Metformin modulates hyperglycaemia‐induced endothelial senescence and apoptosis through SIRT1

Background and Purpose Endothelial dysfunction can be detected at an early stage in the development of diabetes‐related microvascular disease and is associated with accelerated endothelial senescence and ageing. Hyperglycaemia‐induced oxidative stress is a major contributing factor to the developmen...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of pharmacology Vol. 171; no. 2; pp. 523 - 535
Main Authors Arunachalam, Gnanapragasam, Samuel, Samson Mathews, Marei, Isra, Ding, Hong, Triggle, Chris R
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.01.2014
John Wiley & sons
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background and Purpose Endothelial dysfunction can be detected at an early stage in the development of diabetes‐related microvascular disease and is associated with accelerated endothelial senescence and ageing. Hyperglycaemia‐induced oxidative stress is a major contributing factor to the development of endothelial dysfunction. Clinical data indicate that the hypoglycaemic agent, metformin, has an endothelial protective action; however, its molecular and cellular mechanisms remain elusive. In the present study, we have investigated the protective effect of metformin during hyperglycaemia‐induced senescence in mouse microvascular endothelial cells (MMECs). Experimental Approach MMECs were cultured in normal glucose (11 mM) and high glucose (HG; 40 mM) in the presence and absence of metformin (50 μM) for 72 h. The expression of sirtuin‐1 (SIRT1) and senescence/apoptosis‐associated markers was determined by immunoblotting and immunocyto techniques. SIRT1 expression was inhibited with appropriate siRNA. Key Results Exposure of MMECs to HG significantly reduced SIRT1 protein expression, increased forkhead box O1 (FoxO‐1) and p53 acetylation, increased p21 and decreased Bcl2 expression. In addition, senescence‐associated β‐galactosidase activity in MMECs was increased in HG. Treatment with metformin attenuated the HG‐induced reduction of SIRT1 expression, modulated the SIRT1 downstream targets FoxO‐1 and p53/p21, and protected endothelial cells from HG‐induced premature senescence. However, following gene knockdown of SIRT1 the effects of metformin were lost. Conclusions and Implications HG‐induced down‐regulation of SIRT1 played a crucial role in diabetes‐induced endothelial senescence. Furthermore, the protective effect of metformin against HG‐induced endothelial dysfunction was partly due to its effects on SIRT1 expression and/or activity.
AbstractList Background and Purpose:  Endothelial dysfunction can be detected at an early stage in the development of diabetes-related microvascular disease and is associated with accelerated endothelial senescence and ageing. Hyperglycaemia-induced oxidative stress is a major contributing factor to the development of endothelial dysfunction. Clinical data indicate that the hypoglycaemic agent, metformin, has an endothelial protective action; however, its molecular and cellular mechanisms remain elusive. In the present study, we have investigated the protective effect of metformin during hyperglycaemia-induced senescence in mouse microvascular endothelial cells (MMECs). Experimental Approach:  MMECs were cultured in normal glucose (11 mM) and high glucose (HG; 40 mM) in the presence and absence of metformin (50 μM) for 72 h. The expression of sirtuin-1 (SIRT1) and senescence/apoptosis-associated markers was determined by immunoblotting and immunocyto techniques. SIRT1 expression was inhibited with appropriate siRNA. Key Results:  Exposure of MMECs to HG significantly reduced SIRT1 protein expression, increased forkhead box O1 (FoxO-1) and p53 acetylation, increased p21 and decreased Bcl2 expression. In addition, senescence-associated β-galactosidase activity in MMECs was increased in HG. Treatment with metformin attenuated the HG-induced reduction of SIRT1 expression, modulated the SIRT1 downstream targets FoxO-1 and p53/p21, and protected endothelial cells from HG-induced premature senescence. However, following gene knockdown of SIRT1 the effects of metformin were lost. Conclusions and Implications:  HG-induced down-regulation of SIRT1 played a crucial role in diabetes-induced endothelial senescence. Furthermore, the protective effect of metformin against HG-induced endothelial dysfunction was partly due to its effects on SIRT1 expression and/or activity.
Endothelial dysfunction can be detected at an early stage in the development of diabetes-related microvascular disease and is associated with accelerated endothelial senescence and ageing. Hyperglycaemia-induced oxidative stress is a major contributing factor to the development of endothelial dysfunction. Clinical data indicate that the hypoglycaemic agent, metformin, has an endothelial protective action; however, its molecular and cellular mechanisms remain elusive. In the present study, we have investigated the protective effect of metformin during hyperglycaemia-induced senescence in mouse microvascular endothelial cells (MMECs). MMECs were cultured in normal glucose (11 mM) and high glucose (HG; 40 mM) in the presence and absence of metformin (50 μM) for 72 h. The expression of sirtuin-1 (SIRT1) and senescence/apoptosis-associated markers was determined by immunoblotting and immunocyto techniques. SIRT1 expression was inhibited with appropriate siRNA. Exposure of MMECs to HG significantly reduced SIRT1 protein expression, increased forkhead box O1 (FoxO-1) and p53 acetylation, increased p21 and decreased Bcl2 expression. In addition, senescence-associated β-galactosidase activity in MMECs was increased in HG. Treatment with metformin attenuated the HG-induced reduction of SIRT1 expression, modulated the SIRT1 downstream targets FoxO-1 and p53/p21, and protected endothelial cells from HG-induced premature senescence. However, following gene knockdown of SIRT1 the effects of metformin were lost. HG-induced down-regulation of SIRT1 played a crucial role in diabetes-induced endothelial senescence. Furthermore, the protective effect of metformin against HG-induced endothelial dysfunction was partly due to its effects on SIRT1 expression and/or activity.
Background and Purpose Endothelial dysfunction can be detected at an early stage in the development of diabetes-related microvascular disease and is associated with accelerated endothelial senescence and ageing. Hyperglycaemia-induced oxidative stress is a major contributing factor to the development of endothelial dysfunction. Clinical data indicate that the hypoglycaemic agent, metformin, has an endothelial protective action; however, its molecular and cellular mechanisms remain elusive. In the present study, we have investigated the protective effect of metformin during hyperglycaemia-induced senescence in mouse microvascular endothelial cells (MMECs). Experimental Approach MMECs were cultured in normal glucose (11mM) and high glucose (HG; 40mM) in the presence and absence of metformin (50µM) for 72h. The expression of sirtuin-1 (SIRT1) and senescence/apoptosis-associated markers was determined by immunoblotting and immunocyto techniques. SIRT1 expression was inhibited with appropriate siRNA. Key Results Exposure of MMECs to HG significantly reduced SIRT1 protein expression, increased forkhead box O1 (FoxO-1) and p53 acetylation, increased p21 and decreased Bcl2 expression. In addition, senescence-associated [beta]-galactosidase activity in MMECs was increased in HG. Treatment with metformin attenuated the HG-induced reduction of SIRT1 expression, modulated the SIRT1 downstream targets FoxO-1 and p53/p21, and protected endothelial cells from HG-induced premature senescence. However, following gene knockdown of SIRT1 the effects of metformin were lost. Conclusions and Implications HG-induced down-regulation of SIRT1 played a crucial role in diabetes-induced endothelial senescence. Furthermore, the protective effect of metformin against HG-induced endothelial dysfunction was partly due to its effects on SIRT1 expression and/or activity. [PUBLICATION ABSTRACT]
Background and Purpose Endothelial dysfunction can be detected at an early stage in the development of diabetes‐related microvascular disease and is associated with accelerated endothelial senescence and ageing. Hyperglycaemia‐induced oxidative stress is a major contributing factor to the development of endothelial dysfunction. Clinical data indicate that the hypoglycaemic agent, metformin, has an endothelial protective action; however, its molecular and cellular mechanisms remain elusive. In the present study, we have investigated the protective effect of metformin during hyperglycaemia‐induced senescence in mouse microvascular endothelial cells (MMECs). Experimental Approach MMECs were cultured in normal glucose (11 mM) and high glucose (HG; 40 mM) in the presence and absence of metformin (50 μM) for 72 h. The expression of sirtuin‐1 (SIRT1) and senescence/apoptosis‐associated markers was determined by immunoblotting and immunocyto techniques. SIRT1 expression was inhibited with appropriate siRNA. Key Results Exposure of MMECs to HG significantly reduced SIRT1 protein expression, increased forkhead box O1 (FoxO‐1) and p53 acetylation, increased p21 and decreased Bcl2 expression. In addition, senescence‐associated β‐galactosidase activity in MMECs was increased in HG. Treatment with metformin attenuated the HG‐induced reduction of SIRT1 expression, modulated the SIRT1 downstream targets FoxO‐1 and p53/p21, and protected endothelial cells from HG‐induced premature senescence. However, following gene knockdown of SIRT1 the effects of metformin were lost. Conclusions and Implications HG‐induced down‐regulation of SIRT1 played a crucial role in diabetes‐induced endothelial senescence. Furthermore, the protective effect of metformin against HG‐induced endothelial dysfunction was partly due to its effects on SIRT1 expression and/or activity.
Endothelial dysfunction can be detected at an early stage in the development of diabetes-related microvascular disease and is associated with accelerated endothelial senescence and ageing. Hyperglycaemia-induced oxidative stress is a major contributing factor to the development of endothelial dysfunction. Clinical data indicate that the hypoglycaemic agent, metformin, has an endothelial protective action; however, its molecular and cellular mechanisms remain elusive. In the present study, we have investigated the protective effect of metformin during hyperglycaemia-induced senescence in mouse microvascular endothelial cells (MMECs).BACKGROUND AND PURPOSEEndothelial dysfunction can be detected at an early stage in the development of diabetes-related microvascular disease and is associated with accelerated endothelial senescence and ageing. Hyperglycaemia-induced oxidative stress is a major contributing factor to the development of endothelial dysfunction. Clinical data indicate that the hypoglycaemic agent, metformin, has an endothelial protective action; however, its molecular and cellular mechanisms remain elusive. In the present study, we have investigated the protective effect of metformin during hyperglycaemia-induced senescence in mouse microvascular endothelial cells (MMECs).MMECs were cultured in normal glucose (11 mM) and high glucose (HG; 40 mM) in the presence and absence of metformin (50 μM) for 72 h. The expression of sirtuin-1 (SIRT1) and senescence/apoptosis-associated markers was determined by immunoblotting and immunocyto techniques. SIRT1 expression was inhibited with appropriate siRNA.EXPERIMENTAL APPROACHMMECs were cultured in normal glucose (11 mM) and high glucose (HG; 40 mM) in the presence and absence of metformin (50 μM) for 72 h. The expression of sirtuin-1 (SIRT1) and senescence/apoptosis-associated markers was determined by immunoblotting and immunocyto techniques. SIRT1 expression was inhibited with appropriate siRNA.Exposure of MMECs to HG significantly reduced SIRT1 protein expression, increased forkhead box O1 (FoxO-1) and p53 acetylation, increased p21 and decreased Bcl2 expression. In addition, senescence-associated β-galactosidase activity in MMECs was increased in HG. Treatment with metformin attenuated the HG-induced reduction of SIRT1 expression, modulated the SIRT1 downstream targets FoxO-1 and p53/p21, and protected endothelial cells from HG-induced premature senescence. However, following gene knockdown of SIRT1 the effects of metformin were lost.KEY RESULTSExposure of MMECs to HG significantly reduced SIRT1 protein expression, increased forkhead box O1 (FoxO-1) and p53 acetylation, increased p21 and decreased Bcl2 expression. In addition, senescence-associated β-galactosidase activity in MMECs was increased in HG. Treatment with metformin attenuated the HG-induced reduction of SIRT1 expression, modulated the SIRT1 downstream targets FoxO-1 and p53/p21, and protected endothelial cells from HG-induced premature senescence. However, following gene knockdown of SIRT1 the effects of metformin were lost.HG-induced down-regulation of SIRT1 played a crucial role in diabetes-induced endothelial senescence. Furthermore, the protective effect of metformin against HG-induced endothelial dysfunction was partly due to its effects on SIRT1 expression and/or activity.CONCLUSIONS AND IMPLICATIONSHG-induced down-regulation of SIRT1 played a crucial role in diabetes-induced endothelial senescence. Furthermore, the protective effect of metformin against HG-induced endothelial dysfunction was partly due to its effects on SIRT1 expression and/or activity.
Author Arunachalam, Gnanapragasam
Marei, Isra
Ding, Hong
Triggle, Chris R
Samuel, Samson Mathews
Author_xml – sequence: 1
  givenname: Gnanapragasam
  surname: Arunachalam
  fullname: Arunachalam, Gnanapragasam
  organization: Weill Cornell Medical College in Qatar
– sequence: 2
  givenname: Samson Mathews
  surname: Samuel
  fullname: Samuel, Samson Mathews
  organization: Weill Cornell Medical College in Qatar
– sequence: 3
  givenname: Isra
  surname: Marei
  fullname: Marei, Isra
  organization: Weill Cornell Medical College in Qatar
– sequence: 4
  givenname: Hong
  surname: Ding
  fullname: Ding, Hong
  organization: Weill Cornell Medical College in Qatar
– sequence: 5
  givenname: Chris R
  surname: Triggle
  fullname: Triggle, Chris R
  organization: Weill Cornell Medical College in Qatar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24372553$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFu1DAQhi1URLeFAy-AInGBw7bjxI6dCxJUQCu1KoJytpxksnHl2KmdgPbGI_CMfZJ62S2CCnzxYb759c3MAdlz3iEhzykc0fSO67E_ojmrykdkQZkol7yQdI8sAEAsKZVynxzEeA2QioI_Ifs5K0TOebEg6gKnzofBuGzw7Wz1hDHr1yOGlV03Ggejb3_8NK6dG2wzdK2ferRG2yyiw9igazDTrs306MfJRxOzqQ9-XvXZl7PPV_QpedxpG_HZ7j8kXz-8vzo5XZ5ffjw7eXu-bDhUSRg5iDZvZFUwybHIkyFQKGleClHxugPJS8i7WjQ16LqVsii7qmYUhOQiTXJI3mxzx7kesE1eU9BWjcEMOqyV10b9XXGmVyv_TRUVsLysUsCrXUDwNzPGSQ0mjWetdujnqCirQCSnAhL68gF67efg0niKcpZ0JLAN9eJPo98q97tPwPEWaIKPMWCnGjPpyfiNoLGKgtpcV6Xrql_XTR2vH3Tch_6L3aV_NxbX_wfVu0-n2447-ZW0Zg
CitedBy_id crossref_primary_10_1016_j_lfs_2018_11_055
crossref_primary_10_1093_biolre_ioad168
crossref_primary_10_14336_AD_2021_0927
crossref_primary_10_18632_aging_102432
crossref_primary_10_18632_aging_101068
crossref_primary_10_3390_biom9010016
crossref_primary_10_1055_a_2464_4354
crossref_primary_10_3389_fphar_2023_1211460
crossref_primary_10_1016_j_mce_2019_110628
crossref_primary_10_1038_s41598_019_43083_z
crossref_primary_10_1016_j_vph_2019_106613
crossref_primary_10_1016_j_freeradbiomed_2016_04_013
crossref_primary_10_1016_j_diabet_2022_101359
crossref_primary_10_1016_j_coph_2018_11_002
crossref_primary_10_1517_13543776_2014_982532
crossref_primary_10_1016_j_bbrc_2015_02_050
crossref_primary_10_20463_jenb_2019_0014
crossref_primary_10_1002_fsn3_1885
crossref_primary_10_1021_acsptsci_1c00167
crossref_primary_10_1038_s12276_020_00509_3
crossref_primary_10_1016_j_cmet_2020_04_022
crossref_primary_10_1155_2020_8708236
crossref_primary_10_1007_s12013_023_01162_z
crossref_primary_10_1080_17512433_2020_1698288
crossref_primary_10_3390_biomedicines12081875
crossref_primary_10_1016_j_phrs_2018_11_041
crossref_primary_10_1155_2017_7584691
crossref_primary_10_3390_ijms20122949
crossref_primary_10_1093_qjmed_hcac210
crossref_primary_10_1016_j_trsl_2015_06_002
crossref_primary_10_18632_oncotarget_19951
crossref_primary_10_3389_fphys_2021_598267
crossref_primary_10_3390_cells10082115
crossref_primary_10_1007_s00210_020_01915_0
crossref_primary_10_1089_rej_2015_1662
crossref_primary_10_1007_s10753_024_02129_9
crossref_primary_10_1097_FJC_0000000000000178
crossref_primary_10_1016_j_bcp_2015_10_008
crossref_primary_10_1155_2015_875961
crossref_primary_10_1111_jcmm_18454
crossref_primary_10_1038_s41401_018_0109_4
crossref_primary_10_3389_fphar_2021_758792
crossref_primary_10_1016_j_biopha_2023_114911
crossref_primary_10_1177_0300060520986049
crossref_primary_10_1007_s40199_019_00305_z
crossref_primary_10_1093_jpp_rgab137
crossref_primary_10_18632_oncotarget_11229
crossref_primary_10_1177_0885328219873254
crossref_primary_10_3390_jcm10132805
crossref_primary_10_1016_j_intimp_2021_108367
crossref_primary_10_4103_1673_5374_155427
crossref_primary_10_1111_brv_12866
crossref_primary_10_1016_j_jpha_2023_02_001
crossref_primary_10_1016_j_lfs_2022_120490
crossref_primary_10_1139_cjpp_2019_0677
crossref_primary_10_1155_2021_8882130
crossref_primary_10_3390_ijms251810049
crossref_primary_10_1186_s40001_022_00746_4
crossref_primary_10_3390_cells12192341
crossref_primary_10_3390_cancers11111737
crossref_primary_10_1038_s12276_022_00906_w
crossref_primary_10_1007_s11154_014_9298_4
crossref_primary_10_1124_jpet_115_226894
crossref_primary_10_1155_2018_6462793
crossref_primary_10_3389_fendo_2021_718942
crossref_primary_10_3109_1061186X_2015_1057150
crossref_primary_10_1016_j_numecd_2015_03_007
crossref_primary_10_2174_0929867329666220729154615
crossref_primary_10_3390_biomedicines9010003
crossref_primary_10_3390_ijms22136667
crossref_primary_10_1016_j_heliyon_2024_e27478
crossref_primary_10_1016_j_phrs_2017_04_009
crossref_primary_10_1093_humupd_dmx020
crossref_primary_10_1093_gerona_glab298
crossref_primary_10_3389_fphar_2022_801337
crossref_primary_10_1016_j_bbadis_2020_165948
crossref_primary_10_3389_fmed_2025_1509884
crossref_primary_10_1096_fasebj_2018_32_1_supplement_lb669
crossref_primary_10_1111_fcp_12884
crossref_primary_10_3389_fphys_2021_755060
crossref_primary_10_3389_fphar_2018_01266
crossref_primary_10_1016_j_freeradbiomed_2019_07_030
crossref_primary_10_1038_s41401_023_01193_5
crossref_primary_10_1177_2040622314546125
crossref_primary_10_1007_s11515_015_1350_6
crossref_primary_10_1016_j_yjmcc_2014_12_023
crossref_primary_10_1021_acs_molpharmaceut_5b00577
crossref_primary_10_18632_oncotarget_7387
crossref_primary_10_18632_oncotarget_9687
crossref_primary_10_3390_biom14111445
crossref_primary_10_1111_1440_1681_13638
crossref_primary_10_1111_jcmm_16369
crossref_primary_10_3892_mmr_2024_13347
crossref_primary_10_3390_antiox10081306
crossref_primary_10_1038_s41598_023_50084_6
crossref_primary_10_1159_000381643
crossref_primary_10_1007_s10522_017_9685_9
crossref_primary_10_3390_molecules25010125
crossref_primary_10_1016_j_biopha_2016_10_086
crossref_primary_10_1155_2015_436879
crossref_primary_10_1016_j_yfrne_2016_07_002
crossref_primary_10_1007_s10522_019_09838_x
crossref_primary_10_1186_s12933_016_0413_6
crossref_primary_10_1111_dom_13262
crossref_primary_10_3892_mmr_2017_6367
crossref_primary_10_1152_ajpcell_00265_2014
crossref_primary_10_1016_j_yjmcc_2019_02_010
crossref_primary_10_3390_antiox8090328
crossref_primary_10_1016_j_phrs_2022_106123
crossref_primary_10_1155_2015_569392
crossref_primary_10_1002_rmb2_12428
crossref_primary_10_1016_j_metabol_2022_155223
crossref_primary_10_1042_CS20150087
crossref_primary_10_1097_HJH_0000000000001892
crossref_primary_10_1007_s10522_020_09873_z
crossref_primary_10_2147_DDDT_S509735
crossref_primary_10_3109_15412555_2014_974740
crossref_primary_10_3390_cells12060915
crossref_primary_10_3390_ijms19103242
crossref_primary_10_3390_ijms161226217
crossref_primary_10_1139_cjpp_2018_0529
crossref_primary_10_1016_j_ejphar_2021_174531
crossref_primary_10_1161_JAHA_123_030084
crossref_primary_10_3389_fragi_2022_1058435
crossref_primary_10_1042_BST20170121
crossref_primary_10_3389_fnins_2020_00241
crossref_primary_10_3390_jcm13051283
crossref_primary_10_1016_j_bbadis_2017_06_022
crossref_primary_10_3389_fphar_2019_00154
crossref_primary_10_1016_j_ijpharm_2017_01_061
crossref_primary_10_1016_j_scitotenv_2024_170711
crossref_primary_10_3390_ph17111495
crossref_primary_10_1016_j_biopha_2016_06_009
crossref_primary_10_1016_j_pharmthera_2018_07_007
crossref_primary_10_1016_j_jbc_2025_108179
crossref_primary_10_1155_2019_8134678
crossref_primary_10_1002_jcp_28003
crossref_primary_10_3390_ijms22168786
crossref_primary_10_4103_1673_5374_179032
crossref_primary_10_29219_fnr_v68_10749
crossref_primary_10_1007_s13205_022_03455_1
crossref_primary_10_1016_j_ejphar_2020_172984
crossref_primary_10_1016_j_addr_2018_07_019
crossref_primary_10_1007_s00404_016_4148_0
crossref_primary_10_1016_j_mad_2016_02_003
crossref_primary_10_1016_j_bcp_2017_03_001
crossref_primary_10_1111_bph_12655
crossref_primary_10_1016_j_phrs_2021_106014
crossref_primary_10_1152_physiol_00039_2016
crossref_primary_10_1016_j_bbagen_2020_129533
crossref_primary_10_1016_j_arcmed_2019_08_012
crossref_primary_10_3389_fcvm_2020_00028
crossref_primary_10_1139_cjpp_2020_0180
crossref_primary_10_1016_j_jcyt_2016_12_001
crossref_primary_10_2147_VHRM_S391808
crossref_primary_10_1111_dom_12688
crossref_primary_10_3389_fragi_2023_1170434
crossref_primary_10_1016_j_biochi_2023_12_001
crossref_primary_10_1371_journal_pone_0143814
crossref_primary_10_3389_fgene_2016_00142
crossref_primary_10_1007_s11427_014_4709_z
crossref_primary_10_1016_j_biocel_2021_106031
crossref_primary_10_1016_j_arr_2020_101251
crossref_primary_10_1186_s13048_019_0555_8
crossref_primary_10_18632_aging_101319
crossref_primary_10_1007_s12192_015_0601_4
crossref_primary_10_1111_apha_12644
crossref_primary_10_3389_fcvm_2022_888319
crossref_primary_10_2174_0929867326666190119154152
crossref_primary_10_1111_cas_13083
Cites_doi 10.1126/science.1094637
10.1152/ajpendo.00192.2010
10.1177/009127009603601105
10.1016/j.diabres.2010.03.013
10.1016/j.cell.2008.03.025
10.2337/diabetes.54.7.2179
10.2337/diabetes.55.02.06.db05-1064
10.1038/nature07813
10.1161/CIRCRESAHA.111.261388
10.1161/01.CIR.0000013952.86046.DD
10.1161/CIRCRESAHA.110.227371
10.2174/156720210791184899
10.1371/journal.pone.0058636
10.1016/j.bbrc.2010.01.119
10.1126/science.1099196
10.1124/jpet.110.177584
10.1152/japplphysiol.91353.2008
10.1111/j.1476-5381.2011.01230.x
10.1073/pnas.0607873103
10.1073/pnas.0704329104
10.1161/CIRCULATIONAHA.109.864629
10.1126/science.1120781
10.1056/NEJM199309303291401
10.1161/CIRCRESAHA.110.223545
10.1016/S0735-1097(01)01129-9
10.1002/jcp.21063
10.1152/ajprenal.00278.2006
10.1111/j.1365-2125.1981.tb01206.x
10.1210/en.2005-1433
10.1016/j.bcp.2013.02.015
10.1038/sj.bjp.0704683
10.1016/j.bbrc.2010.01.080
10.1016/j.yjmcc.2007.08.008
10.1161/CIRCULATIONAHA.112.118778
10.1016/j.bbapap.2008.03.004
10.1152/ajpheart.00088.2002
10.1161/CIRCRESAHA.111.243592
10.1074/jbc.M802187200
10.1152/ajpheart.00486.2008
10.1016/j.diabres.2011.10.029
10.1042/CS20110386
10.1006/bbrc.1999.0897
10.1038/nrendo.2011.183
10.1016/j.jash.2010.02.004
10.2337/dc07-1534
10.1161/CIRCRESAHA.107.164186
10.2337/db11-0416
10.1161/ATVBAHA.108.164368
10.1161/hh2001.097796
10.1101/gad.435107
10.1093/cvr/cvn224
10.1016/j.lfs.2005.10.020
10.1161/ATVBAHA.109.185694
10.1016/j.stem.2012.03.016
10.1152/ajpcell.00296.2011
10.1126/science.1117728
10.2337/db12-1648
10.2337/db05-1607
ContentType Journal Article
Copyright 2013 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society.
Copyright © 2014 The British Pharmacological Society
Copyright © 2014 The British Pharmacological Society 2014
Copyright_xml – notice: 2013 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society.
– notice: Copyright © 2014 The British Pharmacological Society
– notice: Copyright © 2014 The British Pharmacological Society 2014
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
K9.
NAPCQ
7X8
5PM
DOI 10.1111/bph.12496
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1476-5381
EndPage 535
ExternalDocumentID PMC3904269
3376267661
24372553
10_1111_bph_12496
BPH12496
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Qatar Foundation
  funderid: 4‐910‐3‐244; 5‐149‐3‐040
GroupedDBID ---
.3N
.55
.GJ
05W
0R~
1OC
23N
24P
2WC
31~
33P
36B
3O-
3SF
3V.
4.4
52U
52V
53G
5GY
6J9
7RV
7X7
8-0
8-1
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABPVW
ABQWH
ABUWG
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACUHS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
B0M
BAFTC
BAWUL
BBNVY
BENPR
BFHJK
BHBCM
BHPHI
BKEYQ
BMXJE
BPHCQ
BRXPI
BVXVI
C45
CAG
CCPQU
COF
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBC
EBD
EBS
ECV
EJD
EMB
EMK
EMOBN
ENC
ESX
EX3
F5P
FUBAC
FYUFA
G-S
GODZA
GX1
H.X
HCIFZ
HGLYW
HMCUK
HYE
HZ~
J5H
KBYEO
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LSO
LUTES
LW6
LYRES
M1P
M7P
MEWTI
MK0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
N9A
NAPCQ
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P4E
PQQKQ
PROAC
PSQYO
Q.N
Q2X
QB0
RIG
ROL
RPM
RWI
SJN
SUPJJ
SV3
TEORI
TR2
TUS
UKHRP
UPT
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WVDHM
WXSBR
X7M
XV2
Y6R
YHG
ZGI
ZXP
ZZTAW
~8M
~S-
AAFWJ
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
5PM
ID FETCH-LOGICAL-c5096-5e507d2c893485e3224301061267795bf085602fb7cb0abd8836f9b4107857553
IEDL.DBID 24P
ISSN 0007-1188
1476-5381
IngestDate Thu Aug 21 14:34:02 EDT 2025
Thu Jul 10 23:05:10 EDT 2025
Fri Jul 25 19:11:51 EDT 2025
Thu Apr 03 07:08:42 EDT 2025
Tue Jul 01 03:00:26 EDT 2025
Thu Apr 24 23:04:54 EDT 2025
Wed Jan 22 17:09:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords FoxO-1
forkhead box O1 transcription factor
reactive oxygen species
sirtuin1
hyperglycaemia
metformin
vascular senescence
endothelial dysfunction
microvascular endothelial cells
Language English
License Attribution-NonCommercial
2013 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5096-5e507d2c893485e3224301061267795bf085602fb7cb0abd8836f9b4107857553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbph.12496
PMID 24372553
PQID 1545758040
PQPubID 42104
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3904269
proquest_miscellaneous_1490730130
proquest_journals_1545758040
pubmed_primary_24372553
crossref_citationtrail_10_1111_bph_12496
crossref_primary_10_1111_bph_12496
wiley_primary_10_1111_bph_12496_BPH12496
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: January 2014
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle British journal of pharmacology
PublicationTitleAlternate Br J Pharmacol
PublicationYear 2014
Publisher Blackwell Publishing Ltd
John Wiley & sons
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & sons
References 2012; 61
2007; 104
2012; 122
1993; 329
2010; 107
2006; 78
2013; 62
2008; 102
2007; 30
1996; 36
2012; 126
2013; 8
2001; 89
2012; 11
2007; 212
2007; 292
1999; 260
2008; 28
2002; 105
2010; 393
2009; 120
2011; 163
2007; 21
2010; 4
2010; 7
2004; 303
2011; 337
2005; 310
2006; 55
2002; 136
2013; 85
2004; 305
2012; 303
2008; 283
2009; 29
2009; 458
2010; 89
2011; 109
2012; 111
2008; 1784
2002; 283
2010; 299
2011; 94
2005; 54
2001; 37
2007; 43
2008; 133
2008; 295
2008; 80
2012; 8
2006; 103
1981; 12
2006; 147
2009; 106
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
18423418 - Biochim Biophys Acta. 2008 Jun;1784(6):936-45
23505545 - PLoS One. 2013;8(3):e58636
22378745 - Am J Physiol Cell Physiol. 2012 Jul 1;303(1):C4-C13
16308421 - Science. 2005 Dec 9;310(5754):1642-6
19262508 - Nature. 2009 Apr 23;458(7241):1056-60
20947830 - Circ Res. 2010 Dec 10;107(12):1470-82
11994261 - Circulation. 2002 May 7;105(18):2231-9
16443786 - Diabetes. 2006 Feb;55(2):496-505
15205477 - Science. 2004 Jul 16;305(5682):390-2
21250975 - Br J Pharmacol. 2011 May;163(2):424-37
21778425 - Circ Res. 2011 Sep 2;109(6):639-48
18556572 - Arterioscler Thromb Vasc Biol. 2008 Sep;28(9):1634-9
21030723 - Circ Res. 2010 Oct 29;107(9):1058-70
17938244 - Genes Dev. 2007 Oct 15;21(20):2644-58
17916362 - J Mol Cell Cardiol. 2007 Nov;43(5):571-9
11597994 - Circ Res. 2001 Oct 12;89(8):709-15
17785417 - Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14855-60
8973990 - J Clin Pharmacol. 1996 Nov;36(11):1012-21
23704521 - Diabetes. 2013 Jun;62(6):1800-7
22753194 - Circulation. 2012 Aug 7;126(6):729-40
19286634 - Arterioscler Thromb Vasc Biol. 2009 Jun;29(6):889-94
19036896 - J Appl Physiol (1985). 2009 Jan;106(1):326-32
20102704 - Biochem Biophys Res Commun. 2010 Feb 26;393(1):66-72
17018841 - Am J Physiol Renal Physiol. 2007 Feb;292(2):F617-27
21357660 - J Pharmacol Exp Ther. 2011 Jun;337(3):591-9
22079683 - Diabetes Res Clin Pract. 2011 Dec;94(3):311-21
12181126 - Am J Physiol Heart Circ Physiol. 2002 Sep;283(3):H976-82
22124463 - Diabetes. 2012 Jan;61(1):217-28
12010774 - Br J Pharmacol. 2002 May;136(2):255-63
20370652 - Curr Neurovasc Res. 2010 May;7(2):95-112
7306436 - Br J Clin Pharmacol. 1981 Aug;12(2):235-46
15983220 - Diabetes. 2005 Jul;54(7):2179-87
23422569 - Biochem Pharmacol. 2013 May 1;85(9):1288-96
18485870 - Cell. 2008 May 16;133(4):612-26
19786632 - Circulation. 2009 Oct 13;120(15):1524-32
17965314 - Diabetes Care. 2007 Nov;30(11):2974-5
20424141 - Am J Physiol Endocrinol Metab. 2010 Jul;299(1):E110-6
16224023 - Science. 2005 Oct 14;310(5746):314-7
20398956 - Diabetes Res Clin Pract. 2010 Jul;89(1):38-45
22770240 - Cell Stem Cell. 2012 Jul 6;11(1):23-35
17443690 - J Cell Physiol. 2007 Sep;212(3):682-9
14976264 - Science. 2004 Mar 26;303(5666):2011-5
22117616 - Clin Sci (Lond). 2012 Mar;122(6):253-70
18641273 - Am J Physiol Heart Circ Physiol. 2008 Sep;295(3):H1165-H1176
18174472 - Circ Res. 2008 Jan 4;102(1):16-31
10381378 - Biochem Biophys Res Commun. 1999 Jun 24;260(1):273-9
8366922 - N Engl J Med. 1993 Sep 30;329(14):977-86
16318863 - Life Sci. 2006 Apr 25;78(22):2615-24
20123087 - Biochem Biophys Res Commun. 2010 Mar 5;393(2):268-73
20470995 - J Am Soc Hypertens. 2010 May-Jun;4(3):102-15
18482975 - J Biol Chem. 2008 Jul 18;283(29):20015-26
18689793 - Cardiovasc Res. 2008 Nov 1;80(2):191-9
22773427 - Circ Res. 2012 Jul 6;111(2):245-59
17075048 - Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):17018-23
16731828 - Diabetes. 2006 Jun;55(6):1660-5
11300445 - J Am Coll Cardiol. 2001 Apr;37(5):1344-50
16513829 - Endocrinology. 2006 Jun;147(6):2728-36
22064493 - Nat Rev Endocrinol. 2012 Apr;8(4):228-36
References_xml – volume: 133
  start-page: 612
  year: 2008
  end-page: 626
  article-title: Acetylation is indispensable for p53 activation
  publication-title: Cell
– volume: 89
  start-page: 709
  year: 2001
  end-page: 715
  article-title: Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide
  publication-title: Circ Res
– volume: 292
  start-page: F617
  year: 2007
  end-page: F627
  article-title: A role for AMP‐activated protein kinase in diabetes‐induced renal hypertrophy
  publication-title: Am J Physiol Renal Physiol
– volume: 111
  start-page: 245
  year: 2012
  end-page: 259
  article-title: Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence
  publication-title: Circ Res
– volume: 107
  start-page: 1058
  year: 2010
  end-page: 1070
  article-title: Oxidative stress and diabetic complications
  publication-title: Circ Res
– volume: 78
  start-page: 2615
  year: 2006
  end-page: 2624
  article-title: Metformin reduces blood pressure and restores endothelial function in aorta of streptozotocin‐induced diabetic rats
  publication-title: Life Sci
– volume: 310
  start-page: 1642
  year: 2005
  end-page: 1646
  article-title: The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
  publication-title: Science
– volume: 107
  start-page: 1470
  year: 2010
  end-page: 1482
  article-title: Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation‐induced autophagy in cardiac myocytes
  publication-title: Circ Res
– volume: 89
  start-page: 38
  year: 2010
  end-page: 45
  article-title: L‐arginine attenuates high glucose‐accelerated senescence in human umbilical vein endothelial cells
  publication-title: Diabetes Res Clin Pract
– volume: 43
  start-page: 571
  year: 2007
  end-page: 579
  article-title: Sirt1 modulates premature senescence‐like phenotype in human endothelial cells
  publication-title: J Mol Cell Cardiol
– volume: 337
  start-page: 591
  year: 2011
  end-page: 599
  article-title: Dose‐dependent modulatory effects of insulin on glucose‐induced endothelial senescence and : a relationship between telomeres and nitric oxide
  publication-title: J Pharmacol Exp Ther
– volume: 30
  start-page: 2974
  year: 2007
  end-page: 2975
  article-title: Pathogenetic loop between diabetes and cell senescence
  publication-title: Diabetes Care
– volume: 305
  start-page: 390
  year: 2004
  end-page: 392
  article-title: Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
  publication-title: Science
– volume: 61
  start-page: 217
  year: 2012
  end-page: 228
  article-title: Sirtuin 1‐mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin
  publication-title: Diabetes
– volume: 55
  start-page: 496
  year: 2006
  end-page: 505
  article-title: Activation of the AMP‐activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase
  publication-title: Diabetes
– volume: 8
  start-page: e58636
  year: 2013
  article-title: SIRT1 polymorphism, long‐term survival and glucose tolerance in the general population
  publication-title: PLoS ONE
– volume: 12
  start-page: 235
  year: 1981
  end-page: 246
  article-title: Metformin kinetics in healthy subjects and in patients with diabetes mellitus
  publication-title: Br J Clin Pharmacol
– volume: 1784
  start-page: 936
  year: 2008
  end-page: 945
  article-title: High glucose downregulates endothelial progenitor cell number via SIRT1
  publication-title: Biochim Biophys Acta
– volume: 283
  start-page: H976
  year: 2002
  end-page: H982
  article-title: Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db‐hGLUT4 mice
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 122
  start-page: 253
  year: 2012
  end-page: 270
  article-title: Cellular and molecular mechanisms of metformin: an overview
  publication-title: Clin Sci (Lond)
– volume: 303
  start-page: 2011
  year: 2004
  end-page: 2015
  article-title: Stress‐dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
  publication-title: Science
– volume: 62
  start-page: 1800
  year: 2013
  end-page: 1807
  article-title: SIRT1, p66Shc, and Set7/9 in vascular hyperglycemic memory: bringing all the strands together
  publication-title: Diabetes
– volume: 299
  start-page: E110
  year: 2010
  end-page: E116
  article-title: MicroRNA‐34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1
  publication-title: Am J Physiol Endocrinol Metab
– volume: 212
  start-page: 682
  year: 2007
  end-page: 689
  article-title: Oxidative stress and increased eNOS and NADPH oxidase expression in mouse microvessel endothelial cells
  publication-title: J Cell Physiol
– volume: 36
  start-page: 1012
  year: 1996
  end-page: 1021
  article-title: Pharmacokinetics and pharmacodynamics of metformin in healthy subjects and patients with noninsulin‐dependent diabetes mellitus
  publication-title: J Clin Pharmacol
– volume: 136
  start-page: 255
  year: 2002
  end-page: 263
  article-title: Cellular basis of endothelial dysfunction in small mesenteric arteries from spontaneously diabetic (db/db –/–) mice: role of decreased tetrahydrobiopterin bioavailability
  publication-title: Br J Pharmacol
– volume: 283
  start-page: 20015
  year: 2008
  end-page: 20026
  article-title: SIRT1 regulates hepatocyte lipid metabolism through activating AMP‐activated protein kinase
  publication-title: J Biol Chem
– volume: 102
  start-page: 16
  year: 2008
  end-page: 31
  article-title: Forkhead transcription factors and cardiovascular biology
  publication-title: Circ Res
– volume: 85
  start-page: 1288
  year: 2013
  end-page: 1296
  article-title: SIRT1 inhibits NADPH oxidase activation and protects endothelial function in the rat aorta: implications for vascular aging
  publication-title: Biochem Pharmacol
– volume: 310
  start-page: 314
  year: 2005
  end-page: 317
  article-title: Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS
  publication-title: Science
– volume: 109
  start-page: 639
  year: 2011
  end-page: 648
  article-title: Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia‐induced endothelial dysfunction
  publication-title: Circ Res
– volume: 4
  start-page: 102
  year: 2010
  end-page: 115
  article-title: A review of endothelial dysfunction in diabetes: a focus on the contribution of a dysfunctional eNOS
  publication-title: J Am Soc Hypertens
– volume: 126
  start-page: 729
  year: 2012
  end-page: 740
  article-title: Cyclin‐dependent kinase 5‐mediated hyperphosphorylation of sirtuin‐1 contributes to the development of endothelial senescence and atherosclerosis
  publication-title: Circulation
– volume: 120
  start-page: 1524
  year: 2009
  end-page: 1532
  article-title: MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1
  publication-title: Circulation
– volume: 104
  start-page: 14855
  year: 2007
  end-page: 14860
  article-title: SIRT1 promotes endothelium‐dependent vascular relaxation by activating endothelial nitric oxide synthase
  publication-title: Proc Natl Acad Sci U S A
– volume: 295
  start-page: H1165
  year: 2008
  end-page: H1176
  article-title: Metformin normalizes endothelial function by suppressing vasoconstrictor prostanoids in mesenteric arteries from OLETF rats, a model of type 2 diabetes
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 11
  start-page: 23
  year: 2012
  end-page: 35
  article-title: Metformin activates an atypical PKC–CBP pathway to promote neurogenesis and enhance spatial memory formation
  publication-title: Cell Stem Cell
– volume: 80
  start-page: 191
  year: 2008
  end-page: 199
  article-title: Endothelium‐specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E‐deficient mice
  publication-title: Cardiovasc Res
– volume: 105
  start-page: 2231
  year: 2002
  end-page: 2239
  article-title: Prevention Conference VI: Diabetes and Cardiovascular Disease: executive summary: conference proceeding for healthcare professionals from a special writing group of the American Heart Association
  publication-title: Circulation
– volume: 106
  start-page: 326
  year: 2009
  end-page: 332
  article-title: Vascular endothelial senescence: from mechanisms to pathophysiology
  publication-title: J Appl Physiol
– volume: 393
  start-page: 268
  year: 2010
  end-page: 273
  article-title: Metformin induces suppression of NAD(P)H oxidase activity in podocytes
  publication-title: Biochem Biophys Res Commun
– volume: 260
  start-page: 273
  year: 1999
  end-page: 279
  article-title: Characterization of five human cDNAs with homology to the yeast gene: Sir2‐like proteins (sirtuins) metabolize NAD and may have protein ADP‐ribosyltransferase activity
  publication-title: Biochem Biophys Res Commun
– volume: 163
  start-page: 424
  year: 2011
  end-page: 437
  article-title: Metformin restores endothelial function in aorta of diabetic rats
  publication-title: Br J Pharmacol
– volume: 7
  start-page: 95
  year: 2010
  end-page: 112
  article-title: Early apoptotic vascular signaling is determined by Sirt1 through nuclear shuttling, forkhead trafficking, bad, and mitochondrial caspase activation
  publication-title: Curr Neurovasc Res
– volume: 103
  start-page: 17018
  year: 2006
  end-page: 17023
  article-title: Endothelial cellular senescence is inhibited by nitric oxide: implications in atherosclerosis associated with menopause and diabetes
  publication-title: Proc Natl Acad Sci U S A
– volume: 21
  start-page: 2644
  year: 2007
  end-page: 2658
  article-title: SIRT1 controls endothelial angiogenic functions during vascular growth
  publication-title: Genes Dev
– volume: 303
  start-page: C4
  year: 2012
  end-page: C13
  article-title: A novel inverse relationship between metformin‐triggered AMPK‐SIRT1 signaling and p53 protein abundance in high glucose‐exposed HepG2 cells
  publication-title: Am J Physiol Cell Physiol
– volume: 29
  start-page: 889
  year: 2009
  end-page: 894
  article-title: Protective role of SIRT1 in diabetic vascular dysfunction
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 28
  start-page: 1634
  year: 2008
  end-page: 1639
  article-title: Cilostazol inhibits oxidative stress‐induced premature senescence via upregulation of Sirt1 in human endothelial cells
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 393
  start-page: 66
  year: 2010
  end-page: 72
  article-title: SIRT1 regulates oxidant‐ and cigarette smoke‐induced eNOS acetylation in endothelial cells: role of resveratrol
  publication-title: Biochem Biophys Res Commun
– volume: 55
  start-page: 1660
  year: 2006
  end-page: 1665
  article-title: Apoptosis signal‐regulating kinase 1 mediates cellular senescence induced by high glucose in endothelial cells
  publication-title: Diabetes
– volume: 329
  start-page: 977
  year: 1993
  end-page: 986
  article-title: The Diabetes Control and Complications Trial Research Group: the effect of intensive treatment of diabetes on the development and progression of long‐term complications in insulin‐dependent diabetes mellitus
  publication-title: N Engl J Med
– volume: 147
  start-page: 2728
  year: 2006
  end-page: 2736
  article-title: Long‐term metformin treatment stimulates cardiomyocyte glucose transport through an AMP‐activated protein kinase‐dependent reduction in GLUT4 endocytosis
  publication-title: Endocrinology
– volume: 54
  start-page: 2179
  year: 2005
  end-page: 2187
  article-title: Metformin prevents high‐glucose‐induced endothelial cell death through a mitochondrial permeability transition‐dependent process
  publication-title: Diabetes
– volume: 8
  start-page: 228
  year: 2012
  end-page: 236
  article-title: The worldwide epidemiology of type 2 diabetes mellitus – present and future perspectives
  publication-title: Nat Rev Endocrinol
– volume: 458
  start-page: 1056
  year: 2009
  end-page: 1060
  article-title: AMPK regulates energy expenditure by modulating NAD metabolism and SIRT1 activity
  publication-title: Nature
– volume: 94
  start-page: 311
  year: 2011
  end-page: 321
  article-title: IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030
  publication-title: Diabetes Res Clin Pract
– volume: 37
  start-page: 1344
  year: 2001
  end-page: 1350
  article-title: Improved endothelial function with metformin in type 2 diabetes mellitus
  publication-title: J Am Coll Cardiol
– ident: e_1_2_8_5_1
  doi: 10.1126/science.1094637
– ident: e_1_2_8_56_1
  doi: 10.1152/ajpendo.00192.2010
– ident: e_1_2_8_40_1
  doi: 10.1177/009127009603601105
– ident: e_1_2_8_58_1
  doi: 10.1016/j.diabres.2010.03.013
– ident: e_1_2_8_44_1
  doi: 10.1016/j.cell.2008.03.025
– ident: e_1_2_8_11_1
  doi: 10.2337/diabetes.54.7.2179
– ident: e_1_2_8_9_1
  doi: 10.2337/diabetes.55.02.06.db05-1064
– ident: e_1_2_8_6_1
  doi: 10.1038/nature07813
– ident: e_1_2_8_50_1
  doi: 10.1161/CIRCRESAHA.111.261388
– ident: e_1_2_8_17_1
  doi: 10.1161/01.CIR.0000013952.86046.DD
– ident: e_1_2_8_18_1
  doi: 10.1161/CIRCRESAHA.110.227371
– ident: e_1_2_8_21_1
  doi: 10.2174/156720210791184899
– ident: e_1_2_8_14_1
  doi: 10.1371/journal.pone.0058636
– ident: e_1_2_8_38_1
  doi: 10.1016/j.bbrc.2010.01.119
– ident: e_1_2_8_8_1
  doi: 10.1126/science.1099196
– ident: e_1_2_8_26_1
  doi: 10.1124/jpet.110.177584
– ident: e_1_2_8_13_1
  doi: 10.1152/japplphysiol.91353.2008
– ident: e_1_2_8_42_1
  doi: 10.1111/j.1476-5381.2011.01230.x
– ident: e_1_2_8_19_1
  doi: 10.1073/pnas.0607873103
– ident: e_1_2_8_28_1
  doi: 10.1073/pnas.0704329104
– ident: e_1_2_8_29_1
  doi: 10.1161/CIRCULATIONAHA.109.864629
– ident: e_1_2_8_43_1
  doi: 10.1126/science.1120781
– ident: e_1_2_8_10_1
  doi: 10.1056/NEJM199309303291401
– ident: e_1_2_8_16_1
  doi: 10.1161/CIRCRESAHA.110.223545
– ident: e_1_2_8_25_1
  doi: 10.1016/S0735-1097(01)01129-9
– ident: e_1_2_8_12_1
  doi: 10.1002/jcp.21063
– ident: e_1_2_8_23_1
  doi: 10.1152/ajprenal.00278.2006
– ident: e_1_2_8_47_1
  doi: 10.1111/j.1365-2125.1981.tb01206.x
– ident: e_1_2_8_52_1
  doi: 10.1210/en.2005-1433
– ident: e_1_2_8_54_1
  doi: 10.1016/j.bcp.2013.02.015
– ident: e_1_2_8_36_1
  doi: 10.1038/sj.bjp.0704683
– ident: e_1_2_8_2_1
  doi: 10.1016/j.bbrc.2010.01.080
– ident: e_1_2_8_33_1
  doi: 10.1016/j.yjmcc.2007.08.008
– ident: e_1_2_8_3_1
  doi: 10.1161/CIRCULATIONAHA.112.118778
– ident: e_1_2_8_4_1
  doi: 10.1016/j.bbapap.2008.03.004
– ident: e_1_2_8_41_1
  doi: 10.1152/ajpheart.00088.2002
– ident: e_1_2_8_59_1
  doi: 10.1161/CIRCRESAHA.111.243592
– ident: e_1_2_8_22_1
  doi: 10.1074/jbc.M802187200
– ident: e_1_2_8_27_1
  doi: 10.1152/ajpheart.00486.2008
– ident: e_1_2_8_51_1
  doi: 10.1016/j.diabres.2011.10.029
– ident: e_1_2_8_48_1
  doi: 10.1042/CS20110386
– ident: e_1_2_8_15_1
  doi: 10.1006/bbrc.1999.0897
– ident: e_1_2_8_7_1
  doi: 10.1038/nrendo.2011.183
– ident: e_1_2_8_46_1
  doi: 10.1016/j.jash.2010.02.004
– ident: e_1_2_8_45_1
  doi: 10.2337/dc07-1534
– ident: e_1_2_8_37_1
  doi: 10.1161/CIRCRESAHA.107.164186
– ident: e_1_2_8_57_1
  doi: 10.2337/db11-0416
– ident: e_1_2_8_34_1
  doi: 10.1161/ATVBAHA.108.164368
– ident: e_1_2_8_20_1
  doi: 10.1161/hh2001.097796
– ident: e_1_2_8_39_1
  doi: 10.1101/gad.435107
– ident: e_1_2_8_55_1
  doi: 10.1093/cvr/cvn224
– ident: e_1_2_8_24_1
  doi: 10.1016/j.lfs.2005.10.020
– ident: e_1_2_8_32_1
  doi: 10.1161/ATVBAHA.109.185694
– ident: e_1_2_8_49_1
  doi: 10.1016/j.stem.2012.03.016
– ident: e_1_2_8_30_1
  doi: 10.1152/ajpcell.00296.2011
– ident: e_1_2_8_31_1
  doi: 10.1126/science.1117728
– ident: e_1_2_8_35_1
  doi: 10.2337/db12-1648
– ident: e_1_2_8_53_1
  doi: 10.2337/db05-1607
– reference: 18641273 - Am J Physiol Heart Circ Physiol. 2008 Sep;295(3):H1165-H1176
– reference: 12010774 - Br J Pharmacol. 2002 May;136(2):255-63
– reference: 19262508 - Nature. 2009 Apr 23;458(7241):1056-60
– reference: 23505545 - PLoS One. 2013;8(3):e58636
– reference: 22773427 - Circ Res. 2012 Jul 6;111(2):245-59
– reference: 18556572 - Arterioscler Thromb Vasc Biol. 2008 Sep;28(9):1634-9
– reference: 21250975 - Br J Pharmacol. 2011 May;163(2):424-37
– reference: 14976264 - Science. 2004 Mar 26;303(5666):2011-5
– reference: 16731828 - Diabetes. 2006 Jun;55(6):1660-5
– reference: 17916362 - J Mol Cell Cardiol. 2007 Nov;43(5):571-9
– reference: 20470995 - J Am Soc Hypertens. 2010 May-Jun;4(3):102-15
– reference: 22753194 - Circulation. 2012 Aug 7;126(6):729-40
– reference: 23704521 - Diabetes. 2013 Jun;62(6):1800-7
– reference: 20947830 - Circ Res. 2010 Dec 10;107(12):1470-82
– reference: 8366922 - N Engl J Med. 1993 Sep 30;329(14):977-86
– reference: 7306436 - Br J Clin Pharmacol. 1981 Aug;12(2):235-46
– reference: 16513829 - Endocrinology. 2006 Jun;147(6):2728-36
– reference: 16308421 - Science. 2005 Dec 9;310(5754):1642-6
– reference: 18485870 - Cell. 2008 May 16;133(4):612-26
– reference: 16224023 - Science. 2005 Oct 14;310(5746):314-7
– reference: 17785417 - Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14855-60
– reference: 20424141 - Am J Physiol Endocrinol Metab. 2010 Jul;299(1):E110-6
– reference: 12181126 - Am J Physiol Heart Circ Physiol. 2002 Sep;283(3):H976-82
– reference: 19036896 - J Appl Physiol (1985). 2009 Jan;106(1):326-32
– reference: 21357660 - J Pharmacol Exp Ther. 2011 Jun;337(3):591-9
– reference: 16443786 - Diabetes. 2006 Feb;55(2):496-505
– reference: 22378745 - Am J Physiol Cell Physiol. 2012 Jul 1;303(1):C4-C13
– reference: 16318863 - Life Sci. 2006 Apr 25;78(22):2615-24
– reference: 17075048 - Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):17018-23
– reference: 18174472 - Circ Res. 2008 Jan 4;102(1):16-31
– reference: 20102704 - Biochem Biophys Res Commun. 2010 Feb 26;393(1):66-72
– reference: 11994261 - Circulation. 2002 May 7;105(18):2231-9
– reference: 22770240 - Cell Stem Cell. 2012 Jul 6;11(1):23-35
– reference: 19286634 - Arterioscler Thromb Vasc Biol. 2009 Jun;29(6):889-94
– reference: 22124463 - Diabetes. 2012 Jan;61(1):217-28
– reference: 17443690 - J Cell Physiol. 2007 Sep;212(3):682-9
– reference: 17965314 - Diabetes Care. 2007 Nov;30(11):2974-5
– reference: 17938244 - Genes Dev. 2007 Oct 15;21(20):2644-58
– reference: 20398956 - Diabetes Res Clin Pract. 2010 Jul;89(1):38-45
– reference: 11300445 - J Am Coll Cardiol. 2001 Apr;37(5):1344-50
– reference: 21778425 - Circ Res. 2011 Sep 2;109(6):639-48
– reference: 22079683 - Diabetes Res Clin Pract. 2011 Dec;94(3):311-21
– reference: 15983220 - Diabetes. 2005 Jul;54(7):2179-87
– reference: 18423418 - Biochim Biophys Acta. 2008 Jun;1784(6):936-45
– reference: 22117616 - Clin Sci (Lond). 2012 Mar;122(6):253-70
– reference: 15205477 - Science. 2004 Jul 16;305(5682):390-2
– reference: 8973990 - J Clin Pharmacol. 1996 Nov;36(11):1012-21
– reference: 18689793 - Cardiovasc Res. 2008 Nov 1;80(2):191-9
– reference: 18482975 - J Biol Chem. 2008 Jul 18;283(29):20015-26
– reference: 10381378 - Biochem Biophys Res Commun. 1999 Jun 24;260(1):273-9
– reference: 20370652 - Curr Neurovasc Res. 2010 May;7(2):95-112
– reference: 21030723 - Circ Res. 2010 Oct 29;107(9):1058-70
– reference: 11597994 - Circ Res. 2001 Oct 12;89(8):709-15
– reference: 19786632 - Circulation. 2009 Oct 13;120(15):1524-32
– reference: 23422569 - Biochem Pharmacol. 2013 May 1;85(9):1288-96
– reference: 17018841 - Am J Physiol Renal Physiol. 2007 Feb;292(2):F617-27
– reference: 20123087 - Biochem Biophys Res Commun. 2010 Mar 5;393(2):268-73
– reference: 22064493 - Nat Rev Endocrinol. 2012 Apr;8(4):228-36
SSID ssj0014775
Score 2.5194573
Snippet Background and Purpose Endothelial dysfunction can be detected at an early stage in the development of diabetes‐related microvascular disease and is associated...
Endothelial dysfunction can be detected at an early stage in the development of diabetes-related microvascular disease and is associated with accelerated...
Background and Purpose Endothelial dysfunction can be detected at an early stage in the development of diabetes-related microvascular disease and is associated...
Background and Purpose:  Endothelial dysfunction can be detected at an early stage in the development of diabetes-related microvascular disease and is...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 523
SubjectTerms Acetylation
Adenylate Kinase - metabolism
Animals
Apoptosis - drug effects
beta-Galactosidase - metabolism
Blotting, Western
Capillaries - cytology
Capillaries - drug effects
Cellular Senescence - drug effects
Diabetes Mellitus, Type 2 - genetics
Diabetes Mellitus, Type 2 - metabolism
endothelial dysfunction
Endothelium, Vascular - drug effects
Fluorescent Antibody Technique
forkhead box O1 transcription factor
Forkhead Box Protein O1
Forkhead Transcription Factors - metabolism
FoxO‐1
Gene Silencing
hyperglycaemia
Hyperglycemia - physiopathology
Hypoglycemic Agents - pharmacology
metformin
Metformin - pharmacology
Mice
Mice, Inbred C57BL
microvascular endothelial cells
reactive oxygen species
Reactive Oxygen Species - metabolism
Research Papers
Signal Transduction - drug effects
Sirtuin 1 - genetics
Sirtuin 1 - physiology
sirtuin1
vascular senescence
Title Metformin modulates hyperglycaemia‐induced endothelial senescence and apoptosis through SIRT1
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbph.12496
https://www.ncbi.nlm.nih.gov/pubmed/24372553
https://www.proquest.com/docview/1545758040
https://www.proquest.com/docview/1490730130
https://pubmed.ncbi.nlm.nih.gov/PMC3904269
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB7yuOQSmj5StWnYhmB6iIplraQVPcVtjRNIMa0DuYl9qTY4komcg2_5Cf2N_SWdWclKjFvoTbAj9Jid2e9bab4BOE24zJWMOJIckfvcqNhXkRa-xjSprdBWBlSNfPUtHl7zy5voZgs-rWphan2IdsONIsPlawpwqaonQa7mk4_UOTnehl0qrSXh_B4ftZ8QeJLU7QtIBTEQopEVot942lPXF6MNhLn5o-RTAOtWoMEz2G-gIzuvfX0AW7Z4Dp1RrT29PGPjx1Kq6ox12OhRlXr5ArIruyCAOi3YbWmoaZet2ARZ6N3P2VJLezuVvx9-IUNHXxtmC0OlWTOcnayidKgpAzBZGCbn5XxRVtOKNT1-2I-L7-PgJVwPvo4_D_2mu4KvSfLFjyxCQdPTCFi4iCwGNg8dQezFSZJGKkcwFnd7uUq06kplhAjjPFUc-SJ19YzCV7BTlIV9DUwlebcrZSyRjnFjYpHyPAgjPNCBRoDgwYfVa850Iz1OHTBm2YqCoEcy5xEPTlrTea238Tejo5WvsibkqoywIJIfTEoevG-HMVjoC4gsbHmPNjx1KS1Em8Pate1VSJkR-VXoQbLm9NaAhLjXR4rpxAlyhykx0RQf002Pf9941h8N3cGb_zd9C3sI0ni97XMEO4u7e_sOgdBCHbsJfwy75_0v_cEf-AsHeQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VcoALKu-0BRaEKg41iu31ri1xAUSVQlNFkEq9WfsyiZTaUZ0ecutP6G_sL2Fm7biNChI3SzuWH7Mz-337-AbgveSq0CrhSHLSIuBWi0AnJg0MpknjUuNUSKeRh8dicMK_nyanG_BpdRam0YfoJtwoMny-pgCnCelbUa7nk49UOlncg_tcRJLCMuKjbg2BS9nULyAZxDBNW10h2sfT3bo-Gt2BmHd3St5GsH4IOtiCRy12ZJ8bZz-GDVc-gb1RIz693Gfjm7NU9T7bY6MbWerlU8iHbkEIdVqys8pS1S5XswnS0PPfs6VR7myqri-vkKKjsy1zpaWzWTPsnqymfGgoBTBVWqbm1XxR1dOatUV-2K_Dn-PwGZwcfBt_HQRteYXAkOZLkDjEgjYyiFh4mjiMbB57hhgJKbNEF4jGRD8qtDS6r7RN01gUmeZIGKmsZxI_h82yKt1LYFoW_b5SQiEf49aKNONFGCd4YUKDCKEHH1a_OTet9jiVwJjlKw6CHsm9R3rwrjOdN4IbfzPaXfkqb2OuzgkMIvvBrNSDt10zRgstgajSVRdowzOf02K0edG4tnsKSTMiwYp7INec3hmQEvd6SzmdeEXuOCMqmuFn-u7x7xfPv4wG_mL7_03fwIPBeHiUHx0e_9iBh4jYeDMHtAubi_ML9wpR0UK_9p3_D-DFCXM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5RKlW9VH0ADdB2WyHEAVdxvLbX6qmvKLQFWSVI3Kx9uYkUbAuHQ279Cf2N_SWdWTuGiCJxs7Rj-TE7s9-3j28A9mIucyVDjiRH5B43KvJUqIWnMU1qK7SVPp1GPj6JRmf823l4vgYflmdhGn2IbsKNIsPlawrwyuQ3glxVk_dUOTl6AA_dYh_JOvO0W0LgcdyULyAVRF-IVlaItvF0t64ORrcQ5u2NkjcBrBuBhk_hSQsd2cfG189gzRbPYT9ttKcXh2x8fZSqPmT7LL1WpV68gOzYzgmgTgt2URoq2mVrNkEWevlrttDSXkzl399_kKGjrw2zhaGjWTPsnaymdKgpAzBZGCarspqX9bRmbY0fdnr0c-xvwNnw6_jzyGurK3iaJF-80CIUNAONgIWL0GJg88ARxEEUx0mocgRjUX-Qq1irvlRGiCDKE8WRL1JVzzDYhPWiLOxLYCrO-30pI4l0jBsTiYTnfhDihfY1AoQeHCx_c6Zb6XGqgDHLlhQEPZI5j_TgXWdaNXob_zPaXfoqa0OuzggLIvnBpNSDt10zBgutgMjClldowxOX0gK02Wpc2z2FlBmRXwU9iFec3hmQEPdqSzGdOEHuICEmmuBnuu5x94tnn9KRu9i-v-kbeJR-GWY_jk6-78BjxGu8mQHahfX55ZV9hZhorl67vv8PUHgIpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metformin+modulates+hyperglycaemia%E2%80%90induced+endothelial+senescence+and+apoptosis+through+SIRT1&rft.jtitle=British+journal+of+pharmacology&rft.au=Arunachalam%2C+Gnanapragasam&rft.au=Samuel%2C+Samson+Mathews&rft.au=Marei%2C+Isra&rft.au=Ding%2C+Hong&rft.date=2014-01-01&rft.issn=0007-1188&rft.eissn=1476-5381&rft.volume=171&rft.issue=2&rft.spage=523&rft.epage=535&rft_id=info:doi/10.1111%2Fbph.12496&rft.externalDBID=10.1111%252Fbph.12496&rft.externalDocID=BPH12496
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon