Automatic renal segmentation for MR urography using 3D‐GrabCut and random forests

Purpose To introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children. Methods An image segmentation method based on iterative graph cuts (GrabCut) was modified to work on time‐resolved 3D dynamic contrast‐enhanced MRI data sets....

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 79; no. 3; pp. 1696 - 1707
Main Authors Yoruk, Umit, Hargreaves, Brian A., Vasanawala, Shreyas S.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children. Methods An image segmentation method based on iterative graph cuts (GrabCut) was modified to work on time‐resolved 3D dynamic contrast‐enhanced MRI data sets. A random forest classifier was trained to further segment the renal tissue into cortex, medulla, and the collecting system. The algorithm was tested on 26 subjects and the segmentation results were compared to the manually drawn segmentation maps using the F1‐score metric. A two‐compartment model was used to estimate the GFR of each subject using both automatically and manually generated segmentation maps. Results Segmentation maps generated automatically showed high similarity to the manually drawn maps for the whole‐kidney (F1 = 0.93) and renal cortex (F1 = 0.86). GFR estimations using whole‐kidney segmentation maps from the automatic method were highly correlated (Spearman's ρ = 0.99) to the GFR values obtained from manual maps. The mean GFR estimation error of the automatic method was 2.98 ± 0.66% with an average segmentation time of 45 s per patient. Conclusion The automatic segmentation method performs as well as the manual segmentation for GFR estimation and reduces the segmentation time from several hours to 45 s. Magn Reson Med 79:1696–1707, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
AbstractList PurposeTo introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children.MethodsAn image segmentation method based on iterative graph cuts (GrabCut) was modified to work on time‐resolved 3D dynamic contrast‐enhanced MRI data sets. A random forest classifier was trained to further segment the renal tissue into cortex, medulla, and the collecting system. The algorithm was tested on 26 subjects and the segmentation results were compared to the manually drawn segmentation maps using the F1‐score metric. A two‐compartment model was used to estimate the GFR of each subject using both automatically and manually generated segmentation maps.ResultsSegmentation maps generated automatically showed high similarity to the manually drawn maps for the whole‐kidney (F1 = 0.93) and renal cortex (F1 = 0.86). GFR estimations using whole‐kidney segmentation maps from the automatic method were highly correlated (Spearman's ρ = 0.99) to the GFR values obtained from manual maps. The mean GFR estimation error of the automatic method was 2.98 ± 0.66% with an average segmentation time of 45 s per patient.ConclusionThe automatic segmentation method performs as well as the manual segmentation for GFR estimation and reduces the segmentation time from several hours to 45 s. Magn Reson Med 79:1696–1707, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Purpose To introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children. Methods An image segmentation method based on iterative graph cuts (GrabCut) was modified to work on time‐resolved 3D dynamic contrast‐enhanced MRI data sets. A random forest classifier was trained to further segment the renal tissue into cortex, medulla, and the collecting system. The algorithm was tested on 26 subjects and the segmentation results were compared to the manually drawn segmentation maps using the F1‐score metric. A two‐compartment model was used to estimate the GFR of each subject using both automatically and manually generated segmentation maps. Results Segmentation maps generated automatically showed high similarity to the manually drawn maps for the whole‐kidney (F1 = 0.93) and renal cortex (F1 = 0.86). GFR estimations using whole‐kidney segmentation maps from the automatic method were highly correlated (Spearman's ρ = 0.99) to the GFR values obtained from manual maps. The mean GFR estimation error of the automatic method was 2.98 ± 0.66% with an average segmentation time of 45 s per patient. Conclusion The automatic segmentation method performs as well as the manual segmentation for GFR estimation and reduces the segmentation time from several hours to 45 s. Magn Reson Med 79:1696–1707, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
To introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children.PURPOSETo introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children.An image segmentation method based on iterative graph cuts (GrabCut) was modified to work on time-resolved 3D dynamic contrast-enhanced MRI data sets. A random forest classifier was trained to further segment the renal tissue into cortex, medulla, and the collecting system. The algorithm was tested on 26 subjects and the segmentation results were compared to the manually drawn segmentation maps using the F1-score metric. A two-compartment model was used to estimate the GFR of each subject using both automatically and manually generated segmentation maps.METHODSAn image segmentation method based on iterative graph cuts (GrabCut) was modified to work on time-resolved 3D dynamic contrast-enhanced MRI data sets. A random forest classifier was trained to further segment the renal tissue into cortex, medulla, and the collecting system. The algorithm was tested on 26 subjects and the segmentation results were compared to the manually drawn segmentation maps using the F1-score metric. A two-compartment model was used to estimate the GFR of each subject using both automatically and manually generated segmentation maps.Segmentation maps generated automatically showed high similarity to the manually drawn maps for the whole-kidney (F1 = 0.93) and renal cortex (F1 = 0.86). GFR estimations using whole-kidney segmentation maps from the automatic method were highly correlated (Spearman's ρ = 0.99) to the GFR values obtained from manual maps. The mean GFR estimation error of the automatic method was 2.98 ± 0.66% with an average segmentation time of 45 s per patient.RESULTSSegmentation maps generated automatically showed high similarity to the manually drawn maps for the whole-kidney (F1 = 0.93) and renal cortex (F1 = 0.86). GFR estimations using whole-kidney segmentation maps from the automatic method were highly correlated (Spearman's ρ = 0.99) to the GFR values obtained from manual maps. The mean GFR estimation error of the automatic method was 2.98 ± 0.66% with an average segmentation time of 45 s per patient.The automatic segmentation method performs as well as the manual segmentation for GFR estimation and reduces the segmentation time from several hours to 45 s. Magn Reson Med 79:1696-1707, 2018. © 2017 International Society for Magnetic Resonance in Medicine.CONCLUSIONThe automatic segmentation method performs as well as the manual segmentation for GFR estimation and reduces the segmentation time from several hours to 45 s. Magn Reson Med 79:1696-1707, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
To introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children. An image segmentation method based on iterative graph cuts (GrabCut) was modified to work on time-resolved 3D dynamic contrast-enhanced MRI data sets. A random forest classifier was trained to further segment the renal tissue into cortex, medulla, and the collecting system. The algorithm was tested on 26 subjects and the segmentation results were compared to the manually drawn segmentation maps using the F1-score metric. A two-compartment model was used to estimate the GFR of each subject using both automatically and manually generated segmentation maps. Segmentation maps generated automatically showed high similarity to the manually drawn maps for the whole-kidney (F1 = 0.93) and renal cortex (F1 = 0.86). GFR estimations using whole-kidney segmentation maps from the automatic method were highly correlated (Spearman's ρ = 0.99) to the GFR values obtained from manual maps. The mean GFR estimation error of the automatic method was 2.98 ± 0.66% with an average segmentation time of 45 s per patient. The automatic segmentation method performs as well as the manual segmentation for GFR estimation and reduces the segmentation time from several hours to 45 s. Magn Reson Med 79:1696-1707, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Author Yoruk, Umit
Vasanawala, Shreyas S.
Hargreaves, Brian A.
Author_xml – sequence: 1
  givenname: Umit
  surname: Yoruk
  fullname: Yoruk, Umit
  email: uyoruk@stanford.edu
  organization: Stanford University
– sequence: 2
  givenname: Brian A.
  surname: Hargreaves
  fullname: Hargreaves, Brian A.
  organization: Stanford University
– sequence: 3
  givenname: Shreyas S.
  surname: Vasanawala
  fullname: Vasanawala, Shreyas S.
  organization: Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28656614$$D View this record in MEDLINE/PubMed
BookMark eNp9kd9OFDEUxhuCgQW94AVIE2_wYqD_Z3pjQlZFEzYkqNdNO-0sJTPt2s5A9s5H8Bl9ErsuEiHRm9Pk9He-fOd8B2A3xOAAOMLoFCNEzoY0nBLRILEDZpgTUhEu2S6YoZqhimLJ9sFBzrcIISlrtgf2SSO4EJjNwOfzaYyDHn0Lkwu6h9ktBxfG0okBdjHBxTWcUlwmvbpZwyn7sIT03c_vPy6SNvNphDpYmEqJwwZ3ecwvwYtO99m9engPwdcP77_MP1aXVxef5ueXVcuRFJVxlDLsiKWGcqNJaztibU0cY7bD3CBZ19YITKm2vBjWwmnZCt4wQ6XpOnoI3m51V5MZnG2L7aR7tUp-0Gmtovbq6U_wN2oZ7xSvGaeEFoGTB4EUv03Fuhp8bl3f6-DilBWWmPGGYI4L-voZehunVA62oZrCEUlQoY7_dvRo5c-9C_BmC7Qp5pxc94hgpDZZqpKl-p1lYc-esa3f5lKW8f3_Ju5979b_llaL68V24hd_lbGe
CitedBy_id crossref_primary_10_3390_math11081965
crossref_primary_10_1007_s11633_021_1313_0
crossref_primary_10_1007_s00247_021_05264_9
crossref_primary_10_1109_ACCESS_2021_3078430
crossref_primary_10_1016_j_diii_2019_02_001
crossref_primary_10_36604_1998_5029_2023_88_50_58
crossref_primary_10_2174_1573405616666200923162600
crossref_primary_10_1016_j_bbe_2022_02_002
crossref_primary_10_1016_j_jvir_2019_11_032
crossref_primary_10_1016_j_compbiomed_2019_01_027
crossref_primary_10_3390_diagnostics12081788
crossref_primary_10_1007_s10334_019_00802_x
crossref_primary_10_3390_s21206714
crossref_primary_10_1002_jbio_202100142
crossref_primary_10_3390_biomedicines11010006
crossref_primary_10_1002_mrm_29016
crossref_primary_10_1007_s42235_023_00365_7
crossref_primary_10_15275_cardioit_2021_0101
crossref_primary_10_3390_app10217512
crossref_primary_10_3390_s21237942
Cites_doi 10.1002/jmri.10410
10.1016/S0730-725X(98)00130-1
10.2214/AJR.09.4104
10.1002/mrm.24980
10.1002/jmri.24551
10.1002/mrm.21901
10.1002/jmri.1163
10.1148/radiol.2243011207
10.1002/mrm.20605
10.2214/AJR.04.1540
10.1002/mrm.21240
10.1097/RLI.0b013e31821eea45
10.1001/jama.298.17.2038
10.3174/ajnr.A1252
10.1002/jmri.23602
10.1109/ISBI.2008.4540926
10.1152/ajprenal.00347.2006
10.1016/j.ics.2005.03.146
10.1007/s00330-012-2382-9
10.1145/1015706.1015720
10.1002/jmri.21642
10.2463/mrms.4.145
10.4156/ijiip.vol1.issue1.2
10.1542/pir.29-10-335
10.1007/s00467-006-0410-1
10.1007/11866763_93
10.1148/radiol.2331031117
10.1002/jmri.24785
10.1097/RLI.0b013e318289a70b
10.2215/CJN.00930306
10.1016/j.compmedimag.2008.11.004
10.1002/mrm.25731
10.1002/jmri.25576
10.1109/TMI.2012.2203922
10.1002/mrm.24253
10.1002/jmri.20173
ContentType Journal Article
Copyright 2017 International Society for Magnetic Resonance in Medicine
2017 International Society for Magnetic Resonance in Medicine.
2018 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2017 International Society for Magnetic Resonance in Medicine
– notice: 2017 International Society for Magnetic Resonance in Medicine.
– notice: 2018 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.26806
DatabaseName CrossRef
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biochemistry Abstracts 1

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1707
ExternalDocumentID PMC5745323
28656614
10_1002_mrm_26806
MRM26806
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: GE Healthcare
– fundername: NIH
  funderid: R01‐EB009690 ; P41‐EB015891
– fundername: NIBIB NIH HHS
  grantid: P41 EB015891
– fundername: NIBIB NIH HHS
  grantid: R01 EB009690
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c5096-be3341e2d3b35ba2cdf2dd72e44df15b0977db6133ad5865a6ea9c6584b39bff3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 18:36:29 EDT 2025
Thu Jul 10 18:07:05 EDT 2025
Fri Jul 25 12:07:33 EDT 2025
Mon Jul 21 06:00:55 EDT 2025
Thu Apr 24 22:51:08 EDT 2025
Tue Jul 01 01:21:03 EDT 2025
Wed Jan 22 16:58:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords renal segmentation
dynamic contrast enhanced MRI
machine learning
glomerular filtration rate
Language English
License 2017 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5096-be3341e2d3b35ba2cdf2dd72e44df15b0977db6133ad5865a6ea9c6584b39bff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5745323
PMID 28656614
PQID 1989142920
PQPubID 1016391
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5745323
proquest_miscellaneous_1914582151
proquest_journals_1989142920
pubmed_primary_28656614
crossref_primary_10_1002_mrm_26806
crossref_citationtrail_10_1002_mrm_26806
wiley_primary_10_1002_mrm_26806_MRM26806
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 20
2013; 48
2013; 69
2009; 61
2017; 46
2004; 23
2016; 75
2008
2006
2003; 18
2004
1975; 11
2012; 15
2002
2006; 2
2012; 35
2007; 57
2012; 31
2009; 29
2004; 233
1998; 16
2009; 33
2005; 185
2010; 1
2001
2007; 292
2008; 29
2015; 42
2007; 298
2002; 224
2015; 41
2005; 4
2005; 54
2011; 46
2005; 1281
2010; 195
2007; 22
2014; 72
2012; 22
2001; 14
Sun Y (e_1_2_6_31_1) 2002
e_1_2_6_32_1
e_1_2_6_10_1
Boykov YY (e_1_2_6_39_1) 2001
Boykov Y (e_1_2_6_28_1) 2001
Cuingnet R (e_1_2_6_25_1) 2012; 15
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
Sun Y (e_1_2_6_30_1) 2004
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_27_1
e_1_2_6_26_1
Otsu N (e_1_2_6_37_1) 1975; 11
References_xml – volume: 2
  start-page: 38
  year: 2006
  end-page: 45
  article-title: Normal values for renal length and volume as measured by magnetic resonance imaging
  publication-title: Clin J Am Soc Nephrol
– volume: 35
  start-page: 1484
  year: 2012
  end-page: 1492
  article-title: Differential subsampling with cartesian ordering (DISCO): a high spatio‐temporal resolution dixon imaging sequence for multiphasic contrast enhanced abdominal imaging
  publication-title: J Magn Reson Imaging
– start-page: 105
  year: 2001
  end-page: 112
– volume: 72
  start-page: 707
  year: 2014
  end-page: 717
  article-title: Golden‐angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden‐angle radial sampling for fast and flexible dynamic volumetric MRI: iGRASP: Iterative Golden‐Angle RAdial Sparse Parallel MRI
  publication-title: Magn Reson Med
– volume: 298
  start-page: 2038
  year: 2007
  end-page: 2047
  article-title: Prevalence of chronic kidney disease in the United States
  publication-title: JAMA
– volume: 29
  start-page: 335
  year: 2008
  end-page: 341
  article-title: Chronic kidney disease in children
  publication-title: Pediatr Rev
– volume: 224
  start-page: 683
  year: 2002
  end-page: 694
  article-title: Functional and morphologic evaluation of congenital urinary tract dilatation by using combined static‐dynamic MR urography: findings in kidneys with a single collecting system1
  publication-title: Radiology
– volume: 46
  start-page: 648
  year: 2011
  end-page: 653
  article-title: Free‐breathing radial 3D fat‐suppressed T1‐weighted gradient echo sequence: a viable alternative for contrast‐enhanced liver imaging in patients unable to suspend respiration
  publication-title: Invest Radiol
– volume: 29
  start-page: 1847
  year: 2008
  end-page: 1854
  article-title: 3D time‐resolved MR angiography (MRA) of the carotid arteries with time‐resolved imaging with stochastic trajectories: comparison with 3D contrast‐enhanced Bolus‐Chase MRA and 3D time‐of‐flight MRA
  publication-title: AJNR Am J Neuroradiol
– volume: 41
  start-page: 460
  year: 2015
  end-page: 473
  article-title: Fast pediatric 3D free‐breathing abdominal dynamic contrast enhanced MRI with high spatiotemporal resolution: pediatric free‐breathing abdominal DCE MRI
  publication-title: J Magn Reson Imaging
– volume: 1281
  start-page: 773
  year: 2005
  end-page: 778
  article-title: Automatic detection of renal rejection after kidney transplantation
  publication-title: Inter Congr Ser
– volume: 185
  start-page: 1598
  year: 2005
  end-page: 1607
  article-title: Dynamic contrast‐enhanced MR urography in the evaluation of pediatric hydronephrosis: part 1, functional assessment
  publication-title: AJR Am J Roentgenol
– volume: 54
  start-page: 507
  year: 2005
  end-page: 512
  article-title: T1, T2 relaxation and magnetization transfer in tissue at 3T
  publication-title: Magn Reson Med
– volume: 4
  start-page: 145
  year: 2005
  end-page: 149
  article-title: Enhancement effects and relaxivities of gadolinium‐DTPA at 1.5 versus 3 Tesla: a phantom study
  publication-title: Magn Reson Med Sci
– volume: 33
  start-page: 171
  year: 2009
  end-page: 181
  article-title: Assessment of 3D DCE‐MRI of the kidneys using non‐rigid image registration and segmentation of voxel time courses
  publication-title: Comput Med Imaging Graph
– volume: 75
  start-page: 1301
  year: 2016
  end-page: 1311
  article-title: High temporal resolution dynamic MRI and arterial input function for assessment of GFR in pediatric subjects: HTR DCE MRI and AIF for GFR assessment
  publication-title: Magn Reson Med
– start-page: 98
  year: 2002
  end-page: 101
– volume: 23
  start-page: 309
  year: 2004
  end-page: 314
  article-title: Grabcut: interactive foreground extraction using iterated graph cuts
  publication-title: ACM Trans Graph
– volume: 48
  start-page: 590
  year: 2013
  end-page: 597
  article-title: CAIPIRINHA‐Dixon‐TWIST (CDT)‐volume‐interpolated breath‐hold examination (VIBE): a new technique for fast time‐resolved dynamic 3‐dimensional imaging of the abdomen with high spatial resolution
  publication-title: Invest Radiol
– start-page: 1923
  year: 2004
  end-page: 1926
– volume: 22
  start-page: 1999
  year: 2007
  end-page: 2009
  article-title: Chronic kidney disease in children: the global perspective
  publication-title: Pediatr Nephrol
– volume: 11
  start-page: 23
  year: 1975
  end-page: 27
  article-title: A threshold selection method from gray‐level histograms
  publication-title: Automatica
– volume: 1
  start-page: 12
  year: 2010
  end-page: 19
  article-title: Automatic renal segmentation applied in pediatric MR urography
  publication-title: IJIIP
– start-page: 37
  year: 2008
  end-page: 40
– volume: 292
  start-page: F1548
  year: 2007
  end-page: F1559
  article-title: Renal function measurements from MR renography and a simplified multicompartmental model
  publication-title: Am J Physiol Renal Physiol
– volume: 22
  start-page: 1320
  year: 2012
  end-page: 1330
  article-title: Precise measurement of renal filtration and vascular parameters using a two‐compartment model for dynamic contrast‐enhanced MRI of the kidney gives realistic normal values
  publication-title: Eur Radiol
– start-page: 1058
  year: 2001
  end-page: 1066
– volume: 42
  start-page: 407
  year: 2015
  end-page: 420
  article-title: Free‐breathing pediatric MRI with nonrigid motion correction and acceleration: free‐breathing pediatric MRI
  publication-title: J Magn Reson Imaging
– volume: 57
  start-page: 1159
  year: 2007
  end-page: 1167
  article-title: Performance of an automated segmentation algorithm for 3D MR renography
  publication-title: Magn Reson Med
– volume: 14
  start-page: 134
  year: 2001
  end-page: 140
  article-title: MR renography by semiautomated image analysis: performance in renal transplant recipients
  publication-title: J Magn Reson Imaging
– volume: 195
  start-page: W146
  year: 2010
  end-page: W149
  article-title: Renal cortical thickness easured at ultrasound: is it better than renal length as an indicator of renal function in chronic kidney disease?
  publication-title: AJR Am J Roentgenol
– volume: 31
  start-page: 1849
  year: 2012
  end-page: 1860
  article-title: Automatic renal cortex segmentation using implicit shape registration and novel multiple surfaces graph search
  publication-title: IEEE Trans Med Imaging
– start-page: 758
  year: 2006
  end-page: 765
– volume: 18
  start-page: 714
  year: 2003
  end-page: 725
  article-title: Measurement of single‐kidney glomerular filtration rate using a contrast‐enhanced dynamic gradient‐echo sequence and the Rutland‐Patlak plot technique
  publication-title: J Magn Reson Imaging
– volume: 233
  start-page: 41
  year: 2004
  end-page: 50
  article-title: Renal transit time with MR urography in children 1
  publication-title: Radiology
– volume: 20
  start-page: 843
  year: 2004
  end-page: 849
  article-title: Glomerular filtration rate: assessment with dynamic contrast‐enhanced MRI and a cortical‐compartment model in the rabbit kidney
  publication-title: J Magn Reson Imaging
– volume: 69
  start-page: 370
  year: 2013
  end-page: 381
  article-title: Fast 3D contrast enhanced MRI of the liver using temporal resolution acceleration with constrained evolution reconstruction
  publication-title: Magn Reson Med
– volume: 29
  start-page: 371
  year: 2009
  end-page: 382
  article-title: Estimates of glomerular filtration rate from MR renography and tracer kinetic models
  publication-title: J Magn Reson Imaging
– volume: 46
  start-page: 303
  year: 2017
  end-page: 311
  article-title: Multiresolution imaging using golden angle stack‐of‐stars and compressed sensing for dynamic MR urography: multiresolution imaging for dynamic MR urography
  publication-title: J Magn Reson Imaging
– volume: 15
  start-page: 66
  year: 2012
  end-page: 74
  article-title: Automatic detection and segmentation of kidneys in 3D CT images using random forests
  publication-title: Med Image Comput Comput Assist Interv
– volume: 16
  start-page: 1057
  year: 1998
  end-page: 1073
  article-title: Temporal sampling requirements for the tracer kinetics modeling of breast disease
  publication-title: Magn Reson Imaging
– volume: 61
  start-page: 1242
  year: 2009
  end-page: 1248
  article-title: Optimal k‐space sampling for dynamic contrast‐enhanced MRI with an application to MR renography
  publication-title: Magn Reson Med
– ident: e_1_2_6_9_1
  doi: 10.1002/jmri.10410
– ident: e_1_2_6_12_1
  doi: 10.1016/S0730-725X(98)00130-1
– ident: e_1_2_6_36_1
  doi: 10.2214/AJR.09.4104
– start-page: 105
  volume-title: Proceedings of the International Conference of Computer Vision
  year: 2001
  ident: e_1_2_6_39_1
– ident: e_1_2_6_19_1
  doi: 10.1002/mrm.24980
– ident: e_1_2_6_23_1
  doi: 10.1002/jmri.24551
– ident: e_1_2_6_20_1
  doi: 10.1002/mrm.21901
– ident: e_1_2_6_29_1
  doi: 10.1002/jmri.1163
– ident: e_1_2_6_7_1
  doi: 10.1148/radiol.2243011207
– ident: e_1_2_6_41_1
  doi: 10.1002/mrm.20605
– ident: e_1_2_6_5_1
  doi: 10.2214/AJR.04.1540
– volume: 15
  start-page: 66
  year: 2012
  ident: e_1_2_6_25_1
  article-title: Automatic detection and segmentation of kidneys in 3D CT images using random forests
  publication-title: Med Image Comput Comput Assist Interv
– ident: e_1_2_6_24_1
  doi: 10.1002/mrm.21240
– ident: e_1_2_6_13_1
  doi: 10.1097/RLI.0b013e31821eea45
– ident: e_1_2_6_2_1
  doi: 10.1001/jama.298.17.2038
– ident: e_1_2_6_15_1
  doi: 10.3174/ajnr.A1252
– ident: e_1_2_6_17_1
  doi: 10.1002/jmri.23602
– ident: e_1_2_6_34_1
  doi: 10.1109/ISBI.2008.4540926
– ident: e_1_2_6_10_1
  doi: 10.1152/ajprenal.00347.2006
– ident: e_1_2_6_27_1
  doi: 10.1016/j.ics.2005.03.146
– ident: e_1_2_6_11_1
  doi: 10.1007/s00330-012-2382-9
– ident: e_1_2_6_38_1
  doi: 10.1145/1015706.1015720
– ident: e_1_2_6_43_1
  doi: 10.1002/jmri.21642
– ident: e_1_2_6_40_1
  doi: 10.2463/mrms.4.145
– start-page: 98
  volume-title: Proceedings of 2002 IEEE International Symposium on Biomedical Imaging
  year: 2002
  ident: e_1_2_6_31_1
– ident: e_1_2_6_33_1
  doi: 10.4156/ijiip.vol1.issue1.2
– ident: e_1_2_6_3_1
  doi: 10.1542/pir.29-10-335
– ident: e_1_2_6_4_1
  doi: 10.1007/s00467-006-0410-1
– ident: e_1_2_6_35_1
  doi: 10.1007/11866763_93
– ident: e_1_2_6_6_1
  doi: 10.1148/radiol.2331031117
– ident: e_1_2_6_14_1
  doi: 10.1002/jmri.24785
– ident: e_1_2_6_16_1
  doi: 10.1097/RLI.0b013e318289a70b
– ident: e_1_2_6_42_1
  doi: 10.2215/CJN.00930306
– ident: e_1_2_6_32_1
  doi: 10.1016/j.compmedimag.2008.11.004
– volume: 11
  start-page: 23
  year: 1975
  ident: e_1_2_6_37_1
  article-title: A threshold selection method from gray‐level histograms
  publication-title: Automatica
– ident: e_1_2_6_21_1
  doi: 10.1002/mrm.25731
– start-page: 1058
  volume-title: Proceedings of the 4th International Conference of Medical Image Computing and Computer‐Assisted Intervention
  year: 2001
  ident: e_1_2_6_28_1
– ident: e_1_2_6_22_1
  doi: 10.1002/jmri.25576
– ident: e_1_2_6_26_1
  doi: 10.1109/TMI.2012.2203922
– ident: e_1_2_6_18_1
  doi: 10.1002/mrm.24253
– ident: e_1_2_6_8_1
  doi: 10.1002/jmri.20173
– start-page: 1923
  volume-title: Proceeding of the 2004 International Conference on Image Processing
  year: 2004
  ident: e_1_2_6_30_1
SSID ssj0009974
Score 2.3706741
Snippet Purpose To introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children. Methods An image...
To introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children. An image segmentation...
PurposeTo introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children.MethodsAn image...
To introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children.PURPOSETo introduce and...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1696
SubjectTerms Automation
Brain mapping
Children
dynamic contrast enhanced MRI
Glomerular filtration rate
Image processing
Image segmentation
Iterative methods
machine learning
Magnetic resonance imaging
Renal cortex
renal segmentation
Urography
Title Automatic renal segmentation for MR urography using 3D‐GrabCut and random forests
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.26806
https://www.ncbi.nlm.nih.gov/pubmed/28656614
https://www.proquest.com/docview/1989142920
https://www.proquest.com/docview/1914582151
https://pubmed.ncbi.nlm.nih.gov/PMC5745323
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VlUBcKJRXaEEGceCS7a4fyUacqj6okMJhoVIPSJHHcVoEm63yuHDqT-A38kvwOI-yFCTELZLHih8zns_2zGeAV1xLjdyKsJhOdShVUoTI_WKIVkVWcJ1QgnP6Pjo5le_O1NkGvBlyYTp-iPHAjSzDr9dk4BrrvWvS0GW1nPBo7um2KVaLANHimjoqSToG5ljSOpPIgVVoyvfGmuu-6AbAvBkn-St-9Q7oeAs-DU3v4k6-TNoGJ-bbb6yO_9m3e3C3B6Zsv9Ok-7Bhy224nfZX79twy8eKmvoBfNhvm5VnemWVpTq1PV_2KUwlcyCYpQvWVj0XNqPI-nMmDn9cfX9baTxoG6bLnDkfma-WJO4Go34Ip8dHHw9Owv5thtAQYUyIVjj_Z3kuUCjU3OQFz_OYWynzYqZw6nBljg4rCJ2reaR0ZHViCO6gSLAoxCPYLFelfQLMbagixMJ4aBO7CkZIhUZp6bY-GCUBvB5mKTM9cTm9n_E16yiXeeaGK_PDFcDLUfSyY-v4k9DuMNVZb7B1RqFjM_90VwAvxmJnanR_oku7aklmRreMDiMF8LjTjPEvlOBLUCeAeE1nRgGi8V4vKT9feDpvFUsluHDd9Crx94Zn6SL1H0__XXQH7jiIN--i5nZhs6la-8zBqAafe3v5CS98GuE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQUutJRXaAGDOHDJdtePZCNxqUrLAk0PSyv1giK_UhBsFmWTCyd-Qn9jfwke51G2BQlxi-Sx4seM_dme-QbgJZVcKmpZmA-HMuQiyUNF_WKorIgsozLBAOf0KJqc8Pen4nQFXnexMA0_RH_hhpbh12s0cLyQ3rlkDZ2VswGNxsi3fQMzevsD1fSSPCpJGg7mmONKk_COV2hId_qqy7vRNYh53VPydwTrt6CDdfjUNb7xPPk6qCs10D-u8Dr-b-824E6LTcluo0x3YcUWm3AzbV_fN2HNu4vqxT34uFtXc0_2SkqLdRb2bNZGMRXE4WCSTkldtnTYBJ3rzwh7c_Hz_G0p1V5dEVkY4rZJM5-huBuNxX04Odg_3puEbXqGUCNnTKgsc1ugpYYpJpSk2uTUmJhazk0-EmrooKVRDi4wacQ4EjKyMtGIeBRLVJ6zB7BazAv7CIg7U0VK5dqjm9hV0IwLpYXk7vSjoiSAV900ZbrlLscUGt-yhnWZZm64Mj9cAbzoRb83hB1_Etru5jprbXaRoffYyGfvCuB5X-ysDZ9QZGHnNcqM8KHRwaQAHjaq0f8FY3wR7QQQLylNL4BM3sslxZfPntFbxFwwylw3vU78veFZOk39x-N_F30GtybH6WF2-O7owxbcdohv3DjRbcNqVdb2iUNVlXrqjecXvIQe_A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRVRceBQogQIGceCSbdaPZCNOVZelPFKhhUo9IEV-pSDYbJVNLpz4CfxGfgke51GWgoS4RfJY8WPG89me-QzwhEouFbUsLKJIhlykRaioXwyVFbFlVKaY4JwdxYfH_NWJONmAZ30uTMsPMRy4oWX49RoN_MwUe-ekoYtqMaLxBOm2L_E4mqBKT-fn3FFp2lIwJxwXmpT3tEIR3RuqrjujCwjzYqDkrwDWe6DZNfjQt70NPPk8amo10l9_o3X8z85dh6sdMiX7rSrdgA1bbsNW1t29b8NlHyyqVzfh3X5TLz3VK6ks1lnZ00WXw1QSh4JJNidN1ZFhEwytPyVs-uPb9xeVVAdNTWRpiHOSZrlAcTcYq1twPHv-_uAw7B5nCDUyxoTKMucALTVMMaEk1aagxiTUcm6KsVCRA5ZGObDApBGTWMjYylQj3lEsVUXBbsNmuSztHSBuRxUrVWiPbRJXQTMulBaSu72PitMAnvazlOuOuRwf0PiSt5zLNHfDlfvhCuDxIHrW0nX8SWi3n-q8s9hVjrFjY_92VwCPhmJna3iBIku7bFBmjNeMDiQFsNNqxvAXzPBFrBNAsqYzgwDyeK-XlJ8-ej5vkXDBKHPd9Crx94bn2TzzH3f_XfQhbL2dzvI3L49e34MrDu5N2gi6Xdisq8bed5CqVg-86fwEcEMdtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+renal+segmentation+for+MR+urography+using+3D%E2%80%90GrabCut+and+random+forests&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Yoruk%2C+Umit&rft.au=Hargreaves%2C+Brian+A&rft.au=Vasanawala%2C+Shreyas+S&rft.date=2018-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=79&rft.issue=3&rft.spage=1696&rft.epage=1707&rft_id=info:doi/10.1002%2Fmrm.26806&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon