9VHYhqScamXMippemRU4L0WYlwiedaKfa2aOPwlttUotGuc8LRD1KZYicEojeNo1o1tRrESXvlqijFAU00W8FsG92ga6t3A-UBQgjUCuWEcnQJTdqy3l9FOg7s4IIqd9_Myg_L8PvMjHeXh48O-iT2BjeJDvF_tvR-8fwjVG2TchsXgL1hcnS_8I4dPCPA5e8hMT1xXe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouLRQKKQUC4sAl263ttWPBBVFW5ZEVWlGpB6TIr8CK3aRqd5HKiZ_Q38gvYew8ylKQELdIHiu2Z8b-khl_A_AE1awKWZCEOEETJh1NpCYqEXgWCGENTUO1hmzEDw7Zm6PB0Qo8a-_C1PwQ3Q837xlhv_YOfmyL3QvS0NnJrOfhvrgCVxnvS1-3YX98wR0lZU3BLJjfaCRraYX6ZLfrunwYXUKYlxMlfwWw4QQabsDHdux14smX3mKue-bbb7SO_zm5G7DeINP4RW1KN2HFlZuwljWx9024FpJFzekteD7KxrG_lB4Sa8_iqoit86UhJovZj-_naFd4ltl46lM-4k_TM1OhlcaTEvt8rW7D4fDVh5cHSVOFITEIJkSidYqwzDhKubAsLVKrOLE8tcxKhvhDccGYQYXjTqXlnk73Bso4hUjFqtRXV9-C1bIq3V2INW4GfeekkM4yrpRWvuQooZoq_NDUJoKnrTpy01CU-0oZ07wmVyY5rkse1iWCx53occ3L8SehnVaneeOapzliPkk4wiYewaOuGZ3KR0pU6aoFyjDpI7qI1iK4U5tA9xZKB9KHRyMQS8bRCXjC7uWWcvI5EHenHiDzPk4z6P7vA8-zcRYetv9d9CGsvd8f5u9ej97eg-vEp96ErOIdWJ2fLNx9xE5z_SD4yE_KkhSN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NMR+visibility+of+deuterium%E2%80%90labeled+liver+glycogen+in+vivo&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=De+Feyter%2C+Henk+M.&rft.au=Thomas%2C+Monique+A.&rft.au=Behar%2C+Kevin+L.&rft.au=Graaf%2C+Robin+A.&rft.date=2021-07-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=86&rft.issue=1&rft.spage=62&rft.epage=68&rft_id=info:doi/10.1002%2Fmrm.28717&rft.externalDBID=10.1002%252Fmrm.28717&rft.externalDocID=MRM28717
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon