Wound- and mechanostimulated electrical signals control hormone responses

Plants in nature are constantly exposed to organisms that touch them and wound them.A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 227; no. 4; pp. 1037 - 1050
Main Authors Farmer, Edward E., Gao, Yong-Qiang, Lenzoni, Gioia, Wolfender, Jean-Luc, Wu, Qian
Format Journal Article
LanguageEnglish
Published England Wiley 01.08.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plants in nature are constantly exposed to organisms that touch them and wound them.A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate or ethylene. Here, the various types of electrical signals in plants are discussed in the context of hormone responses. Genetic approaches are revealing genes involved in wound-induced electrical signalling. These include clade 3 GLUTAMATE RECEPTOR-LIKE (GLR) genes, Arabidopsis H⁺-ATPases (AHAs), RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), and genes that determine cell wall properties. We briefly review touch- and wound-induced increases in cytosolic Ca2+ concentrations and their temporal relationship to electrical activities. We then look at the questions that need addressing to link mechanostimulation and wound-induced electrical activity to hormone responses. Utilizing recently published results, we also present a hypothesis for wound-response leaf-to-leaf electrical signalling. This model is based on rapid electro-osmotic coupling between the phloem and xylem. The model suggests that the depolarization of membranes within the vascular matrix triggered by physical stimuli and/or chemical elicitors is linked to changes in phloem turgor and that this plays vital roles in leaf-to-leaf electrical signal propagation.
AbstractList Summary Plants in nature are constantly exposed to organisms that touch them and wound them. A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate or ethylene. Here, the various types of electrical signals in plants are discussed in the context of hormone responses. Genetic approaches are revealing genes involved in wound‐induced electrical signalling. These include clade 3 GLUTAMATE RECEPTOR‐LIKE (GLR) genes, Arabidopsis H+‐ATPases (AHAs), RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), and genes that determine cell wall properties. We briefly review touch‐ and wound‐induced increases in cytosolic Ca2+ concentrations and their temporal relationship to electrical activities. We then look at the questions that need addressing to link mechanostimulation and wound‐induced electrical activity to hormone responses. Utilizing recently published results, we also present a hypothesis for wound‐response leaf‐to‐leaf electrical signalling. This model is based on rapid electro‐osmotic coupling between the phloem and xylem. The model suggests that the depolarization of membranes within the vascular matrix triggered by physical stimuli and/or chemical elicitors is linked to changes in phloem turgor and that this plays vital roles in leaf‐to‐leaf electrical signal propagation.
Plants in nature are constantly exposed to organisms that touch them and wound them. A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate or ethylene. Here, the various types of electrical signals in plants are discussed in the context of hormone responses. Genetic approaches are revealing genes involved in wound-induced electrical signalling. These include clade 3 GLUTAMATE RECEPTOR-LIKE (GLR) genes, Arabidopsis H+ -ATPases (AHAs), RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), and genes that determine cell wall properties. We briefly review touch- and wound-induced increases in cytosolic Ca2+ concentrations and their temporal relationship to electrical activities. We then look at the questions that need addressing to link mechanostimulation and wound-induced electrical activity to hormone responses. Utilizing recently published results, we also present a hypothesis for wound-response leaf-to-leaf electrical signalling. This model is based on rapid electro-osmotic coupling between the phloem and xylem. The model suggests that the depolarization of membranes within the vascular matrix triggered by physical stimuli and/or chemical elicitors is linked to changes in phloem turgor and that this plays vital roles in leaf-to-leaf electrical signal propagation.Plants in nature are constantly exposed to organisms that touch them and wound them. A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate or ethylene. Here, the various types of electrical signals in plants are discussed in the context of hormone responses. Genetic approaches are revealing genes involved in wound-induced electrical signalling. These include clade 3 GLUTAMATE RECEPTOR-LIKE (GLR) genes, Arabidopsis H+ -ATPases (AHAs), RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), and genes that determine cell wall properties. We briefly review touch- and wound-induced increases in cytosolic Ca2+ concentrations and their temporal relationship to electrical activities. We then look at the questions that need addressing to link mechanostimulation and wound-induced electrical activity to hormone responses. Utilizing recently published results, we also present a hypothesis for wound-response leaf-to-leaf electrical signalling. This model is based on rapid electro-osmotic coupling between the phloem and xylem. The model suggests that the depolarization of membranes within the vascular matrix triggered by physical stimuli and/or chemical elicitors is linked to changes in phloem turgor and that this plays vital roles in leaf-to-leaf electrical signal propagation.
Plants in nature are constantly exposed to organisms that touch them and wound them.A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate or ethylene. Here, the various types of electrical signals in plants are discussed in the context of hormone responses. Genetic approaches are revealing genes involved in wound-induced electrical signalling. These include clade 3 GLUTAMATE RECEPTOR-LIKE (GLR) genes, Arabidopsis H⁺-ATPases (AHAs), RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), and genes that determine cell wall properties. We briefly review touch- and wound-induced increases in cytosolic Ca2+ concentrations and their temporal relationship to electrical activities. We then look at the questions that need addressing to link mechanostimulation and wound-induced electrical activity to hormone responses. Utilizing recently published results, we also present a hypothesis for wound-response leaf-to-leaf electrical signalling. This model is based on rapid electro-osmotic coupling between the phloem and xylem. The model suggests that the depolarization of membranes within the vascular matrix triggered by physical stimuli and/or chemical elicitors is linked to changes in phloem turgor and that this plays vital roles in leaf-to-leaf electrical signal propagation.
Plants in nature are constantly exposed to organisms that touch them and wound them. A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate or ethylene. Here, the various types of electrical signals in plants are discussed in the context of hormone responses. Genetic approaches are revealing genes involved in wound-induced electrical signalling. These include clade 3 GLUTAMATE RECEPTOR-LIKE (GLR) genes, Arabidopsis H -ATPases (AHAs), RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), and genes that determine cell wall properties. We briefly review touch- and wound-induced increases in cytosolic Ca concentrations and their temporal relationship to electrical activities. We then look at the questions that need addressing to link mechanostimulation and wound-induced electrical activity to hormone responses. Utilizing recently published results, we also present a hypothesis for wound-response leaf-to-leaf electrical signalling. This model is based on rapid electro-osmotic coupling between the phloem and xylem. The model suggests that the depolarization of membranes within the vascular matrix triggered by physical stimuli and/or chemical elicitors is linked to changes in phloem turgor and that this plays vital roles in leaf-to-leaf electrical signal propagation.
Plants in nature are constantly exposed to organisms that touch them and wound them. A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate or ethylene. Here, the various types of electrical signals in plants are discussed in the context of hormone responses. Genetic approaches are revealing genes involved in wound‐induced electrical signalling. These include clade 3 GLUTAMATE RECEPTOR‐LIKE ( GLR ) genes, Arabidopsis H + ‐ATPases ( AHA s), RESPIRATORY BURST OXIDASE HOMOLOGUE s ( RBOH s), and genes that determine cell wall properties. We briefly review touch‐ and wound‐induced increases in cytosolic Ca 2+ concentrations and their temporal relationship to electrical activities. We then look at the questions that need addressing to link mechanostimulation and wound‐induced electrical activity to hormone responses. Utilizing recently published results, we also present a hypothesis for wound‐response leaf‐to‐leaf electrical signalling. This model is based on rapid electro‐osmotic coupling between the phloem and xylem. The model suggests that the depolarization of membranes within the vascular matrix triggered by physical stimuli and/or chemical elicitors is linked to changes in phloem turgor and that this plays vital roles in leaf‐to‐leaf electrical signal propagation.
Plants in nature are constantly exposed to organisms that touch them and wound them. A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate or ethylene. Here, the various types of electrical signals in plants are discussed in the context of hormone responses. Genetic approaches are revealing genes involved in wound‐induced electrical signalling. These include clade 3 GLUTAMATE RECEPTOR‐LIKE (GLR) genes, Arabidopsis H+‐ATPases (AHAs), RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), and genes that determine cell wall properties. We briefly review touch‐ and wound‐induced increases in cytosolic Ca2+ concentrations and their temporal relationship to electrical activities. We then look at the questions that need addressing to link mechanostimulation and wound‐induced electrical activity to hormone responses. Utilizing recently published results, we also present a hypothesis for wound‐response leaf‐to‐leaf electrical signalling. This model is based on rapid electro‐osmotic coupling between the phloem and xylem. The model suggests that the depolarization of membranes within the vascular matrix triggered by physical stimuli and/or chemical elicitors is linked to changes in phloem turgor and that this plays vital roles in leaf‐to‐leaf electrical signal propagation.
Plants in nature are constantly exposed to organisms that touch them and wound them. A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate or ethylene. Here, the various types of electrical signals in plants are discussed in the context of hormone responses. Genetic approaches are revealing genes involved in wound‐induced electrical signalling. These include clade 3 GLUTAMATE RECEPTOR‐LIKE (GLR) genes, Arabidopsis H⁺‐ATPases (AHAs), RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), and genes that determine cell wall properties. We briefly review touch‐ and wound‐induced increases in cytosolic Ca²⁺ concentrations and their temporal relationship to electrical activities. We then look at the questions that need addressing to link mechanostimulation and wound‐induced electrical activity to hormone responses. Utilizing recently published results, we also present a hypothesis for wound‐response leaf‐to‐leaf electrical signalling. This model is based on rapid electro‐osmotic coupling between the phloem and xylem. The model suggests that the depolarization of membranes within the vascular matrix triggered by physical stimuli and/or chemical elicitors is linked to changes in phloem turgor and that this plays vital roles in leaf‐to‐leaf electrical signal propagation.
Author Lenzoni, Gioia
Wolfender, Jean-Luc
Farmer, Edward E.
Wu, Qian
Gao, Yong-Qiang
Author_xml – sequence: 1
  givenname: Edward E.
  surname: Farmer
  fullname: Farmer, Edward E.
– sequence: 2
  givenname: Yong-Qiang
  surname: Gao
  fullname: Gao, Yong-Qiang
– sequence: 3
  givenname: Gioia
  surname: Lenzoni
  fullname: Lenzoni, Gioia
– sequence: 4
  givenname: Jean-Luc
  surname: Wolfender
  fullname: Wolfender, Jean-Luc
– sequence: 5
  givenname: Qian
  surname: Wu
  fullname: Wu, Qian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32392391$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rFDEYh4O02G314AdQBrzoYdr8n-RYitpCaT0oegvZzDtulkyyJjNIv73Z7q6HohgCgfA8P5L3d4qOYoqA0CuCz0ldF3GzOidScvkMLQiXulWEdUdogTFVbb3-foJOS1ljjLWQ9Dk6YZTpuskC3XxLc-zbxsa-GcGtbExl8uMc7AR9AwHclL2zoSn-R7ShNC7FKafQrFIe6yuaDGWTYoHyAh0PFYCX-_MMff344cvVdXt7_-nm6vK2dQJr2dJOCuBdpyXonvBB02HpHAdYCuUsVUzh3rpB9cxZ4jCnVFnFNcNCDly6JTtD73a5m5x-zlAmM_riIAQbIc3FUCGJ4Jh15P8ox0QRQTSv6Nsn6DrNefvjSlHGtCBYVerNnpqXI_Rmk_1o84M5zLMCFzvA5VRKhsE4P9nJb4dmfTAEm21jpjZmHhurxvsnxiH0b-w-_ZcP8PBv0Nx9vj4Yr3fGukwp_zGo1FRRitlvGNitiA
CitedBy_id crossref_primary_10_1016_j_freeradbiomed_2022_10_305
crossref_primary_10_1016_j_biosystemseng_2023_11_007
crossref_primary_10_1162_neco_a_01696
crossref_primary_10_1089_bioe_2022_0042
crossref_primary_10_1126_sciadv_abo6693
crossref_primary_10_3390_plants12091820
crossref_primary_10_31857_S0320972523100068
crossref_primary_10_1111_nph_19803
crossref_primary_10_3389_fsufs_2021_696829
crossref_primary_10_3390_plants11101351
crossref_primary_10_1016_j_cub_2022_12_058
crossref_primary_10_1126_sciadv_ads6417
crossref_primary_10_1016_j_pbi_2022_102270
crossref_primary_10_1080_15592324_2021_1927562
crossref_primary_10_1016_j_jplph_2021_153467
crossref_primary_10_1111_nph_19990
crossref_primary_10_3390_app11041414
crossref_primary_10_31857_S0320972523100056
crossref_primary_10_1016_j_cub_2023_02_026
crossref_primary_10_3389_fpls_2023_1153731
crossref_primary_10_1016_j_plaphy_2021_11_019
crossref_primary_10_1126_sciadv_adh4443
crossref_primary_10_1093_plphys_kiab122
crossref_primary_10_1093_jxb_erac449
crossref_primary_10_3390_ijms22020492
crossref_primary_10_3390_ijms22158254
crossref_primary_10_3389_fpls_2022_880680
crossref_primary_10_1111_nph_17859
crossref_primary_10_1016_j_xinn_2025_100800
crossref_primary_10_1016_j_pbi_2022_102242
crossref_primary_10_1146_annurev_cellbio_120219_035210
crossref_primary_10_3390_app112311217
crossref_primary_10_3389_fpls_2020_610445
crossref_primary_10_1016_j_jplph_2024_154225
crossref_primary_10_1002_aisy_202200288
crossref_primary_10_1093_plcell_koac150
crossref_primary_10_1186_s13007_024_01169_4
crossref_primary_10_1146_annurev_arplant_080620_010429
crossref_primary_10_3390_plants10050878
crossref_primary_10_1111_pce_14894
crossref_primary_10_1073_pnas_2305496120
crossref_primary_10_1007_s40725_024_00238_0
crossref_primary_10_1080_15592324_2024_2388443
crossref_primary_10_1080_15592324_2024_2310977
crossref_primary_10_1007_s12229_024_09306_3
crossref_primary_10_1093_plphys_kiac449
crossref_primary_10_1111_tpj_17152
crossref_primary_10_3390_biology9100324
crossref_primary_10_15252_embj_2022110741
crossref_primary_10_3390_plants13091173
crossref_primary_10_1016_j_cub_2023_01_042
crossref_primary_10_1016_j_pbi_2022_102253
crossref_primary_10_1016_j_cub_2022_04_057
crossref_primary_10_1111_nph_17034
crossref_primary_10_3390_plants12132570
crossref_primary_10_1016_j_bbrc_2020_08_115
crossref_primary_10_1093_jxb_erac105
crossref_primary_10_1093_plphys_kiaa098
crossref_primary_10_1021_acsnano_4c00557
crossref_primary_10_3390_s23020780
crossref_primary_10_1016_j_jplph_2024_154358
crossref_primary_10_3390_ijms24010847
crossref_primary_10_1071_FP23319
crossref_primary_10_1016_j_cell_2023_02_006
crossref_primary_10_1007_s00425_024_04477_0
crossref_primary_10_1073_pnas_2400639121
crossref_primary_10_3389_fpls_2022_812558
crossref_primary_10_1093_pcp_pcac117
crossref_primary_10_1093_plphys_kiab347
crossref_primary_10_1021_acs_chemrev_1c00525
crossref_primary_10_26898_0370_8799_2024_6_11
crossref_primary_10_1111_nph_20311
crossref_primary_10_1111_nph_18476
crossref_primary_10_3390_plants13233292
crossref_primary_10_1126_scisignal_abf0322
crossref_primary_10_1093_plphys_kiac020
crossref_primary_10_1093_plphys_kiab297
crossref_primary_10_1016_j_plaphy_2023_108032
crossref_primary_10_3390_cells10092219
crossref_primary_10_1016_j_plaphy_2021_06_014
crossref_primary_10_1051_medsci_2023123
crossref_primary_10_1093_pcp_pcad051
crossref_primary_10_15421_022474
crossref_primary_10_3390_plants10020372
crossref_primary_10_1038_s41467_025_57239_1
crossref_primary_10_3389_fsufs_2022_1062449
crossref_primary_10_1093_plcell_koac009
crossref_primary_10_1093_plphys_kiac148
crossref_primary_10_1093_plphys_kiab217
crossref_primary_10_1093_plphys_kiab338
crossref_primary_10_1016_j_plaphy_2024_108683
crossref_primary_10_1111_tpj_15360
crossref_primary_10_1126_sciadv_abg4298
crossref_primary_10_1093_pcp_pcae034
crossref_primary_10_3389_fsufs_2021_657401
crossref_primary_10_3390_ijms221910715
crossref_primary_10_1002_advs_202404578
crossref_primary_10_1016_j_pbi_2021_102050
crossref_primary_10_1093_pcp_pcac135
crossref_primary_10_1126_sciadv_abg4619
crossref_primary_10_1038_s41586_024_07884_1
crossref_primary_10_1093_plcell_koac263
crossref_primary_10_1007_s10340_024_01798_7
crossref_primary_10_1111_ppl_13529
crossref_primary_10_1080_07352689_2022_2132710
crossref_primary_10_1080_15592324_2021_1919836
crossref_primary_10_3390_plants11010014
crossref_primary_10_1111_nph_19718
crossref_primary_10_1038_s41467_022_34106_x
crossref_primary_10_3390_plants9111585
crossref_primary_10_1016_j_pbi_2024_102528
crossref_primary_10_1111_tpj_15732
crossref_primary_10_3390_plants10081704
crossref_primary_10_1007_s00299_024_03369_7
crossref_primary_10_1038_s41467_023_41530_0
crossref_primary_10_1016_j_pestbp_2025_106389
crossref_primary_10_3390_plants13202896
crossref_primary_10_3389_fpls_2022_916120
crossref_primary_10_1016_j_jplph_2021_153418
crossref_primary_10_1016_j_fochx_2023_100952
crossref_primary_10_1007_s11120_023_01027_9
crossref_primary_10_1093_plphys_kiab157
crossref_primary_10_1016_j_phytochem_2021_113008
crossref_primary_10_3390_agronomy14071393
crossref_primary_10_1093_jxb_erad359
crossref_primary_10_1093_plcell_koac241
crossref_primary_10_1111_pce_14735
crossref_primary_10_1016_j_asoc_2023_110153
crossref_primary_10_1371_journal_pone_0265490
crossref_primary_10_1016_j_jplph_2021_153526
crossref_primary_10_1371_journal_pgen_1010213
crossref_primary_10_1080_19420889_2023_2195236
crossref_primary_10_1007_s44154_022_00054_1
crossref_primary_10_1002_aisy_202400042
crossref_primary_10_1134_S000629792310005X
crossref_primary_10_3390_ijms25010638
crossref_primary_10_1007_s00425_021_03803_0
crossref_primary_10_1134_S0006297923100061
Cites_doi 10.1074/mcp.RA119.001367
10.1111/j.1399-3054.1991.tb00130.x
10.1111/jipb.12427
10.1073/pnas.1907379116
10.1111/nph.12029
10.1073/pnas.1911758116
10.1104/pp.112.2.853
10.1007/BF00199972
10.1016/j.molp.2018.03.017
10.1007/978-3-540-28516-8_20
10.1146/annurev.pp.38.060187.000523
10.1007/s00425-008-0850-x
10.1111/j.1365-3040.2008.01922.x
10.1104/pp.113.3.747
10.3732/ajb.1200408
10.1126/science.aar6464
10.1093/oxfordjournals.pcp.a076929
10.1111/pce.12728
10.1016/j.cub.2012.02.061
10.1104/pp.114.3.989
10.1104/pp.108.133884
10.1105/tpc.111.093179
10.1111/pce.12736
10.1111/j.1399-3054.1984.tb04575.x
10.1093/jxb/ery185
10.1104/pp.15.01736
10.1073/pnas.1701860114
10.1093/jxb/ern315
10.1038/s41477-020-0632-4
10.1007/s00425-006-0458-y
10.1073/pnas.87.19.7713
10.1139/b92-183
10.1038/117654a0
10.1093/jxb/ern145
10.1016/0014-5793(96)00672-2
10.1007/BF01106769
10.1146/annurev.pp.30.060179.001421
10.1111/j.1469-185X.1979.tb00870.x
10.1111/j.1365-3040.1990.tb01074.x
10.1038/s41467-019-10599-x
10.1074/jbc.M109.061432
10.15252/embj.2018100972
10.1093/jxb/ert204
10.1080/15592324.2016.1161879
10.1111/j.1399-3054.1983.tb00911.x
10.1046/j.1365-313X.2003.01688.x
10.1007/BF00196648
10.1111/tpj.14183
10.1007/s11120-016-0270-x
10.1046/j.1365-3040.1998.00378.x
10.1093/jxb/ert425
10.1146/annurev-arplant-043015-112130
10.1073/pnas.1112535108
10.1007/BF00231397
10.1371/journal.pone.0202142
10.1071/FP16338
10.1073/pnas.1807049115
10.1093/pcp/pcz119
10.1111/nph.13493
10.1139/b76-285
10.1007/BF00440340
10.1016/j.tplants.2016.01.016
10.1016/S0044-328X(76)80136-5
10.1007/978-3-540-28516-8_26
10.1007/BF02042249
10.1038/286259a0
10.1007/s00425-004-1363-x
10.1126/science.274.5294.1914
10.1016/j.cell.2019.03.006
10.1105/tpc.104.026609
10.1105/tpc.109.068395
10.1103/RevModPhys.88.035007
10.1111/j.1365-3040.2006.01614.x
10.1111/j.1365-3040.1995.tb00541.x
10.1016/j.tplants.2005.11.009
10.1111/tpj.13624
10.1104/pp.110.161679
10.1078/0176-1617-00914
10.1111/j.1365-313X.2009.03924.x
10.1007/978-3-540-28516-8_21
10.1111/j.1365-3040.2003.01148.x
10.1007/BF00394867
10.1093/emboj/cdg104
10.1093/jxb/ery153
10.1111/1365-3040.ep11604644
10.1093/jxb/45.4.463
10.1073/pnas.1905142117
10.3390/ijms19040926
10.1093/jxb/ern166
10.1126/science.aat7744
10.1016/S0021-9258(18)49965-6
10.1016/j.cub.2008.04.039
10.1104/pp.19.01242
10.1111/nph.14754
10.1111/j.1469-8137.2006.01787.x
10.1111/nph.14352
10.1038/33725
10.1073/pnas.1912386116
10.2307/1541650
10.1111/j.1399-3054.1984.tb06347.x
10.1038/nature12478
10.1093/jxb/44.4.741
10.1104/pp.116.2.643
10.1111/j.1365-3040.1991.tb00953.x
10.1105/tpc.109.070094
10.1111/j.1365-313X.2006.03002.x
10.1002/1873-3468.13102
10.1111/j.1469-8137.2009.03002.x
10.1038/nplants.2014.25
10.1111/j.1469-8137.1981.tb01687.x
10.1038/s41477-018-0106-0
10.1126/scisignal.2000448
10.1105/tpc.19.00057
10.1034/j.1399-3054.1998.1030107.x
10.1111/j.1365-313X.2010.04283.x
10.1038/360062a0
10.1111/nph.12897
10.1104/pp.105.064196
10.1016/j.molp.2019.05.013
10.1111/j.1469-8137.2004.01238.x
10.1111/nph.12807
10.1016/j.jplph.2012.02.013
10.1104/pp.106.088989
ContentType Journal Article
Copyright 2020 The Authors © 2020 New Phytologist Trust
2020 The Authors. New Phytologist © 2020 New Phytologist Trust
2020 The Authors. New Phytologist © 2020 New Phytologist Trust.
Copyright © 2020 New Phytologist Trust
Copyright_xml – notice: 2020 The Authors © 2020 New Phytologist Trust
– notice: 2020 The Authors. New Phytologist © 2020 New Phytologist Trust
– notice: 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.
– notice: Copyright © 2020 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.16646
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1050
ExternalDocumentID 32392391
10_1111_nph_16646
NPH16646
26928220
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  funderid: 31003A‐163424; 31003A‐175566
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACHIC
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
COF
DOOOF
EJD
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ABSQW
ADXHL
AGUYK
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c5096-2765e47796e9d14f92fbcc4eeb58ca28380dacf8d3ca1c04228a8493056f46cb3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:29:44 EDT 2025
Fri Jul 11 05:38:55 EDT 2025
Fri Jul 25 10:40:22 EDT 2025
Wed Feb 19 02:29:41 EST 2025
Tue Jul 01 02:28:35 EDT 2025
Thu Apr 24 23:03:58 EDT 2025
Wed Jan 22 16:37:48 EST 2025
Thu Jul 03 21:56:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords calcium
mechanostimulation
action potential
ethylene
jasmonate
Language English
License 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5096-2765e47796e9d14f92fbcc4eeb58ca28380dacf8d3ca1c04228a8493056f46cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6572-5024
0000-0001-9158-8804
0000-0002-2367-6834
0000-0002-4521-9036
0000-0002-0125-952X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.16646
PMID 32392391
PQID 2423395108
PQPubID 2026848
PageCount 14
ParticipantIDs proquest_miscellaneous_2561540371
proquest_miscellaneous_2401815194
proquest_journals_2423395108
pubmed_primary_32392391
crossref_citationtrail_10_1111_nph_16646
crossref_primary_10_1111_nph_16646
wiley_primary_10_1111_nph_16646_NPH16646
jstor_primary_26928220
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2020
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 1984; 61
1984; 62
2007; 226
1991; 14
1992; 360
1983; 2
2019; 97
2004; 27
2019; 10
2019; 12
2013; 64
2019; 18
2018; 45
2016; 39
1979; 30
1985; 26
1981; 87
1998; 392
1987; 38
2010; 22
1976; 78
2018; 4
2005; 220
1978; 65
1991; 83
2003; 160
1988; 174
2013; 197
2012; 22
1992; 4
2019; 31
2009; 60
1993; 44
2013; 500
2008; 59
2019; 38
2013; 100
2018a; 360
2003; 33
2016; 11
1976; 54
2018; 19
2018; 592
2018; 115
1926; 117
2016; 21
2009; 184
2018; 11
2009; 229
2016; 170
1996; 112
2019; 177
2003; 22
2018; 13
1997; 113
2017; 40
1997; 114
2018; 361
2018; 122
1990; 13
2005; 138
2007; 30
1998; 116
2012; 169
2017; 114
2014; 67
1983; 57
2010; 63
2014; 65
2014; 204
2020; 6
1990; 87
2019; 60
1991; 266
2010; 154
2019; 116
2011; 23
2009; 284
2009; 59
2014; 203
1966; 20
2016; 88
2015; 1
2009; 21
2012; 1823
1992; 187
2015; 169
2006; 11
2008; 18
1985; 8
1989; 176
2020; 182
1994; 45
2018b; 69
2006
2015; 207
1995; 18
1998; 21
2017; 213
1995; 196
1996; 200
1979; 54
2016; 58
2018; 69
2017; 216
1992; 70
2017; 91
2011; 108
2009; 32
2005; 165
2004; 16
2020; 117
2006; 142
1996; 390
1998; 103
1996; 274
2003; 422
2009; 2
1980; 286
2016; 130
2016; 67
2009; 149
2007; 49
e_1_2_12_6_1
e_1_2_12_130_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_111_1
e_1_2_12_115_1
e_1_2_12_108_1
e_1_2_12_20_1
e_1_2_12_66_1
e_1_2_12_43_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_47_1
e_1_2_12_89_1
Tran D (e_1_2_12_112_1) 2018; 122
e_1_2_12_62_1
e_1_2_12_81_1
e_1_2_12_100_1
e_1_2_12_123_1
e_1_2_12_28_1
e_1_2_12_104_1
e_1_2_12_127_1
e_1_2_12_31_1
e_1_2_12_77_1
Degli Agosti RD (e_1_2_12_16_1) 2014; 67
e_1_2_12_54_1
e_1_2_12_96_1
e_1_2_12_35_1
e_1_2_12_58_1
e_1_2_12_12_1
Gasperini D (e_1_2_12_33_1) 2015; 169
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_92_1
e_1_2_12_3_1
e_1_2_12_18_1
e_1_2_12_110_1
e_1_2_12_114_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_107_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_40_1
e_1_2_12_82_1
e_1_2_12_122_1
e_1_2_12_29_1
e_1_2_12_126_1
e_1_2_12_103_1
e_1_2_12_119_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
Kimura S (e_1_2_12_52_1) 2012; 1823
e_1_2_12_13_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_19_1
e_1_2_12_38_1
e_1_2_12_113_1
e_1_2_12_87_1
e_1_2_12_106_1
e_1_2_12_129_1
e_1_2_12_22_1
e_1_2_12_64_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_68_1
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_49_1
e_1_2_12_121_1
e_1_2_12_102_1
e_1_2_12_125_1
Hildmann T (e_1_2_12_41_1) 1992; 4
e_1_2_12_98_1
e_1_2_12_118_1
e_1_2_12_75_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_71_1
e_1_2_12_5_1
e_1_2_12_39_1
e_1_2_12_116_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_109_1
e_1_2_12_128_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_80_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_120_1
Sibaoka T (e_1_2_12_95_1) 1966; 20
e_1_2_12_105_1
e_1_2_12_124_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_117_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_15_1
e_1_2_12_91_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_9_1
References_xml – volume: 187
  start-page: 523
  year: 1992
  end-page: 531
  article-title: Rapid alterations in growth rate and electrical potentials upon stem excision in pea seedlings
  publication-title: Planta
– volume: 216
  start-page: 1161
  year: 2017
  end-page: 1169
  article-title: Control of basal jasmonate signalling and defence through modulation of intracellular cation flux capacity
  publication-title: New Phytologist
– volume: 32
  start-page: 319
  year: 2009
  end-page: 326
  article-title: Heat‐induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf
  publication-title: Plant, Cell & Environment
– volume: 2
  start-page: 205
  year: 1983
  end-page: 214
  article-title: Calcium stimulation of ethylene production induced by 1‐aminocyclopropane‐1‐carboxylic acid and indole‐3‐acetic acid
  publication-title: Journal of Plant Growth Regulation
– volume: 26
  start-page: 1273
  year: 1985
  end-page: 1283
  article-title: Propagation in stem of a potential variation induced by wounding
  publication-title: Plant and Cell Physiology
– volume: 38
  year: 2019
  article-title: Single‐cell damage elicits regional, nematode‐restricting ethylene responses in roots
  publication-title: EMBO Journal
– volume: 45
  start-page: 463
  year: 1994
  end-page: 469
  article-title: Action potentials in maize sieve tubes change phloem translocation
  publication-title: Journal of Experimental Botany
– volume: 4
  start-page: 152
  year: 2018
  end-page: 156
  article-title: The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects
  publication-title: Nature Plants
– volume: 220
  start-page: 550
  year: 2005
  end-page: 558
  article-title: Decrement and amplification of slow wave potentials during their propagation in L. shoots
  publication-title: Planta
– volume: 213
  start-page: 1818
  year: 2017
  end-page: 1835
  article-title: The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant
  publication-title: New Phytologist
– volume: 116
  start-page: 26066
  year: 2019
  end-page: 26071
  article-title: Insect‐damaged moves like wounded
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 182
  start-page: 1545
  year: 2020
  end-page: 1565
  article-title: Perception of damaged self in plants
  publication-title: Plant Physiology
– volume: 1823
  start-page: 398
  year: 2012
  end-page: 405
  article-title: Protein phosphorylation is a prerequisite for the Ca ‐dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca and reactive oxygen species.
  publication-title: Cell Research
– volume: 62
  start-page: 289
  year: 1984
  end-page: 296
  article-title: Thigmomorphogenesis: ethylene evolution and its role in the changes observed in mechanically perturbed bean plants
  publication-title: Physiologia Plantarum
– start-page: 391
  year: 2006
  end-page: 401
– volume: 116
  start-page: 20226
  year: 2019
  end-page: 20321
  article-title: Arabidopsis H ‐ATPase AHA1 controls slow wave potential duration and wound‐response jasmonate pathway activation
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 392
  start-page: 734
  year: 1998
  end-page: 737
  article-title: Electron currents generated by the human phagocyte NADPH oxidase
  publication-title: Nature
– volume: 21
  start-page: 2341
  year: 2009
  end-page: 2356
  article-title: Ca regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots
  publication-title: Plant Cell
– volume: 142
  start-page: 963
  year: 2006
  end-page: 971
  article-title: Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile
  publication-title: Plant Physiology
– volume: 27
  start-page: 509
  year: 2004
  end-page: 519
  article-title: Scaling phloem transport: information transmission
  publication-title: Plant, Cell & Environment
– volume: 31
  start-page: 1539
  year: 2019
  end-page: 1562
  article-title: The Ca channel CNGC19 regulates Arabidopsis defense against Spodoptera herbivory
  publication-title: Plant Cell
– volume: 38
  start-page: 95
  year: 1987
  end-page: 117
  article-title: Membrane control in the Characeae
  publication-title: Annual Review of Plant Physiology
– volume: 59
  start-page: 2847
  year: 2008
  end-page: 2856
  article-title: Mechanostimulation of leads to enhanced levels of jasmonic acid
  publication-title: Journal of Experimental Botany
– volume: 174
  start-page: 8
  year: 1988
  end-page: 18
  article-title: The action potential of Ellis
  publication-title: Planta
– volume: 30
  start-page: 273
  year: 1979
  end-page: 288
  article-title: Fusicoccin: a tool in plant physiology
  publication-title: Annual Review of Plant Physiology
– volume: 13
  year: 2018
  article-title: oral secretions inhibit the activity of plasma membrane H ‐ATPase
  publication-title: PLoS ONE
– volume: 103
  start-page: 51
  year: 1998
  end-page: 58
  article-title: Action potentials and variation potentials in sunflower: an analysis of their relationships and distinguishing characteristics
  publication-title: Physiologia Plantarum
– volume: 69
  start-page: 4151
  year: 2018b
  end-page: 4163
  article-title: Comparing plant and animal glutamate receptors: common traits but different fates?
  publication-title: Journal of Experimental Botany
– volume: 18
  start-page: 730
  year: 2008
  end-page: 734
  article-title: Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root
  publication-title: Current biology
– volume: 78
  start-page: 24
  year: 1976
  end-page: 32
  article-title: Thigmomorphogenesis: electrical resistance and mechanical correlates of the early events of growth retardation due to mechanical stimulation in beans
  publication-title: Zeitschrift für Pflanzenphysiologie
– volume: 204
  start-page: 282
  year: 2014
  end-page: 288
  article-title: The squeeze cell hypothesis for the activation of jasmonate synthesis in response to wounding
  publication-title: New Phytologist
– volume: 83
  start-page: 529
  year: 1991
  end-page: 533
  article-title: Control of phloem unloading by action potentials in
  publication-title: Physiologia Plantarum
– volume: 284
  start-page: 34506
  year: 2009
  end-page: 34513
  article-title: Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis
  publication-title: The Journal of Biological Chemistry
– volume: 170
  start-page: 2407
  year: 2016
  end-page: 2419
  article-title: Herbivore‐triggered electrophysiological reactions: candidates for systemic signals in higher plants and the challenge of their identification1
  publication-title: Plant Physiology
– volume: 117
  start-page: 654
  year: 1926
  end-page: 655
  article-title: Transmission of stimuli in plants
  publication-title: Nature
– volume: 61
  start-page: 405
  year: 1984
  end-page: 411
  article-title: Thigmomorphogenesis: the relationship of mechanical perturbation to elicitor‐like activity and ethylene production
  publication-title: Physiologia Plantarum
– volume: 59
  start-page: 3121
  year: 2008
  end-page: 3129
  article-title: Anion channel activity is necessary to induce ethylene synthesis and programmed cell death in response to oxalic acid
  publication-title: Journal of Experimental Botany
– volume: 12
  start-page: 1383
  year: 2019
  end-page: 1394
  article-title: Wound‐induced shoot‐to‐root relocation of JA‐Ile precursors coordinates Arabidopsis growth
  publication-title: Molecular Plant
– volume: 176
  start-page: 56
  year: 1989
  end-page: 64
  article-title: Steady ionic currents around pea ( L.) root tips: the effects of tissue wounding
  publication-title: Biological Bulletin
– volume: 154
  start-page: 578
  year: 2010
  end-page: 581
  article-title: The puzzle of phloem pressure
  publication-title: Plant Physiology
– volume: 114
  start-page: 989
  year: 1997
  end-page: 998
  article-title: Wound‐induced changes of membrane voltage, endogenous currents, and ion fluxes in primary roots of maize
  publication-title: Plant Physiology
– volume: 97
  start-page: 623
  year: 2019
  end-page: 645
  article-title: Mitochondrial function modulates touch signalling in
  publication-title: Plant Journal
– volume: 67
  start-page: 125
  year: 2014
  end-page: 138
  article-title: Touch‐induced action potentials in
  publication-title: Archives des Sciences
– volume: 592
  start-page: 1968
  year: 2018
  end-page: 1979
  article-title: Sensing and transducing forces in plants with MSL10 and DEK1 mechanosensors
  publication-title: FEBS letters
– volume: 6
  start-page: 404
  year: 2020
  end-page: 415
  article-title: Real‐time detection of wound‐induced H2O2 signalling waves in plants with optical nanosensors
  publication-title: Nature Plants
– volume: 274
  start-page: 1914
  year: 1996
  end-page: 1917
  article-title: Ethylene as a signal mediating the wound response of tomato plants
  publication-title: Science
– volume: 1
  start-page: 14025
  year: 2015
  end-page: 14029
  article-title: Touch‐induced changes in Arabidopsis morphology dependent on gibberellin breakdown
  publication-title: Nature Plants
– volume: 360
  start-page: 533
  year: 2018a
  end-page: 536
  article-title: CORNICHON sorting and regulation of GLR channels underlie pollen tube Ca homeostasis
  publication-title: Science
– volume: 116
  start-page: 643
  year: 1998
  end-page: 649
  article-title: responses to mechanical stimulation do not require ETR1 or EIN2
  publication-title: Plant Physiology
– volume: 200
  start-page: 50
  year: 1996
  end-page: 57
  article-title: The pathway for systemic electrical signal conduction in the wounded tomato plant
  publication-title: Planta
– volume: 21
  start-page: 376
  year: 2016
  end-page: 387
  article-title: Electrical wiring and long‐distance plant communication
  publication-title: Trends in Plant Science
– volume: 169
  start-page: 2244
  year: 2015
  end-page: 2254
  article-title: Axial and radial oxylipin transport
  publication-title: Plant Physiology
– volume: 22
  start-page: 701
  year: 2012
  end-page: 706
  article-title: Arabidopsis touch‐induced morphogenesis is jasmonate mediated and protects against pests
  publication-title: Current Biology
– volume: 70
  start-page: 1451
  year: 1992
  end-page: 1458
  article-title: Involvement of the proton pump and proton conductance change in the wave of depolarization induced by wounding in
  publication-title: Canadian Journal of Botany
– volume: 87
  start-page: 11
  year: 1981
  end-page: 37
  article-title: The role of electricity in plant movements
  publication-title: New Phytologist
– volume: 500
  start-page: 422
  year: 2013
  end-page: 426
  article-title: genes mediate leaf‐to‐leaf wound signalling
  publication-title: Nature
– volume: 229
  start-page: 539
  year: 2009
  end-page: 547
  article-title: Dissection of heat‐induced systemic signals: superiority of ion fluxes to voltage changes in substomatal cavities
  publication-title: Planta
– volume: 10
  start-page: 1
  year: 2019
  end-page: 9
  article-title: Voltage‐dependent gating of SV channel TPC1 confers vacuole excitability
  publication-title: Nature Communications
– volume: 19
  start-page: 926
  year: 2018
  article-title: The role of potassium channels in long distance electrical signalling: AKT2 modulates tissue excitability while GORK shapes action potentials
  publication-title: International Journal of Molecular Sciences
– volume: 116
  start-page: 23345
  year: 2019
  end-page: 23356
  article-title: A MYC2/MYC3/MYC4‐dependent transcription factor network regulates water spray‐responsive gene expression and jasmonate levels
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 117
  start-page: 752
  year: 2020
  end-page: 760
  article-title: The structural bases for agonist diversity in an glutamate receptor‐like channel
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 67
  start-page: 287
  year: 2016
  end-page: 307
  article-title: Rapid, long‐distance electrical and calcium signaling in plants
  publication-title: Annual Review of Plant Biology
– volume: 169
  start-page: 949
  year: 2012
  end-page: 954
  article-title: The mechanism of propagation of variation potentials in wheat leaves
  publication-title: Journal of Plant Physiology
– volume: 226
  start-page: 203
  year: 2007
  end-page: 214
  article-title: Systemic signalling in barley through action potentials
  publication-title: Planta
– volume: 361
  start-page: 1112
  year: 2018
  end-page: 1115
  article-title: Glutamate triggers long‐distance, calcium‐based plant defense signaling
  publication-title: Science
– volume: 16
  start-page: 3386
  year: 2004
  end-page: 3399
  article-title: Phosphorylation of 1‐aminocyclopropane‐1‐carboxylic acid synthase by MPK6, a stress‐responsive mitogen‐activated protein kinase, induces ethylene biosynthesis in Arabidopsis
  publication-title: Plant Cell
– volume: 11
  start-page: 4
  year: 2016
  article-title: New roles for the GLUTAMATE RECEPTOR‐LIKE 3.3, 3.5, and 3.6 genes as on/off switches of wound‐induced systemic electrical signals
  publication-title: Plant Signaling & Behavior
– start-page: 291
  year: 2006
  end-page: 308
– volume: 30
  start-page: 249
  year: 2007
  end-page: 257
  article-title: Electrical signals and their physiological significance in plants
  publication-title: Plant, Cell & Environment
– volume: 23
  start-page: 4428
  year: 2011
  end-page: 4445
  article-title: Phloem ultrastructure and pressure flow: sieve‐element‐occlusion‐related agglomerations do not affect translocation
  publication-title: Plant Cell
– volume: 44
  start-page: 741
  year: 1993
  end-page: 746
  article-title: Wound‐induced hydraulic signals: survey of occurrence in a range of species
  publication-title: Journal of Experimental Botany
– volume: 165
  start-page: 429
  year: 2005
  end-page: 444
  article-title: Genome‐wide identification of touch‐ and darkness‐regulated Arabidopsis genes: a focus on calmodulin‐like and genes
  publication-title: New Phytologist
– volume: 69
  start-page: 4175
  year: 2018
  end-page: 4193
  article-title: The contribution of organelles to plant intracellular calcium signalling
  publication-title: Journal of Experimental Botany
– volume: 207
  start-page: 996
  year: 2015
  end-page: 1004
  article-title: Systemic cytosolic Ca elevation is activated upon wounding and herbivory in Arabidopsis
  publication-title: New Phytologist
– volume: 33
  start-page: 975
  year: 2003
  end-page: 987
  article-title: Identification of photorespiratory glutamate: ( ) gene in
  publication-title: The Plant Journal
– volume: 65
  start-page: 125
  year: 1978
  end-page: 129
  article-title: Aminosäuren als “leaf movement factors”
  publication-title: Naturwissenschaften
– volume: 160
  start-page: 1203
  year: 2003
  end-page: 1210
  article-title: Variation and action potentials evoked by thermal stimuli accompany enhancement of ethylene emission in distant non‐stimulated leaves of seedlings
  publication-title: Journal of Plant Physiology
– volume: 18
  start-page: 1526
  year: 2019
  end-page: 1542
  article-title: The systemin signaling cascade as derived from time course analyses of the systemin‐responsive phosphoproteome
  publication-title: Molecular & Cellular Proteomics
– volume: 14
  start-page: 431
  year: 1991
  end-page: 436
  article-title: Surface potentials and hydraulic signals in wheat leaves following localized wounding by heat
  publication-title: Plant, Cell & Environment
– volume: 200
  start-page: 416
  year: 1996
  end-page: 425
  article-title: Induction and ionic basis of slow wave potentials in seedlings of L
  publication-title: Planta
– volume: 203
  start-page: 674
  year: 2014
  end-page: 684
  article-title: Real‐time, intracellular recordings of caterpillar‐induced depolarization waves in sieve elements using aphid electrodes
  publication-title: New Phytologist
– volume: 184
  start-page: 644
  year: 2009
  end-page: 656
  article-title: Plants on early alert: glandular trichomes as sensors for insect herbivores
  publication-title: New Phytologist
– volume: 122
  start-page: 849
  year: 2018
  end-page: 860
  article-title: Methanol induces cytosolic calcium variations, membrane depolarization and ethylene production in arabidopsis and tobacco
  publication-title: Annals of Botany
– volume: 13
  start-page: 569
  year: 1990
  end-page: 574
  article-title: Oligosaccharides that induce proteinase inhibitor activity in tomato plants cause depolarization of tomato leaf cells
  publication-title: Plant, Cell & Environment
– volume: 112
  start-page: 853
  year: 1996
  end-page: 860
  article-title: Localized wounding by heat initiates the accumulation of proteinase inhibitor II in abscisic acid‐deficient plants by triggering jasmonic acid biosynthesis
  publication-title: Plant Physiology
– volume: 113
  start-page: 747
  year: 1997
  end-page: 754
  article-title: Distribution and activity of the plasma membrane H ‐ATPase in L. in relation to ionic fluxes and leaf movements
  publication-title: Plant Physiology
– volume: 59
  start-page: 974
  year: 2009
  end-page: 986
  article-title: A rapid wound signal activates the systemic synthesis of bioactive jasmonates in
  publication-title: Plant Journal
– volume: 100
  start-page: 111
  year: 2013
  end-page: 125
  article-title: Gravitropism and mechanical signaling in plants
  publication-title: American Journal of Botany
– volume: 138
  start-page: 2200
  year: 2005
  end-page: 2209
  article-title: Characteristics of electrical signals in poplar and responses in photosynthesis
  publication-title: Plant Physiology
– volume: 286
  start-page: 259
  year: 1980
  end-page: 260
  article-title: Regulation of wound ethylene synthesis in plants
  publication-title: Nature
– volume: 87
  start-page: 7713
  year: 1990
  end-page: 7716
  article-title: Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 88
  year: 2016
  article-title: Sap flow and sugar transport in plants
  publication-title: Reviews of Modern Physics
– volume: 91
  start-page: 1029
  year: 2017
  end-page: 1037
  article-title: Chemical agents transported by xylem mass flow propagate variation potentials
  publication-title: The Plant Journal
– volume: 130
  start-page: 373
  year: 2016
  end-page: 387
  article-title: Electrical signals as mechanism of photosynthesis regulation in plants
  publication-title: Photosynthesis Research
– volume: 4
  start-page: 1157
  year: 1992
  end-page: 1170
  article-title: General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding
  publication-title: Plant Cell
– volume: 115
  start-page: 10178
  year: 2018
  end-page: 10183
  article-title: Identification of cell populations necessary for leaf‐to‐leaf electrical signaling in a wounded plant
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 65
  start-page: 1761
  year: 2014
  end-page: 1787
  article-title: Spread the news: systemic dissemination and local impact of Ca signals along the phloem pathway
  publication-title: Journal of Experimental Botany
– volume: 45
  start-page: 83
  year: 2018
  end-page: 92
  article-title: Two‐pore cation (TPC) channel: not a shorthanded one
  publication-title: Functional Plant Biology
– volume: 108
  start-page: 15492
  year: 2011
  end-page: 15497
  article-title: A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 177
  start-page: 942
  year: 2019
  end-page: 956.e14
  article-title: A jasmonate signaling network activates root stem cells and promotes regeneration
  publication-title: Cell
– volume: 54
  start-page: 2651
  year: 1976
  end-page: 2661
  article-title: Mediation of rapid electrical, metabolic, transpirational, and photosynthetic changes by factors released from wounds. II. Mediation of the variation potential by Ricca's factor
  publication-title: Canadian Journal of Botany
– volume: 11
  start-page: 26
  year: 2006
  end-page: 32
  article-title: Phloem: the long and the short of it
  publication-title: Trends in Plant Science
– volume: 8
  start-page: 239
  year: 1985
  end-page: 245
  article-title: Phloem sap exudation in : elastic responses and anatomical implications
  publication-title: Plant, Cell & Environment
– volume: 22
  start-page: 579
  year: 2010
  end-page: 593
  article-title: Sieve tube geometry in relation to phloem flow
  publication-title: Plant Cell
– volume: 60
  start-page: 2629
  year: 2019
  end-page: 2637
  article-title: Interplay between plant cell walls and jasmonate production
  publication-title: Plant and Cell Physiology
– volume: 54
  start-page: 135
  year: 1979
  end-page: 153
  article-title: : a model for the study of the excitability in plants
  publication-title: Biological Reviews
– volume: 21
  start-page: 1101
  year: 1998
  end-page: 1111
  article-title: Systemin triggers an increase of cytoplasmic calcium in tomato mesophyll cells: Ca mobilization from intra‐ and extracellular compartments
  publication-title: Plant, Cell & Environment
– volume: 22
  start-page: 987
  year: 2003
  end-page: 994
  article-title: Structural view of a fungal toxin acting on a 14‐3‐3 regulatory complex
  publication-title: EMBO Journal
– volume: 49
  start-page: 889
  year: 2007
  end-page: 898
  article-title: A gain‐of‐function allele of TPC1 activates oxylipin biogenesis after leaf wounding in Arabidopsis
  publication-title: The Plant Journal
– volume: 39
  start-page: 1727
  year: 2016
  end-page: 1736
  article-title: microscopy reveals reversible cell wall swelling in kelp sieve tubes: one mechanism for turgor generation and flow control?
  publication-title: Plant, Cell & Environment
– volume: 64
  start-page: 4663
  year: 2013
  end-page: 4680
  article-title: A force of nature: molecular mechanisms of mechanoperception in plants
  publication-title: Journal of Experimental Botany
– volume: 422
  start-page: 442
  year: 2003
  end-page: 446
  article-title: Reactive oxygen species produced by NADPH oxidase regulate plant cell growth
  publication-title: Nature
– volume: 58
  start-page: 600
  year: 2016
  end-page: 609
  article-title: A gain‐of‐function mutation in triggers cell death and wound‐induced hyperaccumulation of jasmonic acid in
  publication-title: Journal of Integrative Plant Biology
– volume: 196
  start-page: 740
  year: 1995
  end-page: 746
  article-title: Only xylem‐borne factors can account for systemic wound signalling in the tomato plant
  publication-title: Planta
– volume: 40
  start-page: 611
  year: 2017
  end-page: 621
  article-title: The trichome is an active mechanosensory switch
  publication-title: Plant, Cell & Environment
– volume: 57
  start-page: 279
  year: 1983
  end-page: 284
  article-title: Electrical activity of the liverwort : the all‐or‐nothing law, strength‐duration relation, refractory periods and intracellular potentials
  publication-title: Physiologia Plantarum
– volume: 11
  start-page: 764
  year: 2018
  end-page: 775
  article-title: Structure and function of TPC1 vacuole SV channel gains shape
  publication-title: Molecular Plant.
– volume: 63
  start-page: 811
  year: 2010
  end-page: 822
  article-title: Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation
  publication-title: Plant Journal
– volume: 60
  start-page: 43
  year: 2009
  end-page: 56
  article-title: Thigmomorphogenesis: a complex plant response to mechano‐stimulation
  publication-title: Journal of Experimental Botany
– volume: 114
  start-page: 4822
  year: 2017
  end-page: 4827
  article-title: Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 149
  start-page: 1593
  year: 2009
  end-page: 1600
  article-title: System potentials, a novel electrical long‐distance apoplastic signal in plants, induced by wounding
  publication-title: Plant Physiology
– volume: 360
  start-page: 62
  year: 1992
  end-page: 65
  article-title: Electrical signalling and systemic proteinase inhibitor induction in the wounded plant
  publication-title: Nature
– volume: 20
  start-page: 49
  year: 1966
  end-page: 74
  article-title: Action potentials in plant organs
  publication-title: Symposia of the Society for Experimental Biology
– start-page: 309
  year: 2006
  end-page: 320
– volume: 197
  start-page: 566
  year: 2013
  end-page: 575
  article-title: Four 13‐lipoxygenases contribute to rapid jasmonate synthesis in wounded Arabidopsis leaves: a role for LOX6 in responses to long distance wound signals
  publication-title: New Phytologist
– volume: 18
  start-page: 33
  year: 1995
  end-page: 41
  article-title: Comparison of electric and growth responses to excision in cucumber and pea seedlings. II. Long‐distance effects are caused by the release of xylem pressure
  publication-title: Plant, Cell & Environment
– volume: 266
  start-page: 3140
  year: 1991
  end-page: 3145
  article-title: Oligosaccharide signaling in plants. Specificity of oligouronide‐enhanced plasma membrane protein phosphorylation
  publication-title: The Journal of Biological Chemistry
– volume: 2
  year: 2009
  article-title: The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli
  publication-title: Science Signaling
– volume: 390
  start-page: 275
  year: 1996
  end-page: 279
  article-title: Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato
  publication-title: FEBS Letters
– ident: e_1_2_12_2_1
  doi: 10.1074/mcp.RA119.001367
– ident: e_1_2_12_30_1
  doi: 10.1111/j.1399-3054.1991.tb00130.x
– ident: e_1_2_12_130_1
  doi: 10.1111/jipb.12427
– ident: e_1_2_12_56_1
  doi: 10.1073/pnas.1907379116
– ident: e_1_2_12_9_1
  doi: 10.1111/nph.12029
– ident: e_1_2_12_116_1
  doi: 10.1073/pnas.1911758116
– ident: e_1_2_12_40_1
  doi: 10.1104/pp.112.2.853
– ident: e_1_2_12_99_1
  doi: 10.1007/BF00199972
– ident: e_1_2_12_38_1
  doi: 10.1016/j.molp.2018.03.017
– ident: e_1_2_12_98_1
  doi: 10.1007/978-3-540-28516-8_20
– ident: e_1_2_12_106_1
  doi: 10.1146/annurev.pp.38.060187.000523
– ident: e_1_2_12_127_1
  doi: 10.1007/s00425-008-0850-x
– ident: e_1_2_12_35_1
  doi: 10.1111/j.1365-3040.2008.01922.x
– ident: e_1_2_12_27_1
  doi: 10.1104/pp.113.3.747
– ident: e_1_2_12_110_1
  doi: 10.3732/ajb.1200408
– ident: e_1_2_12_122_1
  doi: 10.1126/science.aar6464
– volume: 20
  start-page: 49
  year: 1966
  ident: e_1_2_12_95_1
  article-title: Action potentials in plant organs
  publication-title: Symposia of the Society for Experimental Biology
– ident: e_1_2_12_87_1
  doi: 10.1093/oxfordjournals.pcp.a076929
– ident: e_1_2_12_125_1
  doi: 10.1111/pce.12728
– ident: e_1_2_12_11_1
  doi: 10.1016/j.cub.2012.02.061
– volume: 1823
  start-page: 398
  year: 2012
  ident: e_1_2_12_52_1
  article-title: Protein phosphorylation is a prerequisite for the Ca2+‐dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochimica et Biophysica Acta (BBA)‐Molecular
  publication-title: Cell Research
– ident: e_1_2_12_70_1
  doi: 10.1104/pp.114.3.989
– volume: 67
  start-page: 125
  year: 2014
  ident: e_1_2_12_16_1
  article-title: Touch‐induced action potentials in Arabidopsis thaliana
  publication-title: Archives des Sciences
– ident: e_1_2_12_128_1
  doi: 10.1104/pp.108.133884
– ident: e_1_2_12_29_1
  doi: 10.1105/tpc.111.093179
– ident: e_1_2_12_53_1
  doi: 10.1111/pce.12736
– ident: e_1_2_12_4_1
  doi: 10.1111/j.1399-3054.1984.tb04575.x
– ident: e_1_2_12_13_1
  doi: 10.1093/jxb/ery185
– ident: e_1_2_12_129_1
  doi: 10.1104/pp.15.01736
– ident: e_1_2_12_90_1
  doi: 10.1073/pnas.1701860114
– ident: e_1_2_12_10_1
  doi: 10.1093/jxb/ern315
– ident: e_1_2_12_62_1
  doi: 10.1038/s41477-020-0632-4
– ident: e_1_2_12_25_1
  doi: 10.1007/s00425-006-0458-y
– ident: e_1_2_12_24_1
  doi: 10.1073/pnas.87.19.7713
– ident: e_1_2_12_49_1
  doi: 10.1139/b92-183
– ident: e_1_2_12_85_1
  doi: 10.1038/117654a0
– ident: e_1_2_12_113_1
  doi: 10.1093/jxb/ern145
– ident: e_1_2_12_102_1
  doi: 10.1016/0014-5793(96)00672-2
– ident: e_1_2_12_65_1
  doi: 10.1007/BF01106769
– ident: e_1_2_12_68_1
  doi: 10.1146/annurev.pp.30.060179.001421
– ident: e_1_2_12_86_1
  doi: 10.1111/j.1469-185X.1979.tb00870.x
– ident: e_1_2_12_107_1
  doi: 10.1111/j.1365-3040.1990.tb01074.x
– ident: e_1_2_12_46_1
  doi: 10.1038/s41467-019-10599-x
– ident: e_1_2_12_34_1
  doi: 10.1074/jbc.M109.061432
– ident: e_1_2_12_67_1
  doi: 10.15252/embj.2018100972
– ident: e_1_2_12_74_1
  doi: 10.1093/jxb/ert204
– ident: e_1_2_12_88_1
  doi: 10.1080/15592324.2016.1161879
– ident: e_1_2_12_18_1
  doi: 10.1111/j.1399-3054.1983.tb00911.x
– ident: e_1_2_12_44_1
  doi: 10.1046/j.1365-313X.2003.01688.x
– ident: e_1_2_12_83_1
  doi: 10.1007/BF00196648
– ident: e_1_2_12_124_1
  doi: 10.1111/tpj.14183
– ident: e_1_2_12_104_1
  doi: 10.1007/s11120-016-0270-x
– ident: e_1_2_12_76_1
  doi: 10.1046/j.1365-3040.1998.00378.x
– ident: e_1_2_12_115_1
  doi: 10.1093/jxb/ert425
– ident: e_1_2_12_12_1
  doi: 10.1146/annurev-arplant-043015-112130
– ident: e_1_2_12_20_1
  doi: 10.1073/pnas.1112535108
– volume: 122
  start-page: 849
  year: 2018
  ident: e_1_2_12_112_1
  article-title: Methanol induces cytosolic calcium variations, membrane depolarization and ethylene production in arabidopsis and tobacco
  publication-title: Annals of Botany
– ident: e_1_2_12_101_1
  doi: 10.1007/BF00231397
– ident: e_1_2_12_8_1
  doi: 10.1371/journal.pone.0202142
– ident: e_1_2_12_81_1
  doi: 10.1071/FP16338
– ident: e_1_2_12_78_1
  doi: 10.1073/pnas.1807049115
– ident: e_1_2_12_71_1
  doi: 10.1093/pcp/pcz119
– ident: e_1_2_12_51_1
  doi: 10.1111/nph.13493
– ident: e_1_2_12_117_1
  doi: 10.1139/b76-285
– volume: 4
  start-page: 1157
  year: 1992
  ident: e_1_2_12_41_1
  article-title: General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding
  publication-title: Plant Cell
– ident: e_1_2_12_91_1
  doi: 10.1007/BF00440340
– ident: e_1_2_12_39_1
  doi: 10.1016/j.tplants.2016.01.016
– ident: e_1_2_12_45_1
  doi: 10.1016/S0044-328X(76)80136-5
– ident: e_1_2_12_84_1
  doi: 10.1007/978-3-540-28516-8_26
– ident: e_1_2_12_26_1
  doi: 10.1007/BF02042249
– ident: e_1_2_12_6_1
  doi: 10.1038/286259a0
– ident: e_1_2_12_97_1
  doi: 10.1007/s00425-004-1363-x
– ident: e_1_2_12_79_1
  doi: 10.1126/science.274.5294.1914
– ident: e_1_2_12_126_1
  doi: 10.1016/j.cell.2019.03.006
– ident: e_1_2_12_64_1
  doi: 10.1105/tpc.104.026609
– ident: e_1_2_12_73_1
  doi: 10.1105/tpc.109.068395
– ident: e_1_2_12_47_1
  doi: 10.1103/RevModPhys.88.035007
– ident: e_1_2_12_32_1
  doi: 10.1111/j.1365-3040.2006.01614.x
– ident: e_1_2_12_100_1
  doi: 10.1111/j.1365-3040.1995.tb00541.x
– ident: e_1_2_12_108_1
  doi: 10.1016/j.tplants.2005.11.009
– ident: e_1_2_12_21_1
  doi: 10.1111/tpj.13624
– ident: e_1_2_12_114_1
  doi: 10.1104/pp.110.161679
– ident: e_1_2_12_17_1
  doi: 10.1078/0176-1617-00914
– ident: e_1_2_12_54_1
  doi: 10.1111/j.1365-313X.2009.03924.x
– ident: e_1_2_12_15_1
  doi: 10.1007/978-3-540-28516-8_21
– ident: e_1_2_12_109_1
  doi: 10.1111/j.1365-3040.2003.01148.x
– ident: e_1_2_12_42_1
  doi: 10.1007/BF00394867
– ident: e_1_2_12_123_1
  doi: 10.1093/emboj/cdg104
– ident: e_1_2_12_121_1
  doi: 10.1093/jxb/ery153
– ident: e_1_2_12_50_1
  doi: 10.1111/1365-3040.ep11604644
– ident: e_1_2_12_31_1
  doi: 10.1093/jxb/45.4.463
– ident: e_1_2_12_3_1
  doi: 10.1073/pnas.1905142117
– ident: e_1_2_12_14_1
  doi: 10.3390/ijms19040926
– ident: e_1_2_12_19_1
  doi: 10.1093/jxb/ern166
– ident: e_1_2_12_111_1
  doi: 10.1126/science.aat7744
– ident: e_1_2_12_23_1
  doi: 10.1016/S0021-9258(18)49965-6
– ident: e_1_2_12_37_1
  doi: 10.1016/j.cub.2008.04.039
– ident: e_1_2_12_63_1
  doi: 10.1104/pp.19.01242
– ident: e_1_2_12_61_1
  doi: 10.1111/nph.14754
– ident: e_1_2_12_28_1
  doi: 10.1111/j.1469-8137.2006.01787.x
– ident: e_1_2_12_55_1
  doi: 10.1111/nph.14352
– ident: e_1_2_12_92_1
  doi: 10.1038/33725
– ident: e_1_2_12_57_1
  doi: 10.1073/pnas.1912386116
– ident: e_1_2_12_43_1
  doi: 10.2307/1541650
– ident: e_1_2_12_105_1
  doi: 10.1111/j.1399-3054.1984.tb06347.x
– ident: e_1_2_12_75_1
  doi: 10.1038/nature12478
– ident: e_1_2_12_5_1
  doi: 10.1093/jxb/44.4.741
– ident: e_1_2_12_48_1
  doi: 10.1104/pp.116.2.643
– ident: e_1_2_12_66_1
  doi: 10.1111/j.1365-3040.1991.tb00953.x
– ident: e_1_2_12_77_1
  doi: 10.1105/tpc.109.070094
– ident: e_1_2_12_7_1
  doi: 10.1111/j.1365-313X.2006.03002.x
– ident: e_1_2_12_36_1
  doi: 10.1002/1873-3468.13102
– ident: e_1_2_12_80_1
  doi: 10.1111/j.1469-8137.2009.03002.x
– ident: e_1_2_12_58_1
  doi: 10.1038/nplants.2014.25
– ident: e_1_2_12_96_1
  doi: 10.1111/j.1469-8137.1981.tb01687.x
– ident: e_1_2_12_119_1
  doi: 10.1038/s41477-018-0106-0
– ident: e_1_2_12_72_1
  doi: 10.1126/scisignal.2000448
– ident: e_1_2_12_69_1
  doi: 10.1105/tpc.19.00057
– ident: e_1_2_12_103_1
  doi: 10.1034/j.1399-3054.1998.1030107.x
– volume: 169
  start-page: 2244
  year: 2015
  ident: e_1_2_12_33_1
  article-title: Axial and radial oxylipin transport
  publication-title: Plant Physiology
– ident: e_1_2_12_94_1
  doi: 10.1111/j.1365-313X.2010.04283.x
– ident: e_1_2_12_120_1
  doi: 10.1038/360062a0
– ident: e_1_2_12_22_1
  doi: 10.1111/nph.12897
– ident: e_1_2_12_59_1
  doi: 10.1104/pp.105.064196
– ident: e_1_2_12_93_1
  doi: 10.1016/j.molp.2019.05.013
– ident: e_1_2_12_60_1
  doi: 10.1111/j.1469-8137.2004.01238.x
– ident: e_1_2_12_89_1
  doi: 10.1111/nph.12807
– ident: e_1_2_12_118_1
  doi: 10.1016/j.jplph.2012.02.013
– ident: e_1_2_12_82_1
  doi: 10.1104/pp.106.088989
SSID ssj0009562
Score 2.6342466
SecondaryResourceType review_article
Snippet Plants in nature are constantly exposed to organisms that touch them and wound them.A highly conserved response to these stimuli is a rapid collapse of...
Summary Plants in nature are constantly exposed to organisms that touch them and wound them. A highly conserved response to these stimuli is a rapid collapse...
Plants in nature are constantly exposed to organisms that touch them and wound them. A highly conserved response to these stimuli is a rapid collapse of...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1037
SubjectTerms action potential
Arabidopsis
Arabidopsis Proteins
Calcium
Calcium ions
Cell walls
Depolarization
electric field
electroosmosis
ethylene
Field strength
Genes
Glutamate receptors
glutamic acid
Homology
Hormones
jasmonate
Jasmonic acid
Leaves
mechanostimulation
Membrane potential
Membranes
oxidoreductases
Phloem
Plant Leaves
Power plants
Propagation
respiratory burst
Respiratory burst oxidase
Signaling
Stimuli
Tansley review
Touch
Turgor
Wounds
Xylem
Title Wound- and mechanostimulated electrical signals control hormone responses
URI https://www.jstor.org/stable/26928220
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16646
https://www.ncbi.nlm.nih.gov/pubmed/32392391
https://www.proquest.com/docview/2423395108
https://www.proquest.com/docview/2401815194
https://www.proquest.com/docview/2561540371
Volume 227
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA0iLtz4rtYXo7joZkonSTMTXKkoRUFELHYhDEkmQ0Gdim0XuvIT_Ea_xHszD6pUEXcDuSGZ3NzMSebkXEIOjOEo60V9I1LpcxtSX7EEAk9SnbQTE1jt2BaXotPl5712b4Yclndhcn2I6sANI8Ot1xjgSg8ngjx76jcDITjKbSNXCwHRNZ0Q3BW0VGAGo16hKoQsnqrml29RTkecBjS_4lb34TlbJHdll3O-yX1zPNJN8_pNzfGf77REFgpA6h3lM2iZzNhshcwdDwA0vqySi1tMu_Tx9u6pLPEeLd4THsCq8IhZv2zi5Vl00NEeMkFgLnsF-d3rAxoeZNZ7zlm4drhGumenNycdv8i_4BsUhfFpKNqWh6EUViYBTyVNNfjWWt2OjAJcErUSZdIoYUYFxomJqYhL3JSkXBjNamQ2g4Y28Ga40sxKxpgSHPZwUaRaoYL6EP6BDlp10ig9EZtCnBxzZDzE5SYFhiZ2Q1Mn-5XpU67IMc2o5txZWVAhkTALDW2X_o2LaB3GiCkZQs2oTvaqYogz_HmiMjsYow1KmwHe5b_YABgFBMzCoE7W87lTdYBRQKJMQknDzYCf-x5fXnXcw-bfTbfIPMWDAMdM3Cazo-ex3QG0NNK7Liw-ARBTD5w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VggQX_guhLRgEUi8bZW3Huz5wgJYqJSVCqBW5bW2vV5XabqomESonHqEPwqvwEjwJM94ftaggLj1wi7ST7Ox6ZvzZ-fwNwEvnJMl68cipQkfSJzwyIsfE09zm_dzF3ga2xUgNduX7cX-8AN-bszCVPkS74UaZEeo1JThtSJ_L8vJ4vxsrJVVNqRz60y-4YJu-3trA0X3F-ea7nfVBVPcUiBwJnUQ8UX0vk0Qrr_NYFpoXFv313vZTZ3CuTXu5cUWaC2diFwSyTCo1Ae1CKmcF_u41uE4dxEmpf-MTPyfxq3ij-YxejWsdI-INta5emP0qAuRl0PYiUg5T3eYd-NG8pIrhctCdz2zXff1NP_J_eYt34XaNudmbKknuwYIv78ONtxPExacPYPiZOkv9_HbGTJmzI09HoSdY-I6osZnPWdUoiGKZEdkF05XV_H62j4B_Unp2UhGN_fQh7F7JgyzBYok3ekyH340VXgshjJK4TE1T00sMfh8rXGzjXgfWmqHPXK2_Tm1ADrNmHYZDkYWh6MCL1vS4Eh25zGgpxE9rwZUmTjDeaKUJqKwuSNOMYLMgNJ124Hl7GUsJ_T9kSj-Zkw2ptyGkl3-xQbyNIF8kcQceVcHaOiA4gm2h8cpaCLk_-56NPg7Chyf_bvoMbg52Pmxn21uj4TLc4rTvEYiYK7A4O5n7VQSHM_s05CSDvasO31_g422i
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VghCX8lsaKGAQSL04inc3a--BAxCilKCoQlTk5u6fVQnqRE0iVE48Au_Bq_AUPAkz6x-1qCAuPXCz5Ik99s7Mfut8-w3AU2sFyXqx2MpCxcKnLNbcYeIpZlzf2cSbwLaYyNG-eDPtT9fge7MXptKHaD-4UWaEek0JPnfFqSQv54fdREoha0bl2J98xvXa4vnuAAf3GWPD1-9fjeK6pUBsSeckZqnse5GmSnrlElEoVhh013vTz6zGqTbrOW2LzHGrExv0sXQmFOHsQkhrOF73ElwWsqeoT8TgHTul8CtZI_mMXk1rGSOiDbWunpn8Kv7jecj2LFAOM93wOvxo3lFFcPnYXS1N1375TT7yP3mJN2CjRtzRiypFbsKaL2_BlZczRMUnt2H8gfpK_fz6LdKli448bYSeYdk7orZm3kVVmyCK5IioLpisUc3ujw4R7s9KHx1XNGO_uAP7F_Igm7Be4o22aOu7NtwrzrmWAhepWaZ7qcbfY31LTNLrwE4z8rmt1depCcinvFmF4VDkYSg68KQ1nVeSI-cZbYbwaS2YVMQIxhttN_GU1-VokRNo5oSlsw48bk9jIaF_h3TpZyuyIe02BPTiLzaIthHi8zTpwN0qVlsHOEOozRWe2QkR92ff88neKBzc-3fTR3B1bzDM3-5OxvfhGqOPHoGFuQ3ry-OVf4DIcGkehoyM4OCio_cXFchsUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wound%E2%80%90+and+mechanostimulated+electrical+signals+control+hormone+responses&rft.jtitle=The+New+phytologist&rft.au=Farmer%2C+Edward+E.&rft.au=Gao%2C+Yong%E2%80%90Qiang&rft.au=Lenzoni%2C+Gioia&rft.au=Wolfender%2C+Jean%E2%80%90Luc&rft.date=2020-08-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=227&rft.issue=4&rft.spage=1037&rft.epage=1050&rft_id=info:doi/10.1111%2Fnph.16646&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_16646
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon