NMR visibility of deuterium‐labeled liver glycogen in vivo
Purpose Deuterium metabolic imaging (DMI) combined with [6,6’‐2H2]‐glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical shifts of [6,6’‐2H2]‐glucose and [6,6’‐2H2]‐glycogen in the 2H NMR spectrum make unambiguous detection and separation difficult in viv...
Saved in:
Published in | Magnetic resonance in medicine Vol. 86; no. 1; pp. 62 - 68 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Deuterium metabolic imaging (DMI) combined with [6,6’‐2H2]‐glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical shifts of [6,6’‐2H2]‐glucose and [6,6’‐2H2]‐glycogen in the 2H NMR spectrum make unambiguous detection and separation difficult in vivo, in contrast to comparable approaches using 13C MRS. Here the NMR visibility of 2H‐labeled glycogen is investigated to better understand its potential contribution to the observed signal in liver following administration of [6,6’‐2H2]‐glucose.
Methods
Mice were provided drinking water containing 2H‐labeled glucose. High‐resolution NMR analyses was performed of isolated liver glycogen in solution, before and after the addition of the glucose‐releasing enzyme amyloglucosidase.
Results
2H‐labeled glycogen was barely detectable in solution using 2H NMR because of the very short T2 (<2 ms) of 2H‐labeled glycogen, giving a spectral line width that is more than five times as broad as that of 13C‐labeled glycogen (T2 = ~10 ms).
Conclusion
2H‐labeled glycogen is not detectable with 2H MRS(I) under in vivo conditions, leaving 13C MRS as the preferred technique for in vivo detection of glycogen. |
---|---|
AbstractList | Purpose
Deuterium metabolic imaging (DMI) combined with [6,6’‐2H2]‐glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical shifts of [6,6’‐2H2]‐glucose and [6,6’‐2H2]‐glycogen in the 2H NMR spectrum make unambiguous detection and separation difficult in vivo, in contrast to comparable approaches using 13C MRS. Here the NMR visibility of 2H‐labeled glycogen is investigated to better understand its potential contribution to the observed signal in liver following administration of [6,6’‐2H2]‐glucose.
Methods
Mice were provided drinking water containing 2H‐labeled glucose. High‐resolution NMR analyses was performed of isolated liver glycogen in solution, before and after the addition of the glucose‐releasing enzyme amyloglucosidase.
Results
2H‐labeled glycogen was barely detectable in solution using 2H NMR because of the very short T2 (<2 ms) of 2H‐labeled glycogen, giving a spectral line width that is more than five times as broad as that of 13C‐labeled glycogen (T2 = ~10 ms).
Conclusion
2H‐labeled glycogen is not detectable with 2H MRS(I) under in vivo conditions, leaving 13C MRS as the preferred technique for in vivo detection of glycogen. Deuterium metabolic imaging (DMI) combined with [6,6'-2 H2 ]-glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical shifts of [6,6'-2 H2 ]-glucose and [6,6'-2 H2 ]-glycogen in the 2 H NMR spectrum make unambiguous detection and separation difficult in vivo, in contrast to comparable approaches using 13 C MRS. Here the NMR visibility of 2 H-labeled glycogen is investigated to better understand its potential contribution to the observed signal in liver following administration of [6,6'-2 H2 ]-glucose.PURPOSEDeuterium metabolic imaging (DMI) combined with [6,6'-2 H2 ]-glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical shifts of [6,6'-2 H2 ]-glucose and [6,6'-2 H2 ]-glycogen in the 2 H NMR spectrum make unambiguous detection and separation difficult in vivo, in contrast to comparable approaches using 13 C MRS. Here the NMR visibility of 2 H-labeled glycogen is investigated to better understand its potential contribution to the observed signal in liver following administration of [6,6'-2 H2 ]-glucose.Mice were provided drinking water containing 2 H-labeled glucose. High-resolution NMR analyses was performed of isolated liver glycogen in solution, before and after the addition of the glucose-releasing enzyme amyloglucosidase.METHODSMice were provided drinking water containing 2 H-labeled glucose. High-resolution NMR analyses was performed of isolated liver glycogen in solution, before and after the addition of the glucose-releasing enzyme amyloglucosidase.2 H-labeled glycogen was barely detectable in solution using 2 H NMR because of the very short T2 (<2 ms) of 2 H-labeled glycogen, giving a spectral line width that is more than five times as broad as that of 13 C-labeled glycogen (T2 = ~10 ms).RESULTS2 H-labeled glycogen was barely detectable in solution using 2 H NMR because of the very short T2 (<2 ms) of 2 H-labeled glycogen, giving a spectral line width that is more than five times as broad as that of 13 C-labeled glycogen (T2 = ~10 ms).2 H-labeled glycogen is not detectable with 2 H MRS(I) under in vivo conditions, leaving 13 C MRS as the preferred technique for in vivo detection of glycogen.CONCLUSION2 H-labeled glycogen is not detectable with 2 H MRS(I) under in vivo conditions, leaving 13 C MRS as the preferred technique for in vivo detection of glycogen. PurposeDeuterium metabolic imaging (DMI) combined with [6,6’‐2H2]‐glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical shifts of [6,6’‐2H2]‐glucose and [6,6’‐2H2]‐glycogen in the 2H NMR spectrum make unambiguous detection and separation difficult in vivo, in contrast to comparable approaches using 13C MRS. Here the NMR visibility of 2H‐labeled glycogen is investigated to better understand its potential contribution to the observed signal in liver following administration of [6,6’‐2H2]‐glucose.MethodsMice were provided drinking water containing 2H‐labeled glucose. High‐resolution NMR analyses was performed of isolated liver glycogen in solution, before and after the addition of the glucose‐releasing enzyme amyloglucosidase.Results2H‐labeled glycogen was barely detectable in solution using 2H NMR because of the very short T2 (<2 ms) of 2H‐labeled glycogen, giving a spectral line width that is more than five times as broad as that of 13C‐labeled glycogen (T2 = ~10 ms).Conclusion2H‐labeled glycogen is not detectable with 2H MRS(I) under in vivo conditions, leaving 13C MRS as the preferred technique for in vivo detection of glycogen. Deuterium metabolic imaging (DMI) combined with [6,6'- H ]-glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical shifts of [6,6'- H ]-glucose and [6,6'- H ]-glycogen in the H NMR spectrum make unambiguous detection and separation difficult in vivo, in contrast to comparable approaches using C MRS. Here the NMR visibility of H-labeled glycogen is investigated to better understand its potential contribution to the observed signal in liver following administration of [6,6'- H ]-glucose. Mice were provided drinking water containing H-labeled glucose. High-resolution NMR analyses was performed of isolated liver glycogen in solution, before and after the addition of the glucose-releasing enzyme amyloglucosidase. H-labeled glycogen was barely detectable in solution using H NMR because of the very short T (<2 ms) of H-labeled glycogen, giving a spectral line width that is more than five times as broad as that of C-labeled glycogen (T = ~10 ms). H-labeled glycogen is not detectable with H MRS(I) under in vivo conditions, leaving C MRS as the preferred technique for in vivo detection of glycogen. |
Author | De Feyter, Henk M. Graaf, Robin A. Thomas, Monique A. Behar, Kevin L. |
Author_xml | – sequence: 1 givenname: Henk M. orcidid: 0000-0001-6111-0316 surname: De Feyter fullname: De Feyter, Henk M. email: henk.defeyter@yale.edu organization: Yale University School of Medicine – sequence: 2 givenname: Monique A. surname: Thomas fullname: Thomas, Monique A. organization: Yale University School of Medicine – sequence: 3 givenname: Kevin L. surname: Behar fullname: Behar, Kevin L. organization: Yale University School of Medicine – sequence: 4 givenname: Robin A. surname: Graaf fullname: Graaf, Robin A. organization: Yale University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33590529$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9KHTEYxYMo9XrbhS9QBrqxi9H8m8kEiiBSbcHbgrTrkEm-uY1kJjaZuXJ3PkKfsU9i9Kq0QrvKIr9zOOc7e2h7CAMgtE_wIcGYHvWxP6SNIGILzUhFaUkrybfRDAuOS0Yk30V7KV1hjKUU_BXaZaySuKJyhj58WVwWK5dc67wb10XoCgvTCNFN_e_bX1634MEW3q0gFku_NmEJQ-GGrFmF12in0z7Bm8d3jr6fffx2-qm8-Hr--fTkojQVlqJs2wY3lQHGamF50zVW19TWjeVWcsGZrgXnRndS1KyVpG1IpQ1owYnVuRVnc3S88b2e2h6sgWGM2qvr6Hod1ypop_7-GdwPtQwr1WBc8Rpng4NHgxh-TpBG1btkwHs9QJiSolxiwnDNWUbfvUCvwhSHXE_R3IbWjOSYc_T2z0TPUZ4Om4H3G8DEkFKE7hkhWN2PpvJo6mG0zB69YI0b9ejCfRnn_6e4cR7W_7ZWi8vFRnEHyTWofg |
CitedBy_id | crossref_primary_10_1002_mrm_29696 crossref_primary_10_1002_nbm_5325 crossref_primary_10_1002_jmri_29437 crossref_primary_10_3390_metabo13040577 crossref_primary_10_1002_nbm_5123 crossref_primary_10_1002_nbm_4890 crossref_primary_10_1016_j_fmre_2022_10_010 crossref_primary_10_1002_mrm_29053 crossref_primary_10_3390_metabo12121223 crossref_primary_10_1002_bem_22382 crossref_primary_10_1002_nbm_5309 crossref_primary_10_3390_metabo11060376 crossref_primary_10_1016_j_ymeth_2022_07_014 crossref_primary_10_3390_ijms25094698 crossref_primary_10_1158_1078_0432_CCR_23_1635 crossref_primary_10_1002_asia_202201063 crossref_primary_10_3389_fphys_2023_1198578 crossref_primary_10_3390_metabo11110751 crossref_primary_10_1016_j_neuroimage_2021_118639 crossref_primary_10_1002_nbm_4926 crossref_primary_10_1002_nbm_4603 crossref_primary_10_1002_nbm_4989 crossref_primary_10_3390_metabo11090570 crossref_primary_10_1002_nbm_4569 crossref_primary_10_1186_s41747_024_00464_y crossref_primary_10_1097_RLI_0000000000000820 crossref_primary_10_1111_dom_16001 |
Cites_doi | 10.1006/jmra.1996.0110 10.1021/bi00481a009 10.1002/mrm.1910310518 10.1056/NEJM199001253220403 10.2337/db09-0226 10.1126/science.7292005 10.1038/s41366-020-0533-7 10.1126/sciadv.aat7314 10.1021/bi00274a015 10.1109/42.75611 10.1021/jp963338h 10.1021/ja00184a013 10.3389/fphy.2017.00021 10.1148/radiol.2019191242 10.1016/0008-6215(91)80001-4 10.1074/jbc.R117.802843 10.1177/0271678X17706444 10.1002/mrm.1910310602 |
ContentType | Journal Article |
Copyright | 2021 International Society for Magnetic Resonance in Medicine 2021 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2021 International Society for Magnetic Resonance in Medicine – notice: 2021 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
DOI | 10.1002/mrm.28717 |
DatabaseName | CrossRef PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Biochemistry Abstracts 1 PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 68 |
ExternalDocumentID | PMC8005460 33590529 10_1002_mrm_28717 MRM28717 |
Genre | technicalNote Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Cambridge Isotope Laboratories – fundername: NIBIB funderid: R01‐EB025840 – fundername: NIBIB NIH HHS grantid: R01 EB025840 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
ID | FETCH-LOGICAL-c5097-bb8085ce3367d48f8da62d68d4d94743a6744caf9763b91b815acea741da87143 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Aug 21 18:20:30 EDT 2025 Fri Jul 11 14:26:49 EDT 2025 Fri Jul 25 12:06:57 EDT 2025 Thu Apr 03 07:04:46 EDT 2025 Thu Apr 24 22:55:55 EDT 2025 Tue Jul 01 04:26:59 EDT 2025 Wed Aug 20 07:26:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | DMI deuterium glycogen |
Language | English |
License | 2021 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5097-bb8085ce3367d48f8da62d68d4d94743a6744caf9763b91b815acea741da87143 |
Notes | Funding information National Institutes of Health grant no. NIBIB R01‐EB025840, and a research grant program from Cambridge Isotope Laboratories ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6111-0316 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8005460 |
PMID | 33590529 |
PQID | 2509263176 |
PQPubID | 1016391 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8005460 proquest_miscellaneous_2490130643 proquest_journals_2509263176 pubmed_primary_33590529 crossref_primary_10_1002_mrm_28717 crossref_citationtrail_10_1002_mrm_28717 wiley_primary_10_1002_mrm_28717_MRM28717 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 1991; 220 2009; 58 2018; 4 2018; 293 2017; 37 1981; 214 1991; 10 1990; 29 1997; 101 1989; 111 2008 1996 2020; 44 2019; 294 1990; 322 1983; 22 1994; 31 1988 e_1_2_6_21_1 e_1_2_6_10_1 e_1_2_6_20_1 Nelson DL (e_1_2_6_4_1) 2008 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_19_1 e_1_2_6_5_1 Bolinger L (e_1_2_6_11_1) 1988 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_3_1 e_1_2_6_2_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 |
References_xml | – volume: 111 start-page: 481 year: 1989 end-page: 485 article-title: Solution deuterium NMR quadrupolar relaxation study of heme mobility in myoglobin publication-title: J Am Chem Soc – volume: 322 start-page: 223 year: 1990 end-page: 228 article-title: Quantitation of muscle glycogen synthesis in normal subjects and subjects with non‐insulin‐dependent diabetes by 13C nuclear magnetic resonance spectroscopy publication-title: N Engl J Med – volume: 44 start-page: 1417 year: 2020 end-page: 1427 article-title: Glucose metabolism in brown adipose tissue determined by deuterium metabolic imaging in rats publication-title: Int J Obes – start-page: 162 year: 1988 end-page: 166 article-title: A multiple‐frequency coil with a highly uniform B1 field publication-title: JMR – volume: 101 start-page: 3246 year: 1997 end-page: 3250 article-title: Direct determination of NMR correlation times from spin−lattice and spin−spin relaxation times publication-title: J Phys Chem A – volume: 4 year: 2018 article-title: Deuterium metabolic imaging (DMI) for MRI‐based 3D mapping of metabolism in vivo publication-title: Sci Adv – year: 2008 – volume: 214 start-page: 660 year: 1981 end-page: 662 article-title: In vivo carbon‐13 nuclear magnetic resonance studies of mammals publication-title: Science – volume: 10 start-page: 53 year: 1991 end-page: 65 article-title: Parameter relations for the Shinnar‐Le Roux selective excitation pulse design algorithm [NMR imaging] publication-title: IEEE Trans Med Imaging – volume: 22 start-page: 1087 year: 1983 end-page: 1094 article-title: Structure and metabolism of mammalian liver glycogen monitored by carbon‐13 nuclear magnetic resonance publication-title: Biochemistry – volume: 37 start-page: 3518 year: 2017 end-page: 3530 article-title: Quantitative assessment of brain glucose metabolic rates using in vivo deuterium magnetic resonance spectroscopy publication-title: J Cereb Blood Flow Metab – volume: 29 start-page: 6815 year: 1990 end-page: 6820 article-title: 13C NMR relaxation times of hepatic glycogen in vitro and in vivo publication-title: Biochemistry – volume: 58 start-page: 1978 year: 2009 end-page: 1985 article-title: Human brain glycogen metabolism during and after hypoglycemia publication-title: Diabetes – volume: 5 year: 2017 article-title: 13C MRS studies of the control of hepatic glycogen metabolism at high magnetic fields publication-title: Front Phys – volume: 220 start-page: 1 year: 1991 end-page: 9 article-title: Assignment of the 1H chemical shifts of glycogen publication-title: Carbohyd Res – volume: 293 start-page: 7089 year: 2018 end-page: 7098 article-title: The dynamic life of the glycogen granule publication-title: J Biol Chem – volume: 31 start-page: 576 year: 1994 end-page: 579 article-title: Proton NMR observation of glycogen in vivo publication-title: Magn Reson Med – volume: 31 start-page: 583 year: 1994 end-page: 588 article-title: Validation of 13C NMR measurements of liver glycogen in vivo publication-title: Magn Reson Med – volume: 294 start-page: 289 year: 2019 end-page: 296 article-title: Measuring tumor glycolytic flux in vivo by using fast deuterium MRI publication-title: Radiology – start-page: 133 year: 1996 end-page: 137 article-title: Improved performance of frequency‐swept pulses using offset‐independent adiabaticity publication-title: J Magn Reson A – ident: e_1_2_6_13_1 doi: 10.1006/jmra.1996.0110 – ident: e_1_2_6_14_1 doi: 10.1021/bi00481a009 – ident: e_1_2_6_10_1 doi: 10.1002/mrm.1910310518 – ident: e_1_2_6_7_1 doi: 10.1056/NEJM199001253220403 – ident: e_1_2_6_8_1 doi: 10.2337/db09-0226 – ident: e_1_2_6_5_1 doi: 10.1126/science.7292005 – ident: e_1_2_6_18_1 doi: 10.1038/s41366-020-0533-7 – ident: e_1_2_6_2_1 doi: 10.1126/sciadv.aat7314 – ident: e_1_2_6_21_1 doi: 10.1021/bi00274a015 – volume-title: Lehninger Principles of Biochemistry year: 2008 ident: e_1_2_6_4_1 – start-page: 162 year: 1988 ident: e_1_2_6_11_1 article-title: A multiple‐frequency coil with a highly uniform B1 field publication-title: JMR – ident: e_1_2_6_12_1 doi: 10.1109/42.75611 – ident: e_1_2_6_15_1 doi: 10.1021/jp963338h – ident: e_1_2_6_16_1 doi: 10.1021/ja00184a013 – ident: e_1_2_6_9_1 doi: 10.3389/fphy.2017.00021 – ident: e_1_2_6_19_1 doi: 10.1148/radiol.2019191242 – ident: e_1_2_6_20_1 doi: 10.1016/0008-6215(91)80001-4 – ident: e_1_2_6_3_1 doi: 10.1074/jbc.R117.802843 – ident: e_1_2_6_17_1 doi: 10.1177/0271678X17706444 – ident: e_1_2_6_6_1 doi: 10.1002/mrm.1910310602 |
SSID | ssj0009974 |
Score | 2.4900596 |
Snippet | Purpose
Deuterium metabolic imaging (DMI) combined with [6,6’‐2H2]‐glucose has the potential to detect glycogen synthesis in the liver. However, the similar... Deuterium metabolic imaging (DMI) combined with [6,6'- H ]-glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical... PurposeDeuterium metabolic imaging (DMI) combined with [6,6’‐2H2]‐glucose has the potential to detect glycogen synthesis in the liver. However, the similar... Deuterium metabolic imaging (DMI) combined with [6,6'-2 H2 ]-glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 62 |
SubjectTerms | Deuterium DMI Drinking water Glucose Glycogen Glycogens In vivo methods and tests Line spectra Liver NMR Nuclear magnetic resonance Spectral line width |
Title | NMR visibility of deuterium‐labeled liver glycogen in vivo |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28717 https://www.ncbi.nlm.nih.gov/pubmed/33590529 https://www.proquest.com/docview/2509263176 https://www.proquest.com/docview/2490130643 https://pubmed.ncbi.nlm.nih.gov/PMC8005460 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5CIOLFxPiaGGUUD15ms-nu7Z5GLyKGIEwOi4EchKFfq4u7M5LdFeLJn5DfmF9iVc8jrlEQbwNdzXR3VXV_M1X9FcALVLOZ6AnLWFA8EzrwTFtmMoVngVLe8TxWayhO5PGpeH82OtuAV91dmIYfov_hRp4R92tycGMXB9ekofPz-YDgPt0kp1wtAkTja-oorRsGZiVon9GiYxUasoO-5_pZdANg3syT_BW_xgPoaBs-dkNv8k6-DFZLO3Dff2N1_M-57cCdFpimbxpLugsbodqFW0Ubet-FrZgr6hb34PVJMU7pTnrMq71I60nqA1WGmK7mVz8u0azwKPPpjDI-0k-zC1ejkabTCvt8q-_D6dG7D2-Ps7YIQ-YQS6jM2hxRmQucS-VFPsm9kczL3AuvBcIPI5UQDvWNG5XVhzY_HBkXDAIVb3Iqrv4ANqu6Co8gtbgXDEPQSgcvpDHWUMVRxi03-J1pXQIvO3WUrmUop0IZs7LhVmYlrksZ1yWB573o14aW409C-51Oy9YzFyVCPs0koiaZwLO-GX2KAiWmCvUKZYSmgC6CtQQeNibQv4XzkaboaAJqzTh6AeLrXm-ppp8jb3dO-FgOcZpR938feFmMi_iw9--ij-E2o3SbmEm8D5vL81V4gnhpaZ9Gx_gJDkIRwg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIigXHuUVKBAQBy7Zbm1vHEu9IKBaoNnDqpV6QZFfC6vuJqjdRSonfgK_kV_CjPMoS0FC3CJ5rDieGfuLZ_wNwHNUs56oCUuYlzwRyvNEGaYTiXuBlM7yLFRryEfp8FC8OxocrcFuexem5ofoDtzIM8J6TQ5OB9Lb56yh85N5j_C-vASXqaI3Mee_Hp-TRylVczBLQSuNEi2vUJ9td11Xd6MLEPNipuSvCDZsQXs34EM7-Drz5Li3XJie_fobr-P_ft1NuN5g0_hlbUy3YM2Xm3A1b6Lvm3AlpIva09uwO8rHMV1LD6m1Z3E1iZ2n4hDT5fzHt-9oWbibuXhGSR_xx9mZrdBO42mJfb5Ud-Bw783Bq2HS1GFILMIJmRiTITCznvNUOpFNMqdT5tLMCacEIhCdSiEsqhzXKqN2TLYz0NZrxCpOZ1Rf_S6sl1Xp70NscDnoe6-k8k6kWhtNRUcZN1zjr6axEbxo9VHYhqScamXMippemRU4L0WYlwiedaKfa2aOPwlttUotGuc8LRD1KZYicEojeNo1o1tRrESXvlqijFAU00W8FsG92ga6t3A-UBQgjUCuWEcnQJTdqy3l9FOg7s4IIqd9_Myg_L8PvMjHeXh48O-iT2BjeJDvF_tvR-8fwjVG2TchsXgL1hcnS_8I4dPCPA5e8hMT1xXe |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouLRQKKQUC4sAl263ttWPBBVFW5ZEVWlGpB6TIr8CK3aRqd5HKiZ_Q38gvYew8ylKQELdIHiu2Z8b-khl_A_AE1awKWZCEOEETJh1NpCYqEXgWCGENTUO1hmzEDw7Zm6PB0Qo8a-_C1PwQ3Q837xlhv_YOfmyL3QvS0NnJrOfhvrgCVxnvS1-3YX98wR0lZU3BLJjfaCRraYX6ZLfrunwYXUKYlxMlfwWw4QQabsDHdux14smX3mKue-bbb7SO_zm5G7DeINP4RW1KN2HFlZuwljWx9024FpJFzekteD7KxrG_lB4Sa8_iqoit86UhJovZj-_naFd4ltl46lM-4k_TM1OhlcaTEvt8rW7D4fDVh5cHSVOFITEIJkSidYqwzDhKubAsLVKrOLE8tcxKhvhDccGYQYXjTqXlnk73Bso4hUjFqtRXV9-C1bIq3V2INW4GfeekkM4yrpRWvuQooZoq_NDUJoKnrTpy01CU-0oZ07wmVyY5rkse1iWCx53occ3L8SehnVaneeOapzliPkk4wiYewaOuGZ3KR0pU6aoFyjDpI7qI1iK4U5tA9xZKB9KHRyMQS8bRCXjC7uWWcvI5EHenHiDzPk4z6P7vA8-zcRYetv9d9CGsvd8f5u9ej97eg-vEp96ErOIdWJ2fLNx9xE5z_SD4yE_KkhSN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NMR+visibility+of+deuterium%E2%80%90labeled+liver+glycogen+in+vivo&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=De+Feyter%2C+Henk+M.&rft.au=Thomas%2C+Monique+A.&rft.au=Behar%2C+Kevin+L.&rft.au=Graaf%2C+Robin+A.&rft.date=2021-07-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=86&rft.issue=1&rft.spage=62&rft.epage=68&rft_id=info:doi/10.1002%2Fmrm.28717&rft.externalDBID=10.1002%252Fmrm.28717&rft.externalDocID=MRM28717 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |