Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems
Tropical ecosystems have the highest levels of biodiversity, cycle more water and absorb more carbon than any other terrestrial ecosystem on Earth. Consequently, these ecosystems are extremely important components of Earth’s climatic system and biogeochemical cycles. Plant hydraulics is an essential...
Saved in:
Published in | The New phytologist Vol. 230; no. 3; pp. 904 - 923 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.05.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tropical ecosystems have the highest levels of biodiversity, cycle more water and absorb more carbon than any other terrestrial ecosystem on Earth. Consequently, these ecosystems are extremely important components of Earth’s climatic system and biogeochemical cycles. Plant hydraulics is an essential discipline to understand and predict the dynamics of tropical vegetation in scenarios of changing water availability. Using published plant hydraulic data we show that the trade-off between drought avoidance (expressed as deep-rooting, deciduousness and capacitance) and hydraulic safety (P50 – the water potential when plants lose 50% of their maximum hydraulic conductivity) is a major axis of physiological variation across tropical ecosystems. We also propose a novel and independent axis of hydraulic trait variation linking vulnerability to hydraulic failure (expressed as the hydraulic safety margin (HSM)) and growth, where inherent fast-growing plants have lower HSM compared to slow-growing plants. We surmise that soil nutrients are fundamental drivers of tropical community assembly determining the distribution and abundance of the slow-safe/fast-risky strategies. We conclude showing that including either the growth-HSM or the resistance-avoidance trade-off in models can make simulated tropical rainforest communities substantially more vulnerable to drought than similar communities without the trade-off. These results suggest that vegetation models need to represent hydraulic trade-off axes to accurately project the functioning and distribution of tropical ecosystems. |
---|---|
AbstractList | Tropical ecosystems have the highest levels of biodiversity, cycle more water and absorb more carbon than any other terrestrial ecosystem on Earth. Consequently, these ecosystems are extremely important components of Earth’s climatic system and biogeochemical cycles. Plant hydraulics is an essential discipline to understand and predict the dynamics of tropical vegetation in scenarios of changing water availability. Using published plant hydraulic data we show that the trade‐off between drought avoidance (expressed as deep‐rooting, deciduousness and capacitance) and hydraulic safety (P50 – the water potential when plants lose 50% of their maximum hydraulic conductivity) is a major axis of physiological variation across tropical ecosystems. We also propose a novel and independent axis of hydraulic trait variation linking vulnerability to hydraulic failure (expressed as the hydraulic safety margin (HSM)) and growth, where inherent fast‐growing plants have lower HSM compared to slow‐growing plants. We surmise that soil nutrients are fundamental drivers of tropical community assembly determining the distribution and abundance of the slow‐safe/fast‐risky strategies. We conclude showing that including either the growth‐HSM or the resistance‐avoidance trade‐off in models can make simulated tropical rainforest communities substantially more vulnerable to drought than similar communities without the trade‐off. These results suggest that vegetation models need to represent hydraulic trade‐off axes to accurately project the functioning and distribution of tropical ecosystems. Tropical ecosystems have the highest levels of biodiversity, cycle more water and absorb more carbon than any other terrestrial ecosystem on Earth. Consequently, these ecosystems are extremely important components of Earth's climatic system and biogeochemical cycles. Plant hydraulics is an essential discipline to understand and predict the dynamics of tropical vegetation in scenarios of changing water availability. Using published plant hydraulic data we show that the trade-off between drought avoidance (expressed as deep-rooting, deciduousness and capacitance) and hydraulic safety (P50 - the water potential when plants lose 50% of their maximum hydraulic conductivity) is a major axis of physiological variation across tropical ecosystems. We also propose a novel and independent axis of hydraulic trait variation linking vulnerability to hydraulic failure (expressed as the hydraulic safety margin (HSM)) and growth, where inherent fast-growing plants have lower HSM compared to slow-growing plants. We surmise that soil nutrients are fundamental drivers of tropical community assembly determining the distribution and abundance of the slow-safe/fast-risky strategies. We conclude showing that including either the growth-HSM or the resistance-avoidance trade-off in models can make simulated tropical rainforest communities substantially more vulnerable to drought than similar communities without the trade-off. These results suggest that vegetation models need to represent hydraulic trade-off axes to accurately project the functioning and distribution of tropical ecosystems.Tropical ecosystems have the highest levels of biodiversity, cycle more water and absorb more carbon than any other terrestrial ecosystem on Earth. Consequently, these ecosystems are extremely important components of Earth's climatic system and biogeochemical cycles. Plant hydraulics is an essential discipline to understand and predict the dynamics of tropical vegetation in scenarios of changing water availability. Using published plant hydraulic data we show that the trade-off between drought avoidance (expressed as deep-rooting, deciduousness and capacitance) and hydraulic safety (P50 - the water potential when plants lose 50% of their maximum hydraulic conductivity) is a major axis of physiological variation across tropical ecosystems. We also propose a novel and independent axis of hydraulic trait variation linking vulnerability to hydraulic failure (expressed as the hydraulic safety margin (HSM)) and growth, where inherent fast-growing plants have lower HSM compared to slow-growing plants. We surmise that soil nutrients are fundamental drivers of tropical community assembly determining the distribution and abundance of the slow-safe/fast-risky strategies. We conclude showing that including either the growth-HSM or the resistance-avoidance trade-off in models can make simulated tropical rainforest communities substantially more vulnerable to drought than similar communities without the trade-off. These results suggest that vegetation models need to represent hydraulic trade-off axes to accurately project the functioning and distribution of tropical ecosystems. Summary Tropical ecosystems have the highest levels of biodiversity, cycle more water and absorb more carbon than any other terrestrial ecosystem on Earth. Consequently, these ecosystems are extremely important components of Earth’s climatic system and biogeochemical cycles. Plant hydraulics is an essential discipline to understand and predict the dynamics of tropical vegetation in scenarios of changing water availability. Using published plant hydraulic data we show that the trade‐off between drought avoidance (expressed as deep‐rooting, deciduousness and capacitance) and hydraulic safety (P50 – the water potential when plants lose 50% of their maximum hydraulic conductivity) is a major axis of physiological variation across tropical ecosystems. We also propose a novel and independent axis of hydraulic trait variation linking vulnerability to hydraulic failure (expressed as the hydraulic safety margin (HSM)) and growth, where inherent fast‐growing plants have lower HSM compared to slow‐growing plants. We surmise that soil nutrients are fundamental drivers of tropical community assembly determining the distribution and abundance of the slow‐safe/fast‐risky strategies. We conclude showing that including either the growth‐HSM or the resistance‐avoidance trade‐off in models can make simulated tropical rainforest communities substantially more vulnerable to drought than similar communities without the trade‐off. These results suggest that vegetation models need to represent hydraulic trade‐off axes to accurately project the functioning and distribution of tropical ecosystems. |
Author | Hirota, Marina de V. Barros, Fernanda Bittencourt, Paulo Brum, Mauro Eller, Cleiton B. Oliveira, Rafael S. |
Author_xml | – sequence: 1 givenname: Rafael S. surname: Oliveira fullname: Oliveira, Rafael S. – sequence: 2 givenname: Cleiton B. surname: Eller fullname: Eller, Cleiton B. – sequence: 3 givenname: Fernanda surname: de V. Barros fullname: de V. Barros, Fernanda – sequence: 4 givenname: Marina surname: Hirota fullname: Hirota, Marina – sequence: 5 givenname: Mauro surname: Brum fullname: Brum, Mauro – sequence: 6 givenname: Paulo surname: Bittencourt fullname: Bittencourt, Paulo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33570772$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb1uFDEUhS0URDaBggcAWaKBYhL_jO1xiSIgSCugAInO8nrsrJcZe2J7FG3HO_CGPAledpciAnGbW9zvHOnccwZOQgwWgKcYXeA6l2FaX2BBOH8AFrjlsukwFSdggRDpGt7yr6fgLOcNQkgyTh6BU0qZQEKQBbhd-vDNhxs4DToUuN72Sc-DNxnq0MOyttDpXH5-_5GHeAdNDMWHeR5hiXAOvU257Lhksx-8DcbuDn2K8826QB9gSXHyRg_Qmpi3udgxPwYPnR6yfXLY5-DL2zefr66b5cd3769eLxvDkOQNX3UIsd5h6agRlAssHOed5tKxthfcMYIckgbhvibvkRXOUL4iWFC80q2m5-Dl3ndK8Xa2uajRZ2OHmtPGOSvCWtRKRmX7f7TtOsYw7Xboi3voJs4p1CDVEElCkERdpZ4fqHk12l5NyY86bdXx7xW43AMmxZyTdcr4oouv_03aDwojtWtW1WbV72ar4tU9xdH0b-zB_c4PdvtvUH34dH1UPNsrNrnE9EdBBMJUEkF_AcGPvPk |
CitedBy_id | crossref_primary_10_1111_nph_17584 crossref_primary_10_1111_nph_17464 crossref_primary_10_1111_gcb_16826 crossref_primary_10_1016_j_foreco_2024_122339 crossref_primary_10_1002_ece3_11095 crossref_primary_10_1111_1365_2745_14437 crossref_primary_10_1111_pce_14704 crossref_primary_10_1016_j_jhydrol_2024_132106 crossref_primary_10_1073_pnas_2404034121 crossref_primary_10_1029_2020JG006123 crossref_primary_10_3390_f14040697 crossref_primary_10_1016_j_scitotenv_2022_157421 crossref_primary_10_1016_j_jhydrol_2022_128923 crossref_primary_10_1016_j_ecolmodel_2023_110323 crossref_primary_10_1002_rse2_256 crossref_primary_10_1071_BT23044 crossref_primary_10_1016_j_jag_2023_103513 crossref_primary_10_1111_nph_18942 crossref_primary_10_1073_pnas_2101388119 crossref_primary_10_1093_jxb_erac446 crossref_primary_10_1111_gcb_17503 crossref_primary_10_1111_ppl_70075 crossref_primary_10_1038_s41586_023_05971_3 crossref_primary_10_3389_ffgc_2021_704469 crossref_primary_10_1002_ajb2_16214 crossref_primary_10_1007_s11104_022_05517_y crossref_primary_10_1029_2023GL103649 crossref_primary_10_1016_j_scitotenv_2024_177030 crossref_primary_10_1038_s41586_024_07568_w crossref_primary_10_1016_j_scitotenv_2025_179100 crossref_primary_10_1029_2023WR036468 crossref_primary_10_1111_1365_2745_14266 crossref_primary_10_1111_1365_2745_14421 crossref_primary_10_1111_ecog_07620 crossref_primary_10_1016_j_gloplacha_2025_104799 crossref_primary_10_1038_s41558_023_01776_4 crossref_primary_10_1016_j_agrformet_2023_109390 crossref_primary_10_1016_j_rse_2024_114562 crossref_primary_10_1111_btp_13125 crossref_primary_10_1111_gcb_16605 crossref_primary_10_1111_gcb_16846 crossref_primary_10_1016_j_ecolind_2023_111268 crossref_primary_10_1111_nph_19463 crossref_primary_10_3390_f15020287 crossref_primary_10_1111_ele_13856 crossref_primary_10_1016_j_ecolind_2024_112471 crossref_primary_10_1038_s43247_023_01167_9 crossref_primary_10_1038_s41561_024_01578_z crossref_primary_10_1111_pce_14924 crossref_primary_10_3389_ffgc_2022_1065645 crossref_primary_10_1088_1748_9326_acfccc crossref_primary_10_1016_j_agrformet_2023_109364 crossref_primary_10_1111_ele_14270 crossref_primary_10_1088_1748_9326_adb984 crossref_primary_10_1111_gcb_17138 crossref_primary_10_1111_jvs_13219 crossref_primary_10_3389_ffgc_2023_1082207 crossref_primary_10_1111_1365_2435_14751 crossref_primary_10_3389_fpls_2022_926535 crossref_primary_10_1016_j_envexpbot_2021_104556 crossref_primary_10_1016_j_scitotenv_2022_154517 crossref_primary_10_1016_j_scitotenv_2024_176826 crossref_primary_10_1038_s41559_022_01747_6 crossref_primary_10_1111_1365_2435_14008 crossref_primary_10_5194_gmd_16_4017_2023 crossref_primary_10_1111_ele_14314 crossref_primary_10_1088_1748_9326_ac6f6d crossref_primary_10_1111_geb_13765 crossref_primary_10_1088_1748_9326_ad8f48 crossref_primary_10_1111_plb_13384 crossref_primary_10_1016_j_foreco_2021_119864 crossref_primary_10_1093_nsr_nwad320 crossref_primary_10_1111_rec_13474 crossref_primary_10_1007_s11104_022_05427_z crossref_primary_10_1111_nph_18800 crossref_primary_10_1038_s41467_022_28490_7 crossref_primary_10_1016_j_agrformet_2024_110256 crossref_primary_10_1093_jpe_rtae073 crossref_primary_10_1126_sciadv_adl4800 crossref_primary_10_1093_jxb_erae159 crossref_primary_10_1016_j_pld_2022_01_002 crossref_primary_10_1111_ele_14128 crossref_primary_10_1007_s11258_023_01361_x crossref_primary_10_3390_f15111912 crossref_primary_10_1111_ele_14527 crossref_primary_10_1016_j_scitotenv_2023_168238 crossref_primary_10_1093_forestry_cpac059 crossref_primary_10_1111_btp_13064 crossref_primary_10_1093_treephys_tpac114 crossref_primary_10_1016_j_scitotenv_2023_161711 crossref_primary_10_1111_nph_19561 crossref_primary_10_1111_ppl_14326 crossref_primary_10_1016_j_dendro_2024_126270 crossref_primary_10_1640_0002_8444_112_4_336 crossref_primary_10_1093_aob_mcac153 crossref_primary_10_1007_s11104_022_05688_8 crossref_primary_10_1002_ppp3_10547 crossref_primary_10_3390_plants10122604 crossref_primary_10_1093_jxb_erab432 crossref_primary_10_1016_j_scitotenv_2022_157908 crossref_primary_10_1094_PBIOMES_04_22_0023_R crossref_primary_10_1111_gcb_16336 crossref_primary_10_3389_fpls_2023_1100838 crossref_primary_10_5194_bg_21_4909_2024 crossref_primary_10_1007_s11258_024_01412_x crossref_primary_10_1093_treephys_tpae146 crossref_primary_10_1111_pce_15449 crossref_primary_10_1371_journal_pone_0309510 crossref_primary_10_1016_j_agrformet_2022_109291 crossref_primary_10_1016_j_agwat_2023_108613 crossref_primary_10_3389_ffgc_2023_1112560 crossref_primary_10_3390_su142214964 crossref_primary_10_3389_ffgc_2022_834891 crossref_primary_10_1073_pnas_2301255120 crossref_primary_10_1038_s41561_022_00909_2 crossref_primary_10_1016_j_fecs_2024_100190 crossref_primary_10_1016_j_flora_2025_152712 crossref_primary_10_1016_j_envexpbot_2025_106105 crossref_primary_10_1007_s00468_023_02469_3 crossref_primary_10_1111_1365_2435_13971 crossref_primary_10_1016_j_agrformet_2024_110035 crossref_primary_10_1111_1365_2435_14424 crossref_primary_10_1016_j_landurbplan_2024_105089 crossref_primary_10_1111_gcb_17022 crossref_primary_10_1111_1365_2435_14679 crossref_primary_10_1111_geb_13856 crossref_primary_10_1111_aec_13461 crossref_primary_10_1088_1748_9326_ad0064 crossref_primary_10_1111_aec_13343 crossref_primary_10_31857_S000681362306008X crossref_primary_10_5194_bg_20_2143_2023 crossref_primary_10_1111_nph_18175 crossref_primary_10_1038_s43247_022_00533_3 crossref_primary_10_1111_1365_2745_14136 crossref_primary_10_1016_j_ecolmodel_2024_110783 crossref_primary_10_1111_gcb_16082 crossref_primary_10_1111_gcb_17174 crossref_primary_10_1111_gcb_70055 crossref_primary_10_1126_sciadv_abk1643 crossref_primary_10_1093_aob_mcae077 crossref_primary_10_1111_gcb_16123 crossref_primary_10_3390_horticulturae8020147 crossref_primary_10_1016_j_scitotenv_2023_168172 crossref_primary_10_1016_j_foreco_2023_121131 crossref_primary_10_1111_nph_19257 crossref_primary_10_1016_j_ejrh_2024_101689 crossref_primary_10_3389_ffgc_2022_930099 crossref_primary_10_1007_s00468_021_02200_0 crossref_primary_10_1007_s10584_023_03622_0 crossref_primary_10_1111_nph_19138 crossref_primary_10_1111_jbi_14717 crossref_primary_10_1111_nph_18280 crossref_primary_10_1111_ele_70014 crossref_primary_10_1002_ece3_8943 crossref_primary_10_1016_j_scitotenv_2023_166945 crossref_primary_10_1073_pnas_2120777119 crossref_primary_10_1016_j_agrformet_2024_109992 crossref_primary_10_1111_pce_14467 crossref_primary_10_1093_treephys_tpad070 crossref_primary_10_5194_gmd_15_8153_2022 crossref_primary_10_1111_pce_15396 crossref_primary_10_1016_j_scitotenv_2022_158108 crossref_primary_10_1111_ecog_06072 crossref_primary_10_1111_ppl_14114 crossref_primary_10_1111_1365_2435_14325 crossref_primary_10_1111_nph_17914 |
Cites_doi | 10.5194/bg-9-2203-2012 10.1111/gcb.13910 10.1093/biosci/biv107 10.1002/qj.49712051806 10.5194/gmd-11-2857-2018 10.1111/geb.12256 10.1007/s10980-008-9285-9 10.14214/sf.535 10.1016/S0065-2504(08)60148-8 10.1002/hyp.11143 10.1093/treephys/26.6.689 10.1371/journal.pbio.1001127 10.1111/j.1469-8137.2010.03352.x 10.1073/pnas.1617988114 10.1111/pce.12852 10.1016/j.ppees.2014.02.001 10.1038/s41559-017-0248-x 10.1073/pnas.1604088113 10.1111/j.1469-8137.2007.02137.x 10.1111/nph.13952 10.1111/nph.12210 10.1098/rstb.2017.0411 10.1073/pnas.1810141115 10.1051/forest:2002060 10.1111/nph.14044 10.5194/bg-10-4137-2013 10.1111/1365-2745.12589 10.1038/s41598-020-66415-w 10.1111/j.1365-2745.2005.01030.x 10.1111/gcb.12860 10.1007/s00442-013-2671-2 10.1111/nph.15211 10.1093/treephys/tpt030 10.1073/pnas.0804619106 10.1093/treephys/tpy013 10.1111/nph.16419 10.5194/gmd-13-4067-2020 10.1111/ele.12537 10.1104/pp.88.3.574 10.1016/j.foreco.2014.06.039 10.1111/j.1365-2486.2008.01626.x 10.1111/j.1469-8137.2010.03391.x 10.1073/pnas.1525678113 10.1111/gcb.13733 10.1111/nph.17005 10.1126/science.1146961 10.5194/bg-8-1415-2011 10.1093/aob/mcu131 10.1002/2014GB005082 10.1038/nature11688 10.1111/gcb.13731 10.1111/j.1365-2435.2009.01670.x 10.1111/nph.14508 10.3389/fevo.2018.00104 10.1111/gcb.14413 10.5194/gmd-9-4227-2016 10.1029/2018MS001500 10.1890/11-1213.1 10.1111/1365-2745.13022 10.1126/science.aad5068 10.1038/35041539 10.1111/j.1461-0248.2012.01751.x 10.1007/s11284-008-0482-4 10.1111/j.1365-3040.2010.02231.x 10.1111/j.1461-0248.2007.01139.x 10.1073/pnas.1106950108 10.1038/nature15539 10.1126/science.1191056 10.1111/gcb.13851 10.1111/geb.12749 10.1111/nph.13354 10.3389/fpls.2019.01718 10.1073/pnas.1511344112 10.1029/2018GL078131 10.1029/2007WR006384 10.1111/nph.14087 10.1007/978-3-642-29104-3_2 10.1111/nph.14009 10.1046/j.1365-3040.2003.00975.x 10.1126/science.1210657 10.1038/s41586-018-0300-2 10.1126/science.1247355 10.1111/j.1365-2435.2009.01552.x 10.3389/fpls.2015.00191 10.1111/j.1365-2435.2005.01003.x 10.1104/pp.17.00078 10.1111/nph.14283 10.1016/S1146-609X(97)80030-6 10.1111/ele.12374 10.1111/nph.15922 10.1111/nph.15463 10.1071/FP15337 10.1890/ES15-00203.1 10.1038/s41467-020-18996-3 10.1093/treephys/tpx094 10.1126/science.1155121 10.5194/gmd-9-2415-2016 10.1111/ele.12851 10.1111/nph.14939 10.1111/j.1399-3054.2006.00718.x 10.1890/09-2335.1 10.1073/pnas.1712381114 10.1146/annurev.es.04.110173.000245 10.1073/pnas.1900734116 10.1093/jxb/ert193 10.1007/s00704-004-0050-y 10.1111/nph.13798 10.1111/j.1365-2745.2008.01476.x 10.1038/ngeo2382 10.1051/forest:19960203 10.5194/gmd-7-2193-2014 10.1073/pnas.1218042110 10.1098/rstb.2017.0315 10.1126/science.1164033 10.1093/treephys/25.4.457 10.1111/j.1461-0248.2009.01285.x 10.1007/s11104-017-3330-x 10.1038/s41598-020-58913-8 10.1002/2015WR017096 10.1007/978-3-642-68150-9_3 10.1073/pnas.1305499111 10.1002/ecy.1950 10.1038/s41597-020-0453-3 10.1098/rstb.2007.0031 10.1111/nph.15909 10.1093/treephys/19.11.717 10.1016/j.agrformet.2014.01.011 10.1111/j.1461-0248.2012.01771.x 10.1038/s41561-019-0312-z 10.1111/nph.15027 10.1111/j.1469-8137.2010.03359.x 10.1007/s13595-019-0905-0 10.1111/pce.13106 10.1046/j.1365-2745.2000.00435.x 10.1046/j.1365-3040.2001.00660.x 10.1111/j.1469-8137.2005.01349.x 10.1111/j.1744-7429.2012.00867.x 10.1111/gcb.15037 10.1111/1365-2435.12452 10.1007/s11104-011-0879-7 10.1111/gcb.14666 10.1590/S0001-37652008000200017 10.1007/978-3-319-27422-5_17 10.1126/science.1210465 10.1038/nature14283 10.1111/j.1365-2435.2009.01577.x 10.1098/rsbl.2020.0263 10.5194/bg-12-6529-2015 10.5194/bg-7-1833-2010 10.1111/pce.12859 10.1111/1365-2745.12211 10.1002/9781119081111.ch11 10.1890/06-1046.1 10.1016/S0065-2504(08)60016-1 10.1111/1365-2745.13377 10.1073/pnas.0908741107 10.1007/s00468-004-0392-1 10.1111/gcb.13268 10.1126/science.1146663 10.1371/journal.pone.0230097 |
ContentType | Journal Article |
Copyright | 2021 The Authors New Phytologist © 2021 New Phytologist Foundation 2021 The Authors © 2021 New Phytologist Foundation 2021 The Authors New Phytologist © 2021 New Phytologist Foundation. Copyright © 2021 New Phytologist Trust |
Copyright_xml | – notice: 2021 The Authors New Phytologist © 2021 New Phytologist Foundation – notice: 2021 The Authors © 2021 New Phytologist Foundation – notice: 2021 The Authors New Phytologist © 2021 New Phytologist Foundation. – notice: Copyright © 2021 New Phytologist Trust |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.17266 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE MEDLINE - Academic CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 923 |
ExternalDocumentID | 33570772 10_1111_nph_17266 NPH17266 27013927 |
Genre | reviewArticle Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo funderid: FAPESP 11/52072‐0; FAPESP‐NERC 19/07773‐1 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABTLG ABVKB ACAHQ ACCZN ACFBH ACGFS ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASGY AASVR ABEFU ABEML ABXSQ ACCFJ ACHIC ACQPF ADULT AEEZP AEQDE AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM AS~ CAG COF DOOOF EJD ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU LW6 MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ABSQW ADXHL AGUYK CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c5096-6b8005df19f3c736717f668a69f54d76f520f09c01d726d0e7fc36b21731ba4a3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:33:00 EDT 2025 Fri Jul 11 00:50:14 EDT 2025 Fri Jul 25 12:05:01 EDT 2025 Thu Apr 03 06:53:02 EDT 2025 Tue Jul 01 02:28:37 EDT 2025 Thu Apr 24 23:06:18 EDT 2025 Wed Jan 22 16:31:08 EST 2025 Thu Jul 03 21:34:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | drought tropical savannahs plant hydraulic diversity Amazon tropical forest rainforest embolism resistance hydraulic safety margin tropical dry forest |
Language | English |
License | 2021 The Authors New Phytologist © 2021 New Phytologist Foundation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5096-6b8005df19f3c736717f668a69f54d76f520f09c01d726d0e7fc36b21731ba4a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1958-3651 0000-0002-7795-2574 0000-0002-9790-254X 0000-0003-3835-2020 0000-0002-6392-2526 0000-0002-1618-9077 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.17266 |
PMID | 33570772 |
PQID | 2509220908 |
PQPubID | 2026848 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2540495394 proquest_miscellaneous_2488551384 proquest_journals_2509220908 pubmed_primary_33570772 crossref_citationtrail_10_1111_nph_17266 crossref_primary_10_1111_nph_17266 wiley_primary_10_1111_nph_17266_NPH17266 jstor_primary_27013927 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2021 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2021 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2010; 107 2019; 11 2019; 12 2000; 88 2013; 64 2010; 187 2020; 16 2020; 15 2020; 13 2020; 11 2012; 15 2020; 10 2018; 45 2009; 12 2012; 491 2000; 408 2018; 6 2009; 97 2010; 24 2018; 217 2019; 25 2007; 175 2006; 26 2016; 43 2014; 16 1988; 88 2018; 219 1982 2013; 110 2013; 198 2014; 17 2018a; 41 2010; 7 2018; 38 2010; 329 2016; 19 2015; 51 2019; 223 2015; 528 1992 2019; 107 2004; 428 2008; 363 2001; 24 2019; 221 2011; 8 2018; 27 2016; 13 2018; 24 2011; 9 2005; 19 2018; 115 2015; 65 2016; 212 2016; 211 2015; 519 2003; 26 2020; 26 2016; 210 1999; 30 2008; 44 2013; 173 2005; 93 2018; 12 2017; 144 2017; 420 2018; 11 1992; 22 2007; 88 2007; 318 2012; 44 2016; 9 1973; 4 2009; 106 2016; 22 2017; 40 2002; 59 2017; 1 2016; 104 2014; 330 2017; 114 2005; 25 2018; 373 2020; 7 2017; 31 2001 2017; 37 2013; 10 1999; 19 2004; 78 2008; 319 2016; 113 2019; 116 1997; 18 2006; 127 2014; 7 2009; 323 2016; 351 2018b; 373 2009; 23 2015; 12 2002; 36 2011; 334 2017; 20 2009; 24 2015; 6 2012 2019; 76 2017; 23 2020; 226 2008; 14 2017; 174 2011; 34 2015; 207 2008; 11 2008; 320 2014; 111 2015; 8 2017; 213 2014; 114 2020; 108 1996; 53 2017; 215 2020; 229 2015; 24 2012; 93 2011; 108 2011; 349 2015; 29 2013; 33 2018; 559 1994; 120 2017; 98 2015; 21 2019 2016 2010; 91 2008; 80 2014; 343 2014; 189 2012; 9 2014; 102 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_156_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_163_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Cox PM (e_1_2_8_46_1) 2001 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_93_1 Beer F (e_1_2_8_12_1) 1992 e_1_2_8_27_1 e_1_2_8_69_1 Harris IC (e_1_2_8_70_1) 2019 e_1_2_8_80_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 Chitra‐Tarak R (e_1_2_8_34_1) 2018; 12 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
References_xml | – volume: 8 start-page: 1415 year: 2011 end-page: 1440 article-title: Soils of Amazonia with particular reference to the RAINFOR sites publication-title: Biogeosciences – volume: 9 start-page: 4227 year: 2016 end-page: 4255 article-title: Linking hydraulic traits to tropical forest function in a size‐structured and trait‐driven model (TFS vol 1‐Hydro) publication-title: Geoscientific Model Development – start-page: 357 year: 2016 end-page: 383 – volume: 223 start-page: 1834 year: 2019 end-page: 1843 article-title: Dead or dying? Quantifying the point of no return from hydraulic failure in drought‐induced tree mortality publication-title: New Phytologist – volume: 528 start-page: 119 year: 2015 article-title: Death from drought in tropical forests is triggered by hydraulics not carbon starvation publication-title: Nature – volume: 8 start-page: 284 year: 2015 end-page: 289 article-title: Photosynthetic seasonality of global tropical forests constrained by hydroclimate publication-title: Nature Geoscience – volume: 23 start-page: 658 year: 2009 end-page: 667 article-title: Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species publication-title: Functional Ecology – volume: 108 start-page: 20627 year: 2011 end-page: 20632 article-title: Functional traits determine trade‐offs and niches in a tropical forest community publication-title: Proceedings of the National Academy of Sciences, USA – volume: 1 start-page: 1285 year: 2017 article-title: A multi‐species synthesis of physiological mechanisms in drought‐induced tree mortality publication-title: Nature Ecology & Evolution – volume: 173 start-page: 711 year: 2013 end-page: 720 article-title: Xylem cavitation vulnerability influences tree species’ habitat preferences in miombo woodlands publication-title: Oecologia – volume: 343 start-page: 548 year: 2014 end-page: 552 article-title: Savanna vegetation–fire–climate relationships differ among continents publication-title: Science – volume: 210 start-page: 443 year: 2016 end-page: 458 article-title: How adaptable is the hydraulic system of European beech in the face of climate change‐related precipitation reduction? publication-title: New Phytologist – volume: 25 start-page: 2678 year: 2019 end-page: 2690 article-title: Foliar water uptake in Amazonian trees: evidence and consequences publication-title: Global Change Biology – volume: 17 start-page: 1580 year: 2014 end-page: 1590 article-title: Global analysis of plasticity in turgor loss point, a key drought tolerance trait publication-title: Ecology Letters – volume: 24 start-page: 606 year: 2015 end-page: 610 article-title: Seeing the forest beyond the trees publication-title: Global Ecology and Biogeography – volume: 19 start-page: 574 year: 2005 end-page: 581 article-title: Deep root function in soil water dynamics in cerrado savannas of central Brazil publication-title: Functional Ecology – volume: 9 start-page: 2203 year: 2012 end-page: 2246 article-title: Basin‐wide variations in Amazon forest structure and function are mediated by both soils and climate publication-title: Biogeosciences – volume: 33 start-page: 672 year: 2013 end-page: 683 article-title: Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees publication-title: Tree Physiology – volume: 15 start-page: 393 year: 2012 end-page: 405 article-title: The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta‐analysis publication-title: Ecology Letters – volume: 53 start-page: 197 year: 1996 end-page: 206 article-title: Whole tree hydraulic conductance and water loss regulation in during drought: evidence for stomatal control of embolism? publication-title: Annales des Sciences Forestieres – volume: 16 start-page: 20200263 year: 2020 article-title: Bark water vapour conductance is associated with drought performance in tropical trees publication-title: Biology Letters – volume: 13 start-page: 793 year: 2016 end-page: 797 article-title: Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change publication-title: Proceedings of the National Academy of Sciences, USA – volume: 88 start-page: 574 year: 1988 end-page: 580 article-title: Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? publication-title: Plant Physiology – volume: 6 start-page: 104 year: 2018 article-title: Inserting tropical dry forests into the discussion on biome transitions in the tropics publication-title: Frontiers in Ecology and Evolution – volume: 106 start-page: 20610 year: 2009 end-page: 20615 article-title: Exploring the likelihood and mechanism of a climate‐change‐induced dieback of the Amazon rainforest publication-title: Proceedings of the National Academy of Sciences, USA – volume: 97 start-page: 199 year: 2009 end-page: 205 article-title: Refining the stress‐gradient hypothesis for competition and facilitation in plant communities publication-title: Journal of Ecology – volume: 120 start-page: 861 year: 1994 end-page: 880 article-title: Precipitation recycling in the Amazon basin publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 226 start-page: 1622 year: 2020 end-page: 1637 article-title: Stomatal optimisation based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate publication-title: New Phytologist – volume: 88 start-page: 2259 year: 2007 end-page: 2269 article-title: Mortality of large trees and lianas following experimental drought in an Amazon forest publication-title: Ecology – volume: 116 start-page: 15282 year: 2019 end-page: 15287 article-title: Conflicting functional effects of xylem pit structure relate to the growth‐longevity trade‐off in a conifer species publication-title: Proceedings of the National Academy of Sciences, USA – volume: 14 start-page: 2015 year: 2008 end-page: 2039 article-title: Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs) publication-title: Global Change Biology – volume: 9 year: 2011 article-title: How many species are there on Earth and in the ocean? publication-title: PLoS Biology – year: 2019 – volume: 108 start-page: 2070 year: 2020 end-page: 2082 article-title: Palms and trees resist extreme drought in Amazon forests with shallow water tables publication-title: Journal of Ecology – volume: 65 start-page: 882 year: 2015 end-page: 892 article-title: Threshold responses to soil moisture deficit by trees and soil in tropical rain forests: insights from field experiments publication-title: BioScience – volume: 420 start-page: 467 year: 2017 end-page: 480 article-title: Coordination of rooting depth and leaf hydraulic traits defines drought‐related strategies in the campos rupestres, a tropical montane biodiversity hotspot publication-title: Plant and Soil – volume: 211 start-page: 1152 year: 2016 end-page: 1155 article-title: On xylem hydraulic efficiencies, wood space‐use and the safety–efficiency tradeoff publication-title: New Phytologist – volume: 15 year: 2020 article-title: Assembly rules in a resource gradient: competition and abiotic filtering determine the structuring of plant communities in stressful environments publication-title: PLoS ONE – volume: 12 start-page: 6529 year: 2015 end-page: 6571 article-title: Edaphic, structural and physiological contrasts across Amazon basin forest‐savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function publication-title: Biogeosciences – volume: 113 start-page: 13098 year: 2016 end-page: 13103 article-title: The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought publication-title: Proceedings of the National Academy of Sciences, USA – volume: 219 start-page: 1252 year: 2018 end-page: 1262 article-title: Lignin composition is related to xylem embolism resistance and leaf life span in trees in a tropical semiarid climate publication-title: New Phytologist – volume: 11 start-page: 485 year: 2019 end-page: 513 article-title: Implementing plant hydraulics in the community land model, version 5 publication-title: Journal of Advances in Modeling Earth Systems – volume: 127 start-page: 353 year: 2006 end-page: 359 article-title: Ecological relevance of minimum seasonal water potentials publication-title: Physiologia Plantarum – volume: 24 start-page: 35 year: 2018 end-page: 54 article-title: Vegetation demographics in Earth System Models: a review of progress and priorities publication-title: Global Change Biology – volume: 110 start-page: 5064 year: 2013 end-page: 5068 article-title: Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees publication-title: Proceedings of the National Academy of Sciences, USA – volume: 114 start-page: 10572 year: 2017 end-page: 10577 article-title: Hydrologic regulation of plant rooting depth publication-title: Proceedings of the National Academy of Sciences, USA – start-page: 21 year: 2012 end-page: 39 – volume: 43 start-page: 851 year: 2016 end-page: 861 article-title: Dew absorption by the leaf trichomes of in the Brazilian semiarid region publication-title: Functional Plant Biology – volume: 40 start-page: 277 year: 2017 end-page: 289 article-title: Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island: embolism vulnerability and rain forest species distribution publication-title: Plant, Cell & Environment – volume: 13 start-page: 4067 year: 2020 end-page: 4089 article-title: Robust Ecosystem Demography (RED version 1.0): a parsimonious approach to modelling vegetation dynamics in Earth system models publication-title: Geoscientific Model Development – volume: 408 start-page: 184 year: 2000 article-title: Acceleration of global warming due to carbon‐cycle feedbacks in a coupled climate model publication-title: Nature – volume: 323 start-page: 1344 year: 2009 end-page: 1347 article-title: Drought sensitivity of the amazon rainforest publication-title: Science – volume: 318 start-page: 612 year: 2007 article-title: Amazon forests green‐up during the 2005 drought publication-title: Science – start-page: 36 year: 1982 end-page: 77 – volume: 219 start-page: 851 year: 2018 end-page: 869 article-title: Drivers and mechanisms of tree mortality in moist tropical forests publication-title: New Phytologist – volume: 93 start-page: 879 year: 2005 end-page: 889 article-title: Soil‐related performance variation and distributions of tree species in a Bornean rain forest publication-title: Journal of Ecology – volume: 207 start-page: 14 year: 2015 end-page: 27 article-title: What plant hydraulics can tell us about responses to climate‐change droughts publication-title: New Phytologist – year: 1992 – volume: 428 start-page: 821 year: 2004 end-page: 827 article-title: The worldwide leaf economics spectrum publication-title: Nature – volume: 12 start-page: 351 year: 2009 end-page: 366 article-title: Towards a worldwide wood economics spectrum publication-title: Ecology Letters – volume: 19 start-page: 717 year: 1999 end-page: 724 article-title: Partitioning of soil water among tree species in a Brazilian Cerrado ecosystem publication-title: Tree Physiology – volume: 21 start-page: 2111 year: 2015 end-page: 2121 article-title: Urgent need for warming experiments in tropical forests publication-title: Global Change Biology – volume: 10 start-page: 1 year: 2020 end-page: 17 article-title: A structure shaped by fire, but also water: ecological consequences of the variability in bark properties across 31 species from the Brazilian Cerrado publication-title: Frontiers in Plant Science – volume: 24 start-page: 249 year: 2018 end-page: 258 article-title: Stand dynamics modulate water cycling and mortality risk in droughted tropical forest publication-title: Global Change Biology – volume: 41 start-page: 548 year: 2018a end-page: 562 article-title: Xylem hydraulic safety and construction costs determine tropical tree growth publication-title: Plant, Cell & Environment – volume: 80 start-page: 397 year: 2008 end-page: 408 article-title: A new world natural vegetation map for global change studies publication-title: Anais da Academia Brasileira de Ciências – volume: 37 start-page: 1469 year: 2017 end-page: 1477 article-title: Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability publication-title: Tree Physiology – volume: 19 start-page: 305 year: 2005 end-page: 311 article-title: Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north‐eastern Australia publication-title: Trees – start-page: 309 year: 2019 end-page: 329 – volume: 26 start-page: 3122 year: 2020 end-page: 3133 article-title: A catastrophic tropical drought kills hydraulically vulnerable tree species publication-title: Global Change Biology – volume: 24 start-page: 253 year: 2010 end-page: 262 article-title: Interspecific relationships among growth, mortality and xylem traits of woody species from New Zealand publication-title: Functional Ecology – volume: 114 start-page: 435 year: 2014 end-page: 440 article-title: Leaf hydraulic vulnerability to drought is linked to site water availability across a broad range of species and climates publication-title: Annals of Botany – volume: 320 start-page: 1444 year: 2008 end-page: 1449 article-title: Forests and climate change: forcings, feedbacks, and the climate benefits of forests publication-title: Science – volume: 23 start-page: 5032 year: 2017 end-page: 5044 article-title: Exploring uncertainty of Amazon dieback in a perturbed parameter Earth system ensemble publication-title: Global Change Biology – volume: 363 start-page: 1839 year: 2008 end-page: 1848 article-title: Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences – volume: 91 start-page: 3664 year: 2010 end-page: 3674 article-title: Functional traits and the growth–mortality trade‐off in tropical trees publication-title: Ecology – volume: 25 start-page: 39 year: 2019 end-page: 56 article-title: Compositional response of Amazon forests to climate change publication-title: Global Change Biology – volume: 44 start-page: W02427 year: 2008 article-title: The influence of climate on root depth: a carbon cost‐benefit analysis publication-title: Water Resources Research – volume: 23 start-page: 4280 year: 2017 end-page: 4293 article-title: Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees publication-title: Global Change Biology – volume: 187 start-page: 592 year: 2010 end-page: 607 article-title: Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake publication-title: New Phytologist – volume: 189 start-page: 115 year: 2014 end-page: 117 article-title: Transpiration in the global water cycle publication-title: Agricultural and Forest Meteorology – volume: 24 start-page: 65 year: 2009 end-page: 73 article-title: Inter‐species variation of photosynthetic and xylem hydraulic traits in the deciduous and evergreen Euphorbiaceae tree species from a seasonally tropical forest in south‐western China publication-title: Ecological Research – volume: 334 start-page: 230 year: 2011 end-page: 232 article-title: The global extent and determinants of savanna and forest as alternative biome states publication-title: Science – volume: 102 start-page: 275 year: 2014 end-page: 301 article-title: The world‐wide ‘fast–slow’ plant economics spectrum: a traits manifesto publication-title: Journal of Ecology – volume: 174 start-page: 639 year: 2017 end-page: 649 article-title: Evolution of the stomatal regulation of plant water content publication-title: Plant Physiology – volume: 40 start-page: 816 year: 2017 end-page: 830 article-title: Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost publication-title: Plant, Cell & Environment – volume: 115 start-page: 8252 year: 2018 end-page: 8259 article-title: Trajectories of the Earth system in the Anthropocene publication-title: Proceedings of the National Academy of Sciences, USA – volume: 330 start-page: 126 year: 2014 end-page: 136 article-title: The importance of hydraulic conductivity and wood density to growth performance in eight tree species from a tropical semi‐dry climate publication-title: Forest Ecology and Management – volume: 6 start-page: 1 year: 2015 end-page: 55 article-title: On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene publication-title: Ecosphere – volume: 98 start-page: 2538 year: 2017 end-page: 2546 article-title: Drought‐induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon publication-title: Ecology – volume: 187 start-page: 631 year: 2010 end-page: 646 article-title: Drought‐mortality relationships for tropical forests publication-title: New Phytologist – volume: 59 start-page: 723 year: 2002 end-page: 752 article-title: Hydraulic architecture of trees: main concepts and results publication-title: Annals of Forest Science – year: 2001 – volume: 212 start-page: 1007 year: 2016 end-page: 1018 article-title: Does leaf shedding protect stems from cavitation during seasonal droughts? A test of the hydraulic fuse hypothesis publication-title: New Phytologist – volume: 329 start-page: 1513 year: 2010 end-page: 1516 article-title: Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon publication-title: Science – volume: 34 start-page: 137 year: 2011 end-page: 148 article-title: Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits publication-title: Plant, Cell & Environment – volume: 18 start-page: 383 year: 1997 end-page: 391 article-title: Embolism vulnerability in drought‐deciduous and evergreen species of a tropical dry forest publication-title: Acta Oecologica – volume: 223 start-page: 1253 year: 2019 end-page: 1266 article-title: Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño‐induced drought publication-title: New Phytologist – volume: 19 start-page: 12 year: 2016 end-page: 19 article-title: Disturbance maintains alternative biome states publication-title: Ecology Letters – volume: 24 start-page: 1 year: 2009 end-page: 13 article-title: Alternative stable states in Australia’s wet tropics: a theoretical framework for the field data and a fieldcase for the theory publication-title: Landscape Ecology – volume: 187 start-page: 707 year: 2010 end-page: 719 article-title: The climatic sensitivity of the forest, savanna and forest‐savanna transition in tropical South America publication-title: New Phytologist – volume: 29 start-page: 1268 year: 2015 end-page: 1277 article-title: Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest publication-title: Functional Ecology – volume: 6 start-page: 1 year: 2015 end-page: 16 article-title: Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth publication-title: Frontiers in Plant Science – volume: 64 start-page: 4779 year: 2013 end-page: 4791 article-title: Methods for measuring plant vulnerability to cavitation: a critical review publication-title: Journal of Experimental Botany – volume: 107 start-page: 318 year: 2019 end-page: 333 article-title: Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest publication-title: Journal of Ecology – volume: 373 start-page: 20170315 year: 2018b article-title: Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences – volume: 23 start-page: 922 year: 2009 end-page: 930 article-title: Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance publication-title: Functional Ecology – volume: 9 start-page: 2415 year: 2016 end-page: 2440 article-title: Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4. 2) using plant trait information publication-title: Geoscientific Model Development – volume: 20 start-page: 1437 year: 2017 end-page: 1447 article-title: Plant resistance to drought depends on timely stomatal closure publication-title: Ecology Letters – volume: 559 start-page: 527 year: 2018 end-page: 534 article-title: The tropical forest carbon cycle and climate change publication-title: Nature – volume: 10 start-page: 9454 year: 2020 article-title: Seasonal variation in net ecosystem CO exchange of a Brazilian seasonally dry tropical forest publication-title: Scientific Reports – volume: 25 start-page: 457 year: 2005 end-page: 466 article-title: Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees publication-title: Tree Physiology – volume: 113 start-page: 5024 year: 2016 end-page: 5029 article-title: Meta‐analysis reveals that hydraulic traits explain cross‐species patterns of drought‐induced tree mortality across the globe publication-title: Proceedings of the National Academy of Sciences, USA – volume: 36 start-page: 703 year: 2002 end-page: 743 article-title: Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox publication-title: Silva Fennica – volume: 11 start-page: 2857 year: 2018 end-page: 2873 article-title: Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4. 6 with new plant functional types publication-title: Geoscientific Model Development – volume: 78 start-page: 157 year: 2004 end-page: 175 article-title: The role of ecosystem–atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming publication-title: Theoretical and Applied Climatology – volume: 12 start-page: 3218 year: 2018 end-page: 3221 article-title: The roots of the drought: hydrology and water uptake strategies mediate forest‐wide demographic response to precipitation publication-title: Journal of Ecology – volume: 107 start-page: 14685 year: 2010 end-page: 14690 article-title: Seasonal and interannual variability of climate and vegetation indices across the Amazon publication-title: Proceedings of the National Academy of Sciences, USA – volume: 10 start-page: 1 year: 2020 end-page: 13 article-title: Soil properties explain tree growth and mortality, but not biomass, across phosphorus‐depleted tropical forests publication-title: Scientific Reports – volume: 38 start-page: 658 year: 2018 end-page: 663 article-title: Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits publication-title: Tree Physiology – volume: 16 start-page: 64 year: 2014 end-page: 74 article-title: Soil pH accounts for differences in species distribution and leaf nutrient concentrations of Brazilian woodland savannah and seasonally dry forest species publication-title: Perspectives in Plant Ecology, Evolution and Systematics – volume: 229 start-page: 1995 year: 2020 end-page: 2006 article-title: The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest publication-title: New Phytologist – volume: 26 start-page: 443 year: 2003 end-page: 450 article-title: Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees publication-title: Plant, Cell & Environment – volume: 24 start-page: 113 year: 2001 end-page: 121 article-title: Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine publication-title: Plant, Cell & Environment – volume: 7 start-page: 109 year: 2020 article-title: Version 4 of the CRU TS monthly high‐resolution gridded multivariate climate dataset publication-title: Scientific Data – volume: 144 start-page: 4442 year: 2017 end-page: 4446 article-title: Floodplains as an Achilles' heel of Amazonian forest resilience publication-title: Proceedings of the National Academy of Sciences, USA – volume: 76 start-page: 115 year: 2019 article-title: Large hydraulic safety margins protect Neotropical canopy rainforest tree species against hydraulic failure during drought publication-title: Annals of Forest Science – volume: 11 start-page: 5515 year: 2020 article-title: Tree mode of death and mortality risk factors across Amazon forests publication-title: Nature Communications – volume: 22 start-page: 187 year: 1992 end-page: 261 article-title: Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences publication-title: Advances in Ecological Research – volume: 44 start-page: 606 year: 2012 end-page: 617 article-title: The effect of habitat association and edaphic conditions on tree mortality during El Niño‐induced drought in a Bornean Dipterocarp forest publication-title: Biotropica – volume: 31 start-page: 1749 year: 2017 end-page: 1759 article-title: Deep soil water dynamics in an undisturbed primary forest in central Amazonia: differences between normal years and the 2005 drought publication-title: Hydrological Processes – volume: 10 start-page: 4137 year: 2013 end-page: 4177 article-title: The Jena Diversity‐Dynamic Global Vegetation Model (JeDi‐DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade‐offs publication-title: Biogeosciences – volume: 211 start-page: 489 year: 2016 end-page: 501 article-title: Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change publication-title: New Phytologist – volume: 217 start-page: 1507 year: 2018 end-page: 1520 article-title: Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest publication-title: New Phytologist – volume: 30 start-page: 1 year: 1999 end-page: 67 article-title: The mineral nutrition of wild plants revisited: a re‐evaluation of processes and patterns publication-title: Advances in Ecological Research – volume: 349 start-page: 341 year: 2011 end-page: 353 article-title: Savanna soil fertility limits growth but not survival of tropical forest tree seedlings publication-title: Plant and Soil – volume: 111 start-page: 6347 year: 2014 end-page: 6352 article-title: Abrupt increases in Amazonian tree mortality due to drought‐fire interactions publication-title: Proceedings of the National Academy of Sciences, USA – volume: 12 start-page: 174 year: 2019 end-page: 179 article-title: Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall publication-title: Nature Geoscience – volume: 93 start-page: 2397 year: 2012 end-page: 2406 article-title: Coordinated evolution of leaf and stem economics in tropical dry forest trees publication-title: Ecology – volume: 104 start-page: 924 year: 2016 end-page: 935 article-title: The determinants of tropical forest deciduousness: disentangling the effects of rainfall and geology in central Africa publication-title: Journal of Ecology – volume: 29 start-page: 1092 year: 2015 end-page: 1108 article-title: Response of the Amazon carbon balance to the 2010 drought derived with CarbonTracker South America publication-title: Global Biogeochemical Cycles – volume: 373 start-page: 20170411 year: 2018 article-title: Vulnerability of Amazonian forests to repeated droughts publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences – volume: 7 start-page: 2193 year: 2014 end-page: 2222 article-title: Modeling stomatal conductance in the earth system: linking leaf water‐use efficiency and water transport along the soil–plant–atmosphere continuum publication-title: Geoscientific Model Development – volume: 88 start-page: 213 year: 2000 end-page: 229 article-title: Fire, resprouting and variability a recipe for grass‐tree coexistence in savanna publication-title: Journal of Ecology – volume: 351 start-page: 972 year: 2016 end-page: 976 article-title: Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests publication-title: Science – volume: 51 start-page: 5929 year: 2015 end-page: 5956 article-title: Improving the representation of hydrologic processes in Earth System Models publication-title: Water Resources Research – volume: 213 start-page: 22 year: 2017 end-page: 42 article-title: A roadmap for improving the representation of photosynthesis in Earth system models publication-title: New Phytologist – volume: 22 start-page: 2834 year: 2016 end-page: 2851 article-title: Using models to guide field experiments:a prioripredictions for the CO2response of a nutrient‐ and water‐limited native Eucalypt woodland publication-title: Global Change Biology – volume: 175 start-page: 686 year: 2007 end-page: 698 article-title: Diversity of hydraulic traits in nine species growing in tropical forests with contrasting precipitation publication-title: New Phytologist – volume: 334 start-page: 232 year: 2011 end-page: 235 article-title: Global resilience of tropical forest and savanna to critical transitions publication-title: Science – volume: 11 start-page: 296 year: 2008 end-page: 310 article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems publication-title: Ecology Letters – volume: 45 start-page: 6495 year: 2018 end-page: 6503 article-title: Soil moisture stress as a major driver of carbon cycle uncertainty publication-title: Geophysical Research Letters – volume: 319 start-page: 169 year: 2008 end-page: 172 article-title: Climate change, deforestation, and the fate of the Amazon publication-title: Science – volume: 4 start-page: 1 year: 1973 end-page: 23 article-title: Resilience and stability of ecological systems publication-title: Annual Review of Ecology and Systematics – volume: 215 start-page: 113 year: 2017 end-page: 125 article-title: The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest publication-title: New Phytologist – volume: 26 start-page: 689 year: 2006 end-page: 701 article-title: Scaling of angiosperm xylem structure with safety and efficiency publication-title: Tree Physiology – volume: 491 start-page: 752 year: 2012 end-page: 755 article-title: Global convergence in the vulnerability of forests to drought publication-title: Nature – volume: 15 start-page: 748 year: 2012 end-page: 758 article-title: What controls the distribution of tropical forest and savanna? publication-title: Ecology Letters – volume: 221 start-page: 1457 year: 2019 end-page: 1465 article-title: Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro‐topographic gradients publication-title: New Phytologist – volume: 198 start-page: 957 year: 2013 end-page: 969 article-title: Next‐generation dynamic global vegetation models: learning from community ecology publication-title: New Phytologist – volume: 27 start-page: 899 year: 2018 end-page: 912 article-title: Using tree species inventories to map biomes and assess their climatic overlaps in lowland tropical South America publication-title: Global Ecology and Biogeography – volume: 212 start-page: 80 year: 2016 end-page: 95 article-title: Diversity in plant hydraulic traits explains seasonal and inter‐annual variations of vegetation dynamics in seasonally dry tropical forests publication-title: New Phytologist – volume: 519 start-page: 344 year: 2015 end-page: 348 article-title: Long‐term decline of the Amazon carbon sink publication-title: Nature – volume: 7 start-page: 1833 year: 2010 end-page: 1859 article-title: Optimisation of photosynthetic carbon gain and within‐canopy gradients of associated foliar traits for Amazon forest trees publication-title: Biogeosciences – ident: e_1_2_8_121_1 doi: 10.5194/bg-9-2203-2012 – ident: e_1_2_8_61_1 doi: 10.1111/gcb.13910 – ident: e_1_2_8_103_1 doi: 10.1093/biosci/biv107 – ident: e_1_2_8_55_1 doi: 10.1002/qj.49712051806 – ident: e_1_2_8_69_1 doi: 10.5194/gmd-11-2857-2018 – ident: e_1_2_8_129_1 doi: 10.1111/geb.12256 – ident: e_1_2_8_153_1 doi: 10.1007/s10980-008-9285-9 – ident: e_1_2_8_63_1 doi: 10.14214/sf.535 – ident: e_1_2_8_83_1 doi: 10.1016/S0065-2504(08)60148-8 – ident: e_1_2_8_28_1 doi: 10.1002/hyp.11143 – ident: e_1_2_8_66_1 doi: 10.1093/treephys/26.6.689 – ident: e_1_2_8_107_1 doi: 10.1371/journal.pbio.1001127 – ident: e_1_2_8_74_1 doi: 10.1111/j.1469-8137.2010.03352.x – ident: e_1_2_8_62_1 doi: 10.1073/pnas.1617988114 – ident: e_1_2_8_140_1 doi: 10.1111/pce.12852 – ident: e_1_2_8_151_1 doi: 10.1016/j.ppees.2014.02.001 – ident: e_1_2_8_2_1 doi: 10.1038/s41559-017-0248-x – ident: e_1_2_8_9_1 doi: 10.1073/pnas.1604088113 – ident: e_1_2_8_37_1 doi: 10.1111/j.1469-8137.2007.02137.x – ident: e_1_2_8_52_1 doi: 10.1111/nph.13952 – ident: e_1_2_8_131_1 doi: 10.1111/nph.12210 – ident: e_1_2_8_6_1 doi: 10.1098/rstb.2017.0411 – ident: e_1_2_8_142_1 doi: 10.1073/pnas.1810141115 – ident: e_1_2_8_48_1 doi: 10.1051/forest:2002060 – ident: e_1_2_8_16_1 doi: 10.1111/nph.14044 – ident: e_1_2_8_113_1 doi: 10.5194/bg-10-4137-2013 – ident: e_1_2_8_112_1 doi: 10.1111/1365-2745.12589 – ident: e_1_2_8_104_1 doi: 10.1038/s41598-020-66415-w – ident: e_1_2_8_126_1 doi: 10.1111/j.1365-2745.2005.01030.x – ident: e_1_2_8_31_1 doi: 10.1111/gcb.12860 – ident: e_1_2_8_152_1 doi: 10.1007/s00442-013-2671-2 – ident: e_1_2_8_87_1 doi: 10.1111/nph.15211 – ident: e_1_2_8_148_1 doi: 10.1093/treephys/tpt030 – ident: e_1_2_8_93_1 doi: 10.1073/pnas.0804619106 – ident: e_1_2_8_163_1 doi: 10.1093/treephys/tpy013 – ident: e_1_2_8_54_1 doi: 10.1111/nph.16419 – ident: e_1_2_8_7_1 doi: 10.5194/gmd-13-4067-2020 – ident: e_1_2_8_49_1 doi: 10.1111/ele.12537 – ident: e_1_2_8_146_1 doi: 10.1104/pp.88.3.574 – ident: e_1_2_8_75_1 doi: 10.1016/j.foreco.2014.06.039 – ident: e_1_2_8_135_1 doi: 10.1111/j.1365-2486.2008.01626.x – ident: e_1_2_8_98_1 doi: 10.1111/j.1469-8137.2010.03391.x – ident: e_1_2_8_5_1 doi: 10.1073/pnas.1525678113 – ident: e_1_2_8_21_1 doi: 10.1111/gcb.13733 – volume-title: Description of the “TRIFFID” dynamic global vegetation model year: 2001 ident: e_1_2_8_46_1 – ident: e_1_2_8_58_1 doi: 10.1111/nph.17005 – ident: e_1_2_8_94_1 doi: 10.1126/science.1146961 – ident: e_1_2_8_120_1 doi: 10.5194/bg-8-1415-2011 – ident: e_1_2_8_17_1 doi: 10.1093/aob/mcu131 – ident: e_1_2_8_82_1 doi: 10.1002/2014GB005082 – ident: e_1_2_8_36_1 doi: 10.1038/nature11688 – ident: e_1_2_8_118_1 doi: 10.1111/gcb.13731 – ident: e_1_2_8_127_1 doi: 10.1111/j.1365-2435.2009.01670.x – ident: e_1_2_8_44_1 doi: 10.1111/nph.14508 – ident: e_1_2_8_50_1 doi: 10.3389/fevo.2018.00104 – ident: e_1_2_8_56_1 doi: 10.1111/gcb.14413 – ident: e_1_2_8_38_1 doi: 10.5194/gmd-9-4227-2016 – ident: e_1_2_8_80_1 doi: 10.1029/2018MS001500 – ident: e_1_2_8_90_1 doi: 10.1890/11-1213.1 – ident: e_1_2_8_30_1 doi: 10.1111/1365-2745.13022 – ident: e_1_2_8_158_1 doi: 10.1126/science.aad5068 – ident: e_1_2_8_47_1 doi: 10.1038/35041539 – ident: e_1_2_8_10_1 doi: 10.1111/j.1461-0248.2012.01751.x – ident: e_1_2_8_33_1 doi: 10.1007/s11284-008-0482-4 – ident: e_1_2_8_97_1 doi: 10.1111/j.1365-3040.2010.02231.x – ident: e_1_2_8_149_1 doi: 10.1111/j.1461-0248.2007.01139.x – ident: e_1_2_8_143_1 doi: 10.1073/pnas.1106950108 – ident: e_1_2_8_125_1 doi: 10.1038/nature15539 – ident: e_1_2_8_117_1 doi: 10.1126/science.1191056 – ident: e_1_2_8_45_1 doi: 10.1111/gcb.13851 – ident: e_1_2_8_134_1 doi: 10.1111/geb.12749 – ident: e_1_2_8_139_1 doi: 10.1111/nph.13354 – ident: e_1_2_8_91_1 doi: 10.3389/fpls.2019.01718 – ident: e_1_2_8_86_1 doi: 10.1073/pnas.1511344112 – ident: e_1_2_8_145_1 doi: 10.1029/2018GL078131 – ident: e_1_2_8_65_1 doi: 10.1029/2007WR006384 – ident: e_1_2_8_155_1 doi: 10.1111/nph.14087 – ident: e_1_2_8_95_1 doi: 10.1007/978-3-642-29104-3_2 – ident: e_1_2_8_160_1 doi: 10.1111/nph.14009 – ident: e_1_2_8_26_1 doi: 10.1046/j.1365-3040.2003.00975.x – ident: e_1_2_8_73_1 doi: 10.1126/science.1210657 – ident: e_1_2_8_106_1 doi: 10.1038/s41586-018-0300-2 – ident: e_1_2_8_85_1 doi: 10.1126/science.1247355 – ident: e_1_2_8_161_1 doi: 10.1111/j.1365-2435.2009.01552.x – ident: e_1_2_8_81_1 doi: 10.3389/fpls.2015.00191 – ident: e_1_2_8_110_1 doi: 10.1111/j.1365-2435.2005.01003.x – ident: e_1_2_8_27_1 doi: 10.1104/pp.17.00078 – ident: e_1_2_8_123_1 doi: 10.1111/nph.14283 – ident: e_1_2_8_136_1 doi: 10.1016/S1146-609X(97)80030-6 – ident: e_1_2_8_11_1 doi: 10.1111/ele.12374 – volume: 12 start-page: 3218 year: 2018 ident: e_1_2_8_34_1 article-title: The roots of the drought: hydrology and water uptake strategies mediate forest‐wide demographic response to precipitation publication-title: Journal of Ecology – ident: e_1_2_8_67_1 doi: 10.1111/nph.15922 – ident: e_1_2_8_111_1 doi: 10.1111/nph.15463 – ident: e_1_2_8_116_1 doi: 10.1071/FP15337 – ident: e_1_2_8_4_1 doi: 10.1890/ES15-00203.1 – ident: e_1_2_8_57_1 doi: 10.1038/s41467-020-18996-3 – ident: e_1_2_8_162_1 doi: 10.1093/treephys/tpx094 – ident: e_1_2_8_18_1 doi: 10.1126/science.1155121 – ident: e_1_2_8_68_1 doi: 10.5194/gmd-9-2415-2016 – ident: e_1_2_8_99_1 doi: 10.1111/ele.12851 – ident: e_1_2_8_159_1 doi: 10.1111/nph.14939 – ident: e_1_2_8_14_1 doi: 10.1111/j.1399-3054.2006.00718.x – ident: e_1_2_8_156_1 doi: 10.1890/09-2335.1 – volume-title: Mechanics of materials year: 1992 ident: e_1_2_8_12_1 – ident: e_1_2_8_59_1 doi: 10.1073/pnas.1712381114 – ident: e_1_2_8_76_1 doi: 10.1146/annurev.es.04.110173.000245 – ident: e_1_2_8_124_1 doi: 10.1073/pnas.1900734116 – ident: e_1_2_8_41_1 doi: 10.1093/jxb/ert193 – ident: e_1_2_8_13_1 doi: 10.1007/s00704-004-0050-y – ident: e_1_2_8_133_1 doi: 10.1111/nph.13798 – ident: e_1_2_8_92_1 doi: 10.1111/j.1365-2745.2008.01476.x – ident: e_1_2_8_64_1 doi: 10.1038/ngeo2382 – ident: e_1_2_8_42_1 doi: 10.1051/forest:19960203 – ident: e_1_2_8_19_1 doi: 10.5194/gmd-7-2193-2014 – ident: e_1_2_8_43_1 doi: 10.1073/pnas.1218042110 – ident: e_1_2_8_53_1 doi: 10.1098/rstb.2017.0315 – ident: e_1_2_8_114_1 doi: 10.1126/science.1164033 – ident: e_1_2_8_20_1 doi: 10.1093/treephys/25.4.457 – ident: e_1_2_8_32_1 doi: 10.1111/j.1461-0248.2009.01285.x – ident: e_1_2_8_29_1 doi: 10.1007/s11104-017-3330-x – ident: e_1_2_8_137_1 doi: 10.1038/s41598-020-58913-8 – ident: e_1_2_8_40_1 doi: 10.1002/2015WR017096 – ident: e_1_2_8_147_1 doi: 10.1007/978-3-642-68150-9_3 – ident: e_1_2_8_22_1 doi: 10.1073/pnas.1305499111 – ident: e_1_2_8_165_1 doi: 10.1002/ecy.1950 – ident: e_1_2_8_71_1 doi: 10.1038/s41597-020-0453-3 – ident: e_1_2_8_24_1 doi: 10.1098/rstb.2007.0031 – ident: e_1_2_8_8_1 doi: 10.1111/nph.15909 – ident: e_1_2_8_79_1 doi: 10.1093/treephys/19.11.717 – ident: e_1_2_8_132_1 doi: 10.1016/j.agrformet.2014.01.011 – volume-title: CRU JRA v1.1: a forcings dataset of gridded land surface blend of Climatic Research Unit (CRU) and Japanese reanalysis (JRA) data; Jan.1901–Dec.2017 year: 2019 ident: e_1_2_8_70_1 – ident: e_1_2_8_108_1 doi: 10.1111/j.1461-0248.2012.01771.x – ident: e_1_2_8_39_1 doi: 10.1038/s41561-019-0312-z – ident: e_1_2_8_100_1 doi: 10.1111/nph.15027 – ident: e_1_2_8_115_1 doi: 10.1111/j.1469-8137.2010.03359.x – ident: e_1_2_8_164_1 doi: 10.1007/s13595-019-0905-0 – ident: e_1_2_8_51_1 doi: 10.1111/pce.13106 – ident: e_1_2_8_72_1 doi: 10.1046/j.1365-2745.2000.00435.x – ident: e_1_2_8_77_1 doi: 10.1046/j.1365-3040.2001.00660.x – ident: e_1_2_8_157_1 doi: 10.1111/j.1469-8137.2005.01349.x – ident: e_1_2_8_78_1 doi: 10.1111/j.1744-7429.2012.00867.x – ident: e_1_2_8_119_1 doi: 10.1111/gcb.15037 – ident: e_1_2_8_96_1 doi: 10.1111/1365-2435.12452 – ident: e_1_2_8_150_1 doi: 10.1007/s11104-011-0879-7 – ident: e_1_2_8_15_1 doi: 10.1111/gcb.14666 – ident: e_1_2_8_84_1 doi: 10.1590/S0001-37652008000200017 – ident: e_1_2_8_128_1 doi: 10.1007/978-3-319-27422-5_17 – ident: e_1_2_8_141_1 doi: 10.1126/science.1210465 – ident: e_1_2_8_25_1 doi: 10.1038/nature14283 – ident: e_1_2_8_102_1 doi: 10.1111/j.1365-2435.2009.01577.x – ident: e_1_2_8_154_1 doi: 10.1098/rsbl.2020.0263 – ident: e_1_2_8_88_1 doi: 10.5194/bg-12-6529-2015 – ident: e_1_2_8_89_1 doi: 10.5194/bg-7-1833-2010 – ident: e_1_2_8_144_1 doi: 10.1111/pce.12859 – ident: e_1_2_8_122_1 doi: 10.1111/1365-2745.12211 – ident: e_1_2_8_60_1 doi: 10.1002/9781119081111.ch11 – ident: e_1_2_8_109_1 doi: 10.1890/06-1046.1 – ident: e_1_2_8_3_1 doi: 10.1016/S0065-2504(08)60016-1 – ident: e_1_2_8_138_1 doi: 10.1111/1365-2745.13377 – ident: e_1_2_8_23_1 doi: 10.1073/pnas.0908741107 – ident: e_1_2_8_35_1 doi: 10.1007/s00468-004-0392-1 – ident: e_1_2_8_101_1 doi: 10.1111/gcb.13268 – ident: e_1_2_8_130_1 doi: 10.1126/science.1146663 – ident: e_1_2_8_105_1 doi: 10.1371/journal.pone.0230097 |
SSID | ssj0009562 |
Score | 2.6632097 |
SecondaryResourceType | review_article |
Snippet | Tropical ecosystems have the highest levels of biodiversity, cycle more water and absorb more carbon than any other terrestrial ecosystem on Earth.... Summary Tropical ecosystems have the highest levels of biodiversity, cycle more water and absorb more carbon than any other terrestrial ecosystem on Earth.... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 904 |
SubjectTerms | Amazon tropical forest Avoidance Avoidance behaviour Biodiversity Biogeochemical cycle Biogeochemical cycles Biogeochemistry Capacitance carbon Climate system Computational fluid dynamics Distribution Drought Droughts Ecosystem Ecosystems embolism resistance Fluid flow fluid mechanics hydraulic conductivity hydraulic safety margin Hydraulics Nutrients plant hydraulic diversity Plant Leaves Rainforest Rainforests Rooting Safety margins Soil nutrients Tansley review terrestrial ecosystems Trees Tropical climate tropical dry forest tropical rain forests tropical savannahs Vegetation Vulnerability Water Water availability Water potential |
Title | Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems |
URI | https://www.jstor.org/stable/27013927 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17266 https://www.ncbi.nlm.nih.gov/pubmed/33570772 https://www.proquest.com/docview/2509220908 https://www.proquest.com/docview/2488551384 https://www.proquest.com/docview/2540495394 |
Volume | 230 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqigMXaIHCtgUZxIFLVt7YcdbqCRDVCkGFEJX2gBT5J1ZXDcmySVSVE-_AG_IkzDg_alFBiFskTyQ7M-P5Jh5_Q8hznSgvveCR9cJFIp2byFifREJ5rpFvyjG8jfz-RC5OxdtlstwiR8NdmI4fYvzhhp4R9mt0cG3qK05ers-mEH0l0m1jrRYCoo_xFcJdGQ8MzFLIZc8qhFU845vXYlFXjngT0LyOW0PgOb5LPg9T7upNzqdtY6b2229sjv-5ph1ypwek9GVnQbtkKy_vkVuvKgCNl_fJ13ddbwW6LkAF9OzSbXRbrGxNdekogEfqdd38_P6jLqoLinXvq7Jtv9Cmou14bYZCSr8qwh6CAy50BmroqqTNplqjlVBIgjtO6foBOT1-8-n1Iuq7NEQWqWMiaQBzJs7PQLs25RLyQy_lXEvlE-FS6ZOYeaYsmzlYmWN56i2XBlIhPjNaaL5HtsuqzB8RymXOVKpMEs5jIRWcaedzqS0kRQzi5oS8GPSV2Z7CHDtpFNmQysAHzMIHnJBno-i64-24SWgvKH2UiFNExHE6IYeDFWS9T9cZgEUVx0yx-YQ8HYfBG_GIRZd51YIM7IfYMmcu_iIDIBmrehXIPOwsbJwA50nKIOGBlQY7-fPcs5MPi_Cw_--iB-R2jCU5oV7zkGw3mzZ_DJiqMU-C8_wCsUQdZw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgkQv5bd0oYBBIHHJyuskzubAASjVlm5XCLXS3oJjx-qqabLdJKqWE-_Aa_AqvARPwtj5UYsK4tIDt0geWXY8M_7GHn8D8EL4oebacx2pPeV4wTB2Yql9xwu1KwzflKLmNfL-hI8OvQ9Tf7oC39u3MDU_RHfgZizD-mtj4OZA-pyVZ_OjPm6_nDcplXvJ8gwDtuL17jau7kvGdt4fvBs5TU0BRxqiE4fHiJB8pQc4Fhm4HKMZzflQ8FD7ngq49hnVNJR0oLBrRZNAS5fHCNzdQSw84WK_1-C6qSBumPq3P7FzFL-ctZzP3OPThsfI5A11Q72w-9UJkJdB24tI2W51O7fgR_uT6gyX435Vxn355Tf-yP_lL96G9QZzkze1kdyBlSS7Czfe5oiLl_fgdFyXjyDzFLWMHC3VQlTpTBZEZIogPiZaFOXPr9-KND8jJrV_llXVCSlzUnUvg8giKWapdZOmQdniRyWZZaRc5HNjCATj_Jo2u7gPh1cy3Q1YzfIs2QTi8oSGQRj79soZo92BUDrhQmLcRxEa9OBVqyCRbFjaTbGQNGqjNVywyC5YD553ovOamuQyoQ2rZZ0ECwzoZ0EPtlq1ixq3VUSIh0PGaEiHPXjWNaPDMbdIIkvyCmXQ5ZuqQEPvLzIYB5jE5RBlHtQq3Q3Adf2AYkyHM7WK-eexR5OPI_vx8N9Fn8LN0cH-OBrvTvYewRozGUg2PXULVstFlTxGCFnGT6zlEvh81Ur-C2f8eRI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VghAX_gsLBQwCiUtWWcdxNgcOwLLa0rKqEJX2ljp2rK4ISdgkqpYT78Bj8Co8BU_C2PlRiwri0gO3SB5Z_pkZfxOPvwF4KvxQc808R2qmHBaMYyeW2ndYqD1h-KaUa14jv5vz2QF7u_AXG_C9ewvT8EP0P9yMZVh_bQy8UPqEkWfF0RBPX87bjMrdZH2M8Vr5YmeCm_uM0umbD69nTltSwJGG58ThMQIkX-kRDkUGHsdgRnM-FjzUPlMB1z51tRtKd6Swa-UmgZYejxG3e6NYMOFhvxfgIuNuaOpETN7TEwy_nHaUz5zxRUtjZNKG-qGeOvya_MezkO1poGxPuuk1-NGtUZPg8nFYV_FQfvmNPvI_WcTrcLVF3ORlYyI3YCPJbsKlVzmi4vUt-LzXFI8gRYo6Ro7WaiXqdClLIjJFEB0TLcrq59dvZZofE5PYv8zq-hOpclL374LIKimXqXWSpkHZ0kcVWWakWuWFMQOCUX5Dml3ehoNzme4WbGZ5ltwF4vHEDYMw9u2FM8a6I6F0woXEqM9FYDCA551-RLLlaDelQtKoi9VwwyK7YQN40osWDTHJWUJbVsl6CRoYyE-DAWx3Whe1TquMEA2HlKJmjwfwuG9Gd2PukESW5DXKoMM3NYHG7C8yGAWYtOUQZe40Gt0PwPP8wMWIDmdq9fLPY4_m-zP7ce_fRR_B5f3JNNrbme_ehyvUpB_Z3NRt2KxWdfIA8WMVP7R2S-DwvHX8F2yQd8E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linking+plant+hydraulics+and+the+fast-slow+continuum+to+understand+resilience+to+drought+in+tropical+ecosystems&rft.jtitle=The+New+phytologist&rft.au=Oliveira%2C+Rafael+S&rft.au=Eller%2C+Cleiton+B&rft.au=Barros%2C+Fernanda+de+V&rft.au=Hirota%2C+Marina&rft.date=2021-05-01&rft.eissn=1469-8137&rft.volume=230&rft.issue=3&rft.spage=904&rft_id=info:doi/10.1111%2Fnph.17266&rft_id=info%3Apmid%2F33570772&rft.externalDocID=33570772 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |