Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems

Tropical ecosystems have the highest levels of biodiversity, cycle more water and absorb more carbon than any other terrestrial ecosystem on Earth. Consequently, these ecosystems are extremely important components of Earth’s climatic system and biogeochemical cycles. Plant hydraulics is an essential...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 230; no. 3; pp. 904 - 923
Main Authors Oliveira, Rafael S., Eller, Cleiton B., de V. Barros, Fernanda, Hirota, Marina, Brum, Mauro, Bittencourt, Paulo
Format Journal Article
LanguageEnglish
Published England Wiley 01.05.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tropical ecosystems have the highest levels of biodiversity, cycle more water and absorb more carbon than any other terrestrial ecosystem on Earth. Consequently, these ecosystems are extremely important components of Earth’s climatic system and biogeochemical cycles. Plant hydraulics is an essential discipline to understand and predict the dynamics of tropical vegetation in scenarios of changing water availability. Using published plant hydraulic data we show that the trade-off between drought avoidance (expressed as deep-rooting, deciduousness and capacitance) and hydraulic safety (P50 – the water potential when plants lose 50% of their maximum hydraulic conductivity) is a major axis of physiological variation across tropical ecosystems. We also propose a novel and independent axis of hydraulic trait variation linking vulnerability to hydraulic failure (expressed as the hydraulic safety margin (HSM)) and growth, where inherent fast-growing plants have lower HSM compared to slow-growing plants. We surmise that soil nutrients are fundamental drivers of tropical community assembly determining the distribution and abundance of the slow-safe/fast-risky strategies. We conclude showing that including either the growth-HSM or the resistance-avoidance trade-off in models can make simulated tropical rainforest communities substantially more vulnerable to drought than similar communities without the trade-off. These results suggest that vegetation models need to represent hydraulic trade-off axes to accurately project the functioning and distribution of tropical ecosystems.
AbstractList Tropical ecosystems have the highest levels of biodiversity, cycle more water and absorb more carbon than any other terrestrial ecosystem on Earth. Consequently, these ecosystems are extremely important components of Earth’s climatic system and biogeochemical cycles. Plant hydraulics is an essential discipline to understand and predict the dynamics of tropical vegetation in scenarios of changing water availability. Using published plant hydraulic data we show that the trade‐off between drought avoidance (expressed as deep‐rooting, deciduousness and capacitance) and hydraulic safety (P50 – the water potential when plants lose 50% of their maximum hydraulic conductivity) is a major axis of physiological variation across tropical ecosystems. We also propose a novel and independent axis of hydraulic trait variation linking vulnerability to hydraulic failure (expressed as the hydraulic safety margin (HSM)) and growth, where inherent fast‐growing plants have lower HSM compared to slow‐growing plants. We surmise that soil nutrients are fundamental drivers of tropical community assembly determining the distribution and abundance of the slow‐safe/fast‐risky strategies. We conclude showing that including either the growth‐HSM or the resistance‐avoidance trade‐off in models can make simulated tropical rainforest communities substantially more vulnerable to drought than similar communities without the trade‐off. These results suggest that vegetation models need to represent hydraulic trade‐off axes to accurately project the functioning and distribution of tropical ecosystems.
Tropical ecosystems have the highest levels of biodiversity, cycle more water and absorb more carbon than any other terrestrial ecosystem on Earth. Consequently, these ecosystems are extremely important components of Earth's climatic system and biogeochemical cycles. Plant hydraulics is an essential discipline to understand and predict the dynamics of tropical vegetation in scenarios of changing water availability. Using published plant hydraulic data we show that the trade-off between drought avoidance (expressed as deep-rooting, deciduousness and capacitance) and hydraulic safety (P50 - the water potential when plants lose 50% of their maximum hydraulic conductivity) is a major axis of physiological variation across tropical ecosystems. We also propose a novel and independent axis of hydraulic trait variation linking vulnerability to hydraulic failure (expressed as the hydraulic safety margin (HSM)) and growth, where inherent fast-growing plants have lower HSM compared to slow-growing plants. We surmise that soil nutrients are fundamental drivers of tropical community assembly determining the distribution and abundance of the slow-safe/fast-risky strategies. We conclude showing that including either the growth-HSM or the resistance-avoidance trade-off in models can make simulated tropical rainforest communities substantially more vulnerable to drought than similar communities without the trade-off. These results suggest that vegetation models need to represent hydraulic trade-off axes to accurately project the functioning and distribution of tropical ecosystems.Tropical ecosystems have the highest levels of biodiversity, cycle more water and absorb more carbon than any other terrestrial ecosystem on Earth. Consequently, these ecosystems are extremely important components of Earth's climatic system and biogeochemical cycles. Plant hydraulics is an essential discipline to understand and predict the dynamics of tropical vegetation in scenarios of changing water availability. Using published plant hydraulic data we show that the trade-off between drought avoidance (expressed as deep-rooting, deciduousness and capacitance) and hydraulic safety (P50 - the water potential when plants lose 50% of their maximum hydraulic conductivity) is a major axis of physiological variation across tropical ecosystems. We also propose a novel and independent axis of hydraulic trait variation linking vulnerability to hydraulic failure (expressed as the hydraulic safety margin (HSM)) and growth, where inherent fast-growing plants have lower HSM compared to slow-growing plants. We surmise that soil nutrients are fundamental drivers of tropical community assembly determining the distribution and abundance of the slow-safe/fast-risky strategies. We conclude showing that including either the growth-HSM or the resistance-avoidance trade-off in models can make simulated tropical rainforest communities substantially more vulnerable to drought than similar communities without the trade-off. These results suggest that vegetation models need to represent hydraulic trade-off axes to accurately project the functioning and distribution of tropical ecosystems.
Summary Tropical ecosystems have the highest levels of biodiversity, cycle more water and absorb more carbon than any other terrestrial ecosystem on Earth. Consequently, these ecosystems are extremely important components of Earth’s climatic system and biogeochemical cycles. Plant hydraulics is an essential discipline to understand and predict the dynamics of tropical vegetation in scenarios of changing water availability. Using published plant hydraulic data we show that the trade‐off between drought avoidance (expressed as deep‐rooting, deciduousness and capacitance) and hydraulic safety (P50 – the water potential when plants lose 50% of their maximum hydraulic conductivity) is a major axis of physiological variation across tropical ecosystems. We also propose a novel and independent axis of hydraulic trait variation linking vulnerability to hydraulic failure (expressed as the hydraulic safety margin (HSM)) and growth, where inherent fast‐growing plants have lower HSM compared to slow‐growing plants. We surmise that soil nutrients are fundamental drivers of tropical community assembly determining the distribution and abundance of the slow‐safe/fast‐risky strategies. We conclude showing that including either the growth‐HSM or the resistance‐avoidance trade‐off in models can make simulated tropical rainforest communities substantially more vulnerable to drought than similar communities without the trade‐off. These results suggest that vegetation models need to represent hydraulic trade‐off axes to accurately project the functioning and distribution of tropical ecosystems.
Author Hirota, Marina
de V. Barros, Fernanda
Bittencourt, Paulo
Brum, Mauro
Eller, Cleiton B.
Oliveira, Rafael S.
Author_xml – sequence: 1
  givenname: Rafael S.
  surname: Oliveira
  fullname: Oliveira, Rafael S.
– sequence: 2
  givenname: Cleiton B.
  surname: Eller
  fullname: Eller, Cleiton B.
– sequence: 3
  givenname: Fernanda
  surname: de V. Barros
  fullname: de V. Barros, Fernanda
– sequence: 4
  givenname: Marina
  surname: Hirota
  fullname: Hirota, Marina
– sequence: 5
  givenname: Mauro
  surname: Brum
  fullname: Brum, Mauro
– sequence: 6
  givenname: Paulo
  surname: Bittencourt
  fullname: Bittencourt, Paulo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33570772$$D View this record in MEDLINE/PubMed
BookMark eNqFkb1uFDEUhS0URDaBggcAWaKBYhL_jO1xiSIgSCugAInO8nrsrJcZe2J7FG3HO_CGPAledpciAnGbW9zvHOnccwZOQgwWgKcYXeA6l2FaX2BBOH8AFrjlsukwFSdggRDpGt7yr6fgLOcNQkgyTh6BU0qZQEKQBbhd-vDNhxs4DToUuN72Sc-DNxnq0MOyttDpXH5-_5GHeAdNDMWHeR5hiXAOvU257Lhksx-8DcbuDn2K8826QB9gSXHyRg_Qmpi3udgxPwYPnR6yfXLY5-DL2zefr66b5cd3769eLxvDkOQNX3UIsd5h6agRlAssHOed5tKxthfcMYIckgbhvibvkRXOUL4iWFC80q2m5-Dl3ndK8Xa2uajRZ2OHmtPGOSvCWtRKRmX7f7TtOsYw7Xboi3voJs4p1CDVEElCkERdpZ4fqHk12l5NyY86bdXx7xW43AMmxZyTdcr4oouv_03aDwojtWtW1WbV72ar4tU9xdH0b-zB_c4PdvtvUH34dH1UPNsrNrnE9EdBBMJUEkF_AcGPvPk
CitedBy_id crossref_primary_10_1111_nph_17584
crossref_primary_10_1111_nph_17464
crossref_primary_10_1111_gcb_16826
crossref_primary_10_1016_j_foreco_2024_122339
crossref_primary_10_1002_ece3_11095
crossref_primary_10_1111_1365_2745_14437
crossref_primary_10_1111_pce_14704
crossref_primary_10_1016_j_jhydrol_2024_132106
crossref_primary_10_1073_pnas_2404034121
crossref_primary_10_1029_2020JG006123
crossref_primary_10_3390_f14040697
crossref_primary_10_1016_j_scitotenv_2022_157421
crossref_primary_10_1016_j_jhydrol_2022_128923
crossref_primary_10_1016_j_ecolmodel_2023_110323
crossref_primary_10_1002_rse2_256
crossref_primary_10_1071_BT23044
crossref_primary_10_1016_j_jag_2023_103513
crossref_primary_10_1111_nph_18942
crossref_primary_10_1073_pnas_2101388119
crossref_primary_10_1093_jxb_erac446
crossref_primary_10_1111_gcb_17503
crossref_primary_10_1111_ppl_70075
crossref_primary_10_1038_s41586_023_05971_3
crossref_primary_10_3389_ffgc_2021_704469
crossref_primary_10_1002_ajb2_16214
crossref_primary_10_1007_s11104_022_05517_y
crossref_primary_10_1029_2023GL103649
crossref_primary_10_1016_j_scitotenv_2024_177030
crossref_primary_10_1038_s41586_024_07568_w
crossref_primary_10_1016_j_scitotenv_2025_179100
crossref_primary_10_1029_2023WR036468
crossref_primary_10_1111_1365_2745_14266
crossref_primary_10_1111_1365_2745_14421
crossref_primary_10_1111_ecog_07620
crossref_primary_10_1016_j_gloplacha_2025_104799
crossref_primary_10_1038_s41558_023_01776_4
crossref_primary_10_1016_j_agrformet_2023_109390
crossref_primary_10_1016_j_rse_2024_114562
crossref_primary_10_1111_btp_13125
crossref_primary_10_1111_gcb_16605
crossref_primary_10_1111_gcb_16846
crossref_primary_10_1016_j_ecolind_2023_111268
crossref_primary_10_1111_nph_19463
crossref_primary_10_3390_f15020287
crossref_primary_10_1111_ele_13856
crossref_primary_10_1016_j_ecolind_2024_112471
crossref_primary_10_1038_s43247_023_01167_9
crossref_primary_10_1038_s41561_024_01578_z
crossref_primary_10_1111_pce_14924
crossref_primary_10_3389_ffgc_2022_1065645
crossref_primary_10_1088_1748_9326_acfccc
crossref_primary_10_1016_j_agrformet_2023_109364
crossref_primary_10_1111_ele_14270
crossref_primary_10_1088_1748_9326_adb984
crossref_primary_10_1111_gcb_17138
crossref_primary_10_1111_jvs_13219
crossref_primary_10_3389_ffgc_2023_1082207
crossref_primary_10_1111_1365_2435_14751
crossref_primary_10_3389_fpls_2022_926535
crossref_primary_10_1016_j_envexpbot_2021_104556
crossref_primary_10_1016_j_scitotenv_2022_154517
crossref_primary_10_1016_j_scitotenv_2024_176826
crossref_primary_10_1038_s41559_022_01747_6
crossref_primary_10_1111_1365_2435_14008
crossref_primary_10_5194_gmd_16_4017_2023
crossref_primary_10_1111_ele_14314
crossref_primary_10_1088_1748_9326_ac6f6d
crossref_primary_10_1111_geb_13765
crossref_primary_10_1088_1748_9326_ad8f48
crossref_primary_10_1111_plb_13384
crossref_primary_10_1016_j_foreco_2021_119864
crossref_primary_10_1093_nsr_nwad320
crossref_primary_10_1111_rec_13474
crossref_primary_10_1007_s11104_022_05427_z
crossref_primary_10_1111_nph_18800
crossref_primary_10_1038_s41467_022_28490_7
crossref_primary_10_1016_j_agrformet_2024_110256
crossref_primary_10_1093_jpe_rtae073
crossref_primary_10_1126_sciadv_adl4800
crossref_primary_10_1093_jxb_erae159
crossref_primary_10_1016_j_pld_2022_01_002
crossref_primary_10_1111_ele_14128
crossref_primary_10_1007_s11258_023_01361_x
crossref_primary_10_3390_f15111912
crossref_primary_10_1111_ele_14527
crossref_primary_10_1016_j_scitotenv_2023_168238
crossref_primary_10_1093_forestry_cpac059
crossref_primary_10_1111_btp_13064
crossref_primary_10_1093_treephys_tpac114
crossref_primary_10_1016_j_scitotenv_2023_161711
crossref_primary_10_1111_nph_19561
crossref_primary_10_1111_ppl_14326
crossref_primary_10_1016_j_dendro_2024_126270
crossref_primary_10_1640_0002_8444_112_4_336
crossref_primary_10_1093_aob_mcac153
crossref_primary_10_1007_s11104_022_05688_8
crossref_primary_10_1002_ppp3_10547
crossref_primary_10_3390_plants10122604
crossref_primary_10_1093_jxb_erab432
crossref_primary_10_1016_j_scitotenv_2022_157908
crossref_primary_10_1094_PBIOMES_04_22_0023_R
crossref_primary_10_1111_gcb_16336
crossref_primary_10_3389_fpls_2023_1100838
crossref_primary_10_5194_bg_21_4909_2024
crossref_primary_10_1007_s11258_024_01412_x
crossref_primary_10_1093_treephys_tpae146
crossref_primary_10_1111_pce_15449
crossref_primary_10_1371_journal_pone_0309510
crossref_primary_10_1016_j_agrformet_2022_109291
crossref_primary_10_1016_j_agwat_2023_108613
crossref_primary_10_3389_ffgc_2023_1112560
crossref_primary_10_3390_su142214964
crossref_primary_10_3389_ffgc_2022_834891
crossref_primary_10_1073_pnas_2301255120
crossref_primary_10_1038_s41561_022_00909_2
crossref_primary_10_1016_j_fecs_2024_100190
crossref_primary_10_1016_j_flora_2025_152712
crossref_primary_10_1016_j_envexpbot_2025_106105
crossref_primary_10_1007_s00468_023_02469_3
crossref_primary_10_1111_1365_2435_13971
crossref_primary_10_1016_j_agrformet_2024_110035
crossref_primary_10_1111_1365_2435_14424
crossref_primary_10_1016_j_landurbplan_2024_105089
crossref_primary_10_1111_gcb_17022
crossref_primary_10_1111_1365_2435_14679
crossref_primary_10_1111_geb_13856
crossref_primary_10_1111_aec_13461
crossref_primary_10_1088_1748_9326_ad0064
crossref_primary_10_1111_aec_13343
crossref_primary_10_31857_S000681362306008X
crossref_primary_10_5194_bg_20_2143_2023
crossref_primary_10_1111_nph_18175
crossref_primary_10_1038_s43247_022_00533_3
crossref_primary_10_1111_1365_2745_14136
crossref_primary_10_1016_j_ecolmodel_2024_110783
crossref_primary_10_1111_gcb_16082
crossref_primary_10_1111_gcb_17174
crossref_primary_10_1111_gcb_70055
crossref_primary_10_1126_sciadv_abk1643
crossref_primary_10_1093_aob_mcae077
crossref_primary_10_1111_gcb_16123
crossref_primary_10_3390_horticulturae8020147
crossref_primary_10_1016_j_scitotenv_2023_168172
crossref_primary_10_1016_j_foreco_2023_121131
crossref_primary_10_1111_nph_19257
crossref_primary_10_1016_j_ejrh_2024_101689
crossref_primary_10_3389_ffgc_2022_930099
crossref_primary_10_1007_s00468_021_02200_0
crossref_primary_10_1007_s10584_023_03622_0
crossref_primary_10_1111_nph_19138
crossref_primary_10_1111_jbi_14717
crossref_primary_10_1111_nph_18280
crossref_primary_10_1111_ele_70014
crossref_primary_10_1002_ece3_8943
crossref_primary_10_1016_j_scitotenv_2023_166945
crossref_primary_10_1073_pnas_2120777119
crossref_primary_10_1016_j_agrformet_2024_109992
crossref_primary_10_1111_pce_14467
crossref_primary_10_1093_treephys_tpad070
crossref_primary_10_5194_gmd_15_8153_2022
crossref_primary_10_1111_pce_15396
crossref_primary_10_1016_j_scitotenv_2022_158108
crossref_primary_10_1111_ecog_06072
crossref_primary_10_1111_ppl_14114
crossref_primary_10_1111_1365_2435_14325
crossref_primary_10_1111_nph_17914
Cites_doi 10.5194/bg-9-2203-2012
10.1111/gcb.13910
10.1093/biosci/biv107
10.1002/qj.49712051806
10.5194/gmd-11-2857-2018
10.1111/geb.12256
10.1007/s10980-008-9285-9
10.14214/sf.535
10.1016/S0065-2504(08)60148-8
10.1002/hyp.11143
10.1093/treephys/26.6.689
10.1371/journal.pbio.1001127
10.1111/j.1469-8137.2010.03352.x
10.1073/pnas.1617988114
10.1111/pce.12852
10.1016/j.ppees.2014.02.001
10.1038/s41559-017-0248-x
10.1073/pnas.1604088113
10.1111/j.1469-8137.2007.02137.x
10.1111/nph.13952
10.1111/nph.12210
10.1098/rstb.2017.0411
10.1073/pnas.1810141115
10.1051/forest:2002060
10.1111/nph.14044
10.5194/bg-10-4137-2013
10.1111/1365-2745.12589
10.1038/s41598-020-66415-w
10.1111/j.1365-2745.2005.01030.x
10.1111/gcb.12860
10.1007/s00442-013-2671-2
10.1111/nph.15211
10.1093/treephys/tpt030
10.1073/pnas.0804619106
10.1093/treephys/tpy013
10.1111/nph.16419
10.5194/gmd-13-4067-2020
10.1111/ele.12537
10.1104/pp.88.3.574
10.1016/j.foreco.2014.06.039
10.1111/j.1365-2486.2008.01626.x
10.1111/j.1469-8137.2010.03391.x
10.1073/pnas.1525678113
10.1111/gcb.13733
10.1111/nph.17005
10.1126/science.1146961
10.5194/bg-8-1415-2011
10.1093/aob/mcu131
10.1002/2014GB005082
10.1038/nature11688
10.1111/gcb.13731
10.1111/j.1365-2435.2009.01670.x
10.1111/nph.14508
10.3389/fevo.2018.00104
10.1111/gcb.14413
10.5194/gmd-9-4227-2016
10.1029/2018MS001500
10.1890/11-1213.1
10.1111/1365-2745.13022
10.1126/science.aad5068
10.1038/35041539
10.1111/j.1461-0248.2012.01751.x
10.1007/s11284-008-0482-4
10.1111/j.1365-3040.2010.02231.x
10.1111/j.1461-0248.2007.01139.x
10.1073/pnas.1106950108
10.1038/nature15539
10.1126/science.1191056
10.1111/gcb.13851
10.1111/geb.12749
10.1111/nph.13354
10.3389/fpls.2019.01718
10.1073/pnas.1511344112
10.1029/2018GL078131
10.1029/2007WR006384
10.1111/nph.14087
10.1007/978-3-642-29104-3_2
10.1111/nph.14009
10.1046/j.1365-3040.2003.00975.x
10.1126/science.1210657
10.1038/s41586-018-0300-2
10.1126/science.1247355
10.1111/j.1365-2435.2009.01552.x
10.3389/fpls.2015.00191
10.1111/j.1365-2435.2005.01003.x
10.1104/pp.17.00078
10.1111/nph.14283
10.1016/S1146-609X(97)80030-6
10.1111/ele.12374
10.1111/nph.15922
10.1111/nph.15463
10.1071/FP15337
10.1890/ES15-00203.1
10.1038/s41467-020-18996-3
10.1093/treephys/tpx094
10.1126/science.1155121
10.5194/gmd-9-2415-2016
10.1111/ele.12851
10.1111/nph.14939
10.1111/j.1399-3054.2006.00718.x
10.1890/09-2335.1
10.1073/pnas.1712381114
10.1146/annurev.es.04.110173.000245
10.1073/pnas.1900734116
10.1093/jxb/ert193
10.1007/s00704-004-0050-y
10.1111/nph.13798
10.1111/j.1365-2745.2008.01476.x
10.1038/ngeo2382
10.1051/forest:19960203
10.5194/gmd-7-2193-2014
10.1073/pnas.1218042110
10.1098/rstb.2017.0315
10.1126/science.1164033
10.1093/treephys/25.4.457
10.1111/j.1461-0248.2009.01285.x
10.1007/s11104-017-3330-x
10.1038/s41598-020-58913-8
10.1002/2015WR017096
10.1007/978-3-642-68150-9_3
10.1073/pnas.1305499111
10.1002/ecy.1950
10.1038/s41597-020-0453-3
10.1098/rstb.2007.0031
10.1111/nph.15909
10.1093/treephys/19.11.717
10.1016/j.agrformet.2014.01.011
10.1111/j.1461-0248.2012.01771.x
10.1038/s41561-019-0312-z
10.1111/nph.15027
10.1111/j.1469-8137.2010.03359.x
10.1007/s13595-019-0905-0
10.1111/pce.13106
10.1046/j.1365-2745.2000.00435.x
10.1046/j.1365-3040.2001.00660.x
10.1111/j.1469-8137.2005.01349.x
10.1111/j.1744-7429.2012.00867.x
10.1111/gcb.15037
10.1111/1365-2435.12452
10.1007/s11104-011-0879-7
10.1111/gcb.14666
10.1590/S0001-37652008000200017
10.1007/978-3-319-27422-5_17
10.1126/science.1210465
10.1038/nature14283
10.1111/j.1365-2435.2009.01577.x
10.1098/rsbl.2020.0263
10.5194/bg-12-6529-2015
10.5194/bg-7-1833-2010
10.1111/pce.12859
10.1111/1365-2745.12211
10.1002/9781119081111.ch11
10.1890/06-1046.1
10.1016/S0065-2504(08)60016-1
10.1111/1365-2745.13377
10.1073/pnas.0908741107
10.1007/s00468-004-0392-1
10.1111/gcb.13268
10.1126/science.1146663
10.1371/journal.pone.0230097
ContentType Journal Article
Copyright 2021 The Authors New Phytologist © 2021 New Phytologist Foundation
2021 The Authors © 2021 New Phytologist Foundation
2021 The Authors New Phytologist © 2021 New Phytologist Foundation.
Copyright © 2021 New Phytologist Trust
Copyright_xml – notice: 2021 The Authors New Phytologist © 2021 New Phytologist Foundation
– notice: 2021 The Authors © 2021 New Phytologist Foundation
– notice: 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.
– notice: Copyright © 2021 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.17266
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
MEDLINE - Academic
CrossRef

AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 923
ExternalDocumentID 33570772
10_1111_nph_17266
NPH17266
27013927
Genre reviewArticle
Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  funderid: FAPESP 11/52072‐0; FAPESP‐NERC 19/07773‐1
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ACAHQ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASGY
AASVR
ABEFU
ABEML
ABXSQ
ACCFJ
ACHIC
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
COF
DOOOF
EJD
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ABSQW
ADXHL
AGUYK
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c5096-6b8005df19f3c736717f668a69f54d76f520f09c01d726d0e7fc36b21731ba4a3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:33:00 EDT 2025
Fri Jul 11 00:50:14 EDT 2025
Fri Jul 25 12:05:01 EDT 2025
Thu Apr 03 06:53:02 EDT 2025
Tue Jul 01 02:28:37 EDT 2025
Thu Apr 24 23:06:18 EDT 2025
Wed Jan 22 16:31:08 EST 2025
Thu Jul 03 21:34:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords drought
tropical savannahs
plant hydraulic diversity
Amazon tropical forest
rainforest
embolism resistance
hydraulic safety margin
tropical dry forest
Language English
License 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5096-6b8005df19f3c736717f668a69f54d76f520f09c01d726d0e7fc36b21731ba4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1958-3651
0000-0002-7795-2574
0000-0002-9790-254X
0000-0003-3835-2020
0000-0002-6392-2526
0000-0002-1618-9077
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.17266
PMID 33570772
PQID 2509220908
PQPubID 2026848
PageCount 20
ParticipantIDs proquest_miscellaneous_2540495394
proquest_miscellaneous_2488551384
proquest_journals_2509220908
pubmed_primary_33570772
crossref_citationtrail_10_1111_nph_17266
crossref_primary_10_1111_nph_17266
wiley_primary_10_1111_nph_17266_NPH17266
jstor_primary_27013927
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2021
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2010; 107
2019; 11
2019; 12
2000; 88
2013; 64
2010; 187
2020; 16
2020; 15
2020; 13
2020; 11
2012; 15
2020; 10
2018; 45
2009; 12
2012; 491
2000; 408
2018; 6
2009; 97
2010; 24
2018; 217
2019; 25
2007; 175
2006; 26
2016; 43
2014; 16
1988; 88
2018; 219
1982
2013; 110
2013; 198
2014; 17
2018a; 41
2010; 7
2018; 38
2010; 329
2016; 19
2015; 51
2019; 223
2015; 528
1992
2019; 107
2004; 428
2008; 363
2001; 24
2019; 221
2011; 8
2018; 27
2016; 13
2018; 24
2011; 9
2005; 19
2018; 115
2015; 65
2016; 212
2016; 211
2015; 519
2003; 26
2020; 26
2016; 210
1999; 30
2008; 44
2013; 173
2005; 93
2018; 12
2017; 144
2017; 420
2018; 11
1992; 22
2007; 88
2007; 318
2012; 44
2016; 9
1973; 4
2009; 106
2016; 22
2017; 40
2002; 59
2017; 1
2016; 104
2014; 330
2017; 114
2005; 25
2018; 373
2020; 7
2017; 31
2001
2017; 37
2013; 10
1999; 19
2004; 78
2008; 319
2016; 113
2019; 116
1997; 18
2006; 127
2014; 7
2009; 323
2016; 351
2018b; 373
2009; 23
2015; 12
2002; 36
2011; 334
2017; 20
2009; 24
2015; 6
2012
2019; 76
2017; 23
2020; 226
2008; 14
2017; 174
2011; 34
2015; 207
2008; 11
2008; 320
2014; 111
2015; 8
2017; 213
2014; 114
2020; 108
1996; 53
2017; 215
2020; 229
2015; 24
2012; 93
2011; 108
2011; 349
2015; 29
2013; 33
2018; 559
1994; 120
2017; 98
2015; 21
2019
2016
2010; 91
2008; 80
2014; 343
2014; 189
2012; 9
2014; 102
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_156_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_163_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Cox PM (e_1_2_8_46_1) 2001
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_93_1
Beer F (e_1_2_8_12_1) 1992
e_1_2_8_27_1
e_1_2_8_69_1
Harris IC (e_1_2_8_70_1) 2019
e_1_2_8_80_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
Chitra‐Tarak R (e_1_2_8_34_1) 2018; 12
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 8
  start-page: 1415
  year: 2011
  end-page: 1440
  article-title: Soils of Amazonia with particular reference to the RAINFOR sites
  publication-title: Biogeosciences
– volume: 9
  start-page: 4227
  year: 2016
  end-page: 4255
  article-title: Linking hydraulic traits to tropical forest function in a size‐structured and trait‐driven model (TFS vol 1‐Hydro)
  publication-title: Geoscientific Model Development
– start-page: 357
  year: 2016
  end-page: 383
– volume: 223
  start-page: 1834
  year: 2019
  end-page: 1843
  article-title: Dead or dying? Quantifying the point of no return from hydraulic failure in drought‐induced tree mortality
  publication-title: New Phytologist
– volume: 528
  start-page: 119
  year: 2015
  article-title: Death from drought in tropical forests is triggered by hydraulics not carbon starvation
  publication-title: Nature
– volume: 8
  start-page: 284
  year: 2015
  end-page: 289
  article-title: Photosynthetic seasonality of global tropical forests constrained by hydroclimate
  publication-title: Nature Geoscience
– volume: 23
  start-page: 658
  year: 2009
  end-page: 667
  article-title: Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species
  publication-title: Functional Ecology
– volume: 108
  start-page: 20627
  year: 2011
  end-page: 20632
  article-title: Functional traits determine trade‐offs and niches in a tropical forest community
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 1
  start-page: 1285
  year: 2017
  article-title: A multi‐species synthesis of physiological mechanisms in drought‐induced tree mortality
  publication-title: Nature Ecology & Evolution
– volume: 173
  start-page: 711
  year: 2013
  end-page: 720
  article-title: Xylem cavitation vulnerability influences tree species’ habitat preferences in miombo woodlands
  publication-title: Oecologia
– volume: 343
  start-page: 548
  year: 2014
  end-page: 552
  article-title: Savanna vegetation–fire–climate relationships differ among continents
  publication-title: Science
– volume: 210
  start-page: 443
  year: 2016
  end-page: 458
  article-title: How adaptable is the hydraulic system of European beech in the face of climate change‐related precipitation reduction?
  publication-title: New Phytologist
– volume: 25
  start-page: 2678
  year: 2019
  end-page: 2690
  article-title: Foliar water uptake in Amazonian trees: evidence and consequences
  publication-title: Global Change Biology
– volume: 17
  start-page: 1580
  year: 2014
  end-page: 1590
  article-title: Global analysis of plasticity in turgor loss point, a key drought tolerance trait
  publication-title: Ecology Letters
– volume: 24
  start-page: 606
  year: 2015
  end-page: 610
  article-title: Seeing the forest beyond the trees
  publication-title: Global Ecology and Biogeography
– volume: 19
  start-page: 574
  year: 2005
  end-page: 581
  article-title: Deep root function in soil water dynamics in cerrado savannas of central Brazil
  publication-title: Functional Ecology
– volume: 9
  start-page: 2203
  year: 2012
  end-page: 2246
  article-title: Basin‐wide variations in Amazon forest structure and function are mediated by both soils and climate
  publication-title: Biogeosciences
– volume: 33
  start-page: 672
  year: 2013
  end-page: 683
  article-title: Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees
  publication-title: Tree Physiology
– volume: 15
  start-page: 393
  year: 2012
  end-page: 405
  article-title: The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta‐analysis
  publication-title: Ecology Letters
– volume: 53
  start-page: 197
  year: 1996
  end-page: 206
  article-title: Whole tree hydraulic conductance and water loss regulation in during drought: evidence for stomatal control of embolism?
  publication-title: Annales des Sciences Forestieres
– volume: 16
  start-page: 20200263
  year: 2020
  article-title: Bark water vapour conductance is associated with drought performance in tropical trees
  publication-title: Biology Letters
– volume: 13
  start-page: 793
  year: 2016
  end-page: 797
  article-title: Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 88
  start-page: 574
  year: 1988
  end-page: 580
  article-title: Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress?
  publication-title: Plant Physiology
– volume: 6
  start-page: 104
  year: 2018
  article-title: Inserting tropical dry forests into the discussion on biome transitions in the tropics
  publication-title: Frontiers in Ecology and Evolution
– volume: 106
  start-page: 20610
  year: 2009
  end-page: 20615
  article-title: Exploring the likelihood and mechanism of a climate‐change‐induced dieback of the Amazon rainforest
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 97
  start-page: 199
  year: 2009
  end-page: 205
  article-title: Refining the stress‐gradient hypothesis for competition and facilitation in plant communities
  publication-title: Journal of Ecology
– volume: 120
  start-page: 861
  year: 1994
  end-page: 880
  article-title: Precipitation recycling in the Amazon basin
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 226
  start-page: 1622
  year: 2020
  end-page: 1637
  article-title: Stomatal optimisation based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate
  publication-title: New Phytologist
– volume: 88
  start-page: 2259
  year: 2007
  end-page: 2269
  article-title: Mortality of large trees and lianas following experimental drought in an Amazon forest
  publication-title: Ecology
– volume: 116
  start-page: 15282
  year: 2019
  end-page: 15287
  article-title: Conflicting functional effects of xylem pit structure relate to the growth‐longevity trade‐off in a conifer species
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 14
  start-page: 2015
  year: 2008
  end-page: 2039
  article-title: Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs)
  publication-title: Global Change Biology
– volume: 9
  year: 2011
  article-title: How many species are there on Earth and in the ocean?
  publication-title: PLoS Biology
– year: 2019
– volume: 108
  start-page: 2070
  year: 2020
  end-page: 2082
  article-title: Palms and trees resist extreme drought in Amazon forests with shallow water tables
  publication-title: Journal of Ecology
– volume: 65
  start-page: 882
  year: 2015
  end-page: 892
  article-title: Threshold responses to soil moisture deficit by trees and soil in tropical rain forests: insights from field experiments
  publication-title: BioScience
– volume: 420
  start-page: 467
  year: 2017
  end-page: 480
  article-title: Coordination of rooting depth and leaf hydraulic traits defines drought‐related strategies in the campos rupestres, a tropical montane biodiversity hotspot
  publication-title: Plant and Soil
– volume: 211
  start-page: 1152
  year: 2016
  end-page: 1155
  article-title: On xylem hydraulic efficiencies, wood space‐use and the safety–efficiency tradeoff
  publication-title: New Phytologist
– volume: 15
  year: 2020
  article-title: Assembly rules in a resource gradient: competition and abiotic filtering determine the structuring of plant communities in stressful environments
  publication-title: PLoS ONE
– volume: 12
  start-page: 6529
  year: 2015
  end-page: 6571
  article-title: Edaphic, structural and physiological contrasts across Amazon basin forest‐savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function
  publication-title: Biogeosciences
– volume: 113
  start-page: 13098
  year: 2016
  end-page: 13103
  article-title: The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 219
  start-page: 1252
  year: 2018
  end-page: 1262
  article-title: Lignin composition is related to xylem embolism resistance and leaf life span in trees in a tropical semiarid climate
  publication-title: New Phytologist
– volume: 11
  start-page: 485
  year: 2019
  end-page: 513
  article-title: Implementing plant hydraulics in the community land model, version 5
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 127
  start-page: 353
  year: 2006
  end-page: 359
  article-title: Ecological relevance of minimum seasonal water potentials
  publication-title: Physiologia Plantarum
– volume: 24
  start-page: 35
  year: 2018
  end-page: 54
  article-title: Vegetation demographics in Earth System Models: a review of progress and priorities
  publication-title: Global Change Biology
– volume: 110
  start-page: 5064
  year: 2013
  end-page: 5068
  article-title: Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 114
  start-page: 10572
  year: 2017
  end-page: 10577
  article-title: Hydrologic regulation of plant rooting depth
  publication-title: Proceedings of the National Academy of Sciences, USA
– start-page: 21
  year: 2012
  end-page: 39
– volume: 43
  start-page: 851
  year: 2016
  end-page: 861
  article-title: Dew absorption by the leaf trichomes of in the Brazilian semiarid region
  publication-title: Functional Plant Biology
– volume: 40
  start-page: 277
  year: 2017
  end-page: 289
  article-title: Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island: embolism vulnerability and rain forest species distribution
  publication-title: Plant, Cell & Environment
– volume: 13
  start-page: 4067
  year: 2020
  end-page: 4089
  article-title: Robust Ecosystem Demography (RED version 1.0): a parsimonious approach to modelling vegetation dynamics in Earth system models
  publication-title: Geoscientific Model Development
– volume: 408
  start-page: 184
  year: 2000
  article-title: Acceleration of global warming due to carbon‐cycle feedbacks in a coupled climate model
  publication-title: Nature
– volume: 323
  start-page: 1344
  year: 2009
  end-page: 1347
  article-title: Drought sensitivity of the amazon rainforest
  publication-title: Science
– volume: 318
  start-page: 612
  year: 2007
  article-title: Amazon forests green‐up during the 2005 drought
  publication-title: Science
– start-page: 36
  year: 1982
  end-page: 77
– volume: 219
  start-page: 851
  year: 2018
  end-page: 869
  article-title: Drivers and mechanisms of tree mortality in moist tropical forests
  publication-title: New Phytologist
– volume: 93
  start-page: 879
  year: 2005
  end-page: 889
  article-title: Soil‐related performance variation and distributions of tree species in a Bornean rain forest
  publication-title: Journal of Ecology
– volume: 207
  start-page: 14
  year: 2015
  end-page: 27
  article-title: What plant hydraulics can tell us about responses to climate‐change droughts
  publication-title: New Phytologist
– year: 1992
– volume: 428
  start-page: 821
  year: 2004
  end-page: 827
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
– volume: 12
  start-page: 351
  year: 2009
  end-page: 366
  article-title: Towards a worldwide wood economics spectrum
  publication-title: Ecology Letters
– volume: 19
  start-page: 717
  year: 1999
  end-page: 724
  article-title: Partitioning of soil water among tree species in a Brazilian Cerrado ecosystem
  publication-title: Tree Physiology
– volume: 21
  start-page: 2111
  year: 2015
  end-page: 2121
  article-title: Urgent need for warming experiments in tropical forests
  publication-title: Global Change Biology
– volume: 10
  start-page: 1
  year: 2020
  end-page: 17
  article-title: A structure shaped by fire, but also water: ecological consequences of the variability in bark properties across 31 species from the Brazilian Cerrado
  publication-title: Frontiers in Plant Science
– volume: 24
  start-page: 249
  year: 2018
  end-page: 258
  article-title: Stand dynamics modulate water cycling and mortality risk in droughted tropical forest
  publication-title: Global Change Biology
– volume: 41
  start-page: 548
  year: 2018a
  end-page: 562
  article-title: Xylem hydraulic safety and construction costs determine tropical tree growth
  publication-title: Plant, Cell & Environment
– volume: 80
  start-page: 397
  year: 2008
  end-page: 408
  article-title: A new world natural vegetation map for global change studies
  publication-title: Anais da Academia Brasileira de Ciências
– volume: 37
  start-page: 1469
  year: 2017
  end-page: 1477
  article-title: Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability
  publication-title: Tree Physiology
– volume: 19
  start-page: 305
  year: 2005
  end-page: 311
  article-title: Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north‐eastern Australia
  publication-title: Trees
– start-page: 309
  year: 2019
  end-page: 329
– volume: 26
  start-page: 3122
  year: 2020
  end-page: 3133
  article-title: A catastrophic tropical drought kills hydraulically vulnerable tree species
  publication-title: Global Change Biology
– volume: 24
  start-page: 253
  year: 2010
  end-page: 262
  article-title: Interspecific relationships among growth, mortality and xylem traits of woody species from New Zealand
  publication-title: Functional Ecology
– volume: 114
  start-page: 435
  year: 2014
  end-page: 440
  article-title: Leaf hydraulic vulnerability to drought is linked to site water availability across a broad range of species and climates
  publication-title: Annals of Botany
– volume: 320
  start-page: 1444
  year: 2008
  end-page: 1449
  article-title: Forests and climate change: forcings, feedbacks, and the climate benefits of forests
  publication-title: Science
– volume: 23
  start-page: 5032
  year: 2017
  end-page: 5044
  article-title: Exploring uncertainty of Amazon dieback in a perturbed parameter Earth system ensemble
  publication-title: Global Change Biology
– volume: 363
  start-page: 1839
  year: 2008
  end-page: 1848
  article-title: Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment
  publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences
– volume: 91
  start-page: 3664
  year: 2010
  end-page: 3674
  article-title: Functional traits and the growth–mortality trade‐off in tropical trees
  publication-title: Ecology
– volume: 25
  start-page: 39
  year: 2019
  end-page: 56
  article-title: Compositional response of Amazon forests to climate change
  publication-title: Global Change Biology
– volume: 44
  start-page: W02427
  year: 2008
  article-title: The influence of climate on root depth: a carbon cost‐benefit analysis
  publication-title: Water Resources Research
– volume: 23
  start-page: 4280
  year: 2017
  end-page: 4293
  article-title: Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees
  publication-title: Global Change Biology
– volume: 187
  start-page: 592
  year: 2010
  end-page: 607
  article-title: Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake
  publication-title: New Phytologist
– volume: 189
  start-page: 115
  year: 2014
  end-page: 117
  article-title: Transpiration in the global water cycle
  publication-title: Agricultural and Forest Meteorology
– volume: 24
  start-page: 65
  year: 2009
  end-page: 73
  article-title: Inter‐species variation of photosynthetic and xylem hydraulic traits in the deciduous and evergreen Euphorbiaceae tree species from a seasonally tropical forest in south‐western China
  publication-title: Ecological Research
– volume: 334
  start-page: 230
  year: 2011
  end-page: 232
  article-title: The global extent and determinants of savanna and forest as alternative biome states
  publication-title: Science
– volume: 102
  start-page: 275
  year: 2014
  end-page: 301
  article-title: The world‐wide ‘fast–slow’ plant economics spectrum: a traits manifesto
  publication-title: Journal of Ecology
– volume: 174
  start-page: 639
  year: 2017
  end-page: 649
  article-title: Evolution of the stomatal regulation of plant water content
  publication-title: Plant Physiology
– volume: 40
  start-page: 816
  year: 2017
  end-page: 830
  article-title: Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost
  publication-title: Plant, Cell & Environment
– volume: 115
  start-page: 8252
  year: 2018
  end-page: 8259
  article-title: Trajectories of the Earth system in the Anthropocene
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 330
  start-page: 126
  year: 2014
  end-page: 136
  article-title: The importance of hydraulic conductivity and wood density to growth performance in eight tree species from a tropical semi‐dry climate
  publication-title: Forest Ecology and Management
– volume: 6
  start-page: 1
  year: 2015
  end-page: 55
  article-title: On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene
  publication-title: Ecosphere
– volume: 98
  start-page: 2538
  year: 2017
  end-page: 2546
  article-title: Drought‐induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon
  publication-title: Ecology
– volume: 187
  start-page: 631
  year: 2010
  end-page: 646
  article-title: Drought‐mortality relationships for tropical forests
  publication-title: New Phytologist
– volume: 59
  start-page: 723
  year: 2002
  end-page: 752
  article-title: Hydraulic architecture of trees: main concepts and results
  publication-title: Annals of Forest Science
– year: 2001
– volume: 212
  start-page: 1007
  year: 2016
  end-page: 1018
  article-title: Does leaf shedding protect stems from cavitation during seasonal droughts? A test of the hydraulic fuse hypothesis
  publication-title: New Phytologist
– volume: 329
  start-page: 1513
  year: 2010
  end-page: 1516
  article-title: Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon
  publication-title: Science
– volume: 34
  start-page: 137
  year: 2011
  end-page: 148
  article-title: Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits
  publication-title: Plant, Cell & Environment
– volume: 18
  start-page: 383
  year: 1997
  end-page: 391
  article-title: Embolism vulnerability in drought‐deciduous and evergreen species of a tropical dry forest
  publication-title: Acta Oecologica
– volume: 223
  start-page: 1253
  year: 2019
  end-page: 1266
  article-title: Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño‐induced drought
  publication-title: New Phytologist
– volume: 19
  start-page: 12
  year: 2016
  end-page: 19
  article-title: Disturbance maintains alternative biome states
  publication-title: Ecology Letters
– volume: 24
  start-page: 1
  year: 2009
  end-page: 13
  article-title: Alternative stable states in Australia’s wet tropics: a theoretical framework for the field data and a fieldcase for the theory
  publication-title: Landscape Ecology
– volume: 187
  start-page: 707
  year: 2010
  end-page: 719
  article-title: The climatic sensitivity of the forest, savanna and forest‐savanna transition in tropical South America
  publication-title: New Phytologist
– volume: 29
  start-page: 1268
  year: 2015
  end-page: 1277
  article-title: Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest
  publication-title: Functional Ecology
– volume: 6
  start-page: 1
  year: 2015
  end-page: 16
  article-title: Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth
  publication-title: Frontiers in Plant Science
– volume: 64
  start-page: 4779
  year: 2013
  end-page: 4791
  article-title: Methods for measuring plant vulnerability to cavitation: a critical review
  publication-title: Journal of Experimental Botany
– volume: 107
  start-page: 318
  year: 2019
  end-page: 333
  article-title: Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest
  publication-title: Journal of Ecology
– volume: 373
  start-page: 20170315
  year: 2018b
  article-title: Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics
  publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences
– volume: 23
  start-page: 922
  year: 2009
  end-page: 930
  article-title: Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance
  publication-title: Functional Ecology
– volume: 9
  start-page: 2415
  year: 2016
  end-page: 2440
  article-title: Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4. 2) using plant trait information
  publication-title: Geoscientific Model Development
– volume: 20
  start-page: 1437
  year: 2017
  end-page: 1447
  article-title: Plant resistance to drought depends on timely stomatal closure
  publication-title: Ecology Letters
– volume: 559
  start-page: 527
  year: 2018
  end-page: 534
  article-title: The tropical forest carbon cycle and climate change
  publication-title: Nature
– volume: 10
  start-page: 9454
  year: 2020
  article-title: Seasonal variation in net ecosystem CO exchange of a Brazilian seasonally dry tropical forest
  publication-title: Scientific Reports
– volume: 25
  start-page: 457
  year: 2005
  end-page: 466
  article-title: Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees
  publication-title: Tree Physiology
– volume: 113
  start-page: 5024
  year: 2016
  end-page: 5029
  article-title: Meta‐analysis reveals that hydraulic traits explain cross‐species patterns of drought‐induced tree mortality across the globe
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 36
  start-page: 703
  year: 2002
  end-page: 743
  article-title: Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox
  publication-title: Silva Fennica
– volume: 11
  start-page: 2857
  year: 2018
  end-page: 2873
  article-title: Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4. 6 with new plant functional types
  publication-title: Geoscientific Model Development
– volume: 78
  start-page: 157
  year: 2004
  end-page: 175
  article-title: The role of ecosystem–atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming
  publication-title: Theoretical and Applied Climatology
– volume: 12
  start-page: 3218
  year: 2018
  end-page: 3221
  article-title: The roots of the drought: hydrology and water uptake strategies mediate forest‐wide demographic response to precipitation
  publication-title: Journal of Ecology
– volume: 107
  start-page: 14685
  year: 2010
  end-page: 14690
  article-title: Seasonal and interannual variability of climate and vegetation indices across the Amazon
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 10
  start-page: 1
  year: 2020
  end-page: 13
  article-title: Soil properties explain tree growth and mortality, but not biomass, across phosphorus‐depleted tropical forests
  publication-title: Scientific Reports
– volume: 38
  start-page: 658
  year: 2018
  end-page: 663
  article-title: Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits
  publication-title: Tree Physiology
– volume: 16
  start-page: 64
  year: 2014
  end-page: 74
  article-title: Soil pH accounts for differences in species distribution and leaf nutrient concentrations of Brazilian woodland savannah and seasonally dry forest species
  publication-title: Perspectives in Plant Ecology, Evolution and Systematics
– volume: 229
  start-page: 1995
  year: 2020
  end-page: 2006
  article-title: The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest
  publication-title: New Phytologist
– volume: 26
  start-page: 443
  year: 2003
  end-page: 450
  article-title: Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees
  publication-title: Plant, Cell & Environment
– volume: 24
  start-page: 113
  year: 2001
  end-page: 121
  article-title: Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine
  publication-title: Plant, Cell & Environment
– volume: 7
  start-page: 109
  year: 2020
  article-title: Version 4 of the CRU TS monthly high‐resolution gridded multivariate climate dataset
  publication-title: Scientific Data
– volume: 144
  start-page: 4442
  year: 2017
  end-page: 4446
  article-title: Floodplains as an Achilles' heel of Amazonian forest resilience
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 76
  start-page: 115
  year: 2019
  article-title: Large hydraulic safety margins protect Neotropical canopy rainforest tree species against hydraulic failure during drought
  publication-title: Annals of Forest Science
– volume: 11
  start-page: 5515
  year: 2020
  article-title: Tree mode of death and mortality risk factors across Amazon forests
  publication-title: Nature Communications
– volume: 22
  start-page: 187
  year: 1992
  end-page: 261
  article-title: Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences
  publication-title: Advances in Ecological Research
– volume: 44
  start-page: 606
  year: 2012
  end-page: 617
  article-title: The effect of habitat association and edaphic conditions on tree mortality during El Niño‐induced drought in a Bornean Dipterocarp forest
  publication-title: Biotropica
– volume: 31
  start-page: 1749
  year: 2017
  end-page: 1759
  article-title: Deep soil water dynamics in an undisturbed primary forest in central Amazonia: differences between normal years and the 2005 drought
  publication-title: Hydrological Processes
– volume: 10
  start-page: 4137
  year: 2013
  end-page: 4177
  article-title: The Jena Diversity‐Dynamic Global Vegetation Model (JeDi‐DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade‐offs
  publication-title: Biogeosciences
– volume: 211
  start-page: 489
  year: 2016
  end-page: 501
  article-title: Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change
  publication-title: New Phytologist
– volume: 217
  start-page: 1507
  year: 2018
  end-page: 1520
  article-title: Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest
  publication-title: New Phytologist
– volume: 30
  start-page: 1
  year: 1999
  end-page: 67
  article-title: The mineral nutrition of wild plants revisited: a re‐evaluation of processes and patterns
  publication-title: Advances in Ecological Research
– volume: 349
  start-page: 341
  year: 2011
  end-page: 353
  article-title: Savanna soil fertility limits growth but not survival of tropical forest tree seedlings
  publication-title: Plant and Soil
– volume: 111
  start-page: 6347
  year: 2014
  end-page: 6352
  article-title: Abrupt increases in Amazonian tree mortality due to drought‐fire interactions
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 12
  start-page: 174
  year: 2019
  end-page: 179
  article-title: Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall
  publication-title: Nature Geoscience
– volume: 93
  start-page: 2397
  year: 2012
  end-page: 2406
  article-title: Coordinated evolution of leaf and stem economics in tropical dry forest trees
  publication-title: Ecology
– volume: 104
  start-page: 924
  year: 2016
  end-page: 935
  article-title: The determinants of tropical forest deciduousness: disentangling the effects of rainfall and geology in central Africa
  publication-title: Journal of Ecology
– volume: 29
  start-page: 1092
  year: 2015
  end-page: 1108
  article-title: Response of the Amazon carbon balance to the 2010 drought derived with CarbonTracker South America
  publication-title: Global Biogeochemical Cycles
– volume: 373
  start-page: 20170411
  year: 2018
  article-title: Vulnerability of Amazonian forests to repeated droughts
  publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences
– volume: 7
  start-page: 2193
  year: 2014
  end-page: 2222
  article-title: Modeling stomatal conductance in the earth system: linking leaf water‐use efficiency and water transport along the soil–plant–atmosphere continuum
  publication-title: Geoscientific Model Development
– volume: 88
  start-page: 213
  year: 2000
  end-page: 229
  article-title: Fire, resprouting and variability a recipe for grass‐tree coexistence in savanna
  publication-title: Journal of Ecology
– volume: 351
  start-page: 972
  year: 2016
  end-page: 976
  article-title: Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests
  publication-title: Science
– volume: 51
  start-page: 5929
  year: 2015
  end-page: 5956
  article-title: Improving the representation of hydrologic processes in Earth System Models
  publication-title: Water Resources Research
– volume: 213
  start-page: 22
  year: 2017
  end-page: 42
  article-title: A roadmap for improving the representation of photosynthesis in Earth system models
  publication-title: New Phytologist
– volume: 22
  start-page: 2834
  year: 2016
  end-page: 2851
  article-title: Using models to guide field experiments:a prioripredictions for the CO2response of a nutrient‐ and water‐limited native Eucalypt woodland
  publication-title: Global Change Biology
– volume: 175
  start-page: 686
  year: 2007
  end-page: 698
  article-title: Diversity of hydraulic traits in nine species growing in tropical forests with contrasting precipitation
  publication-title: New Phytologist
– volume: 334
  start-page: 232
  year: 2011
  end-page: 235
  article-title: Global resilience of tropical forest and savanna to critical transitions
  publication-title: Science
– volume: 11
  start-page: 296
  year: 2008
  end-page: 310
  article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems
  publication-title: Ecology Letters
– volume: 45
  start-page: 6495
  year: 2018
  end-page: 6503
  article-title: Soil moisture stress as a major driver of carbon cycle uncertainty
  publication-title: Geophysical Research Letters
– volume: 319
  start-page: 169
  year: 2008
  end-page: 172
  article-title: Climate change, deforestation, and the fate of the Amazon
  publication-title: Science
– volume: 4
  start-page: 1
  year: 1973
  end-page: 23
  article-title: Resilience and stability of ecological systems
  publication-title: Annual Review of Ecology and Systematics
– volume: 215
  start-page: 113
  year: 2017
  end-page: 125
  article-title: The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest
  publication-title: New Phytologist
– volume: 26
  start-page: 689
  year: 2006
  end-page: 701
  article-title: Scaling of angiosperm xylem structure with safety and efficiency
  publication-title: Tree Physiology
– volume: 491
  start-page: 752
  year: 2012
  end-page: 755
  article-title: Global convergence in the vulnerability of forests to drought
  publication-title: Nature
– volume: 15
  start-page: 748
  year: 2012
  end-page: 758
  article-title: What controls the distribution of tropical forest and savanna?
  publication-title: Ecology Letters
– volume: 221
  start-page: 1457
  year: 2019
  end-page: 1465
  article-title: Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro‐topographic gradients
  publication-title: New Phytologist
– volume: 198
  start-page: 957
  year: 2013
  end-page: 969
  article-title: Next‐generation dynamic global vegetation models: learning from community ecology
  publication-title: New Phytologist
– volume: 27
  start-page: 899
  year: 2018
  end-page: 912
  article-title: Using tree species inventories to map biomes and assess their climatic overlaps in lowland tropical South America
  publication-title: Global Ecology and Biogeography
– volume: 212
  start-page: 80
  year: 2016
  end-page: 95
  article-title: Diversity in plant hydraulic traits explains seasonal and inter‐annual variations of vegetation dynamics in seasonally dry tropical forests
  publication-title: New Phytologist
– volume: 519
  start-page: 344
  year: 2015
  end-page: 348
  article-title: Long‐term decline of the Amazon carbon sink
  publication-title: Nature
– volume: 7
  start-page: 1833
  year: 2010
  end-page: 1859
  article-title: Optimisation of photosynthetic carbon gain and within‐canopy gradients of associated foliar traits for Amazon forest trees
  publication-title: Biogeosciences
– ident: e_1_2_8_121_1
  doi: 10.5194/bg-9-2203-2012
– ident: e_1_2_8_61_1
  doi: 10.1111/gcb.13910
– ident: e_1_2_8_103_1
  doi: 10.1093/biosci/biv107
– ident: e_1_2_8_55_1
  doi: 10.1002/qj.49712051806
– ident: e_1_2_8_69_1
  doi: 10.5194/gmd-11-2857-2018
– ident: e_1_2_8_129_1
  doi: 10.1111/geb.12256
– ident: e_1_2_8_153_1
  doi: 10.1007/s10980-008-9285-9
– ident: e_1_2_8_63_1
  doi: 10.14214/sf.535
– ident: e_1_2_8_83_1
  doi: 10.1016/S0065-2504(08)60148-8
– ident: e_1_2_8_28_1
  doi: 10.1002/hyp.11143
– ident: e_1_2_8_66_1
  doi: 10.1093/treephys/26.6.689
– ident: e_1_2_8_107_1
  doi: 10.1371/journal.pbio.1001127
– ident: e_1_2_8_74_1
  doi: 10.1111/j.1469-8137.2010.03352.x
– ident: e_1_2_8_62_1
  doi: 10.1073/pnas.1617988114
– ident: e_1_2_8_140_1
  doi: 10.1111/pce.12852
– ident: e_1_2_8_151_1
  doi: 10.1016/j.ppees.2014.02.001
– ident: e_1_2_8_2_1
  doi: 10.1038/s41559-017-0248-x
– ident: e_1_2_8_9_1
  doi: 10.1073/pnas.1604088113
– ident: e_1_2_8_37_1
  doi: 10.1111/j.1469-8137.2007.02137.x
– ident: e_1_2_8_52_1
  doi: 10.1111/nph.13952
– ident: e_1_2_8_131_1
  doi: 10.1111/nph.12210
– ident: e_1_2_8_6_1
  doi: 10.1098/rstb.2017.0411
– ident: e_1_2_8_142_1
  doi: 10.1073/pnas.1810141115
– ident: e_1_2_8_48_1
  doi: 10.1051/forest:2002060
– ident: e_1_2_8_16_1
  doi: 10.1111/nph.14044
– ident: e_1_2_8_113_1
  doi: 10.5194/bg-10-4137-2013
– ident: e_1_2_8_112_1
  doi: 10.1111/1365-2745.12589
– ident: e_1_2_8_104_1
  doi: 10.1038/s41598-020-66415-w
– ident: e_1_2_8_126_1
  doi: 10.1111/j.1365-2745.2005.01030.x
– ident: e_1_2_8_31_1
  doi: 10.1111/gcb.12860
– ident: e_1_2_8_152_1
  doi: 10.1007/s00442-013-2671-2
– ident: e_1_2_8_87_1
  doi: 10.1111/nph.15211
– ident: e_1_2_8_148_1
  doi: 10.1093/treephys/tpt030
– ident: e_1_2_8_93_1
  doi: 10.1073/pnas.0804619106
– ident: e_1_2_8_163_1
  doi: 10.1093/treephys/tpy013
– ident: e_1_2_8_54_1
  doi: 10.1111/nph.16419
– ident: e_1_2_8_7_1
  doi: 10.5194/gmd-13-4067-2020
– ident: e_1_2_8_49_1
  doi: 10.1111/ele.12537
– ident: e_1_2_8_146_1
  doi: 10.1104/pp.88.3.574
– ident: e_1_2_8_75_1
  doi: 10.1016/j.foreco.2014.06.039
– ident: e_1_2_8_135_1
  doi: 10.1111/j.1365-2486.2008.01626.x
– ident: e_1_2_8_98_1
  doi: 10.1111/j.1469-8137.2010.03391.x
– ident: e_1_2_8_5_1
  doi: 10.1073/pnas.1525678113
– ident: e_1_2_8_21_1
  doi: 10.1111/gcb.13733
– volume-title: Description of the “TRIFFID” dynamic global vegetation model
  year: 2001
  ident: e_1_2_8_46_1
– ident: e_1_2_8_58_1
  doi: 10.1111/nph.17005
– ident: e_1_2_8_94_1
  doi: 10.1126/science.1146961
– ident: e_1_2_8_120_1
  doi: 10.5194/bg-8-1415-2011
– ident: e_1_2_8_17_1
  doi: 10.1093/aob/mcu131
– ident: e_1_2_8_82_1
  doi: 10.1002/2014GB005082
– ident: e_1_2_8_36_1
  doi: 10.1038/nature11688
– ident: e_1_2_8_118_1
  doi: 10.1111/gcb.13731
– ident: e_1_2_8_127_1
  doi: 10.1111/j.1365-2435.2009.01670.x
– ident: e_1_2_8_44_1
  doi: 10.1111/nph.14508
– ident: e_1_2_8_50_1
  doi: 10.3389/fevo.2018.00104
– ident: e_1_2_8_56_1
  doi: 10.1111/gcb.14413
– ident: e_1_2_8_38_1
  doi: 10.5194/gmd-9-4227-2016
– ident: e_1_2_8_80_1
  doi: 10.1029/2018MS001500
– ident: e_1_2_8_90_1
  doi: 10.1890/11-1213.1
– ident: e_1_2_8_30_1
  doi: 10.1111/1365-2745.13022
– ident: e_1_2_8_158_1
  doi: 10.1126/science.aad5068
– ident: e_1_2_8_47_1
  doi: 10.1038/35041539
– ident: e_1_2_8_10_1
  doi: 10.1111/j.1461-0248.2012.01751.x
– ident: e_1_2_8_33_1
  doi: 10.1007/s11284-008-0482-4
– ident: e_1_2_8_97_1
  doi: 10.1111/j.1365-3040.2010.02231.x
– ident: e_1_2_8_149_1
  doi: 10.1111/j.1461-0248.2007.01139.x
– ident: e_1_2_8_143_1
  doi: 10.1073/pnas.1106950108
– ident: e_1_2_8_125_1
  doi: 10.1038/nature15539
– ident: e_1_2_8_117_1
  doi: 10.1126/science.1191056
– ident: e_1_2_8_45_1
  doi: 10.1111/gcb.13851
– ident: e_1_2_8_134_1
  doi: 10.1111/geb.12749
– ident: e_1_2_8_139_1
  doi: 10.1111/nph.13354
– ident: e_1_2_8_91_1
  doi: 10.3389/fpls.2019.01718
– ident: e_1_2_8_86_1
  doi: 10.1073/pnas.1511344112
– ident: e_1_2_8_145_1
  doi: 10.1029/2018GL078131
– ident: e_1_2_8_65_1
  doi: 10.1029/2007WR006384
– ident: e_1_2_8_155_1
  doi: 10.1111/nph.14087
– ident: e_1_2_8_95_1
  doi: 10.1007/978-3-642-29104-3_2
– ident: e_1_2_8_160_1
  doi: 10.1111/nph.14009
– ident: e_1_2_8_26_1
  doi: 10.1046/j.1365-3040.2003.00975.x
– ident: e_1_2_8_73_1
  doi: 10.1126/science.1210657
– ident: e_1_2_8_106_1
  doi: 10.1038/s41586-018-0300-2
– ident: e_1_2_8_85_1
  doi: 10.1126/science.1247355
– ident: e_1_2_8_161_1
  doi: 10.1111/j.1365-2435.2009.01552.x
– ident: e_1_2_8_81_1
  doi: 10.3389/fpls.2015.00191
– ident: e_1_2_8_110_1
  doi: 10.1111/j.1365-2435.2005.01003.x
– ident: e_1_2_8_27_1
  doi: 10.1104/pp.17.00078
– ident: e_1_2_8_123_1
  doi: 10.1111/nph.14283
– ident: e_1_2_8_136_1
  doi: 10.1016/S1146-609X(97)80030-6
– ident: e_1_2_8_11_1
  doi: 10.1111/ele.12374
– volume: 12
  start-page: 3218
  year: 2018
  ident: e_1_2_8_34_1
  article-title: The roots of the drought: hydrology and water uptake strategies mediate forest‐wide demographic response to precipitation
  publication-title: Journal of Ecology
– ident: e_1_2_8_67_1
  doi: 10.1111/nph.15922
– ident: e_1_2_8_111_1
  doi: 10.1111/nph.15463
– ident: e_1_2_8_116_1
  doi: 10.1071/FP15337
– ident: e_1_2_8_4_1
  doi: 10.1890/ES15-00203.1
– ident: e_1_2_8_57_1
  doi: 10.1038/s41467-020-18996-3
– ident: e_1_2_8_162_1
  doi: 10.1093/treephys/tpx094
– ident: e_1_2_8_18_1
  doi: 10.1126/science.1155121
– ident: e_1_2_8_68_1
  doi: 10.5194/gmd-9-2415-2016
– ident: e_1_2_8_99_1
  doi: 10.1111/ele.12851
– ident: e_1_2_8_159_1
  doi: 10.1111/nph.14939
– ident: e_1_2_8_14_1
  doi: 10.1111/j.1399-3054.2006.00718.x
– ident: e_1_2_8_156_1
  doi: 10.1890/09-2335.1
– volume-title: Mechanics of materials
  year: 1992
  ident: e_1_2_8_12_1
– ident: e_1_2_8_59_1
  doi: 10.1073/pnas.1712381114
– ident: e_1_2_8_76_1
  doi: 10.1146/annurev.es.04.110173.000245
– ident: e_1_2_8_124_1
  doi: 10.1073/pnas.1900734116
– ident: e_1_2_8_41_1
  doi: 10.1093/jxb/ert193
– ident: e_1_2_8_13_1
  doi: 10.1007/s00704-004-0050-y
– ident: e_1_2_8_133_1
  doi: 10.1111/nph.13798
– ident: e_1_2_8_92_1
  doi: 10.1111/j.1365-2745.2008.01476.x
– ident: e_1_2_8_64_1
  doi: 10.1038/ngeo2382
– ident: e_1_2_8_42_1
  doi: 10.1051/forest:19960203
– ident: e_1_2_8_19_1
  doi: 10.5194/gmd-7-2193-2014
– ident: e_1_2_8_43_1
  doi: 10.1073/pnas.1218042110
– ident: e_1_2_8_53_1
  doi: 10.1098/rstb.2017.0315
– ident: e_1_2_8_114_1
  doi: 10.1126/science.1164033
– ident: e_1_2_8_20_1
  doi: 10.1093/treephys/25.4.457
– ident: e_1_2_8_32_1
  doi: 10.1111/j.1461-0248.2009.01285.x
– ident: e_1_2_8_29_1
  doi: 10.1007/s11104-017-3330-x
– ident: e_1_2_8_137_1
  doi: 10.1038/s41598-020-58913-8
– ident: e_1_2_8_40_1
  doi: 10.1002/2015WR017096
– ident: e_1_2_8_147_1
  doi: 10.1007/978-3-642-68150-9_3
– ident: e_1_2_8_22_1
  doi: 10.1073/pnas.1305499111
– ident: e_1_2_8_165_1
  doi: 10.1002/ecy.1950
– ident: e_1_2_8_71_1
  doi: 10.1038/s41597-020-0453-3
– ident: e_1_2_8_24_1
  doi: 10.1098/rstb.2007.0031
– ident: e_1_2_8_8_1
  doi: 10.1111/nph.15909
– ident: e_1_2_8_79_1
  doi: 10.1093/treephys/19.11.717
– ident: e_1_2_8_132_1
  doi: 10.1016/j.agrformet.2014.01.011
– volume-title: CRU JRA v1.1: a forcings dataset of gridded land surface blend of Climatic Research Unit (CRU) and Japanese reanalysis (JRA) data; Jan.1901–Dec.2017
  year: 2019
  ident: e_1_2_8_70_1
– ident: e_1_2_8_108_1
  doi: 10.1111/j.1461-0248.2012.01771.x
– ident: e_1_2_8_39_1
  doi: 10.1038/s41561-019-0312-z
– ident: e_1_2_8_100_1
  doi: 10.1111/nph.15027
– ident: e_1_2_8_115_1
  doi: 10.1111/j.1469-8137.2010.03359.x
– ident: e_1_2_8_164_1
  doi: 10.1007/s13595-019-0905-0
– ident: e_1_2_8_51_1
  doi: 10.1111/pce.13106
– ident: e_1_2_8_72_1
  doi: 10.1046/j.1365-2745.2000.00435.x
– ident: e_1_2_8_77_1
  doi: 10.1046/j.1365-3040.2001.00660.x
– ident: e_1_2_8_157_1
  doi: 10.1111/j.1469-8137.2005.01349.x
– ident: e_1_2_8_78_1
  doi: 10.1111/j.1744-7429.2012.00867.x
– ident: e_1_2_8_119_1
  doi: 10.1111/gcb.15037
– ident: e_1_2_8_96_1
  doi: 10.1111/1365-2435.12452
– ident: e_1_2_8_150_1
  doi: 10.1007/s11104-011-0879-7
– ident: e_1_2_8_15_1
  doi: 10.1111/gcb.14666
– ident: e_1_2_8_84_1
  doi: 10.1590/S0001-37652008000200017
– ident: e_1_2_8_128_1
  doi: 10.1007/978-3-319-27422-5_17
– ident: e_1_2_8_141_1
  doi: 10.1126/science.1210465
– ident: e_1_2_8_25_1
  doi: 10.1038/nature14283
– ident: e_1_2_8_102_1
  doi: 10.1111/j.1365-2435.2009.01577.x
– ident: e_1_2_8_154_1
  doi: 10.1098/rsbl.2020.0263
– ident: e_1_2_8_88_1
  doi: 10.5194/bg-12-6529-2015
– ident: e_1_2_8_89_1
  doi: 10.5194/bg-7-1833-2010
– ident: e_1_2_8_144_1
  doi: 10.1111/pce.12859
– ident: e_1_2_8_122_1
  doi: 10.1111/1365-2745.12211
– ident: e_1_2_8_60_1
  doi: 10.1002/9781119081111.ch11
– ident: e_1_2_8_109_1
  doi: 10.1890/06-1046.1
– ident: e_1_2_8_3_1
  doi: 10.1016/S0065-2504(08)60016-1
– ident: e_1_2_8_138_1
  doi: 10.1111/1365-2745.13377
– ident: e_1_2_8_23_1
  doi: 10.1073/pnas.0908741107
– ident: e_1_2_8_35_1
  doi: 10.1007/s00468-004-0392-1
– ident: e_1_2_8_101_1
  doi: 10.1111/gcb.13268
– ident: e_1_2_8_130_1
  doi: 10.1126/science.1146663
– ident: e_1_2_8_105_1
  doi: 10.1371/journal.pone.0230097
SSID ssj0009562
Score 2.6632097
SecondaryResourceType review_article
Snippet Tropical ecosystems have the highest levels of biodiversity, cycle more water and absorb more carbon than any other terrestrial ecosystem on Earth....
Summary Tropical ecosystems have the highest levels of biodiversity, cycle more water and absorb more carbon than any other terrestrial ecosystem on Earth....
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 904
SubjectTerms Amazon tropical forest
Avoidance
Avoidance behaviour
Biodiversity
Biogeochemical cycle
Biogeochemical cycles
Biogeochemistry
Capacitance
carbon
Climate system
Computational fluid dynamics
Distribution
Drought
Droughts
Ecosystem
Ecosystems
embolism resistance
Fluid flow
fluid mechanics
hydraulic conductivity
hydraulic safety margin
Hydraulics
Nutrients
plant hydraulic diversity
Plant Leaves
Rainforest
Rainforests
Rooting
Safety margins
Soil nutrients
Tansley review
terrestrial ecosystems
Trees
Tropical climate
tropical dry forest
tropical rain forests
tropical savannahs
Vegetation
Vulnerability
Water
Water availability
Water potential
Title Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems
URI https://www.jstor.org/stable/27013927
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17266
https://www.ncbi.nlm.nih.gov/pubmed/33570772
https://www.proquest.com/docview/2509220908
https://www.proquest.com/docview/2488551384
https://www.proquest.com/docview/2540495394
Volume 230
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqigMXaIHCtgUZxIFLVt7YcdbqCRDVCkGFEJX2gBT5J1ZXDcmySVSVE-_AG_IkzDg_alFBiFskTyQ7M-P5Jh5_Q8hznSgvveCR9cJFIp2byFifREJ5rpFvyjG8jfz-RC5OxdtlstwiR8NdmI4fYvzhhp4R9mt0cG3qK05ers-mEH0l0m1jrRYCoo_xFcJdGQ8MzFLIZc8qhFU845vXYlFXjngT0LyOW0PgOb5LPg9T7upNzqdtY6b2229sjv-5ph1ypwek9GVnQbtkKy_vkVuvKgCNl_fJ13ddbwW6LkAF9OzSbXRbrGxNdekogEfqdd38_P6jLqoLinXvq7Jtv9Cmou14bYZCSr8qwh6CAy50BmroqqTNplqjlVBIgjtO6foBOT1-8-n1Iuq7NEQWqWMiaQBzJs7PQLs25RLyQy_lXEvlE-FS6ZOYeaYsmzlYmWN56i2XBlIhPjNaaL5HtsuqzB8RymXOVKpMEs5jIRWcaedzqS0kRQzi5oS8GPSV2Z7CHDtpFNmQysAHzMIHnJBno-i64-24SWgvKH2UiFNExHE6IYeDFWS9T9cZgEUVx0yx-YQ8HYfBG_GIRZd51YIM7IfYMmcu_iIDIBmrehXIPOwsbJwA50nKIOGBlQY7-fPcs5MPi_Cw_--iB-R2jCU5oV7zkGw3mzZ_DJiqMU-C8_wCsUQdZw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgkQv5bd0oYBBIHHJyuskzubAASjVlm5XCLXS3oJjx-qqabLdJKqWE-_Aa_AqvARPwtj5UYsK4tIDt0geWXY8M_7GHn8D8EL4oebacx2pPeV4wTB2Yql9xwu1KwzflKLmNfL-hI8OvQ9Tf7oC39u3MDU_RHfgZizD-mtj4OZA-pyVZ_OjPm6_nDcplXvJ8gwDtuL17jau7kvGdt4fvBs5TU0BRxqiE4fHiJB8pQc4Fhm4HKMZzflQ8FD7ngq49hnVNJR0oLBrRZNAS5fHCNzdQSw84WK_1-C6qSBumPq3P7FzFL-ctZzP3OPThsfI5A11Q72w-9UJkJdB24tI2W51O7fgR_uT6gyX435Vxn355Tf-yP_lL96G9QZzkze1kdyBlSS7Czfe5oiLl_fgdFyXjyDzFLWMHC3VQlTpTBZEZIogPiZaFOXPr9-KND8jJrV_llXVCSlzUnUvg8giKWapdZOmQdniRyWZZaRc5HNjCATj_Jo2u7gPh1cy3Q1YzfIs2QTi8oSGQRj79soZo92BUDrhQmLcRxEa9OBVqyCRbFjaTbGQNGqjNVywyC5YD553ovOamuQyoQ2rZZ0ECwzoZ0EPtlq1ixq3VUSIh0PGaEiHPXjWNaPDMbdIIkvyCmXQ5ZuqQEPvLzIYB5jE5RBlHtQq3Q3Adf2AYkyHM7WK-eexR5OPI_vx8N9Fn8LN0cH-OBrvTvYewRozGUg2PXULVstFlTxGCFnGT6zlEvh81Ur-C2f8eRI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VghAX_gsLBQwCiUtWWcdxNgcOwLLa0rKqEJX2ljp2rK4ISdgkqpYT78Bj8Co8BU_C2PlRiwri0gO3SB5Z_pkZfxOPvwF4KvxQc808R2qmHBaMYyeW2ndYqD1h-KaUa14jv5vz2QF7u_AXG_C9ewvT8EP0P9yMZVh_bQy8UPqEkWfF0RBPX87bjMrdZH2M8Vr5YmeCm_uM0umbD69nTltSwJGG58ThMQIkX-kRDkUGHsdgRnM-FjzUPlMB1z51tRtKd6Swa-UmgZYejxG3e6NYMOFhvxfgIuNuaOpETN7TEwy_nHaUz5zxRUtjZNKG-qGeOvya_MezkO1poGxPuuk1-NGtUZPg8nFYV_FQfvmNPvI_WcTrcLVF3ORlYyI3YCPJbsKlVzmi4vUt-LzXFI8gRYo6Ro7WaiXqdClLIjJFEB0TLcrq59dvZZofE5PYv8zq-hOpclL374LIKimXqXWSpkHZ0kcVWWakWuWFMQOCUX5Dml3ehoNzme4WbGZ5ltwF4vHEDYMw9u2FM8a6I6F0woXEqM9FYDCA551-RLLlaDelQtKoi9VwwyK7YQN40osWDTHJWUJbVsl6CRoYyE-DAWx3Whe1TquMEA2HlKJmjwfwuG9Gd2PukESW5DXKoMM3NYHG7C8yGAWYtOUQZe40Gt0PwPP8wMWIDmdq9fLPY4_m-zP7ce_fRR_B5f3JNNrbme_ehyvUpB_Z3NRt2KxWdfIA8WMVP7R2S-DwvHX8F2yQd8E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linking+plant+hydraulics+and+the+fast-slow+continuum+to+understand+resilience+to+drought+in+tropical+ecosystems&rft.jtitle=The+New+phytologist&rft.au=Oliveira%2C+Rafael+S&rft.au=Eller%2C+Cleiton+B&rft.au=Barros%2C+Fernanda+de+V&rft.au=Hirota%2C+Marina&rft.date=2021-05-01&rft.eissn=1469-8137&rft.volume=230&rft.issue=3&rft.spage=904&rft_id=info:doi/10.1111%2Fnph.17266&rft_id=info%3Apmid%2F33570772&rft.externalDocID=33570772
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon