Metformin modulates hyperglycaemia‐induced endothelial senescence and apoptosis through SIRT1
Background and Purpose Endothelial dysfunction can be detected at an early stage in the development of diabetes‐related microvascular disease and is associated with accelerated endothelial senescence and ageing. Hyperglycaemia‐induced oxidative stress is a major contributing factor to the developmen...
Saved in:
Published in | British journal of pharmacology Vol. 171; no. 2; pp. 523 - 535 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.01.2014
John Wiley & sons |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background and Purpose
Endothelial dysfunction can be detected at an early stage in the development of diabetes‐related microvascular disease and is associated with accelerated endothelial senescence and ageing. Hyperglycaemia‐induced oxidative stress is a major contributing factor to the development of endothelial dysfunction. Clinical data indicate that the hypoglycaemic agent, metformin, has an endothelial protective action; however, its molecular and cellular mechanisms remain elusive. In the present study, we have investigated the protective effect of metformin during hyperglycaemia‐induced senescence in mouse microvascular endothelial cells (MMECs).
Experimental Approach
MMECs were cultured in normal glucose (11 mM) and high glucose (HG; 40 mM) in the presence and absence of metformin (50 μM) for 72 h. The expression of sirtuin‐1 (SIRT1) and senescence/apoptosis‐associated markers was determined by immunoblotting and immunocyto techniques. SIRT1 expression was inhibited with appropriate siRNA.
Key Results
Exposure of MMECs to HG significantly reduced SIRT1 protein expression, increased forkhead box O1 (FoxO‐1) and p53 acetylation, increased p21 and decreased Bcl2 expression. In addition, senescence‐associated β‐galactosidase activity in MMECs was increased in HG. Treatment with metformin attenuated the HG‐induced reduction of SIRT1 expression, modulated the SIRT1 downstream targets FoxO‐1 and p53/p21, and protected endothelial cells from HG‐induced premature senescence. However, following gene knockdown of SIRT1 the effects of metformin were lost.
Conclusions and Implications
HG‐induced down‐regulation of SIRT1 played a crucial role in diabetes‐induced endothelial senescence. Furthermore, the protective effect of metformin against HG‐induced endothelial dysfunction was partly due to its effects on SIRT1 expression and/or activity. |
---|---|
AbstractList | Background and Purpose:
Endothelial dysfunction can be detected at an early stage in the development of diabetes-related microvascular disease and is associated with accelerated endothelial senescence and ageing. Hyperglycaemia-induced oxidative stress is a major contributing factor to the development of endothelial dysfunction. Clinical data indicate that the hypoglycaemic agent, metformin, has an endothelial protective action; however, its molecular and cellular mechanisms remain elusive. In the present study, we have investigated the protective effect of metformin during hyperglycaemia-induced senescence in mouse microvascular endothelial cells (MMECs).
Experimental Approach:
MMECs were cultured in normal glucose (11 mM) and high glucose (HG; 40 mM) in the presence and absence of metformin (50 μM) for 72 h. The expression of sirtuin-1 (SIRT1) and senescence/apoptosis-associated markers was determined by immunoblotting and immunocyto techniques. SIRT1 expression was inhibited with appropriate siRNA.
Key Results:
Exposure of MMECs to HG significantly reduced SIRT1 protein expression, increased forkhead box O1 (FoxO-1) and p53 acetylation, increased p21 and decreased Bcl2 expression. In addition, senescence-associated β-galactosidase activity in MMECs was increased in HG. Treatment with metformin attenuated the HG-induced reduction of SIRT1 expression, modulated the SIRT1 downstream targets FoxO-1 and p53/p21, and protected endothelial cells from HG-induced premature senescence. However, following gene knockdown of SIRT1 the effects of metformin were lost.
Conclusions and Implications:
HG-induced down-regulation of SIRT1 played a crucial role in diabetes-induced endothelial senescence. Furthermore, the protective effect of metformin against HG-induced endothelial dysfunction was partly due to its effects on SIRT1 expression and/or activity. Endothelial dysfunction can be detected at an early stage in the development of diabetes-related microvascular disease and is associated with accelerated endothelial senescence and ageing. Hyperglycaemia-induced oxidative stress is a major contributing factor to the development of endothelial dysfunction. Clinical data indicate that the hypoglycaemic agent, metformin, has an endothelial protective action; however, its molecular and cellular mechanisms remain elusive. In the present study, we have investigated the protective effect of metformin during hyperglycaemia-induced senescence in mouse microvascular endothelial cells (MMECs). MMECs were cultured in normal glucose (11 mM) and high glucose (HG; 40 mM) in the presence and absence of metformin (50 μM) for 72 h. The expression of sirtuin-1 (SIRT1) and senescence/apoptosis-associated markers was determined by immunoblotting and immunocyto techniques. SIRT1 expression was inhibited with appropriate siRNA. Exposure of MMECs to HG significantly reduced SIRT1 protein expression, increased forkhead box O1 (FoxO-1) and p53 acetylation, increased p21 and decreased Bcl2 expression. In addition, senescence-associated β-galactosidase activity in MMECs was increased in HG. Treatment with metformin attenuated the HG-induced reduction of SIRT1 expression, modulated the SIRT1 downstream targets FoxO-1 and p53/p21, and protected endothelial cells from HG-induced premature senescence. However, following gene knockdown of SIRT1 the effects of metformin were lost. HG-induced down-regulation of SIRT1 played a crucial role in diabetes-induced endothelial senescence. Furthermore, the protective effect of metformin against HG-induced endothelial dysfunction was partly due to its effects on SIRT1 expression and/or activity. Background and Purpose Endothelial dysfunction can be detected at an early stage in the development of diabetes-related microvascular disease and is associated with accelerated endothelial senescence and ageing. Hyperglycaemia-induced oxidative stress is a major contributing factor to the development of endothelial dysfunction. Clinical data indicate that the hypoglycaemic agent, metformin, has an endothelial protective action; however, its molecular and cellular mechanisms remain elusive. In the present study, we have investigated the protective effect of metformin during hyperglycaemia-induced senescence in mouse microvascular endothelial cells (MMECs). Experimental Approach MMECs were cultured in normal glucose (11mM) and high glucose (HG; 40mM) in the presence and absence of metformin (50µM) for 72h. The expression of sirtuin-1 (SIRT1) and senescence/apoptosis-associated markers was determined by immunoblotting and immunocyto techniques. SIRT1 expression was inhibited with appropriate siRNA. Key Results Exposure of MMECs to HG significantly reduced SIRT1 protein expression, increased forkhead box O1 (FoxO-1) and p53 acetylation, increased p21 and decreased Bcl2 expression. In addition, senescence-associated [beta]-galactosidase activity in MMECs was increased in HG. Treatment with metformin attenuated the HG-induced reduction of SIRT1 expression, modulated the SIRT1 downstream targets FoxO-1 and p53/p21, and protected endothelial cells from HG-induced premature senescence. However, following gene knockdown of SIRT1 the effects of metformin were lost. Conclusions and Implications HG-induced down-regulation of SIRT1 played a crucial role in diabetes-induced endothelial senescence. Furthermore, the protective effect of metformin against HG-induced endothelial dysfunction was partly due to its effects on SIRT1 expression and/or activity. [PUBLICATION ABSTRACT] Background and Purpose Endothelial dysfunction can be detected at an early stage in the development of diabetes‐related microvascular disease and is associated with accelerated endothelial senescence and ageing. Hyperglycaemia‐induced oxidative stress is a major contributing factor to the development of endothelial dysfunction. Clinical data indicate that the hypoglycaemic agent, metformin, has an endothelial protective action; however, its molecular and cellular mechanisms remain elusive. In the present study, we have investigated the protective effect of metformin during hyperglycaemia‐induced senescence in mouse microvascular endothelial cells (MMECs). Experimental Approach MMECs were cultured in normal glucose (11 mM) and high glucose (HG; 40 mM) in the presence and absence of metformin (50 μM) for 72 h. The expression of sirtuin‐1 (SIRT1) and senescence/apoptosis‐associated markers was determined by immunoblotting and immunocyto techniques. SIRT1 expression was inhibited with appropriate siRNA. Key Results Exposure of MMECs to HG significantly reduced SIRT1 protein expression, increased forkhead box O1 (FoxO‐1) and p53 acetylation, increased p21 and decreased Bcl2 expression. In addition, senescence‐associated β‐galactosidase activity in MMECs was increased in HG. Treatment with metformin attenuated the HG‐induced reduction of SIRT1 expression, modulated the SIRT1 downstream targets FoxO‐1 and p53/p21, and protected endothelial cells from HG‐induced premature senescence. However, following gene knockdown of SIRT1 the effects of metformin were lost. Conclusions and Implications HG‐induced down‐regulation of SIRT1 played a crucial role in diabetes‐induced endothelial senescence. Furthermore, the protective effect of metformin against HG‐induced endothelial dysfunction was partly due to its effects on SIRT1 expression and/or activity. Endothelial dysfunction can be detected at an early stage in the development of diabetes-related microvascular disease and is associated with accelerated endothelial senescence and ageing. Hyperglycaemia-induced oxidative stress is a major contributing factor to the development of endothelial dysfunction. Clinical data indicate that the hypoglycaemic agent, metformin, has an endothelial protective action; however, its molecular and cellular mechanisms remain elusive. In the present study, we have investigated the protective effect of metformin during hyperglycaemia-induced senescence in mouse microvascular endothelial cells (MMECs).BACKGROUND AND PURPOSEEndothelial dysfunction can be detected at an early stage in the development of diabetes-related microvascular disease and is associated with accelerated endothelial senescence and ageing. Hyperglycaemia-induced oxidative stress is a major contributing factor to the development of endothelial dysfunction. Clinical data indicate that the hypoglycaemic agent, metformin, has an endothelial protective action; however, its molecular and cellular mechanisms remain elusive. In the present study, we have investigated the protective effect of metformin during hyperglycaemia-induced senescence in mouse microvascular endothelial cells (MMECs).MMECs were cultured in normal glucose (11 mM) and high glucose (HG; 40 mM) in the presence and absence of metformin (50 μM) for 72 h. The expression of sirtuin-1 (SIRT1) and senescence/apoptosis-associated markers was determined by immunoblotting and immunocyto techniques. SIRT1 expression was inhibited with appropriate siRNA.EXPERIMENTAL APPROACHMMECs were cultured in normal glucose (11 mM) and high glucose (HG; 40 mM) in the presence and absence of metformin (50 μM) for 72 h. The expression of sirtuin-1 (SIRT1) and senescence/apoptosis-associated markers was determined by immunoblotting and immunocyto techniques. SIRT1 expression was inhibited with appropriate siRNA.Exposure of MMECs to HG significantly reduced SIRT1 protein expression, increased forkhead box O1 (FoxO-1) and p53 acetylation, increased p21 and decreased Bcl2 expression. In addition, senescence-associated β-galactosidase activity in MMECs was increased in HG. Treatment with metformin attenuated the HG-induced reduction of SIRT1 expression, modulated the SIRT1 downstream targets FoxO-1 and p53/p21, and protected endothelial cells from HG-induced premature senescence. However, following gene knockdown of SIRT1 the effects of metformin were lost.KEY RESULTSExposure of MMECs to HG significantly reduced SIRT1 protein expression, increased forkhead box O1 (FoxO-1) and p53 acetylation, increased p21 and decreased Bcl2 expression. In addition, senescence-associated β-galactosidase activity in MMECs was increased in HG. Treatment with metformin attenuated the HG-induced reduction of SIRT1 expression, modulated the SIRT1 downstream targets FoxO-1 and p53/p21, and protected endothelial cells from HG-induced premature senescence. However, following gene knockdown of SIRT1 the effects of metformin were lost.HG-induced down-regulation of SIRT1 played a crucial role in diabetes-induced endothelial senescence. Furthermore, the protective effect of metformin against HG-induced endothelial dysfunction was partly due to its effects on SIRT1 expression and/or activity.CONCLUSIONS AND IMPLICATIONSHG-induced down-regulation of SIRT1 played a crucial role in diabetes-induced endothelial senescence. Furthermore, the protective effect of metformin against HG-induced endothelial dysfunction was partly due to its effects on SIRT1 expression and/or activity. |
Author | Arunachalam, Gnanapragasam Marei, Isra Ding, Hong Triggle, Chris R Samuel, Samson Mathews |
Author_xml | – sequence: 1 givenname: Gnanapragasam surname: Arunachalam fullname: Arunachalam, Gnanapragasam organization: Weill Cornell Medical College in Qatar – sequence: 2 givenname: Samson Mathews surname: Samuel fullname: Samuel, Samson Mathews organization: Weill Cornell Medical College in Qatar – sequence: 3 givenname: Isra surname: Marei fullname: Marei, Isra organization: Weill Cornell Medical College in Qatar – sequence: 4 givenname: Hong surname: Ding fullname: Ding, Hong organization: Weill Cornell Medical College in Qatar – sequence: 5 givenname: Chris R surname: Triggle fullname: Triggle, Chris R organization: Weill Cornell Medical College in Qatar |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24372553$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kcFu1DAQhi1URLeFAy-AInGBw7bjxI6dCxJUQCu1KoJytpxksnHl2KmdgPbGI_CMfZJ62S2CCnzxYb759c3MAdlz3iEhzykc0fSO67E_ojmrykdkQZkol7yQdI8sAEAsKZVynxzEeA2QioI_Ifs5K0TOebEg6gKnzofBuGzw7Wz1hDHr1yOGlV03Ggejb3_8NK6dG2wzdK2ferRG2yyiw9igazDTrs306MfJRxOzqQ9-XvXZl7PPV_QpedxpG_HZ7j8kXz-8vzo5XZ5ffjw7eXu-bDhUSRg5iDZvZFUwybHIkyFQKGleClHxugPJS8i7WjQ16LqVsii7qmYUhOQiTXJI3mxzx7kesE1eU9BWjcEMOqyV10b9XXGmVyv_TRUVsLysUsCrXUDwNzPGSQ0mjWetdujnqCirQCSnAhL68gF67efg0niKcpZ0JLAN9eJPo98q97tPwPEWaIKPMWCnGjPpyfiNoLGKgtpcV6Xrql_XTR2vH3Tch_6L3aV_NxbX_wfVu0-n2447-ZW0Zg |
CitedBy_id | crossref_primary_10_1016_j_lfs_2018_11_055 crossref_primary_10_1093_biolre_ioad168 crossref_primary_10_14336_AD_2021_0927 crossref_primary_10_18632_aging_102432 crossref_primary_10_18632_aging_101068 crossref_primary_10_3390_biom9010016 crossref_primary_10_1055_a_2464_4354 crossref_primary_10_3389_fphar_2023_1211460 crossref_primary_10_1016_j_mce_2019_110628 crossref_primary_10_1038_s41598_019_43083_z crossref_primary_10_1016_j_vph_2019_106613 crossref_primary_10_1016_j_freeradbiomed_2016_04_013 crossref_primary_10_1016_j_diabet_2022_101359 crossref_primary_10_1016_j_coph_2018_11_002 crossref_primary_10_1517_13543776_2014_982532 crossref_primary_10_1016_j_bbrc_2015_02_050 crossref_primary_10_20463_jenb_2019_0014 crossref_primary_10_1002_fsn3_1885 crossref_primary_10_1021_acsptsci_1c00167 crossref_primary_10_1038_s12276_020_00509_3 crossref_primary_10_1016_j_cmet_2020_04_022 crossref_primary_10_1155_2020_8708236 crossref_primary_10_1007_s12013_023_01162_z crossref_primary_10_1080_17512433_2020_1698288 crossref_primary_10_3390_biomedicines12081875 crossref_primary_10_1016_j_phrs_2018_11_041 crossref_primary_10_1155_2017_7584691 crossref_primary_10_3390_ijms20122949 crossref_primary_10_1093_qjmed_hcac210 crossref_primary_10_1016_j_trsl_2015_06_002 crossref_primary_10_18632_oncotarget_19951 crossref_primary_10_3389_fphys_2021_598267 crossref_primary_10_3390_cells10082115 crossref_primary_10_1007_s00210_020_01915_0 crossref_primary_10_1089_rej_2015_1662 crossref_primary_10_1007_s10753_024_02129_9 crossref_primary_10_1097_FJC_0000000000000178 crossref_primary_10_1016_j_bcp_2015_10_008 crossref_primary_10_1155_2015_875961 crossref_primary_10_1111_jcmm_18454 crossref_primary_10_1038_s41401_018_0109_4 crossref_primary_10_3389_fphar_2021_758792 crossref_primary_10_1016_j_biopha_2023_114911 crossref_primary_10_1177_0300060520986049 crossref_primary_10_1007_s40199_019_00305_z crossref_primary_10_1093_jpp_rgab137 crossref_primary_10_18632_oncotarget_11229 crossref_primary_10_1177_0885328219873254 crossref_primary_10_3390_jcm10132805 crossref_primary_10_1016_j_intimp_2021_108367 crossref_primary_10_4103_1673_5374_155427 crossref_primary_10_1111_brv_12866 crossref_primary_10_1016_j_jpha_2023_02_001 crossref_primary_10_1016_j_lfs_2022_120490 crossref_primary_10_1139_cjpp_2019_0677 crossref_primary_10_1155_2021_8882130 crossref_primary_10_3390_ijms251810049 crossref_primary_10_1186_s40001_022_00746_4 crossref_primary_10_3390_cells12192341 crossref_primary_10_3390_cancers11111737 crossref_primary_10_1038_s12276_022_00906_w crossref_primary_10_1007_s11154_014_9298_4 crossref_primary_10_1124_jpet_115_226894 crossref_primary_10_1155_2018_6462793 crossref_primary_10_3389_fendo_2021_718942 crossref_primary_10_3109_1061186X_2015_1057150 crossref_primary_10_1016_j_numecd_2015_03_007 crossref_primary_10_2174_0929867329666220729154615 crossref_primary_10_3390_biomedicines9010003 crossref_primary_10_3390_ijms22136667 crossref_primary_10_1016_j_heliyon_2024_e27478 crossref_primary_10_1016_j_phrs_2017_04_009 crossref_primary_10_1093_humupd_dmx020 crossref_primary_10_1093_gerona_glab298 crossref_primary_10_3389_fphar_2022_801337 crossref_primary_10_1016_j_bbadis_2020_165948 crossref_primary_10_3389_fmed_2025_1509884 crossref_primary_10_1096_fasebj_2018_32_1_supplement_lb669 crossref_primary_10_1111_fcp_12884 crossref_primary_10_3389_fphys_2021_755060 crossref_primary_10_3389_fphar_2018_01266 crossref_primary_10_1016_j_freeradbiomed_2019_07_030 crossref_primary_10_1038_s41401_023_01193_5 crossref_primary_10_1177_2040622314546125 crossref_primary_10_1007_s11515_015_1350_6 crossref_primary_10_1016_j_yjmcc_2014_12_023 crossref_primary_10_1021_acs_molpharmaceut_5b00577 crossref_primary_10_18632_oncotarget_7387 crossref_primary_10_18632_oncotarget_9687 crossref_primary_10_3390_biom14111445 crossref_primary_10_1111_1440_1681_13638 crossref_primary_10_1111_jcmm_16369 crossref_primary_10_3892_mmr_2024_13347 crossref_primary_10_3390_antiox10081306 crossref_primary_10_1038_s41598_023_50084_6 crossref_primary_10_1159_000381643 crossref_primary_10_1007_s10522_017_9685_9 crossref_primary_10_3390_molecules25010125 crossref_primary_10_1016_j_biopha_2016_10_086 crossref_primary_10_1155_2015_436879 crossref_primary_10_1016_j_yfrne_2016_07_002 crossref_primary_10_1007_s10522_019_09838_x crossref_primary_10_1186_s12933_016_0413_6 crossref_primary_10_1111_dom_13262 crossref_primary_10_3892_mmr_2017_6367 crossref_primary_10_1152_ajpcell_00265_2014 crossref_primary_10_1016_j_yjmcc_2019_02_010 crossref_primary_10_3390_antiox8090328 crossref_primary_10_1016_j_phrs_2022_106123 crossref_primary_10_1155_2015_569392 crossref_primary_10_1002_rmb2_12428 crossref_primary_10_1016_j_metabol_2022_155223 crossref_primary_10_1042_CS20150087 crossref_primary_10_1097_HJH_0000000000001892 crossref_primary_10_1007_s10522_020_09873_z crossref_primary_10_2147_DDDT_S509735 crossref_primary_10_3109_15412555_2014_974740 crossref_primary_10_3390_cells12060915 crossref_primary_10_3390_ijms19103242 crossref_primary_10_3390_ijms161226217 crossref_primary_10_1139_cjpp_2018_0529 crossref_primary_10_1016_j_ejphar_2021_174531 crossref_primary_10_1161_JAHA_123_030084 crossref_primary_10_3389_fragi_2022_1058435 crossref_primary_10_1042_BST20170121 crossref_primary_10_3389_fnins_2020_00241 crossref_primary_10_3390_jcm13051283 crossref_primary_10_1016_j_bbadis_2017_06_022 crossref_primary_10_3389_fphar_2019_00154 crossref_primary_10_1016_j_ijpharm_2017_01_061 crossref_primary_10_1016_j_scitotenv_2024_170711 crossref_primary_10_3390_ph17111495 crossref_primary_10_1016_j_biopha_2016_06_009 crossref_primary_10_1016_j_pharmthera_2018_07_007 crossref_primary_10_1016_j_jbc_2025_108179 crossref_primary_10_1155_2019_8134678 crossref_primary_10_1002_jcp_28003 crossref_primary_10_3390_ijms22168786 crossref_primary_10_4103_1673_5374_179032 crossref_primary_10_29219_fnr_v68_10749 crossref_primary_10_1007_s13205_022_03455_1 crossref_primary_10_1016_j_ejphar_2020_172984 crossref_primary_10_1016_j_addr_2018_07_019 crossref_primary_10_1007_s00404_016_4148_0 crossref_primary_10_1016_j_mad_2016_02_003 crossref_primary_10_1016_j_bcp_2017_03_001 crossref_primary_10_1111_bph_12655 crossref_primary_10_1016_j_phrs_2021_106014 crossref_primary_10_1152_physiol_00039_2016 crossref_primary_10_1016_j_bbagen_2020_129533 crossref_primary_10_1016_j_arcmed_2019_08_012 crossref_primary_10_3389_fcvm_2020_00028 crossref_primary_10_1139_cjpp_2020_0180 crossref_primary_10_1016_j_jcyt_2016_12_001 crossref_primary_10_2147_VHRM_S391808 crossref_primary_10_1111_dom_12688 crossref_primary_10_3389_fragi_2023_1170434 crossref_primary_10_1016_j_biochi_2023_12_001 crossref_primary_10_1371_journal_pone_0143814 crossref_primary_10_3389_fgene_2016_00142 crossref_primary_10_1007_s11427_014_4709_z crossref_primary_10_1016_j_biocel_2021_106031 crossref_primary_10_1016_j_arr_2020_101251 crossref_primary_10_1186_s13048_019_0555_8 crossref_primary_10_18632_aging_101319 crossref_primary_10_1007_s12192_015_0601_4 crossref_primary_10_1111_apha_12644 crossref_primary_10_3389_fcvm_2022_888319 crossref_primary_10_2174_0929867326666190119154152 crossref_primary_10_1111_cas_13083 |
Cites_doi | 10.1126/science.1094637 10.1152/ajpendo.00192.2010 10.1177/009127009603601105 10.1016/j.diabres.2010.03.013 10.1016/j.cell.2008.03.025 10.2337/diabetes.54.7.2179 10.2337/diabetes.55.02.06.db05-1064 10.1038/nature07813 10.1161/CIRCRESAHA.111.261388 10.1161/01.CIR.0000013952.86046.DD 10.1161/CIRCRESAHA.110.227371 10.2174/156720210791184899 10.1371/journal.pone.0058636 10.1016/j.bbrc.2010.01.119 10.1126/science.1099196 10.1124/jpet.110.177584 10.1152/japplphysiol.91353.2008 10.1111/j.1476-5381.2011.01230.x 10.1073/pnas.0607873103 10.1073/pnas.0704329104 10.1161/CIRCULATIONAHA.109.864629 10.1126/science.1120781 10.1056/NEJM199309303291401 10.1161/CIRCRESAHA.110.223545 10.1016/S0735-1097(01)01129-9 10.1002/jcp.21063 10.1152/ajprenal.00278.2006 10.1111/j.1365-2125.1981.tb01206.x 10.1210/en.2005-1433 10.1016/j.bcp.2013.02.015 10.1038/sj.bjp.0704683 10.1016/j.bbrc.2010.01.080 10.1016/j.yjmcc.2007.08.008 10.1161/CIRCULATIONAHA.112.118778 10.1016/j.bbapap.2008.03.004 10.1152/ajpheart.00088.2002 10.1161/CIRCRESAHA.111.243592 10.1074/jbc.M802187200 10.1152/ajpheart.00486.2008 10.1016/j.diabres.2011.10.029 10.1042/CS20110386 10.1006/bbrc.1999.0897 10.1038/nrendo.2011.183 10.1016/j.jash.2010.02.004 10.2337/dc07-1534 10.1161/CIRCRESAHA.107.164186 10.2337/db11-0416 10.1161/ATVBAHA.108.164368 10.1161/hh2001.097796 10.1101/gad.435107 10.1093/cvr/cvn224 10.1016/j.lfs.2005.10.020 10.1161/ATVBAHA.109.185694 10.1016/j.stem.2012.03.016 10.1152/ajpcell.00296.2011 10.1126/science.1117728 10.2337/db12-1648 10.2337/db05-1607 |
ContentType | Journal Article |
Copyright | 2013 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society. Copyright © 2014 The British Pharmacological Society Copyright © 2014 The British Pharmacological Society 2014 |
Copyright_xml | – notice: 2013 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society. – notice: Copyright © 2014 The British Pharmacological Society – notice: Copyright © 2014 The British Pharmacological Society 2014 |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK K9. NAPCQ 7X8 5PM |
DOI | 10.1111/bph.12496 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1476-5381 |
EndPage | 535 |
ExternalDocumentID | PMC3904269 3376267661 24372553 10_1111_bph_12496 BPH12496 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Qatar Foundation funderid: 4‐910‐3‐244; 5‐149‐3‐040 |
GroupedDBID | --- .3N .55 .GJ 05W 0R~ 1OC 23N 24P 2WC 31~ 33P 36B 3O- 3SF 3V. 4.4 52U 52V 53G 5GY 6J9 7RV 7X7 8-0 8-1 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 8UM A00 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABPVW ABQWH ABUWG ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB B0M BAFTC BAWUL BBNVY BENPR BFHJK BHBCM BHPHI BKEYQ BMXJE BPHCQ BRXPI BVXVI C45 CAG CCPQU COF CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBC EBD EBS ECV EJD EMB EMK EMOBN ENC ESX EX3 F5P FUBAC FYUFA G-S GODZA GX1 H.X HCIFZ HGLYW HMCUK HYE HZ~ J5H KBYEO LATKE LEEKS LH4 LITHE LK8 LOXES LSO LUTES LW6 LYRES M1P M7P MEWTI MK0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ N9A NAPCQ NF~ O66 O9- OIG OK1 OVD P2P P2W P4E PQQKQ PROAC PSQYO Q.N Q2X QB0 RIG ROL RPM RWI SJN SUPJJ SV3 TEORI TR2 TUS UKHRP UPT WBKPD WH7 WHWMO WIH WIJ WIK WIN WOHZO WOW WVDHM WXSBR X7M XV2 Y6R YHG ZGI ZXP ZZTAW ~8M ~S- AAFWJ AAYXX AEYWJ AGHNM AGYGG CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QP 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 5PM |
ID | FETCH-LOGICAL-c5096-5e507d2c893485e3224301061267795bf085602fb7cb0abd8836f9b4107857553 |
IEDL.DBID | 24P |
ISSN | 0007-1188 1476-5381 |
IngestDate | Thu Aug 21 14:34:02 EDT 2025 Thu Jul 10 23:05:10 EDT 2025 Fri Jul 25 19:11:51 EDT 2025 Thu Apr 03 07:08:42 EDT 2025 Tue Jul 01 03:00:26 EDT 2025 Thu Apr 24 23:04:54 EDT 2025 Wed Jan 22 17:09:26 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | FoxO-1 forkhead box O1 transcription factor reactive oxygen species sirtuin1 hyperglycaemia metformin vascular senescence endothelial dysfunction microvascular endothelial cells |
Language | English |
License | Attribution-NonCommercial 2013 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5096-5e507d2c893485e3224301061267795bf085602fb7cb0abd8836f9b4107857553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbph.12496 |
PMID | 24372553 |
PQID | 1545758040 |
PQPubID | 42104 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3904269 proquest_miscellaneous_1490730130 proquest_journals_1545758040 pubmed_primary_24372553 crossref_citationtrail_10_1111_bph_12496 crossref_primary_10_1111_bph_12496 wiley_primary_10_1111_bph_12496_BPH12496 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2014 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: January 2014 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | British journal of pharmacology |
PublicationTitleAlternate | Br J Pharmacol |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd John Wiley & sons |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & sons |
References | 2012; 61 2007; 104 2012; 122 1993; 329 2010; 107 2006; 78 2013; 62 2008; 102 2007; 30 1996; 36 2012; 126 2013; 8 2001; 89 2012; 11 2007; 212 2007; 292 1999; 260 2008; 28 2002; 105 2010; 393 2009; 120 2011; 163 2007; 21 2010; 4 2010; 7 2004; 303 2011; 337 2005; 310 2006; 55 2002; 136 2013; 85 2004; 305 2012; 303 2008; 283 2009; 29 2009; 458 2010; 89 2011; 109 2012; 111 2008; 1784 2002; 283 2010; 299 2011; 94 2005; 54 2001; 37 2007; 43 2008; 133 2008; 295 2008; 80 2012; 8 2006; 103 1981; 12 2006; 147 2009; 106 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 18423418 - Biochim Biophys Acta. 2008 Jun;1784(6):936-45 23505545 - PLoS One. 2013;8(3):e58636 22378745 - Am J Physiol Cell Physiol. 2012 Jul 1;303(1):C4-C13 16308421 - Science. 2005 Dec 9;310(5754):1642-6 19262508 - Nature. 2009 Apr 23;458(7241):1056-60 20947830 - Circ Res. 2010 Dec 10;107(12):1470-82 11994261 - Circulation. 2002 May 7;105(18):2231-9 16443786 - Diabetes. 2006 Feb;55(2):496-505 15205477 - Science. 2004 Jul 16;305(5682):390-2 21250975 - Br J Pharmacol. 2011 May;163(2):424-37 21778425 - Circ Res. 2011 Sep 2;109(6):639-48 18556572 - Arterioscler Thromb Vasc Biol. 2008 Sep;28(9):1634-9 21030723 - Circ Res. 2010 Oct 29;107(9):1058-70 17938244 - Genes Dev. 2007 Oct 15;21(20):2644-58 17916362 - J Mol Cell Cardiol. 2007 Nov;43(5):571-9 11597994 - Circ Res. 2001 Oct 12;89(8):709-15 17785417 - Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14855-60 8973990 - J Clin Pharmacol. 1996 Nov;36(11):1012-21 23704521 - Diabetes. 2013 Jun;62(6):1800-7 22753194 - Circulation. 2012 Aug 7;126(6):729-40 19286634 - Arterioscler Thromb Vasc Biol. 2009 Jun;29(6):889-94 19036896 - J Appl Physiol (1985). 2009 Jan;106(1):326-32 20102704 - Biochem Biophys Res Commun. 2010 Feb 26;393(1):66-72 17018841 - Am J Physiol Renal Physiol. 2007 Feb;292(2):F617-27 21357660 - J Pharmacol Exp Ther. 2011 Jun;337(3):591-9 22079683 - Diabetes Res Clin Pract. 2011 Dec;94(3):311-21 12181126 - Am J Physiol Heart Circ Physiol. 2002 Sep;283(3):H976-82 22124463 - Diabetes. 2012 Jan;61(1):217-28 12010774 - Br J Pharmacol. 2002 May;136(2):255-63 20370652 - Curr Neurovasc Res. 2010 May;7(2):95-112 7306436 - Br J Clin Pharmacol. 1981 Aug;12(2):235-46 15983220 - Diabetes. 2005 Jul;54(7):2179-87 23422569 - Biochem Pharmacol. 2013 May 1;85(9):1288-96 18485870 - Cell. 2008 May 16;133(4):612-26 19786632 - Circulation. 2009 Oct 13;120(15):1524-32 17965314 - Diabetes Care. 2007 Nov;30(11):2974-5 20424141 - Am J Physiol Endocrinol Metab. 2010 Jul;299(1):E110-6 16224023 - Science. 2005 Oct 14;310(5746):314-7 20398956 - Diabetes Res Clin Pract. 2010 Jul;89(1):38-45 22770240 - Cell Stem Cell. 2012 Jul 6;11(1):23-35 17443690 - J Cell Physiol. 2007 Sep;212(3):682-9 14976264 - Science. 2004 Mar 26;303(5666):2011-5 22117616 - Clin Sci (Lond). 2012 Mar;122(6):253-70 18641273 - Am J Physiol Heart Circ Physiol. 2008 Sep;295(3):H1165-H1176 18174472 - Circ Res. 2008 Jan 4;102(1):16-31 10381378 - Biochem Biophys Res Commun. 1999 Jun 24;260(1):273-9 8366922 - N Engl J Med. 1993 Sep 30;329(14):977-86 16318863 - Life Sci. 2006 Apr 25;78(22):2615-24 20123087 - Biochem Biophys Res Commun. 2010 Mar 5;393(2):268-73 20470995 - J Am Soc Hypertens. 2010 May-Jun;4(3):102-15 18482975 - J Biol Chem. 2008 Jul 18;283(29):20015-26 18689793 - Cardiovasc Res. 2008 Nov 1;80(2):191-9 22773427 - Circ Res. 2012 Jul 6;111(2):245-59 17075048 - Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):17018-23 16731828 - Diabetes. 2006 Jun;55(6):1660-5 11300445 - J Am Coll Cardiol. 2001 Apr;37(5):1344-50 16513829 - Endocrinology. 2006 Jun;147(6):2728-36 22064493 - Nat Rev Endocrinol. 2012 Apr;8(4):228-36 |
References_xml | – volume: 133 start-page: 612 year: 2008 end-page: 626 article-title: Acetylation is indispensable for p53 activation publication-title: Cell – volume: 89 start-page: 709 year: 2001 end-page: 715 article-title: Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide publication-title: Circ Res – volume: 292 start-page: F617 year: 2007 end-page: F627 article-title: A role for AMP‐activated protein kinase in diabetes‐induced renal hypertrophy publication-title: Am J Physiol Renal Physiol – volume: 111 start-page: 245 year: 2012 end-page: 259 article-title: Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence publication-title: Circ Res – volume: 107 start-page: 1058 year: 2010 end-page: 1070 article-title: Oxidative stress and diabetic complications publication-title: Circ Res – volume: 78 start-page: 2615 year: 2006 end-page: 2624 article-title: Metformin reduces blood pressure and restores endothelial function in aorta of streptozotocin‐induced diabetic rats publication-title: Life Sci – volume: 310 start-page: 1642 year: 2005 end-page: 1646 article-title: The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin publication-title: Science – volume: 107 start-page: 1470 year: 2010 end-page: 1482 article-title: Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation‐induced autophagy in cardiac myocytes publication-title: Circ Res – volume: 89 start-page: 38 year: 2010 end-page: 45 article-title: L‐arginine attenuates high glucose‐accelerated senescence in human umbilical vein endothelial cells publication-title: Diabetes Res Clin Pract – volume: 43 start-page: 571 year: 2007 end-page: 579 article-title: Sirt1 modulates premature senescence‐like phenotype in human endothelial cells publication-title: J Mol Cell Cardiol – volume: 337 start-page: 591 year: 2011 end-page: 599 article-title: Dose‐dependent modulatory effects of insulin on glucose‐induced endothelial senescence and : a relationship between telomeres and nitric oxide publication-title: J Pharmacol Exp Ther – volume: 30 start-page: 2974 year: 2007 end-page: 2975 article-title: Pathogenetic loop between diabetes and cell senescence publication-title: Diabetes Care – volume: 305 start-page: 390 year: 2004 end-page: 392 article-title: Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase publication-title: Science – volume: 61 start-page: 217 year: 2012 end-page: 228 article-title: Sirtuin 1‐mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin publication-title: Diabetes – volume: 55 start-page: 496 year: 2006 end-page: 505 article-title: Activation of the AMP‐activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase publication-title: Diabetes – volume: 8 start-page: e58636 year: 2013 article-title: SIRT1 polymorphism, long‐term survival and glucose tolerance in the general population publication-title: PLoS ONE – volume: 12 start-page: 235 year: 1981 end-page: 246 article-title: Metformin kinetics in healthy subjects and in patients with diabetes mellitus publication-title: Br J Clin Pharmacol – volume: 1784 start-page: 936 year: 2008 end-page: 945 article-title: High glucose downregulates endothelial progenitor cell number via SIRT1 publication-title: Biochim Biophys Acta – volume: 283 start-page: H976 year: 2002 end-page: H982 article-title: Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db‐hGLUT4 mice publication-title: Am J Physiol Heart Circ Physiol – volume: 122 start-page: 253 year: 2012 end-page: 270 article-title: Cellular and molecular mechanisms of metformin: an overview publication-title: Clin Sci (Lond) – volume: 303 start-page: 2011 year: 2004 end-page: 2015 article-title: Stress‐dependent regulation of FOXO transcription factors by the SIRT1 deacetylase publication-title: Science – volume: 62 start-page: 1800 year: 2013 end-page: 1807 article-title: SIRT1, p66Shc, and Set7/9 in vascular hyperglycemic memory: bringing all the strands together publication-title: Diabetes – volume: 299 start-page: E110 year: 2010 end-page: E116 article-title: MicroRNA‐34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1 publication-title: Am J Physiol Endocrinol Metab – volume: 212 start-page: 682 year: 2007 end-page: 689 article-title: Oxidative stress and increased eNOS and NADPH oxidase expression in mouse microvessel endothelial cells publication-title: J Cell Physiol – volume: 36 start-page: 1012 year: 1996 end-page: 1021 article-title: Pharmacokinetics and pharmacodynamics of metformin in healthy subjects and patients with noninsulin‐dependent diabetes mellitus publication-title: J Clin Pharmacol – volume: 136 start-page: 255 year: 2002 end-page: 263 article-title: Cellular basis of endothelial dysfunction in small mesenteric arteries from spontaneously diabetic (db/db –/–) mice: role of decreased tetrahydrobiopterin bioavailability publication-title: Br J Pharmacol – volume: 283 start-page: 20015 year: 2008 end-page: 20026 article-title: SIRT1 regulates hepatocyte lipid metabolism through activating AMP‐activated protein kinase publication-title: J Biol Chem – volume: 102 start-page: 16 year: 2008 end-page: 31 article-title: Forkhead transcription factors and cardiovascular biology publication-title: Circ Res – volume: 85 start-page: 1288 year: 2013 end-page: 1296 article-title: SIRT1 inhibits NADPH oxidase activation and protects endothelial function in the rat aorta: implications for vascular aging publication-title: Biochem Pharmacol – volume: 310 start-page: 314 year: 2005 end-page: 317 article-title: Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS publication-title: Science – volume: 109 start-page: 639 year: 2011 end-page: 648 article-title: Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia‐induced endothelial dysfunction publication-title: Circ Res – volume: 4 start-page: 102 year: 2010 end-page: 115 article-title: A review of endothelial dysfunction in diabetes: a focus on the contribution of a dysfunctional eNOS publication-title: J Am Soc Hypertens – volume: 126 start-page: 729 year: 2012 end-page: 740 article-title: Cyclin‐dependent kinase 5‐mediated hyperphosphorylation of sirtuin‐1 contributes to the development of endothelial senescence and atherosclerosis publication-title: Circulation – volume: 120 start-page: 1524 year: 2009 end-page: 1532 article-title: MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1 publication-title: Circulation – volume: 104 start-page: 14855 year: 2007 end-page: 14860 article-title: SIRT1 promotes endothelium‐dependent vascular relaxation by activating endothelial nitric oxide synthase publication-title: Proc Natl Acad Sci U S A – volume: 295 start-page: H1165 year: 2008 end-page: H1176 article-title: Metformin normalizes endothelial function by suppressing vasoconstrictor prostanoids in mesenteric arteries from OLETF rats, a model of type 2 diabetes publication-title: Am J Physiol Heart Circ Physiol – volume: 11 start-page: 23 year: 2012 end-page: 35 article-title: Metformin activates an atypical PKC–CBP pathway to promote neurogenesis and enhance spatial memory formation publication-title: Cell Stem Cell – volume: 80 start-page: 191 year: 2008 end-page: 199 article-title: Endothelium‐specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E‐deficient mice publication-title: Cardiovasc Res – volume: 105 start-page: 2231 year: 2002 end-page: 2239 article-title: Prevention Conference VI: Diabetes and Cardiovascular Disease: executive summary: conference proceeding for healthcare professionals from a special writing group of the American Heart Association publication-title: Circulation – volume: 106 start-page: 326 year: 2009 end-page: 332 article-title: Vascular endothelial senescence: from mechanisms to pathophysiology publication-title: J Appl Physiol – volume: 393 start-page: 268 year: 2010 end-page: 273 article-title: Metformin induces suppression of NAD(P)H oxidase activity in podocytes publication-title: Biochem Biophys Res Commun – volume: 260 start-page: 273 year: 1999 end-page: 279 article-title: Characterization of five human cDNAs with homology to the yeast gene: Sir2‐like proteins (sirtuins) metabolize NAD and may have protein ADP‐ribosyltransferase activity publication-title: Biochem Biophys Res Commun – volume: 163 start-page: 424 year: 2011 end-page: 437 article-title: Metformin restores endothelial function in aorta of diabetic rats publication-title: Br J Pharmacol – volume: 7 start-page: 95 year: 2010 end-page: 112 article-title: Early apoptotic vascular signaling is determined by Sirt1 through nuclear shuttling, forkhead trafficking, bad, and mitochondrial caspase activation publication-title: Curr Neurovasc Res – volume: 103 start-page: 17018 year: 2006 end-page: 17023 article-title: Endothelial cellular senescence is inhibited by nitric oxide: implications in atherosclerosis associated with menopause and diabetes publication-title: Proc Natl Acad Sci U S A – volume: 21 start-page: 2644 year: 2007 end-page: 2658 article-title: SIRT1 controls endothelial angiogenic functions during vascular growth publication-title: Genes Dev – volume: 303 start-page: C4 year: 2012 end-page: C13 article-title: A novel inverse relationship between metformin‐triggered AMPK‐SIRT1 signaling and p53 protein abundance in high glucose‐exposed HepG2 cells publication-title: Am J Physiol Cell Physiol – volume: 29 start-page: 889 year: 2009 end-page: 894 article-title: Protective role of SIRT1 in diabetic vascular dysfunction publication-title: Arterioscler Thromb Vasc Biol – volume: 28 start-page: 1634 year: 2008 end-page: 1639 article-title: Cilostazol inhibits oxidative stress‐induced premature senescence via upregulation of Sirt1 in human endothelial cells publication-title: Arterioscler Thromb Vasc Biol – volume: 393 start-page: 66 year: 2010 end-page: 72 article-title: SIRT1 regulates oxidant‐ and cigarette smoke‐induced eNOS acetylation in endothelial cells: role of resveratrol publication-title: Biochem Biophys Res Commun – volume: 55 start-page: 1660 year: 2006 end-page: 1665 article-title: Apoptosis signal‐regulating kinase 1 mediates cellular senescence induced by high glucose in endothelial cells publication-title: Diabetes – volume: 329 start-page: 977 year: 1993 end-page: 986 article-title: The Diabetes Control and Complications Trial Research Group: the effect of intensive treatment of diabetes on the development and progression of long‐term complications in insulin‐dependent diabetes mellitus publication-title: N Engl J Med – volume: 147 start-page: 2728 year: 2006 end-page: 2736 article-title: Long‐term metformin treatment stimulates cardiomyocyte glucose transport through an AMP‐activated protein kinase‐dependent reduction in GLUT4 endocytosis publication-title: Endocrinology – volume: 54 start-page: 2179 year: 2005 end-page: 2187 article-title: Metformin prevents high‐glucose‐induced endothelial cell death through a mitochondrial permeability transition‐dependent process publication-title: Diabetes – volume: 8 start-page: 228 year: 2012 end-page: 236 article-title: The worldwide epidemiology of type 2 diabetes mellitus – present and future perspectives publication-title: Nat Rev Endocrinol – volume: 458 start-page: 1056 year: 2009 end-page: 1060 article-title: AMPK regulates energy expenditure by modulating NAD metabolism and SIRT1 activity publication-title: Nature – volume: 94 start-page: 311 year: 2011 end-page: 321 article-title: IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030 publication-title: Diabetes Res Clin Pract – volume: 37 start-page: 1344 year: 2001 end-page: 1350 article-title: Improved endothelial function with metformin in type 2 diabetes mellitus publication-title: J Am Coll Cardiol – ident: e_1_2_8_5_1 doi: 10.1126/science.1094637 – ident: e_1_2_8_56_1 doi: 10.1152/ajpendo.00192.2010 – ident: e_1_2_8_40_1 doi: 10.1177/009127009603601105 – ident: e_1_2_8_58_1 doi: 10.1016/j.diabres.2010.03.013 – ident: e_1_2_8_44_1 doi: 10.1016/j.cell.2008.03.025 – ident: e_1_2_8_11_1 doi: 10.2337/diabetes.54.7.2179 – ident: e_1_2_8_9_1 doi: 10.2337/diabetes.55.02.06.db05-1064 – ident: e_1_2_8_6_1 doi: 10.1038/nature07813 – ident: e_1_2_8_50_1 doi: 10.1161/CIRCRESAHA.111.261388 – ident: e_1_2_8_17_1 doi: 10.1161/01.CIR.0000013952.86046.DD – ident: e_1_2_8_18_1 doi: 10.1161/CIRCRESAHA.110.227371 – ident: e_1_2_8_21_1 doi: 10.2174/156720210791184899 – ident: e_1_2_8_14_1 doi: 10.1371/journal.pone.0058636 – ident: e_1_2_8_38_1 doi: 10.1016/j.bbrc.2010.01.119 – ident: e_1_2_8_8_1 doi: 10.1126/science.1099196 – ident: e_1_2_8_26_1 doi: 10.1124/jpet.110.177584 – ident: e_1_2_8_13_1 doi: 10.1152/japplphysiol.91353.2008 – ident: e_1_2_8_42_1 doi: 10.1111/j.1476-5381.2011.01230.x – ident: e_1_2_8_19_1 doi: 10.1073/pnas.0607873103 – ident: e_1_2_8_28_1 doi: 10.1073/pnas.0704329104 – ident: e_1_2_8_29_1 doi: 10.1161/CIRCULATIONAHA.109.864629 – ident: e_1_2_8_43_1 doi: 10.1126/science.1120781 – ident: e_1_2_8_10_1 doi: 10.1056/NEJM199309303291401 – ident: e_1_2_8_16_1 doi: 10.1161/CIRCRESAHA.110.223545 – ident: e_1_2_8_25_1 doi: 10.1016/S0735-1097(01)01129-9 – ident: e_1_2_8_12_1 doi: 10.1002/jcp.21063 – ident: e_1_2_8_23_1 doi: 10.1152/ajprenal.00278.2006 – ident: e_1_2_8_47_1 doi: 10.1111/j.1365-2125.1981.tb01206.x – ident: e_1_2_8_52_1 doi: 10.1210/en.2005-1433 – ident: e_1_2_8_54_1 doi: 10.1016/j.bcp.2013.02.015 – ident: e_1_2_8_36_1 doi: 10.1038/sj.bjp.0704683 – ident: e_1_2_8_2_1 doi: 10.1016/j.bbrc.2010.01.080 – ident: e_1_2_8_33_1 doi: 10.1016/j.yjmcc.2007.08.008 – ident: e_1_2_8_3_1 doi: 10.1161/CIRCULATIONAHA.112.118778 – ident: e_1_2_8_4_1 doi: 10.1016/j.bbapap.2008.03.004 – ident: e_1_2_8_41_1 doi: 10.1152/ajpheart.00088.2002 – ident: e_1_2_8_59_1 doi: 10.1161/CIRCRESAHA.111.243592 – ident: e_1_2_8_22_1 doi: 10.1074/jbc.M802187200 – ident: e_1_2_8_27_1 doi: 10.1152/ajpheart.00486.2008 – ident: e_1_2_8_51_1 doi: 10.1016/j.diabres.2011.10.029 – ident: e_1_2_8_48_1 doi: 10.1042/CS20110386 – ident: e_1_2_8_15_1 doi: 10.1006/bbrc.1999.0897 – ident: e_1_2_8_7_1 doi: 10.1038/nrendo.2011.183 – ident: e_1_2_8_46_1 doi: 10.1016/j.jash.2010.02.004 – ident: e_1_2_8_45_1 doi: 10.2337/dc07-1534 – ident: e_1_2_8_37_1 doi: 10.1161/CIRCRESAHA.107.164186 – ident: e_1_2_8_57_1 doi: 10.2337/db11-0416 – ident: e_1_2_8_34_1 doi: 10.1161/ATVBAHA.108.164368 – ident: e_1_2_8_20_1 doi: 10.1161/hh2001.097796 – ident: e_1_2_8_39_1 doi: 10.1101/gad.435107 – ident: e_1_2_8_55_1 doi: 10.1093/cvr/cvn224 – ident: e_1_2_8_24_1 doi: 10.1016/j.lfs.2005.10.020 – ident: e_1_2_8_32_1 doi: 10.1161/ATVBAHA.109.185694 – ident: e_1_2_8_49_1 doi: 10.1016/j.stem.2012.03.016 – ident: e_1_2_8_30_1 doi: 10.1152/ajpcell.00296.2011 – ident: e_1_2_8_31_1 doi: 10.1126/science.1117728 – ident: e_1_2_8_35_1 doi: 10.2337/db12-1648 – ident: e_1_2_8_53_1 doi: 10.2337/db05-1607 – reference: 18641273 - Am J Physiol Heart Circ Physiol. 2008 Sep;295(3):H1165-H1176 – reference: 12010774 - Br J Pharmacol. 2002 May;136(2):255-63 – reference: 19262508 - Nature. 2009 Apr 23;458(7241):1056-60 – reference: 23505545 - PLoS One. 2013;8(3):e58636 – reference: 22773427 - Circ Res. 2012 Jul 6;111(2):245-59 – reference: 18556572 - Arterioscler Thromb Vasc Biol. 2008 Sep;28(9):1634-9 – reference: 21250975 - Br J Pharmacol. 2011 May;163(2):424-37 – reference: 14976264 - Science. 2004 Mar 26;303(5666):2011-5 – reference: 16731828 - Diabetes. 2006 Jun;55(6):1660-5 – reference: 17916362 - J Mol Cell Cardiol. 2007 Nov;43(5):571-9 – reference: 20470995 - J Am Soc Hypertens. 2010 May-Jun;4(3):102-15 – reference: 22753194 - Circulation. 2012 Aug 7;126(6):729-40 – reference: 23704521 - Diabetes. 2013 Jun;62(6):1800-7 – reference: 20947830 - Circ Res. 2010 Dec 10;107(12):1470-82 – reference: 8366922 - N Engl J Med. 1993 Sep 30;329(14):977-86 – reference: 7306436 - Br J Clin Pharmacol. 1981 Aug;12(2):235-46 – reference: 16513829 - Endocrinology. 2006 Jun;147(6):2728-36 – reference: 16308421 - Science. 2005 Dec 9;310(5754):1642-6 – reference: 18485870 - Cell. 2008 May 16;133(4):612-26 – reference: 16224023 - Science. 2005 Oct 14;310(5746):314-7 – reference: 17785417 - Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14855-60 – reference: 20424141 - Am J Physiol Endocrinol Metab. 2010 Jul;299(1):E110-6 – reference: 12181126 - Am J Physiol Heart Circ Physiol. 2002 Sep;283(3):H976-82 – reference: 19036896 - J Appl Physiol (1985). 2009 Jan;106(1):326-32 – reference: 21357660 - J Pharmacol Exp Ther. 2011 Jun;337(3):591-9 – reference: 16443786 - Diabetes. 2006 Feb;55(2):496-505 – reference: 22378745 - Am J Physiol Cell Physiol. 2012 Jul 1;303(1):C4-C13 – reference: 16318863 - Life Sci. 2006 Apr 25;78(22):2615-24 – reference: 17075048 - Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):17018-23 – reference: 18174472 - Circ Res. 2008 Jan 4;102(1):16-31 – reference: 20102704 - Biochem Biophys Res Commun. 2010 Feb 26;393(1):66-72 – reference: 11994261 - Circulation. 2002 May 7;105(18):2231-9 – reference: 22770240 - Cell Stem Cell. 2012 Jul 6;11(1):23-35 – reference: 19286634 - Arterioscler Thromb Vasc Biol. 2009 Jun;29(6):889-94 – reference: 22124463 - Diabetes. 2012 Jan;61(1):217-28 – reference: 17443690 - J Cell Physiol. 2007 Sep;212(3):682-9 – reference: 17965314 - Diabetes Care. 2007 Nov;30(11):2974-5 – reference: 17938244 - Genes Dev. 2007 Oct 15;21(20):2644-58 – reference: 20398956 - Diabetes Res Clin Pract. 2010 Jul;89(1):38-45 – reference: 11300445 - J Am Coll Cardiol. 2001 Apr;37(5):1344-50 – reference: 21778425 - Circ Res. 2011 Sep 2;109(6):639-48 – reference: 22079683 - Diabetes Res Clin Pract. 2011 Dec;94(3):311-21 – reference: 15983220 - Diabetes. 2005 Jul;54(7):2179-87 – reference: 18423418 - Biochim Biophys Acta. 2008 Jun;1784(6):936-45 – reference: 22117616 - Clin Sci (Lond). 2012 Mar;122(6):253-70 – reference: 15205477 - Science. 2004 Jul 16;305(5682):390-2 – reference: 8973990 - J Clin Pharmacol. 1996 Nov;36(11):1012-21 – reference: 18689793 - Cardiovasc Res. 2008 Nov 1;80(2):191-9 – reference: 18482975 - J Biol Chem. 2008 Jul 18;283(29):20015-26 – reference: 10381378 - Biochem Biophys Res Commun. 1999 Jun 24;260(1):273-9 – reference: 20370652 - Curr Neurovasc Res. 2010 May;7(2):95-112 – reference: 21030723 - Circ Res. 2010 Oct 29;107(9):1058-70 – reference: 11597994 - Circ Res. 2001 Oct 12;89(8):709-15 – reference: 19786632 - Circulation. 2009 Oct 13;120(15):1524-32 – reference: 23422569 - Biochem Pharmacol. 2013 May 1;85(9):1288-96 – reference: 17018841 - Am J Physiol Renal Physiol. 2007 Feb;292(2):F617-27 – reference: 20123087 - Biochem Biophys Res Commun. 2010 Mar 5;393(2):268-73 – reference: 22064493 - Nat Rev Endocrinol. 2012 Apr;8(4):228-36 |
SSID | ssj0014775 |
Score | 2.5194573 |
Snippet | Background and Purpose
Endothelial dysfunction can be detected at an early stage in the development of diabetes‐related microvascular disease and is associated... Endothelial dysfunction can be detected at an early stage in the development of diabetes-related microvascular disease and is associated with accelerated... Background and Purpose Endothelial dysfunction can be detected at an early stage in the development of diabetes-related microvascular disease and is associated... Background and Purpose: Endothelial dysfunction can be detected at an early stage in the development of diabetes-related microvascular disease and is... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 523 |
SubjectTerms | Acetylation Adenylate Kinase - metabolism Animals Apoptosis - drug effects beta-Galactosidase - metabolism Blotting, Western Capillaries - cytology Capillaries - drug effects Cellular Senescence - drug effects Diabetes Mellitus, Type 2 - genetics Diabetes Mellitus, Type 2 - metabolism endothelial dysfunction Endothelium, Vascular - drug effects Fluorescent Antibody Technique forkhead box O1 transcription factor Forkhead Box Protein O1 Forkhead Transcription Factors - metabolism FoxO‐1 Gene Silencing hyperglycaemia Hyperglycemia - physiopathology Hypoglycemic Agents - pharmacology metformin Metformin - pharmacology Mice Mice, Inbred C57BL microvascular endothelial cells reactive oxygen species Reactive Oxygen Species - metabolism Research Papers Signal Transduction - drug effects Sirtuin 1 - genetics Sirtuin 1 - physiology sirtuin1 vascular senescence |
Title | Metformin modulates hyperglycaemia‐induced endothelial senescence and apoptosis through SIRT1 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbph.12496 https://www.ncbi.nlm.nih.gov/pubmed/24372553 https://www.proquest.com/docview/1545758040 https://www.proquest.com/docview/1490730130 https://pubmed.ncbi.nlm.nih.gov/PMC3904269 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB7yuOQSmj5StWnYhmB6iIplraQVPcVtjRNIMa0DuYl9qTY4komcg2_5Cf2N_SWdWclKjFvoTbAj9Jid2e9bab4BOE24zJWMOJIckfvcqNhXkRa-xjSprdBWBlSNfPUtHl7zy5voZgs-rWphan2IdsONIsPlawpwqaonQa7mk4_UOTnehl0qrSXh_B4ftZ8QeJLU7QtIBTEQopEVot942lPXF6MNhLn5o-RTAOtWoMEz2G-gIzuvfX0AW7Z4Dp1RrT29PGPjx1Kq6ox12OhRlXr5ArIruyCAOi3YbWmoaZet2ARZ6N3P2VJLezuVvx9-IUNHXxtmC0OlWTOcnayidKgpAzBZGCbn5XxRVtOKNT1-2I-L7-PgJVwPvo4_D_2mu4KvSfLFjyxCQdPTCFi4iCwGNg8dQezFSZJGKkcwFnd7uUq06kplhAjjPFUc-SJ19YzCV7BTlIV9DUwlebcrZSyRjnFjYpHyPAgjPNCBRoDgwYfVa850Iz1OHTBm2YqCoEcy5xEPTlrTea238Tejo5WvsibkqoywIJIfTEoevG-HMVjoC4gsbHmPNjx1KS1Em8Pate1VSJkR-VXoQbLm9NaAhLjXR4rpxAlyhykx0RQf002Pf9941h8N3cGb_zd9C3sI0ni97XMEO4u7e_sOgdBCHbsJfwy75_0v_cEf-AsHeQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VcoALKu-0BRaEKg41iu31ri1xAUSVQlNFkEq9WfsyiZTaUZ0ecutP6G_sL2Fm7biNChI3SzuWH7Mz-337-AbgveSq0CrhSHLSIuBWi0AnJg0MpknjUuNUSKeRh8dicMK_nyanG_BpdRam0YfoJtwoMny-pgCnCelbUa7nk49UOlncg_tcRJLCMuKjbg2BS9nULyAZxDBNW10h2sfT3bo-Gt2BmHd3St5GsH4IOtiCRy12ZJ8bZz-GDVc-gb1RIz693Gfjm7NU9T7bY6MbWerlU8iHbkEIdVqys8pS1S5XswnS0PPfs6VR7myqri-vkKKjsy1zpaWzWTPsnqymfGgoBTBVWqbm1XxR1dOatUV-2K_Dn-PwGZwcfBt_HQRteYXAkOZLkDjEgjYyiFh4mjiMbB57hhgJKbNEF4jGRD8qtDS6r7RN01gUmeZIGKmsZxI_h82yKt1LYFoW_b5SQiEf49aKNONFGCd4YUKDCKEHH1a_OTet9jiVwJjlKw6CHsm9R3rwrjOdN4IbfzPaXfkqb2OuzgkMIvvBrNSDt10zRgstgajSVRdowzOf02K0edG4tnsKSTMiwYp7INec3hmQEvd6SzmdeEXuOCMqmuFn-u7x7xfPv4wG_mL7_03fwIPBeHiUHx0e_9iBh4jYeDMHtAubi_ML9wpR0UK_9p3_D-DFCXM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5RKlW9VH0ADdB2WyHEAVdxvLbX6qmvKLQFWSVI3Kx9uYkUbAuHQ279Cf2N_SWdWTuGiCJxs7Rj-TE7s9-3j28A9mIucyVDjiRH5B43KvJUqIWnMU1qK7SVPp1GPj6JRmf823l4vgYflmdhGn2IbsKNIsPlawrwyuQ3glxVk_dUOTl6AA_dYh_JOvO0W0LgcdyULyAVRF-IVlaItvF0t64ORrcQ5u2NkjcBrBuBhk_hSQsd2cfG189gzRbPYT9ttKcXh2x8fZSqPmT7LL1WpV68gOzYzgmgTgt2URoq2mVrNkEWevlrttDSXkzl399_kKGjrw2zhaGjWTPsnaymdKgpAzBZGCarspqX9bRmbY0fdnr0c-xvwNnw6_jzyGurK3iaJF-80CIUNAONgIWL0GJg88ARxEEUx0mocgRjUX-Qq1irvlRGiCDKE8WRL1JVzzDYhPWiLOxLYCrO-30pI4l0jBsTiYTnfhDihfY1AoQeHCx_c6Zb6XGqgDHLlhQEPZI5j_TgXWdaNXob_zPaXfoqa0OuzggLIvnBpNSDt10zBgutgMjClldowxOX0gK02Wpc2z2FlBmRXwU9iFec3hmQEPdqSzGdOEHuICEmmuBnuu5x94tnn9KRu9i-v-kbeJR-GWY_jk6-78BjxGu8mQHahfX55ZV9hZhorl67vv8PUHgIpQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metformin+modulates+hyperglycaemia%E2%80%90induced+endothelial+senescence+and+apoptosis+through+SIRT1&rft.jtitle=British+journal+of+pharmacology&rft.au=Arunachalam%2C+Gnanapragasam&rft.au=Samuel%2C+Samson+Mathews&rft.au=Marei%2C+Isra&rft.au=Ding%2C+Hong&rft.date=2014-01-01&rft.issn=0007-1188&rft.eissn=1476-5381&rft.volume=171&rft.issue=2&rft.spage=523&rft.epage=535&rft_id=info:doi/10.1111%2Fbph.12496&rft.externalDBID=10.1111%252Fbph.12496&rft.externalDocID=BPH12496 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon |