Automatic renal segmentation for MR urography using 3D‐GrabCut and random forests
Purpose To introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children. Methods An image segmentation method based on iterative graph cuts (GrabCut) was modified to work on time‐resolved 3D dynamic contrast‐enhanced MRI data sets....
Saved in:
Published in | Magnetic resonance in medicine Vol. 79; no. 3; pp. 1696 - 1707 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children.
Methods
An image segmentation method based on iterative graph cuts (GrabCut) was modified to work on time‐resolved 3D dynamic contrast‐enhanced MRI data sets. A random forest classifier was trained to further segment the renal tissue into cortex, medulla, and the collecting system. The algorithm was tested on 26 subjects and the segmentation results were compared to the manually drawn segmentation maps using the F1‐score metric. A two‐compartment model was used to estimate the GFR of each subject using both automatically and manually generated segmentation maps.
Results
Segmentation maps generated automatically showed high similarity to the manually drawn maps for the whole‐kidney (F1 = 0.93) and renal cortex (F1 = 0.86). GFR estimations using whole‐kidney segmentation maps from the automatic method were highly correlated (Spearman's ρ = 0.99) to the GFR values obtained from manual maps. The mean GFR estimation error of the automatic method was 2.98 ± 0.66% with an average segmentation time of 45 s per patient.
Conclusion
The automatic segmentation method performs as well as the manual segmentation for GFR estimation and reduces the segmentation time from several hours to 45 s. Magn Reson Med 79:1696–1707, 2018. © 2017 International Society for Magnetic Resonance in Medicine. |
---|---|
AbstractList | PurposeTo introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children.MethodsAn image segmentation method based on iterative graph cuts (GrabCut) was modified to work on time‐resolved 3D dynamic contrast‐enhanced MRI data sets. A random forest classifier was trained to further segment the renal tissue into cortex, medulla, and the collecting system. The algorithm was tested on 26 subjects and the segmentation results were compared to the manually drawn segmentation maps using the F1‐score metric. A two‐compartment model was used to estimate the GFR of each subject using both automatically and manually generated segmentation maps.ResultsSegmentation maps generated automatically showed high similarity to the manually drawn maps for the whole‐kidney (F1 = 0.93) and renal cortex (F1 = 0.86). GFR estimations using whole‐kidney segmentation maps from the automatic method were highly correlated (Spearman's ρ = 0.99) to the GFR values obtained from manual maps. The mean GFR estimation error of the automatic method was 2.98 ± 0.66% with an average segmentation time of 45 s per patient.ConclusionThe automatic segmentation method performs as well as the manual segmentation for GFR estimation and reduces the segmentation time from several hours to 45 s. Magn Reson Med 79:1696–1707, 2018. © 2017 International Society for Magnetic Resonance in Medicine. Purpose To introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children. Methods An image segmentation method based on iterative graph cuts (GrabCut) was modified to work on time‐resolved 3D dynamic contrast‐enhanced MRI data sets. A random forest classifier was trained to further segment the renal tissue into cortex, medulla, and the collecting system. The algorithm was tested on 26 subjects and the segmentation results were compared to the manually drawn segmentation maps using the F1‐score metric. A two‐compartment model was used to estimate the GFR of each subject using both automatically and manually generated segmentation maps. Results Segmentation maps generated automatically showed high similarity to the manually drawn maps for the whole‐kidney (F1 = 0.93) and renal cortex (F1 = 0.86). GFR estimations using whole‐kidney segmentation maps from the automatic method were highly correlated (Spearman's ρ = 0.99) to the GFR values obtained from manual maps. The mean GFR estimation error of the automatic method was 2.98 ± 0.66% with an average segmentation time of 45 s per patient. Conclusion The automatic segmentation method performs as well as the manual segmentation for GFR estimation and reduces the segmentation time from several hours to 45 s. Magn Reson Med 79:1696–1707, 2018. © 2017 International Society for Magnetic Resonance in Medicine. To introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children.PURPOSETo introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children.An image segmentation method based on iterative graph cuts (GrabCut) was modified to work on time-resolved 3D dynamic contrast-enhanced MRI data sets. A random forest classifier was trained to further segment the renal tissue into cortex, medulla, and the collecting system. The algorithm was tested on 26 subjects and the segmentation results were compared to the manually drawn segmentation maps using the F1-score metric. A two-compartment model was used to estimate the GFR of each subject using both automatically and manually generated segmentation maps.METHODSAn image segmentation method based on iterative graph cuts (GrabCut) was modified to work on time-resolved 3D dynamic contrast-enhanced MRI data sets. A random forest classifier was trained to further segment the renal tissue into cortex, medulla, and the collecting system. The algorithm was tested on 26 subjects and the segmentation results were compared to the manually drawn segmentation maps using the F1-score metric. A two-compartment model was used to estimate the GFR of each subject using both automatically and manually generated segmentation maps.Segmentation maps generated automatically showed high similarity to the manually drawn maps for the whole-kidney (F1 = 0.93) and renal cortex (F1 = 0.86). GFR estimations using whole-kidney segmentation maps from the automatic method were highly correlated (Spearman's ρ = 0.99) to the GFR values obtained from manual maps. The mean GFR estimation error of the automatic method was 2.98 ± 0.66% with an average segmentation time of 45 s per patient.RESULTSSegmentation maps generated automatically showed high similarity to the manually drawn maps for the whole-kidney (F1 = 0.93) and renal cortex (F1 = 0.86). GFR estimations using whole-kidney segmentation maps from the automatic method were highly correlated (Spearman's ρ = 0.99) to the GFR values obtained from manual maps. The mean GFR estimation error of the automatic method was 2.98 ± 0.66% with an average segmentation time of 45 s per patient.The automatic segmentation method performs as well as the manual segmentation for GFR estimation and reduces the segmentation time from several hours to 45 s. Magn Reson Med 79:1696-1707, 2018. © 2017 International Society for Magnetic Resonance in Medicine.CONCLUSIONThe automatic segmentation method performs as well as the manual segmentation for GFR estimation and reduces the segmentation time from several hours to 45 s. Magn Reson Med 79:1696-1707, 2018. © 2017 International Society for Magnetic Resonance in Medicine. To introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children. An image segmentation method based on iterative graph cuts (GrabCut) was modified to work on time-resolved 3D dynamic contrast-enhanced MRI data sets. A random forest classifier was trained to further segment the renal tissue into cortex, medulla, and the collecting system. The algorithm was tested on 26 subjects and the segmentation results were compared to the manually drawn segmentation maps using the F1-score metric. A two-compartment model was used to estimate the GFR of each subject using both automatically and manually generated segmentation maps. Segmentation maps generated automatically showed high similarity to the manually drawn maps for the whole-kidney (F1 = 0.93) and renal cortex (F1 = 0.86). GFR estimations using whole-kidney segmentation maps from the automatic method were highly correlated (Spearman's ρ = 0.99) to the GFR values obtained from manual maps. The mean GFR estimation error of the automatic method was 2.98 ± 0.66% with an average segmentation time of 45 s per patient. The automatic segmentation method performs as well as the manual segmentation for GFR estimation and reduces the segmentation time from several hours to 45 s. Magn Reson Med 79:1696-1707, 2018. © 2017 International Society for Magnetic Resonance in Medicine. |
Author | Yoruk, Umit Vasanawala, Shreyas S. Hargreaves, Brian A. |
Author_xml | – sequence: 1 givenname: Umit surname: Yoruk fullname: Yoruk, Umit email: uyoruk@stanford.edu organization: Stanford University – sequence: 2 givenname: Brian A. surname: Hargreaves fullname: Hargreaves, Brian A. organization: Stanford University – sequence: 3 givenname: Shreyas S. surname: Vasanawala fullname: Vasanawala, Shreyas S. organization: Stanford University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28656614$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd9OFDEUxhuCgQW94AVIE2_wYqD_Z3pjQlZFEzYkqNdNO-0sJTPt2s5A9s5H8Bl9ErsuEiHRm9Pk9He-fOd8B2A3xOAAOMLoFCNEzoY0nBLRILEDZpgTUhEu2S6YoZqhimLJ9sFBzrcIISlrtgf2SSO4EJjNwOfzaYyDHn0Lkwu6h9ktBxfG0okBdjHBxTWcUlwmvbpZwyn7sIT03c_vPy6SNvNphDpYmEqJwwZ3ecwvwYtO99m9engPwdcP77_MP1aXVxef5ueXVcuRFJVxlDLsiKWGcqNJaztibU0cY7bD3CBZ19YITKm2vBjWwmnZCt4wQ6XpOnoI3m51V5MZnG2L7aR7tUp-0Gmtovbq6U_wN2oZ7xSvGaeEFoGTB4EUv03Fuhp8bl3f6-DilBWWmPGGYI4L-voZehunVA62oZrCEUlQoY7_dvRo5c-9C_BmC7Qp5pxc94hgpDZZqpKl-p1lYc-esa3f5lKW8f3_Ju5979b_llaL68V24hd_lbGe |
CitedBy_id | crossref_primary_10_3390_math11081965 crossref_primary_10_1007_s11633_021_1313_0 crossref_primary_10_1007_s00247_021_05264_9 crossref_primary_10_1109_ACCESS_2021_3078430 crossref_primary_10_1016_j_diii_2019_02_001 crossref_primary_10_36604_1998_5029_2023_88_50_58 crossref_primary_10_2174_1573405616666200923162600 crossref_primary_10_1016_j_bbe_2022_02_002 crossref_primary_10_1016_j_jvir_2019_11_032 crossref_primary_10_1016_j_compbiomed_2019_01_027 crossref_primary_10_3390_diagnostics12081788 crossref_primary_10_1007_s10334_019_00802_x crossref_primary_10_3390_s21206714 crossref_primary_10_1002_jbio_202100142 crossref_primary_10_3390_biomedicines11010006 crossref_primary_10_1002_mrm_29016 crossref_primary_10_1007_s42235_023_00365_7 crossref_primary_10_15275_cardioit_2021_0101 crossref_primary_10_3390_app10217512 crossref_primary_10_3390_s21237942 |
Cites_doi | 10.1002/jmri.10410 10.1016/S0730-725X(98)00130-1 10.2214/AJR.09.4104 10.1002/mrm.24980 10.1002/jmri.24551 10.1002/mrm.21901 10.1002/jmri.1163 10.1148/radiol.2243011207 10.1002/mrm.20605 10.2214/AJR.04.1540 10.1002/mrm.21240 10.1097/RLI.0b013e31821eea45 10.1001/jama.298.17.2038 10.3174/ajnr.A1252 10.1002/jmri.23602 10.1109/ISBI.2008.4540926 10.1152/ajprenal.00347.2006 10.1016/j.ics.2005.03.146 10.1007/s00330-012-2382-9 10.1145/1015706.1015720 10.1002/jmri.21642 10.2463/mrms.4.145 10.4156/ijiip.vol1.issue1.2 10.1542/pir.29-10-335 10.1007/s00467-006-0410-1 10.1007/11866763_93 10.1148/radiol.2331031117 10.1002/jmri.24785 10.1097/RLI.0b013e318289a70b 10.2215/CJN.00930306 10.1016/j.compmedimag.2008.11.004 10.1002/mrm.25731 10.1002/jmri.25576 10.1109/TMI.2012.2203922 10.1002/mrm.24253 10.1002/jmri.20173 |
ContentType | Journal Article |
Copyright | 2017 International Society for Magnetic Resonance in Medicine 2017 International Society for Magnetic Resonance in Medicine. 2018 International Society for Magnetic Resonance in Medicine |
Copyright_xml | – notice: 2017 International Society for Magnetic Resonance in Medicine – notice: 2017 International Society for Magnetic Resonance in Medicine. – notice: 2018 International Society for Magnetic Resonance in Medicine |
DBID | AAYXX CITATION NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
DOI | 10.1002/mrm.26806 |
DatabaseName | CrossRef PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1707 |
ExternalDocumentID | PMC5745323 28656614 10_1002_mrm_26806 MRM26806 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: GE Healthcare – fundername: NIH funderid: R01‐EB009690 ; P41‐EB015891 – fundername: NIBIB NIH HHS grantid: P41 EB015891 – fundername: NIBIB NIH HHS grantid: R01 EB009690 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
ID | FETCH-LOGICAL-c5096-be3341e2d3b35ba2cdf2dd72e44df15b0977db6133ad5865a6ea9c6584b39bff3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Aug 21 18:36:29 EDT 2025 Thu Jul 10 18:07:05 EDT 2025 Fri Jul 25 12:07:33 EDT 2025 Mon Jul 21 06:00:55 EDT 2025 Thu Apr 24 22:51:08 EDT 2025 Tue Jul 01 01:21:03 EDT 2025 Wed Jan 22 16:58:46 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | renal segmentation dynamic contrast enhanced MRI machine learning glomerular filtration rate |
Language | English |
License | 2017 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5096-be3341e2d3b35ba2cdf2dd72e44df15b0977db6133ad5865a6ea9c6584b39bff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5745323 |
PMID | 28656614 |
PQID | 1989142920 |
PQPubID | 1016391 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5745323 proquest_miscellaneous_1914582151 proquest_journals_1989142920 pubmed_primary_28656614 crossref_primary_10_1002_mrm_26806 crossref_citationtrail_10_1002_mrm_26806 wiley_primary_10_1002_mrm_26806_MRM26806 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2018 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 20 2013; 48 2013; 69 2009; 61 2017; 46 2004; 23 2016; 75 2008 2006 2003; 18 2004 1975; 11 2012; 15 2002 2006; 2 2012; 35 2007; 57 2012; 31 2009; 29 2004; 233 1998; 16 2009; 33 2005; 185 2010; 1 2001 2007; 292 2008; 29 2015; 42 2007; 298 2002; 224 2015; 41 2005; 4 2005; 54 2011; 46 2005; 1281 2010; 195 2007; 22 2014; 72 2012; 22 2001; 14 Sun Y (e_1_2_6_31_1) 2002 e_1_2_6_32_1 e_1_2_6_10_1 Boykov YY (e_1_2_6_39_1) 2001 Boykov Y (e_1_2_6_28_1) 2001 Cuingnet R (e_1_2_6_25_1) 2012; 15 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 Sun Y (e_1_2_6_30_1) 2004 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_27_1 e_1_2_6_26_1 Otsu N (e_1_2_6_37_1) 1975; 11 |
References_xml | – volume: 2 start-page: 38 year: 2006 end-page: 45 article-title: Normal values for renal length and volume as measured by magnetic resonance imaging publication-title: Clin J Am Soc Nephrol – volume: 35 start-page: 1484 year: 2012 end-page: 1492 article-title: Differential subsampling with cartesian ordering (DISCO): a high spatio‐temporal resolution dixon imaging sequence for multiphasic contrast enhanced abdominal imaging publication-title: J Magn Reson Imaging – start-page: 105 year: 2001 end-page: 112 – volume: 72 start-page: 707 year: 2014 end-page: 717 article-title: Golden‐angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden‐angle radial sampling for fast and flexible dynamic volumetric MRI: iGRASP: Iterative Golden‐Angle RAdial Sparse Parallel MRI publication-title: Magn Reson Med – volume: 298 start-page: 2038 year: 2007 end-page: 2047 article-title: Prevalence of chronic kidney disease in the United States publication-title: JAMA – volume: 29 start-page: 335 year: 2008 end-page: 341 article-title: Chronic kidney disease in children publication-title: Pediatr Rev – volume: 224 start-page: 683 year: 2002 end-page: 694 article-title: Functional and morphologic evaluation of congenital urinary tract dilatation by using combined static‐dynamic MR urography: findings in kidneys with a single collecting system1 publication-title: Radiology – volume: 46 start-page: 648 year: 2011 end-page: 653 article-title: Free‐breathing radial 3D fat‐suppressed T1‐weighted gradient echo sequence: a viable alternative for contrast‐enhanced liver imaging in patients unable to suspend respiration publication-title: Invest Radiol – volume: 29 start-page: 1847 year: 2008 end-page: 1854 article-title: 3D time‐resolved MR angiography (MRA) of the carotid arteries with time‐resolved imaging with stochastic trajectories: comparison with 3D contrast‐enhanced Bolus‐Chase MRA and 3D time‐of‐flight MRA publication-title: AJNR Am J Neuroradiol – volume: 41 start-page: 460 year: 2015 end-page: 473 article-title: Fast pediatric 3D free‐breathing abdominal dynamic contrast enhanced MRI with high spatiotemporal resolution: pediatric free‐breathing abdominal DCE MRI publication-title: J Magn Reson Imaging – volume: 1281 start-page: 773 year: 2005 end-page: 778 article-title: Automatic detection of renal rejection after kidney transplantation publication-title: Inter Congr Ser – volume: 185 start-page: 1598 year: 2005 end-page: 1607 article-title: Dynamic contrast‐enhanced MR urography in the evaluation of pediatric hydronephrosis: part 1, functional assessment publication-title: AJR Am J Roentgenol – volume: 54 start-page: 507 year: 2005 end-page: 512 article-title: T1, T2 relaxation and magnetization transfer in tissue at 3T publication-title: Magn Reson Med – volume: 4 start-page: 145 year: 2005 end-page: 149 article-title: Enhancement effects and relaxivities of gadolinium‐DTPA at 1.5 versus 3 Tesla: a phantom study publication-title: Magn Reson Med Sci – volume: 33 start-page: 171 year: 2009 end-page: 181 article-title: Assessment of 3D DCE‐MRI of the kidneys using non‐rigid image registration and segmentation of voxel time courses publication-title: Comput Med Imaging Graph – volume: 75 start-page: 1301 year: 2016 end-page: 1311 article-title: High temporal resolution dynamic MRI and arterial input function for assessment of GFR in pediatric subjects: HTR DCE MRI and AIF for GFR assessment publication-title: Magn Reson Med – start-page: 98 year: 2002 end-page: 101 – volume: 23 start-page: 309 year: 2004 end-page: 314 article-title: Grabcut: interactive foreground extraction using iterated graph cuts publication-title: ACM Trans Graph – volume: 48 start-page: 590 year: 2013 end-page: 597 article-title: CAIPIRINHA‐Dixon‐TWIST (CDT)‐volume‐interpolated breath‐hold examination (VIBE): a new technique for fast time‐resolved dynamic 3‐dimensional imaging of the abdomen with high spatial resolution publication-title: Invest Radiol – start-page: 1923 year: 2004 end-page: 1926 – volume: 22 start-page: 1999 year: 2007 end-page: 2009 article-title: Chronic kidney disease in children: the global perspective publication-title: Pediatr Nephrol – volume: 11 start-page: 23 year: 1975 end-page: 27 article-title: A threshold selection method from gray‐level histograms publication-title: Automatica – volume: 1 start-page: 12 year: 2010 end-page: 19 article-title: Automatic renal segmentation applied in pediatric MR urography publication-title: IJIIP – start-page: 37 year: 2008 end-page: 40 – volume: 292 start-page: F1548 year: 2007 end-page: F1559 article-title: Renal function measurements from MR renography and a simplified multicompartmental model publication-title: Am J Physiol Renal Physiol – volume: 22 start-page: 1320 year: 2012 end-page: 1330 article-title: Precise measurement of renal filtration and vascular parameters using a two‐compartment model for dynamic contrast‐enhanced MRI of the kidney gives realistic normal values publication-title: Eur Radiol – start-page: 1058 year: 2001 end-page: 1066 – volume: 42 start-page: 407 year: 2015 end-page: 420 article-title: Free‐breathing pediatric MRI with nonrigid motion correction and acceleration: free‐breathing pediatric MRI publication-title: J Magn Reson Imaging – volume: 57 start-page: 1159 year: 2007 end-page: 1167 article-title: Performance of an automated segmentation algorithm for 3D MR renography publication-title: Magn Reson Med – volume: 14 start-page: 134 year: 2001 end-page: 140 article-title: MR renography by semiautomated image analysis: performance in renal transplant recipients publication-title: J Magn Reson Imaging – volume: 195 start-page: W146 year: 2010 end-page: W149 article-title: Renal cortical thickness easured at ultrasound: is it better than renal length as an indicator of renal function in chronic kidney disease? publication-title: AJR Am J Roentgenol – volume: 31 start-page: 1849 year: 2012 end-page: 1860 article-title: Automatic renal cortex segmentation using implicit shape registration and novel multiple surfaces graph search publication-title: IEEE Trans Med Imaging – start-page: 758 year: 2006 end-page: 765 – volume: 18 start-page: 714 year: 2003 end-page: 725 article-title: Measurement of single‐kidney glomerular filtration rate using a contrast‐enhanced dynamic gradient‐echo sequence and the Rutland‐Patlak plot technique publication-title: J Magn Reson Imaging – volume: 233 start-page: 41 year: 2004 end-page: 50 article-title: Renal transit time with MR urography in children 1 publication-title: Radiology – volume: 20 start-page: 843 year: 2004 end-page: 849 article-title: Glomerular filtration rate: assessment with dynamic contrast‐enhanced MRI and a cortical‐compartment model in the rabbit kidney publication-title: J Magn Reson Imaging – volume: 69 start-page: 370 year: 2013 end-page: 381 article-title: Fast 3D contrast enhanced MRI of the liver using temporal resolution acceleration with constrained evolution reconstruction publication-title: Magn Reson Med – volume: 29 start-page: 371 year: 2009 end-page: 382 article-title: Estimates of glomerular filtration rate from MR renography and tracer kinetic models publication-title: J Magn Reson Imaging – volume: 46 start-page: 303 year: 2017 end-page: 311 article-title: Multiresolution imaging using golden angle stack‐of‐stars and compressed sensing for dynamic MR urography: multiresolution imaging for dynamic MR urography publication-title: J Magn Reson Imaging – volume: 15 start-page: 66 year: 2012 end-page: 74 article-title: Automatic detection and segmentation of kidneys in 3D CT images using random forests publication-title: Med Image Comput Comput Assist Interv – volume: 16 start-page: 1057 year: 1998 end-page: 1073 article-title: Temporal sampling requirements for the tracer kinetics modeling of breast disease publication-title: Magn Reson Imaging – volume: 61 start-page: 1242 year: 2009 end-page: 1248 article-title: Optimal k‐space sampling for dynamic contrast‐enhanced MRI with an application to MR renography publication-title: Magn Reson Med – ident: e_1_2_6_9_1 doi: 10.1002/jmri.10410 – ident: e_1_2_6_12_1 doi: 10.1016/S0730-725X(98)00130-1 – ident: e_1_2_6_36_1 doi: 10.2214/AJR.09.4104 – start-page: 105 volume-title: Proceedings of the International Conference of Computer Vision year: 2001 ident: e_1_2_6_39_1 – ident: e_1_2_6_19_1 doi: 10.1002/mrm.24980 – ident: e_1_2_6_23_1 doi: 10.1002/jmri.24551 – ident: e_1_2_6_20_1 doi: 10.1002/mrm.21901 – ident: e_1_2_6_29_1 doi: 10.1002/jmri.1163 – ident: e_1_2_6_7_1 doi: 10.1148/radiol.2243011207 – ident: e_1_2_6_41_1 doi: 10.1002/mrm.20605 – ident: e_1_2_6_5_1 doi: 10.2214/AJR.04.1540 – volume: 15 start-page: 66 year: 2012 ident: e_1_2_6_25_1 article-title: Automatic detection and segmentation of kidneys in 3D CT images using random forests publication-title: Med Image Comput Comput Assist Interv – ident: e_1_2_6_24_1 doi: 10.1002/mrm.21240 – ident: e_1_2_6_13_1 doi: 10.1097/RLI.0b013e31821eea45 – ident: e_1_2_6_2_1 doi: 10.1001/jama.298.17.2038 – ident: e_1_2_6_15_1 doi: 10.3174/ajnr.A1252 – ident: e_1_2_6_17_1 doi: 10.1002/jmri.23602 – ident: e_1_2_6_34_1 doi: 10.1109/ISBI.2008.4540926 – ident: e_1_2_6_10_1 doi: 10.1152/ajprenal.00347.2006 – ident: e_1_2_6_27_1 doi: 10.1016/j.ics.2005.03.146 – ident: e_1_2_6_11_1 doi: 10.1007/s00330-012-2382-9 – ident: e_1_2_6_38_1 doi: 10.1145/1015706.1015720 – ident: e_1_2_6_43_1 doi: 10.1002/jmri.21642 – ident: e_1_2_6_40_1 doi: 10.2463/mrms.4.145 – start-page: 98 volume-title: Proceedings of 2002 IEEE International Symposium on Biomedical Imaging year: 2002 ident: e_1_2_6_31_1 – ident: e_1_2_6_33_1 doi: 10.4156/ijiip.vol1.issue1.2 – ident: e_1_2_6_3_1 doi: 10.1542/pir.29-10-335 – ident: e_1_2_6_4_1 doi: 10.1007/s00467-006-0410-1 – ident: e_1_2_6_35_1 doi: 10.1007/11866763_93 – ident: e_1_2_6_6_1 doi: 10.1148/radiol.2331031117 – ident: e_1_2_6_14_1 doi: 10.1002/jmri.24785 – ident: e_1_2_6_16_1 doi: 10.1097/RLI.0b013e318289a70b – ident: e_1_2_6_42_1 doi: 10.2215/CJN.00930306 – ident: e_1_2_6_32_1 doi: 10.1016/j.compmedimag.2008.11.004 – volume: 11 start-page: 23 year: 1975 ident: e_1_2_6_37_1 article-title: A threshold selection method from gray‐level histograms publication-title: Automatica – ident: e_1_2_6_21_1 doi: 10.1002/mrm.25731 – start-page: 1058 volume-title: Proceedings of the 4th International Conference of Medical Image Computing and Computer‐Assisted Intervention year: 2001 ident: e_1_2_6_28_1 – ident: e_1_2_6_22_1 doi: 10.1002/jmri.25576 – ident: e_1_2_6_26_1 doi: 10.1109/TMI.2012.2203922 – ident: e_1_2_6_18_1 doi: 10.1002/mrm.24253 – ident: e_1_2_6_8_1 doi: 10.1002/jmri.20173 – start-page: 1923 volume-title: Proceeding of the 2004 International Conference on Image Processing year: 2004 ident: e_1_2_6_30_1 |
SSID | ssj0009974 |
Score | 2.3706741 |
Snippet | Purpose
To introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children.
Methods
An image... To introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children. An image segmentation... PurposeTo introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children.MethodsAn image... To introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children.PURPOSETo introduce and... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1696 |
SubjectTerms | Automation Brain mapping Children dynamic contrast enhanced MRI Glomerular filtration rate Image processing Image segmentation Iterative methods machine learning Magnetic resonance imaging Renal cortex renal segmentation Urography |
Title | Automatic renal segmentation for MR urography using 3D‐GrabCut and random forests |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.26806 https://www.ncbi.nlm.nih.gov/pubmed/28656614 https://www.proquest.com/docview/1989142920 https://www.proquest.com/docview/1914582151 https://pubmed.ncbi.nlm.nih.gov/PMC5745323 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VlUBcKJRXaEEGceCS7a4fyUacqj6okMJhoVIPSJHHcVoEm63yuHDqT-A38kvwOI-yFCTELZLHih8zns_2zGeAV1xLjdyKsJhOdShVUoTI_WKIVkVWcJ1QgnP6Pjo5le_O1NkGvBlyYTp-iPHAjSzDr9dk4BrrvWvS0GW1nPBo7um2KVaLANHimjoqSToG5ljSOpPIgVVoyvfGmuu-6AbAvBkn-St-9Q7oeAs-DU3v4k6-TNoGJ-bbb6yO_9m3e3C3B6Zsv9Ok-7Bhy224nfZX79twy8eKmvoBfNhvm5VnemWVpTq1PV_2KUwlcyCYpQvWVj0XNqPI-nMmDn9cfX9baTxoG6bLnDkfma-WJO4Go34Ip8dHHw9Owv5thtAQYUyIVjj_Z3kuUCjU3OQFz_OYWynzYqZw6nBljg4rCJ2reaR0ZHViCO6gSLAoxCPYLFelfQLMbagixMJ4aBO7CkZIhUZp6bY-GCUBvB5mKTM9cTm9n_E16yiXeeaGK_PDFcDLUfSyY-v4k9DuMNVZb7B1RqFjM_90VwAvxmJnanR_oku7aklmRreMDiMF8LjTjPEvlOBLUCeAeE1nRgGi8V4vKT9feDpvFUsluHDd9Crx94Zn6SL1H0__XXQH7jiIN--i5nZhs6la-8zBqAafe3v5CS98GuE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQUutJRXaAGDOHDJdtePZCNxqUrLAk0PSyv1giK_UhBsFmWTCyd-Qn9jfwke51G2BQlxi-Sx4seM_dme-QbgJZVcKmpZmA-HMuQiyUNF_WKorIgsozLBAOf0KJqc8Pen4nQFXnexMA0_RH_hhpbh12s0cLyQ3rlkDZ2VswGNxsi3fQMzevsD1fSSPCpJGg7mmONKk_COV2hId_qqy7vRNYh53VPydwTrt6CDdfjUNb7xPPk6qCs10D-u8Dr-b-824E6LTcluo0x3YcUWm3AzbV_fN2HNu4vqxT34uFtXc0_2SkqLdRb2bNZGMRXE4WCSTkldtnTYBJ3rzwh7c_Hz_G0p1V5dEVkY4rZJM5-huBuNxX04Odg_3puEbXqGUCNnTKgsc1ugpYYpJpSk2uTUmJhazk0-EmrooKVRDi4wacQ4EjKyMtGIeBRLVJ6zB7BazAv7CIg7U0VK5dqjm9hV0IwLpYXk7vSjoiSAV900ZbrlLscUGt-yhnWZZm64Mj9cAbzoRb83hB1_Etru5jprbXaRoffYyGfvCuB5X-ysDZ9QZGHnNcqM8KHRwaQAHjaq0f8FY3wR7QQQLylNL4BM3sslxZfPntFbxFwwylw3vU78veFZOk39x-N_F30GtybH6WF2-O7owxbcdohv3DjRbcNqVdb2iUNVlXrqjecXvIQe_A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRVRceBQogQIGceCSbdaPZCNOVZelPFKhhUo9IEV-pSDYbJVNLpz4CfxGfgke51GWgoS4RfJY8WPG89me-QzwhEouFbUsLKJIhlykRaioXwyVFbFlVKaY4JwdxYfH_NWJONmAZ30uTMsPMRy4oWX49RoN_MwUe-ekoYtqMaLxBOm2L_E4mqBKT-fn3FFp2lIwJxwXmpT3tEIR3RuqrjujCwjzYqDkrwDWe6DZNfjQt70NPPk8amo10l9_o3X8z85dh6sdMiX7rSrdgA1bbsNW1t29b8NlHyyqVzfh3X5TLz3VK6ks1lnZ00WXw1QSh4JJNidN1ZFhEwytPyVs-uPb9xeVVAdNTWRpiHOSZrlAcTcYq1twPHv-_uAw7B5nCDUyxoTKMucALTVMMaEk1aagxiTUcm6KsVCRA5ZGObDApBGTWMjYylQj3lEsVUXBbsNmuSztHSBuRxUrVWiPbRJXQTMulBaSu72PitMAnvazlOuOuRwf0PiSt5zLNHfDlfvhCuDxIHrW0nX8SWi3n-q8s9hVjrFjY_92VwCPhmJna3iBIku7bFBmjNeMDiQFsNNqxvAXzPBFrBNAsqYzgwDyeK-XlJ8-ej5vkXDBKHPd9Crx94bn2TzzH3f_XfQhbL2dzvI3L49e34MrDu5N2gi6Xdisq8bed5CqVg-86fwEcEMdtA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+renal+segmentation+for+MR+urography+using+3D%E2%80%90GrabCut+and+random+forests&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Yoruk%2C+Umit&rft.au=Hargreaves%2C+Brian+A&rft.au=Vasanawala%2C+Shreyas+S&rft.date=2018-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=79&rft.issue=3&rft.spage=1696&rft.epage=1707&rft_id=info:doi/10.1002%2Fmrm.26806&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |