Wound- and mechanostimulated electrical signals control hormone responses
Plants in nature are constantly exposed to organisms that touch them and wound them.A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate...
Saved in:
Published in | The New phytologist Vol. 227; no. 4; pp. 1037 - 1050 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.08.2020
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plants in nature are constantly exposed to organisms that touch them and wound them.A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate or ethylene. Here, the various types of electrical signals in plants are discussed in the context of hormone responses. Genetic approaches are revealing genes involved in wound-induced electrical signalling. These include clade 3 GLUTAMATE RECEPTOR-LIKE (GLR) genes, Arabidopsis H⁺-ATPases (AHAs), RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), and genes that determine cell wall properties. We briefly review touch- and wound-induced increases in cytosolic Ca2+ concentrations and their temporal relationship to electrical activities. We then look at the questions that need addressing to link mechanostimulation and wound-induced electrical activity to hormone responses. Utilizing recently published results, we also present a hypothesis for wound-response leaf-to-leaf electrical signalling. This model is based on rapid electro-osmotic coupling between the phloem and xylem. The model suggests that the depolarization of membranes within the vascular matrix triggered by physical stimuli and/or chemical elicitors is linked to changes in phloem turgor and that this plays vital roles in leaf-to-leaf electrical signal propagation. |
---|---|
AbstractList | Summary
Plants in nature are constantly exposed to organisms that touch them and wound them. A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate or ethylene. Here, the various types of electrical signals in plants are discussed in the context of hormone responses. Genetic approaches are revealing genes involved in wound‐induced electrical signalling. These include clade 3 GLUTAMATE RECEPTOR‐LIKE (GLR) genes, Arabidopsis H+‐ATPases (AHAs), RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), and genes that determine cell wall properties. We briefly review touch‐ and wound‐induced increases in cytosolic Ca2+ concentrations and their temporal relationship to electrical activities. We then look at the questions that need addressing to link mechanostimulation and wound‐induced electrical activity to hormone responses. Utilizing recently published results, we also present a hypothesis for wound‐response leaf‐to‐leaf electrical signalling. This model is based on rapid electro‐osmotic coupling between the phloem and xylem. The model suggests that the depolarization of membranes within the vascular matrix triggered by physical stimuli and/or chemical elicitors is linked to changes in phloem turgor and that this plays vital roles in leaf‐to‐leaf electrical signal propagation. Plants in nature are constantly exposed to organisms that touch them and wound them. A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate or ethylene. Here, the various types of electrical signals in plants are discussed in the context of hormone responses. Genetic approaches are revealing genes involved in wound-induced electrical signalling. These include clade 3 GLUTAMATE RECEPTOR-LIKE (GLR) genes, Arabidopsis H+ -ATPases (AHAs), RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), and genes that determine cell wall properties. We briefly review touch- and wound-induced increases in cytosolic Ca2+ concentrations and their temporal relationship to electrical activities. We then look at the questions that need addressing to link mechanostimulation and wound-induced electrical activity to hormone responses. Utilizing recently published results, we also present a hypothesis for wound-response leaf-to-leaf electrical signalling. This model is based on rapid electro-osmotic coupling between the phloem and xylem. The model suggests that the depolarization of membranes within the vascular matrix triggered by physical stimuli and/or chemical elicitors is linked to changes in phloem turgor and that this plays vital roles in leaf-to-leaf electrical signal propagation.Plants in nature are constantly exposed to organisms that touch them and wound them. A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate or ethylene. Here, the various types of electrical signals in plants are discussed in the context of hormone responses. Genetic approaches are revealing genes involved in wound-induced electrical signalling. These include clade 3 GLUTAMATE RECEPTOR-LIKE (GLR) genes, Arabidopsis H+ -ATPases (AHAs), RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), and genes that determine cell wall properties. We briefly review touch- and wound-induced increases in cytosolic Ca2+ concentrations and their temporal relationship to electrical activities. We then look at the questions that need addressing to link mechanostimulation and wound-induced electrical activity to hormone responses. Utilizing recently published results, we also present a hypothesis for wound-response leaf-to-leaf electrical signalling. This model is based on rapid electro-osmotic coupling between the phloem and xylem. The model suggests that the depolarization of membranes within the vascular matrix triggered by physical stimuli and/or chemical elicitors is linked to changes in phloem turgor and that this plays vital roles in leaf-to-leaf electrical signal propagation. Plants in nature are constantly exposed to organisms that touch them and wound them.A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate or ethylene. Here, the various types of electrical signals in plants are discussed in the context of hormone responses. Genetic approaches are revealing genes involved in wound-induced electrical signalling. These include clade 3 GLUTAMATE RECEPTOR-LIKE (GLR) genes, Arabidopsis H⁺-ATPases (AHAs), RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), and genes that determine cell wall properties. We briefly review touch- and wound-induced increases in cytosolic Ca2+ concentrations and their temporal relationship to electrical activities. We then look at the questions that need addressing to link mechanostimulation and wound-induced electrical activity to hormone responses. Utilizing recently published results, we also present a hypothesis for wound-response leaf-to-leaf electrical signalling. This model is based on rapid electro-osmotic coupling between the phloem and xylem. The model suggests that the depolarization of membranes within the vascular matrix triggered by physical stimuli and/or chemical elicitors is linked to changes in phloem turgor and that this plays vital roles in leaf-to-leaf electrical signal propagation. Plants in nature are constantly exposed to organisms that touch them and wound them. A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate or ethylene. Here, the various types of electrical signals in plants are discussed in the context of hormone responses. Genetic approaches are revealing genes involved in wound-induced electrical signalling. These include clade 3 GLUTAMATE RECEPTOR-LIKE (GLR) genes, Arabidopsis H -ATPases (AHAs), RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), and genes that determine cell wall properties. We briefly review touch- and wound-induced increases in cytosolic Ca concentrations and their temporal relationship to electrical activities. We then look at the questions that need addressing to link mechanostimulation and wound-induced electrical activity to hormone responses. Utilizing recently published results, we also present a hypothesis for wound-response leaf-to-leaf electrical signalling. This model is based on rapid electro-osmotic coupling between the phloem and xylem. The model suggests that the depolarization of membranes within the vascular matrix triggered by physical stimuli and/or chemical elicitors is linked to changes in phloem turgor and that this plays vital roles in leaf-to-leaf electrical signal propagation. Plants in nature are constantly exposed to organisms that touch them and wound them. A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate or ethylene. Here, the various types of electrical signals in plants are discussed in the context of hormone responses. Genetic approaches are revealing genes involved in wound‐induced electrical signalling. These include clade 3 GLUTAMATE RECEPTOR‐LIKE ( GLR ) genes, Arabidopsis H + ‐ATPases ( AHA s), RESPIRATORY BURST OXIDASE HOMOLOGUE s ( RBOH s), and genes that determine cell wall properties. We briefly review touch‐ and wound‐induced increases in cytosolic Ca 2+ concentrations and their temporal relationship to electrical activities. We then look at the questions that need addressing to link mechanostimulation and wound‐induced electrical activity to hormone responses. Utilizing recently published results, we also present a hypothesis for wound‐response leaf‐to‐leaf electrical signalling. This model is based on rapid electro‐osmotic coupling between the phloem and xylem. The model suggests that the depolarization of membranes within the vascular matrix triggered by physical stimuli and/or chemical elicitors is linked to changes in phloem turgor and that this plays vital roles in leaf‐to‐leaf electrical signal propagation. Plants in nature are constantly exposed to organisms that touch them and wound them. A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate or ethylene. Here, the various types of electrical signals in plants are discussed in the context of hormone responses. Genetic approaches are revealing genes involved in wound‐induced electrical signalling. These include clade 3 GLUTAMATE RECEPTOR‐LIKE (GLR) genes, Arabidopsis H+‐ATPases (AHAs), RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), and genes that determine cell wall properties. We briefly review touch‐ and wound‐induced increases in cytosolic Ca2+ concentrations and their temporal relationship to electrical activities. We then look at the questions that need addressing to link mechanostimulation and wound‐induced electrical activity to hormone responses. Utilizing recently published results, we also present a hypothesis for wound‐response leaf‐to‐leaf electrical signalling. This model is based on rapid electro‐osmotic coupling between the phloem and xylem. The model suggests that the depolarization of membranes within the vascular matrix triggered by physical stimuli and/or chemical elicitors is linked to changes in phloem turgor and that this plays vital roles in leaf‐to‐leaf electrical signal propagation. Plants in nature are constantly exposed to organisms that touch them and wound them. A highly conserved response to these stimuli is a rapid collapse of membrane potential (i.e. a decrease of electrical field strength across membranes). This can be coupled to the production and/or action of jasmonate or ethylene. Here, the various types of electrical signals in plants are discussed in the context of hormone responses. Genetic approaches are revealing genes involved in wound‐induced electrical signalling. These include clade 3 GLUTAMATE RECEPTOR‐LIKE (GLR) genes, Arabidopsis H⁺‐ATPases (AHAs), RESPIRATORY BURST OXIDASE HOMOLOGUEs (RBOHs), and genes that determine cell wall properties. We briefly review touch‐ and wound‐induced increases in cytosolic Ca²⁺ concentrations and their temporal relationship to electrical activities. We then look at the questions that need addressing to link mechanostimulation and wound‐induced electrical activity to hormone responses. Utilizing recently published results, we also present a hypothesis for wound‐response leaf‐to‐leaf electrical signalling. This model is based on rapid electro‐osmotic coupling between the phloem and xylem. The model suggests that the depolarization of membranes within the vascular matrix triggered by physical stimuli and/or chemical elicitors is linked to changes in phloem turgor and that this plays vital roles in leaf‐to‐leaf electrical signal propagation. |
Author | Lenzoni, Gioia Wolfender, Jean-Luc Farmer, Edward E. Wu, Qian Gao, Yong-Qiang |
Author_xml | – sequence: 1 givenname: Edward E. surname: Farmer fullname: Farmer, Edward E. – sequence: 2 givenname: Yong-Qiang surname: Gao fullname: Gao, Yong-Qiang – sequence: 3 givenname: Gioia surname: Lenzoni fullname: Lenzoni, Gioia – sequence: 4 givenname: Jean-Luc surname: Wolfender fullname: Wolfender, Jean-Luc – sequence: 5 givenname: Qian surname: Wu fullname: Wu, Qian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32392391$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9rFDEYh4O02G314AdQBrzoYdr8n-RYitpCaT0oegvZzDtulkyyJjNIv73Z7q6HohgCgfA8P5L3d4qOYoqA0CuCz0ldF3GzOidScvkMLQiXulWEdUdogTFVbb3-foJOS1ljjLWQ9Dk6YZTpuskC3XxLc-zbxsa-GcGtbExl8uMc7AR9AwHclL2zoSn-R7ShNC7FKafQrFIe6yuaDGWTYoHyAh0PFYCX-_MMff344cvVdXt7_-nm6vK2dQJr2dJOCuBdpyXonvBB02HpHAdYCuUsVUzh3rpB9cxZ4jCnVFnFNcNCDly6JTtD73a5m5x-zlAmM_riIAQbIc3FUCGJ4Jh15P8ox0QRQTSv6Nsn6DrNefvjSlHGtCBYVerNnpqXI_Rmk_1o84M5zLMCFzvA5VRKhsE4P9nJb4dmfTAEm21jpjZmHhurxvsnxiH0b-w-_ZcP8PBv0Nx9vj4Yr3fGukwp_zGo1FRRitlvGNitiA |
CitedBy_id | crossref_primary_10_1016_j_freeradbiomed_2022_10_305 crossref_primary_10_1016_j_biosystemseng_2023_11_007 crossref_primary_10_1162_neco_a_01696 crossref_primary_10_1089_bioe_2022_0042 crossref_primary_10_1126_sciadv_abo6693 crossref_primary_10_3390_plants12091820 crossref_primary_10_31857_S0320972523100068 crossref_primary_10_1111_nph_19803 crossref_primary_10_3389_fsufs_2021_696829 crossref_primary_10_3390_plants11101351 crossref_primary_10_1016_j_cub_2022_12_058 crossref_primary_10_1126_sciadv_ads6417 crossref_primary_10_1016_j_pbi_2022_102270 crossref_primary_10_1080_15592324_2021_1927562 crossref_primary_10_1016_j_jplph_2021_153467 crossref_primary_10_1111_nph_19990 crossref_primary_10_3390_app11041414 crossref_primary_10_31857_S0320972523100056 crossref_primary_10_1016_j_cub_2023_02_026 crossref_primary_10_3389_fpls_2023_1153731 crossref_primary_10_1016_j_plaphy_2021_11_019 crossref_primary_10_1126_sciadv_adh4443 crossref_primary_10_1093_plphys_kiab122 crossref_primary_10_1093_jxb_erac449 crossref_primary_10_3390_ijms22020492 crossref_primary_10_3390_ijms22158254 crossref_primary_10_3389_fpls_2022_880680 crossref_primary_10_1111_nph_17859 crossref_primary_10_1016_j_xinn_2025_100800 crossref_primary_10_1016_j_pbi_2022_102242 crossref_primary_10_1146_annurev_cellbio_120219_035210 crossref_primary_10_3390_app112311217 crossref_primary_10_3389_fpls_2020_610445 crossref_primary_10_1016_j_jplph_2024_154225 crossref_primary_10_1002_aisy_202200288 crossref_primary_10_1093_plcell_koac150 crossref_primary_10_1186_s13007_024_01169_4 crossref_primary_10_1146_annurev_arplant_080620_010429 crossref_primary_10_3390_plants10050878 crossref_primary_10_1111_pce_14894 crossref_primary_10_1073_pnas_2305496120 crossref_primary_10_1007_s40725_024_00238_0 crossref_primary_10_1080_15592324_2024_2388443 crossref_primary_10_1080_15592324_2024_2310977 crossref_primary_10_1007_s12229_024_09306_3 crossref_primary_10_1093_plphys_kiac449 crossref_primary_10_1111_tpj_17152 crossref_primary_10_3390_biology9100324 crossref_primary_10_15252_embj_2022110741 crossref_primary_10_3390_plants13091173 crossref_primary_10_1016_j_cub_2023_01_042 crossref_primary_10_1016_j_pbi_2022_102253 crossref_primary_10_1016_j_cub_2022_04_057 crossref_primary_10_1111_nph_17034 crossref_primary_10_3390_plants12132570 crossref_primary_10_1016_j_bbrc_2020_08_115 crossref_primary_10_1093_jxb_erac105 crossref_primary_10_1093_plphys_kiaa098 crossref_primary_10_1021_acsnano_4c00557 crossref_primary_10_3390_s23020780 crossref_primary_10_1016_j_jplph_2024_154358 crossref_primary_10_3390_ijms24010847 crossref_primary_10_1071_FP23319 crossref_primary_10_1016_j_cell_2023_02_006 crossref_primary_10_1007_s00425_024_04477_0 crossref_primary_10_1073_pnas_2400639121 crossref_primary_10_3389_fpls_2022_812558 crossref_primary_10_1093_pcp_pcac117 crossref_primary_10_1093_plphys_kiab347 crossref_primary_10_1021_acs_chemrev_1c00525 crossref_primary_10_26898_0370_8799_2024_6_11 crossref_primary_10_1111_nph_20311 crossref_primary_10_1111_nph_18476 crossref_primary_10_3390_plants13233292 crossref_primary_10_1126_scisignal_abf0322 crossref_primary_10_1093_plphys_kiac020 crossref_primary_10_1093_plphys_kiab297 crossref_primary_10_1016_j_plaphy_2023_108032 crossref_primary_10_3390_cells10092219 crossref_primary_10_1016_j_plaphy_2021_06_014 crossref_primary_10_1051_medsci_2023123 crossref_primary_10_1093_pcp_pcad051 crossref_primary_10_15421_022474 crossref_primary_10_3390_plants10020372 crossref_primary_10_1038_s41467_025_57239_1 crossref_primary_10_3389_fsufs_2022_1062449 crossref_primary_10_1093_plcell_koac009 crossref_primary_10_1093_plphys_kiac148 crossref_primary_10_1093_plphys_kiab217 crossref_primary_10_1093_plphys_kiab338 crossref_primary_10_1016_j_plaphy_2024_108683 crossref_primary_10_1111_tpj_15360 crossref_primary_10_1126_sciadv_abg4298 crossref_primary_10_1093_pcp_pcae034 crossref_primary_10_3389_fsufs_2021_657401 crossref_primary_10_3390_ijms221910715 crossref_primary_10_1002_advs_202404578 crossref_primary_10_1016_j_pbi_2021_102050 crossref_primary_10_1093_pcp_pcac135 crossref_primary_10_1126_sciadv_abg4619 crossref_primary_10_1038_s41586_024_07884_1 crossref_primary_10_1093_plcell_koac263 crossref_primary_10_1007_s10340_024_01798_7 crossref_primary_10_1111_ppl_13529 crossref_primary_10_1080_07352689_2022_2132710 crossref_primary_10_1080_15592324_2021_1919836 crossref_primary_10_3390_plants11010014 crossref_primary_10_1111_nph_19718 crossref_primary_10_1038_s41467_022_34106_x crossref_primary_10_3390_plants9111585 crossref_primary_10_1016_j_pbi_2024_102528 crossref_primary_10_1111_tpj_15732 crossref_primary_10_3390_plants10081704 crossref_primary_10_1007_s00299_024_03369_7 crossref_primary_10_1038_s41467_023_41530_0 crossref_primary_10_1016_j_pestbp_2025_106389 crossref_primary_10_3390_plants13202896 crossref_primary_10_3389_fpls_2022_916120 crossref_primary_10_1016_j_jplph_2021_153418 crossref_primary_10_1016_j_fochx_2023_100952 crossref_primary_10_1007_s11120_023_01027_9 crossref_primary_10_1093_plphys_kiab157 crossref_primary_10_1016_j_phytochem_2021_113008 crossref_primary_10_3390_agronomy14071393 crossref_primary_10_1093_jxb_erad359 crossref_primary_10_1093_plcell_koac241 crossref_primary_10_1111_pce_14735 crossref_primary_10_1016_j_asoc_2023_110153 crossref_primary_10_1371_journal_pone_0265490 crossref_primary_10_1016_j_jplph_2021_153526 crossref_primary_10_1371_journal_pgen_1010213 crossref_primary_10_1080_19420889_2023_2195236 crossref_primary_10_1007_s44154_022_00054_1 crossref_primary_10_1002_aisy_202400042 crossref_primary_10_1134_S000629792310005X crossref_primary_10_3390_ijms25010638 crossref_primary_10_1007_s00425_021_03803_0 crossref_primary_10_1134_S0006297923100061 |
Cites_doi | 10.1074/mcp.RA119.001367 10.1111/j.1399-3054.1991.tb00130.x 10.1111/jipb.12427 10.1073/pnas.1907379116 10.1111/nph.12029 10.1073/pnas.1911758116 10.1104/pp.112.2.853 10.1007/BF00199972 10.1016/j.molp.2018.03.017 10.1007/978-3-540-28516-8_20 10.1146/annurev.pp.38.060187.000523 10.1007/s00425-008-0850-x 10.1111/j.1365-3040.2008.01922.x 10.1104/pp.113.3.747 10.3732/ajb.1200408 10.1126/science.aar6464 10.1093/oxfordjournals.pcp.a076929 10.1111/pce.12728 10.1016/j.cub.2012.02.061 10.1104/pp.114.3.989 10.1104/pp.108.133884 10.1105/tpc.111.093179 10.1111/pce.12736 10.1111/j.1399-3054.1984.tb04575.x 10.1093/jxb/ery185 10.1104/pp.15.01736 10.1073/pnas.1701860114 10.1093/jxb/ern315 10.1038/s41477-020-0632-4 10.1007/s00425-006-0458-y 10.1073/pnas.87.19.7713 10.1139/b92-183 10.1038/117654a0 10.1093/jxb/ern145 10.1016/0014-5793(96)00672-2 10.1007/BF01106769 10.1146/annurev.pp.30.060179.001421 10.1111/j.1469-185X.1979.tb00870.x 10.1111/j.1365-3040.1990.tb01074.x 10.1038/s41467-019-10599-x 10.1074/jbc.M109.061432 10.15252/embj.2018100972 10.1093/jxb/ert204 10.1080/15592324.2016.1161879 10.1111/j.1399-3054.1983.tb00911.x 10.1046/j.1365-313X.2003.01688.x 10.1007/BF00196648 10.1111/tpj.14183 10.1007/s11120-016-0270-x 10.1046/j.1365-3040.1998.00378.x 10.1093/jxb/ert425 10.1146/annurev-arplant-043015-112130 10.1073/pnas.1112535108 10.1007/BF00231397 10.1371/journal.pone.0202142 10.1071/FP16338 10.1073/pnas.1807049115 10.1093/pcp/pcz119 10.1111/nph.13493 10.1139/b76-285 10.1007/BF00440340 10.1016/j.tplants.2016.01.016 10.1016/S0044-328X(76)80136-5 10.1007/978-3-540-28516-8_26 10.1007/BF02042249 10.1038/286259a0 10.1007/s00425-004-1363-x 10.1126/science.274.5294.1914 10.1016/j.cell.2019.03.006 10.1105/tpc.104.026609 10.1105/tpc.109.068395 10.1103/RevModPhys.88.035007 10.1111/j.1365-3040.2006.01614.x 10.1111/j.1365-3040.1995.tb00541.x 10.1016/j.tplants.2005.11.009 10.1111/tpj.13624 10.1104/pp.110.161679 10.1078/0176-1617-00914 10.1111/j.1365-313X.2009.03924.x 10.1007/978-3-540-28516-8_21 10.1111/j.1365-3040.2003.01148.x 10.1007/BF00394867 10.1093/emboj/cdg104 10.1093/jxb/ery153 10.1111/1365-3040.ep11604644 10.1093/jxb/45.4.463 10.1073/pnas.1905142117 10.3390/ijms19040926 10.1093/jxb/ern166 10.1126/science.aat7744 10.1016/S0021-9258(18)49965-6 10.1016/j.cub.2008.04.039 10.1104/pp.19.01242 10.1111/nph.14754 10.1111/j.1469-8137.2006.01787.x 10.1111/nph.14352 10.1038/33725 10.1073/pnas.1912386116 10.2307/1541650 10.1111/j.1399-3054.1984.tb06347.x 10.1038/nature12478 10.1093/jxb/44.4.741 10.1104/pp.116.2.643 10.1111/j.1365-3040.1991.tb00953.x 10.1105/tpc.109.070094 10.1111/j.1365-313X.2006.03002.x 10.1002/1873-3468.13102 10.1111/j.1469-8137.2009.03002.x 10.1038/nplants.2014.25 10.1111/j.1469-8137.1981.tb01687.x 10.1038/s41477-018-0106-0 10.1126/scisignal.2000448 10.1105/tpc.19.00057 10.1034/j.1399-3054.1998.1030107.x 10.1111/j.1365-313X.2010.04283.x 10.1038/360062a0 10.1111/nph.12897 10.1104/pp.105.064196 10.1016/j.molp.2019.05.013 10.1111/j.1469-8137.2004.01238.x 10.1111/nph.12807 10.1016/j.jplph.2012.02.013 10.1104/pp.106.088989 |
ContentType | Journal Article |
Copyright | 2020 The Authors © 2020 New Phytologist Trust 2020 The Authors. New Phytologist © 2020 New Phytologist Trust 2020 The Authors. New Phytologist © 2020 New Phytologist Trust. Copyright © 2020 New Phytologist Trust |
Copyright_xml | – notice: 2020 The Authors © 2020 New Phytologist Trust – notice: 2020 The Authors. New Phytologist © 2020 New Phytologist Trust – notice: 2020 The Authors. New Phytologist © 2020 New Phytologist Trust. – notice: Copyright © 2020 New Phytologist Trust |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.16646 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 1050 |
ExternalDocumentID | 32392391 10_1111_nph_16646 NPH16646 26928220 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung funderid: 31003A‐163424; 31003A‐175566 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACHIC ACQPF ADULT AEEZP AEQDE AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM AS~ CAG COF DOOOF EJD ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU LW6 MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ABSQW ADXHL AGUYK CITATION CGR CUY CVF ECM EIF NPM PKN 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c5096-2765e47796e9d14f92fbcc4eeb58ca28380dacf8d3ca1c04228a8493056f46cb3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:29:44 EDT 2025 Fri Jul 11 05:38:55 EDT 2025 Fri Jul 25 10:40:22 EDT 2025 Wed Feb 19 02:29:41 EST 2025 Tue Jul 01 02:28:35 EDT 2025 Thu Apr 24 23:03:58 EDT 2025 Wed Jan 22 16:37:48 EST 2025 Thu Jul 03 21:56:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | calcium mechanostimulation action potential ethylene jasmonate |
Language | English |
License | 2020 The Authors. New Phytologist © 2020 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5096-2765e47796e9d14f92fbcc4eeb58ca28380dacf8d3ca1c04228a8493056f46cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6572-5024 0000-0001-9158-8804 0000-0002-2367-6834 0000-0002-4521-9036 0000-0002-0125-952X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.16646 |
PMID | 32392391 |
PQID | 2423395108 |
PQPubID | 2026848 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2561540371 proquest_miscellaneous_2401815194 proquest_journals_2423395108 pubmed_primary_32392391 crossref_citationtrail_10_1111_nph_16646 crossref_primary_10_1111_nph_16646 wiley_primary_10_1111_nph_16646_NPH16646 jstor_primary_26928220 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2020 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 1984; 61 1984; 62 2007; 226 1991; 14 1992; 360 1983; 2 2019; 97 2004; 27 2019; 10 2019; 12 2013; 64 2019; 18 2018; 45 2016; 39 1979; 30 1985; 26 1981; 87 1998; 392 1987; 38 2010; 22 1976; 78 2018; 4 2005; 220 1978; 65 1991; 83 2003; 160 1988; 174 2013; 197 2012; 22 1992; 4 2019; 31 2009; 60 1993; 44 2013; 500 2008; 59 2019; 38 2013; 100 2018a; 360 2003; 33 2016; 11 1976; 54 2018; 19 2018; 592 2018; 115 1926; 117 2016; 21 2009; 184 2018; 11 2009; 229 2016; 170 1996; 112 2019; 177 2003; 22 2018; 13 1997; 113 2017; 40 1997; 114 2018; 361 2018; 122 1990; 13 2005; 138 2007; 30 1998; 116 2012; 169 2017; 114 2014; 67 1983; 57 2010; 63 2014; 65 2014; 204 2020; 6 1990; 87 2019; 60 1991; 266 2010; 154 2019; 116 2011; 23 2009; 284 2009; 59 2014; 203 1966; 20 2016; 88 2015; 1 2009; 21 2012; 1823 1992; 187 2015; 169 2006; 11 2008; 18 1985; 8 1989; 176 2020; 182 1994; 45 2018b; 69 2006 2015; 207 1995; 18 1998; 21 2017; 213 1995; 196 1996; 200 1979; 54 2016; 58 2018; 69 2017; 216 1992; 70 2017; 91 2011; 108 2009; 32 2005; 165 2004; 16 2020; 117 2006; 142 1996; 390 1998; 103 1996; 274 2003; 422 2009; 2 1980; 286 2016; 130 2016; 67 2009; 149 2007; 49 e_1_2_12_6_1 e_1_2_12_130_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_111_1 e_1_2_12_115_1 e_1_2_12_108_1 e_1_2_12_20_1 e_1_2_12_66_1 e_1_2_12_43_1 e_1_2_12_85_1 e_1_2_12_24_1 e_1_2_12_47_1 e_1_2_12_89_1 Tran D (e_1_2_12_112_1) 2018; 122 e_1_2_12_62_1 e_1_2_12_81_1 e_1_2_12_100_1 e_1_2_12_123_1 e_1_2_12_28_1 e_1_2_12_104_1 e_1_2_12_127_1 e_1_2_12_31_1 e_1_2_12_77_1 Degli Agosti RD (e_1_2_12_16_1) 2014; 67 e_1_2_12_54_1 e_1_2_12_96_1 e_1_2_12_35_1 e_1_2_12_58_1 e_1_2_12_12_1 Gasperini D (e_1_2_12_33_1) 2015; 169 e_1_2_12_73_1 e_1_2_12_50_1 e_1_2_12_92_1 e_1_2_12_3_1 e_1_2_12_18_1 e_1_2_12_110_1 e_1_2_12_114_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_107_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 e_1_2_12_40_1 e_1_2_12_82_1 e_1_2_12_122_1 e_1_2_12_29_1 e_1_2_12_126_1 e_1_2_12_103_1 e_1_2_12_119_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_74_1 e_1_2_12_97_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_78_1 Kimura S (e_1_2_12_52_1) 2012; 1823 e_1_2_12_13_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_70_1 e_1_2_12_93_1 e_1_2_12_4_1 e_1_2_12_19_1 e_1_2_12_38_1 e_1_2_12_113_1 e_1_2_12_87_1 e_1_2_12_106_1 e_1_2_12_129_1 e_1_2_12_22_1 e_1_2_12_64_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_68_1 e_1_2_12_83_1 e_1_2_12_60_1 e_1_2_12_49_1 e_1_2_12_121_1 e_1_2_12_102_1 e_1_2_12_125_1 Hildmann T (e_1_2_12_41_1) 1992; 4 e_1_2_12_98_1 e_1_2_12_118_1 e_1_2_12_75_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_79_1 e_1_2_12_14_1 e_1_2_12_90_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_94_1 e_1_2_12_71_1 e_1_2_12_5_1 e_1_2_12_39_1 e_1_2_12_116_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_109_1 e_1_2_12_128_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_80_1 e_1_2_12_61_1 e_1_2_12_84_1 e_1_2_12_27_1 e_1_2_12_101_1 e_1_2_12_120_1 Sibaoka T (e_1_2_12_95_1) 1966; 20 e_1_2_12_105_1 e_1_2_12_124_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_99_1 e_1_2_12_117_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_15_1 e_1_2_12_91_1 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_9_1 |
References_xml | – volume: 187 start-page: 523 year: 1992 end-page: 531 article-title: Rapid alterations in growth rate and electrical potentials upon stem excision in pea seedlings publication-title: Planta – volume: 216 start-page: 1161 year: 2017 end-page: 1169 article-title: Control of basal jasmonate signalling and defence through modulation of intracellular cation flux capacity publication-title: New Phytologist – volume: 32 start-page: 319 year: 2009 end-page: 326 article-title: Heat‐induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf publication-title: Plant, Cell & Environment – volume: 2 start-page: 205 year: 1983 end-page: 214 article-title: Calcium stimulation of ethylene production induced by 1‐aminocyclopropane‐1‐carboxylic acid and indole‐3‐acetic acid publication-title: Journal of Plant Growth Regulation – volume: 26 start-page: 1273 year: 1985 end-page: 1283 article-title: Propagation in stem of a potential variation induced by wounding publication-title: Plant and Cell Physiology – volume: 38 year: 2019 article-title: Single‐cell damage elicits regional, nematode‐restricting ethylene responses in roots publication-title: EMBO Journal – volume: 45 start-page: 463 year: 1994 end-page: 469 article-title: Action potentials in maize sieve tubes change phloem translocation publication-title: Journal of Experimental Botany – volume: 4 start-page: 152 year: 2018 end-page: 156 article-title: The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects publication-title: Nature Plants – volume: 220 start-page: 550 year: 2005 end-page: 558 article-title: Decrement and amplification of slow wave potentials during their propagation in L. shoots publication-title: Planta – volume: 213 start-page: 1818 year: 2017 end-page: 1835 article-title: The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant publication-title: New Phytologist – volume: 116 start-page: 26066 year: 2019 end-page: 26071 article-title: Insect‐damaged moves like wounded publication-title: Proceedings of the National Academy of Sciences, USA – volume: 182 start-page: 1545 year: 2020 end-page: 1565 article-title: Perception of damaged self in plants publication-title: Plant Physiology – volume: 1823 start-page: 398 year: 2012 end-page: 405 article-title: Protein phosphorylation is a prerequisite for the Ca ‐dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca and reactive oxygen species. publication-title: Cell Research – volume: 62 start-page: 289 year: 1984 end-page: 296 article-title: Thigmomorphogenesis: ethylene evolution and its role in the changes observed in mechanically perturbed bean plants publication-title: Physiologia Plantarum – start-page: 391 year: 2006 end-page: 401 – volume: 116 start-page: 20226 year: 2019 end-page: 20321 article-title: Arabidopsis H ‐ATPase AHA1 controls slow wave potential duration and wound‐response jasmonate pathway activation publication-title: Proceedings of the National Academy of Sciences, USA – volume: 392 start-page: 734 year: 1998 end-page: 737 article-title: Electron currents generated by the human phagocyte NADPH oxidase publication-title: Nature – volume: 21 start-page: 2341 year: 2009 end-page: 2356 article-title: Ca regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots publication-title: Plant Cell – volume: 142 start-page: 963 year: 2006 end-page: 971 article-title: Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile publication-title: Plant Physiology – volume: 27 start-page: 509 year: 2004 end-page: 519 article-title: Scaling phloem transport: information transmission publication-title: Plant, Cell & Environment – volume: 31 start-page: 1539 year: 2019 end-page: 1562 article-title: The Ca channel CNGC19 regulates Arabidopsis defense against Spodoptera herbivory publication-title: Plant Cell – volume: 38 start-page: 95 year: 1987 end-page: 117 article-title: Membrane control in the Characeae publication-title: Annual Review of Plant Physiology – volume: 59 start-page: 2847 year: 2008 end-page: 2856 article-title: Mechanostimulation of leads to enhanced levels of jasmonic acid publication-title: Journal of Experimental Botany – volume: 174 start-page: 8 year: 1988 end-page: 18 article-title: The action potential of Ellis publication-title: Planta – volume: 30 start-page: 273 year: 1979 end-page: 288 article-title: Fusicoccin: a tool in plant physiology publication-title: Annual Review of Plant Physiology – volume: 13 year: 2018 article-title: oral secretions inhibit the activity of plasma membrane H ‐ATPase publication-title: PLoS ONE – volume: 103 start-page: 51 year: 1998 end-page: 58 article-title: Action potentials and variation potentials in sunflower: an analysis of their relationships and distinguishing characteristics publication-title: Physiologia Plantarum – volume: 69 start-page: 4151 year: 2018b end-page: 4163 article-title: Comparing plant and animal glutamate receptors: common traits but different fates? publication-title: Journal of Experimental Botany – volume: 18 start-page: 730 year: 2008 end-page: 734 article-title: Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root publication-title: Current biology – volume: 78 start-page: 24 year: 1976 end-page: 32 article-title: Thigmomorphogenesis: electrical resistance and mechanical correlates of the early events of growth retardation due to mechanical stimulation in beans publication-title: Zeitschrift für Pflanzenphysiologie – volume: 204 start-page: 282 year: 2014 end-page: 288 article-title: The squeeze cell hypothesis for the activation of jasmonate synthesis in response to wounding publication-title: New Phytologist – volume: 83 start-page: 529 year: 1991 end-page: 533 article-title: Control of phloem unloading by action potentials in publication-title: Physiologia Plantarum – volume: 284 start-page: 34506 year: 2009 end-page: 34513 article-title: Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis publication-title: The Journal of Biological Chemistry – volume: 170 start-page: 2407 year: 2016 end-page: 2419 article-title: Herbivore‐triggered electrophysiological reactions: candidates for systemic signals in higher plants and the challenge of their identification1 publication-title: Plant Physiology – volume: 117 start-page: 654 year: 1926 end-page: 655 article-title: Transmission of stimuli in plants publication-title: Nature – volume: 61 start-page: 405 year: 1984 end-page: 411 article-title: Thigmomorphogenesis: the relationship of mechanical perturbation to elicitor‐like activity and ethylene production publication-title: Physiologia Plantarum – volume: 59 start-page: 3121 year: 2008 end-page: 3129 article-title: Anion channel activity is necessary to induce ethylene synthesis and programmed cell death in response to oxalic acid publication-title: Journal of Experimental Botany – volume: 12 start-page: 1383 year: 2019 end-page: 1394 article-title: Wound‐induced shoot‐to‐root relocation of JA‐Ile precursors coordinates Arabidopsis growth publication-title: Molecular Plant – volume: 176 start-page: 56 year: 1989 end-page: 64 article-title: Steady ionic currents around pea ( L.) root tips: the effects of tissue wounding publication-title: Biological Bulletin – volume: 154 start-page: 578 year: 2010 end-page: 581 article-title: The puzzle of phloem pressure publication-title: Plant Physiology – volume: 114 start-page: 989 year: 1997 end-page: 998 article-title: Wound‐induced changes of membrane voltage, endogenous currents, and ion fluxes in primary roots of maize publication-title: Plant Physiology – volume: 97 start-page: 623 year: 2019 end-page: 645 article-title: Mitochondrial function modulates touch signalling in publication-title: Plant Journal – volume: 67 start-page: 125 year: 2014 end-page: 138 article-title: Touch‐induced action potentials in publication-title: Archives des Sciences – volume: 592 start-page: 1968 year: 2018 end-page: 1979 article-title: Sensing and transducing forces in plants with MSL10 and DEK1 mechanosensors publication-title: FEBS letters – volume: 6 start-page: 404 year: 2020 end-page: 415 article-title: Real‐time detection of wound‐induced H2O2 signalling waves in plants with optical nanosensors publication-title: Nature Plants – volume: 274 start-page: 1914 year: 1996 end-page: 1917 article-title: Ethylene as a signal mediating the wound response of tomato plants publication-title: Science – volume: 1 start-page: 14025 year: 2015 end-page: 14029 article-title: Touch‐induced changes in Arabidopsis morphology dependent on gibberellin breakdown publication-title: Nature Plants – volume: 360 start-page: 533 year: 2018a end-page: 536 article-title: CORNICHON sorting and regulation of GLR channels underlie pollen tube Ca homeostasis publication-title: Science – volume: 116 start-page: 643 year: 1998 end-page: 649 article-title: responses to mechanical stimulation do not require ETR1 or EIN2 publication-title: Plant Physiology – volume: 200 start-page: 50 year: 1996 end-page: 57 article-title: The pathway for systemic electrical signal conduction in the wounded tomato plant publication-title: Planta – volume: 21 start-page: 376 year: 2016 end-page: 387 article-title: Electrical wiring and long‐distance plant communication publication-title: Trends in Plant Science – volume: 169 start-page: 2244 year: 2015 end-page: 2254 article-title: Axial and radial oxylipin transport publication-title: Plant Physiology – volume: 22 start-page: 701 year: 2012 end-page: 706 article-title: Arabidopsis touch‐induced morphogenesis is jasmonate mediated and protects against pests publication-title: Current Biology – volume: 70 start-page: 1451 year: 1992 end-page: 1458 article-title: Involvement of the proton pump and proton conductance change in the wave of depolarization induced by wounding in publication-title: Canadian Journal of Botany – volume: 87 start-page: 11 year: 1981 end-page: 37 article-title: The role of electricity in plant movements publication-title: New Phytologist – volume: 500 start-page: 422 year: 2013 end-page: 426 article-title: genes mediate leaf‐to‐leaf wound signalling publication-title: Nature – volume: 229 start-page: 539 year: 2009 end-page: 547 article-title: Dissection of heat‐induced systemic signals: superiority of ion fluxes to voltage changes in substomatal cavities publication-title: Planta – volume: 10 start-page: 1 year: 2019 end-page: 9 article-title: Voltage‐dependent gating of SV channel TPC1 confers vacuole excitability publication-title: Nature Communications – volume: 19 start-page: 926 year: 2018 article-title: The role of potassium channels in long distance electrical signalling: AKT2 modulates tissue excitability while GORK shapes action potentials publication-title: International Journal of Molecular Sciences – volume: 116 start-page: 23345 year: 2019 end-page: 23356 article-title: A MYC2/MYC3/MYC4‐dependent transcription factor network regulates water spray‐responsive gene expression and jasmonate levels publication-title: Proceedings of the National Academy of Sciences, USA – volume: 117 start-page: 752 year: 2020 end-page: 760 article-title: The structural bases for agonist diversity in an glutamate receptor‐like channel publication-title: Proceedings of the National Academy of Sciences, USA – volume: 67 start-page: 287 year: 2016 end-page: 307 article-title: Rapid, long‐distance electrical and calcium signaling in plants publication-title: Annual Review of Plant Biology – volume: 169 start-page: 949 year: 2012 end-page: 954 article-title: The mechanism of propagation of variation potentials in wheat leaves publication-title: Journal of Plant Physiology – volume: 226 start-page: 203 year: 2007 end-page: 214 article-title: Systemic signalling in barley through action potentials publication-title: Planta – volume: 361 start-page: 1112 year: 2018 end-page: 1115 article-title: Glutamate triggers long‐distance, calcium‐based plant defense signaling publication-title: Science – volume: 16 start-page: 3386 year: 2004 end-page: 3399 article-title: Phosphorylation of 1‐aminocyclopropane‐1‐carboxylic acid synthase by MPK6, a stress‐responsive mitogen‐activated protein kinase, induces ethylene biosynthesis in Arabidopsis publication-title: Plant Cell – volume: 11 start-page: 4 year: 2016 article-title: New roles for the GLUTAMATE RECEPTOR‐LIKE 3.3, 3.5, and 3.6 genes as on/off switches of wound‐induced systemic electrical signals publication-title: Plant Signaling & Behavior – start-page: 291 year: 2006 end-page: 308 – volume: 30 start-page: 249 year: 2007 end-page: 257 article-title: Electrical signals and their physiological significance in plants publication-title: Plant, Cell & Environment – volume: 23 start-page: 4428 year: 2011 end-page: 4445 article-title: Phloem ultrastructure and pressure flow: sieve‐element‐occlusion‐related agglomerations do not affect translocation publication-title: Plant Cell – volume: 44 start-page: 741 year: 1993 end-page: 746 article-title: Wound‐induced hydraulic signals: survey of occurrence in a range of species publication-title: Journal of Experimental Botany – volume: 165 start-page: 429 year: 2005 end-page: 444 article-title: Genome‐wide identification of touch‐ and darkness‐regulated Arabidopsis genes: a focus on calmodulin‐like and genes publication-title: New Phytologist – volume: 69 start-page: 4175 year: 2018 end-page: 4193 article-title: The contribution of organelles to plant intracellular calcium signalling publication-title: Journal of Experimental Botany – volume: 207 start-page: 996 year: 2015 end-page: 1004 article-title: Systemic cytosolic Ca elevation is activated upon wounding and herbivory in Arabidopsis publication-title: New Phytologist – volume: 33 start-page: 975 year: 2003 end-page: 987 article-title: Identification of photorespiratory glutamate: ( ) gene in publication-title: The Plant Journal – volume: 65 start-page: 125 year: 1978 end-page: 129 article-title: Aminosäuren als “leaf movement factors” publication-title: Naturwissenschaften – volume: 160 start-page: 1203 year: 2003 end-page: 1210 article-title: Variation and action potentials evoked by thermal stimuli accompany enhancement of ethylene emission in distant non‐stimulated leaves of seedlings publication-title: Journal of Plant Physiology – volume: 18 start-page: 1526 year: 2019 end-page: 1542 article-title: The systemin signaling cascade as derived from time course analyses of the systemin‐responsive phosphoproteome publication-title: Molecular & Cellular Proteomics – volume: 14 start-page: 431 year: 1991 end-page: 436 article-title: Surface potentials and hydraulic signals in wheat leaves following localized wounding by heat publication-title: Plant, Cell & Environment – volume: 200 start-page: 416 year: 1996 end-page: 425 article-title: Induction and ionic basis of slow wave potentials in seedlings of L publication-title: Planta – volume: 203 start-page: 674 year: 2014 end-page: 684 article-title: Real‐time, intracellular recordings of caterpillar‐induced depolarization waves in sieve elements using aphid electrodes publication-title: New Phytologist – volume: 184 start-page: 644 year: 2009 end-page: 656 article-title: Plants on early alert: glandular trichomes as sensors for insect herbivores publication-title: New Phytologist – volume: 122 start-page: 849 year: 2018 end-page: 860 article-title: Methanol induces cytosolic calcium variations, membrane depolarization and ethylene production in arabidopsis and tobacco publication-title: Annals of Botany – volume: 13 start-page: 569 year: 1990 end-page: 574 article-title: Oligosaccharides that induce proteinase inhibitor activity in tomato plants cause depolarization of tomato leaf cells publication-title: Plant, Cell & Environment – volume: 112 start-page: 853 year: 1996 end-page: 860 article-title: Localized wounding by heat initiates the accumulation of proteinase inhibitor II in abscisic acid‐deficient plants by triggering jasmonic acid biosynthesis publication-title: Plant Physiology – volume: 113 start-page: 747 year: 1997 end-page: 754 article-title: Distribution and activity of the plasma membrane H ‐ATPase in L. in relation to ionic fluxes and leaf movements publication-title: Plant Physiology – volume: 59 start-page: 974 year: 2009 end-page: 986 article-title: A rapid wound signal activates the systemic synthesis of bioactive jasmonates in publication-title: Plant Journal – volume: 100 start-page: 111 year: 2013 end-page: 125 article-title: Gravitropism and mechanical signaling in plants publication-title: American Journal of Botany – volume: 138 start-page: 2200 year: 2005 end-page: 2209 article-title: Characteristics of electrical signals in poplar and responses in photosynthesis publication-title: Plant Physiology – volume: 286 start-page: 259 year: 1980 end-page: 260 article-title: Regulation of wound ethylene synthesis in plants publication-title: Nature – volume: 87 start-page: 7713 year: 1990 end-page: 7716 article-title: Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves publication-title: Proceedings of the National Academy of Sciences, USA – volume: 88 year: 2016 article-title: Sap flow and sugar transport in plants publication-title: Reviews of Modern Physics – volume: 91 start-page: 1029 year: 2017 end-page: 1037 article-title: Chemical agents transported by xylem mass flow propagate variation potentials publication-title: The Plant Journal – volume: 130 start-page: 373 year: 2016 end-page: 387 article-title: Electrical signals as mechanism of photosynthesis regulation in plants publication-title: Photosynthesis Research – volume: 4 start-page: 1157 year: 1992 end-page: 1170 article-title: General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding publication-title: Plant Cell – volume: 115 start-page: 10178 year: 2018 end-page: 10183 article-title: Identification of cell populations necessary for leaf‐to‐leaf electrical signaling in a wounded plant publication-title: Proceedings of the National Academy of Sciences, USA – volume: 65 start-page: 1761 year: 2014 end-page: 1787 article-title: Spread the news: systemic dissemination and local impact of Ca signals along the phloem pathway publication-title: Journal of Experimental Botany – volume: 45 start-page: 83 year: 2018 end-page: 92 article-title: Two‐pore cation (TPC) channel: not a shorthanded one publication-title: Functional Plant Biology – volume: 108 start-page: 15492 year: 2011 end-page: 15497 article-title: A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap publication-title: Proceedings of the National Academy of Sciences, USA – volume: 177 start-page: 942 year: 2019 end-page: 956.e14 article-title: A jasmonate signaling network activates root stem cells and promotes regeneration publication-title: Cell – volume: 54 start-page: 2651 year: 1976 end-page: 2661 article-title: Mediation of rapid electrical, metabolic, transpirational, and photosynthetic changes by factors released from wounds. II. Mediation of the variation potential by Ricca's factor publication-title: Canadian Journal of Botany – volume: 11 start-page: 26 year: 2006 end-page: 32 article-title: Phloem: the long and the short of it publication-title: Trends in Plant Science – volume: 8 start-page: 239 year: 1985 end-page: 245 article-title: Phloem sap exudation in : elastic responses and anatomical implications publication-title: Plant, Cell & Environment – volume: 22 start-page: 579 year: 2010 end-page: 593 article-title: Sieve tube geometry in relation to phloem flow publication-title: Plant Cell – volume: 60 start-page: 2629 year: 2019 end-page: 2637 article-title: Interplay between plant cell walls and jasmonate production publication-title: Plant and Cell Physiology – volume: 54 start-page: 135 year: 1979 end-page: 153 article-title: : a model for the study of the excitability in plants publication-title: Biological Reviews – volume: 21 start-page: 1101 year: 1998 end-page: 1111 article-title: Systemin triggers an increase of cytoplasmic calcium in tomato mesophyll cells: Ca mobilization from intra‐ and extracellular compartments publication-title: Plant, Cell & Environment – volume: 22 start-page: 987 year: 2003 end-page: 994 article-title: Structural view of a fungal toxin acting on a 14‐3‐3 regulatory complex publication-title: EMBO Journal – volume: 49 start-page: 889 year: 2007 end-page: 898 article-title: A gain‐of‐function allele of TPC1 activates oxylipin biogenesis after leaf wounding in Arabidopsis publication-title: The Plant Journal – volume: 39 start-page: 1727 year: 2016 end-page: 1736 article-title: microscopy reveals reversible cell wall swelling in kelp sieve tubes: one mechanism for turgor generation and flow control? publication-title: Plant, Cell & Environment – volume: 64 start-page: 4663 year: 2013 end-page: 4680 article-title: A force of nature: molecular mechanisms of mechanoperception in plants publication-title: Journal of Experimental Botany – volume: 422 start-page: 442 year: 2003 end-page: 446 article-title: Reactive oxygen species produced by NADPH oxidase regulate plant cell growth publication-title: Nature – volume: 58 start-page: 600 year: 2016 end-page: 609 article-title: A gain‐of‐function mutation in triggers cell death and wound‐induced hyperaccumulation of jasmonic acid in publication-title: Journal of Integrative Plant Biology – volume: 196 start-page: 740 year: 1995 end-page: 746 article-title: Only xylem‐borne factors can account for systemic wound signalling in the tomato plant publication-title: Planta – volume: 40 start-page: 611 year: 2017 end-page: 621 article-title: The trichome is an active mechanosensory switch publication-title: Plant, Cell & Environment – volume: 57 start-page: 279 year: 1983 end-page: 284 article-title: Electrical activity of the liverwort : the all‐or‐nothing law, strength‐duration relation, refractory periods and intracellular potentials publication-title: Physiologia Plantarum – volume: 11 start-page: 764 year: 2018 end-page: 775 article-title: Structure and function of TPC1 vacuole SV channel gains shape publication-title: Molecular Plant. – volume: 63 start-page: 811 year: 2010 end-page: 822 article-title: Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation publication-title: Plant Journal – volume: 60 start-page: 43 year: 2009 end-page: 56 article-title: Thigmomorphogenesis: a complex plant response to mechano‐stimulation publication-title: Journal of Experimental Botany – volume: 114 start-page: 4822 year: 2017 end-page: 4827 article-title: Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells publication-title: Proceedings of the National Academy of Sciences, USA – volume: 149 start-page: 1593 year: 2009 end-page: 1600 article-title: System potentials, a novel electrical long‐distance apoplastic signal in plants, induced by wounding publication-title: Plant Physiology – volume: 360 start-page: 62 year: 1992 end-page: 65 article-title: Electrical signalling and systemic proteinase inhibitor induction in the wounded plant publication-title: Nature – volume: 20 start-page: 49 year: 1966 end-page: 74 article-title: Action potentials in plant organs publication-title: Symposia of the Society for Experimental Biology – start-page: 309 year: 2006 end-page: 320 – volume: 197 start-page: 566 year: 2013 end-page: 575 article-title: Four 13‐lipoxygenases contribute to rapid jasmonate synthesis in wounded Arabidopsis leaves: a role for LOX6 in responses to long distance wound signals publication-title: New Phytologist – volume: 18 start-page: 33 year: 1995 end-page: 41 article-title: Comparison of electric and growth responses to excision in cucumber and pea seedlings. II. Long‐distance effects are caused by the release of xylem pressure publication-title: Plant, Cell & Environment – volume: 266 start-page: 3140 year: 1991 end-page: 3145 article-title: Oligosaccharide signaling in plants. Specificity of oligouronide‐enhanced plasma membrane protein phosphorylation publication-title: The Journal of Biological Chemistry – volume: 2 year: 2009 article-title: The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli publication-title: Science Signaling – volume: 390 start-page: 275 year: 1996 end-page: 279 article-title: Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato publication-title: FEBS Letters – ident: e_1_2_12_2_1 doi: 10.1074/mcp.RA119.001367 – ident: e_1_2_12_30_1 doi: 10.1111/j.1399-3054.1991.tb00130.x – ident: e_1_2_12_130_1 doi: 10.1111/jipb.12427 – ident: e_1_2_12_56_1 doi: 10.1073/pnas.1907379116 – ident: e_1_2_12_9_1 doi: 10.1111/nph.12029 – ident: e_1_2_12_116_1 doi: 10.1073/pnas.1911758116 – ident: e_1_2_12_40_1 doi: 10.1104/pp.112.2.853 – ident: e_1_2_12_99_1 doi: 10.1007/BF00199972 – ident: e_1_2_12_38_1 doi: 10.1016/j.molp.2018.03.017 – ident: e_1_2_12_98_1 doi: 10.1007/978-3-540-28516-8_20 – ident: e_1_2_12_106_1 doi: 10.1146/annurev.pp.38.060187.000523 – ident: e_1_2_12_127_1 doi: 10.1007/s00425-008-0850-x – ident: e_1_2_12_35_1 doi: 10.1111/j.1365-3040.2008.01922.x – ident: e_1_2_12_27_1 doi: 10.1104/pp.113.3.747 – ident: e_1_2_12_110_1 doi: 10.3732/ajb.1200408 – ident: e_1_2_12_122_1 doi: 10.1126/science.aar6464 – volume: 20 start-page: 49 year: 1966 ident: e_1_2_12_95_1 article-title: Action potentials in plant organs publication-title: Symposia of the Society for Experimental Biology – ident: e_1_2_12_87_1 doi: 10.1093/oxfordjournals.pcp.a076929 – ident: e_1_2_12_125_1 doi: 10.1111/pce.12728 – ident: e_1_2_12_11_1 doi: 10.1016/j.cub.2012.02.061 – volume: 1823 start-page: 398 year: 2012 ident: e_1_2_12_52_1 article-title: Protein phosphorylation is a prerequisite for the Ca2+‐dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochimica et Biophysica Acta (BBA)‐Molecular publication-title: Cell Research – ident: e_1_2_12_70_1 doi: 10.1104/pp.114.3.989 – volume: 67 start-page: 125 year: 2014 ident: e_1_2_12_16_1 article-title: Touch‐induced action potentials in Arabidopsis thaliana publication-title: Archives des Sciences – ident: e_1_2_12_128_1 doi: 10.1104/pp.108.133884 – ident: e_1_2_12_29_1 doi: 10.1105/tpc.111.093179 – ident: e_1_2_12_53_1 doi: 10.1111/pce.12736 – ident: e_1_2_12_4_1 doi: 10.1111/j.1399-3054.1984.tb04575.x – ident: e_1_2_12_13_1 doi: 10.1093/jxb/ery185 – ident: e_1_2_12_129_1 doi: 10.1104/pp.15.01736 – ident: e_1_2_12_90_1 doi: 10.1073/pnas.1701860114 – ident: e_1_2_12_10_1 doi: 10.1093/jxb/ern315 – ident: e_1_2_12_62_1 doi: 10.1038/s41477-020-0632-4 – ident: e_1_2_12_25_1 doi: 10.1007/s00425-006-0458-y – ident: e_1_2_12_24_1 doi: 10.1073/pnas.87.19.7713 – ident: e_1_2_12_49_1 doi: 10.1139/b92-183 – ident: e_1_2_12_85_1 doi: 10.1038/117654a0 – ident: e_1_2_12_113_1 doi: 10.1093/jxb/ern145 – ident: e_1_2_12_102_1 doi: 10.1016/0014-5793(96)00672-2 – ident: e_1_2_12_65_1 doi: 10.1007/BF01106769 – ident: e_1_2_12_68_1 doi: 10.1146/annurev.pp.30.060179.001421 – ident: e_1_2_12_86_1 doi: 10.1111/j.1469-185X.1979.tb00870.x – ident: e_1_2_12_107_1 doi: 10.1111/j.1365-3040.1990.tb01074.x – ident: e_1_2_12_46_1 doi: 10.1038/s41467-019-10599-x – ident: e_1_2_12_34_1 doi: 10.1074/jbc.M109.061432 – ident: e_1_2_12_67_1 doi: 10.15252/embj.2018100972 – ident: e_1_2_12_74_1 doi: 10.1093/jxb/ert204 – ident: e_1_2_12_88_1 doi: 10.1080/15592324.2016.1161879 – ident: e_1_2_12_18_1 doi: 10.1111/j.1399-3054.1983.tb00911.x – ident: e_1_2_12_44_1 doi: 10.1046/j.1365-313X.2003.01688.x – ident: e_1_2_12_83_1 doi: 10.1007/BF00196648 – ident: e_1_2_12_124_1 doi: 10.1111/tpj.14183 – ident: e_1_2_12_104_1 doi: 10.1007/s11120-016-0270-x – ident: e_1_2_12_76_1 doi: 10.1046/j.1365-3040.1998.00378.x – ident: e_1_2_12_115_1 doi: 10.1093/jxb/ert425 – ident: e_1_2_12_12_1 doi: 10.1146/annurev-arplant-043015-112130 – ident: e_1_2_12_20_1 doi: 10.1073/pnas.1112535108 – volume: 122 start-page: 849 year: 2018 ident: e_1_2_12_112_1 article-title: Methanol induces cytosolic calcium variations, membrane depolarization and ethylene production in arabidopsis and tobacco publication-title: Annals of Botany – ident: e_1_2_12_101_1 doi: 10.1007/BF00231397 – ident: e_1_2_12_8_1 doi: 10.1371/journal.pone.0202142 – ident: e_1_2_12_81_1 doi: 10.1071/FP16338 – ident: e_1_2_12_78_1 doi: 10.1073/pnas.1807049115 – ident: e_1_2_12_71_1 doi: 10.1093/pcp/pcz119 – ident: e_1_2_12_51_1 doi: 10.1111/nph.13493 – ident: e_1_2_12_117_1 doi: 10.1139/b76-285 – volume: 4 start-page: 1157 year: 1992 ident: e_1_2_12_41_1 article-title: General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding publication-title: Plant Cell – ident: e_1_2_12_91_1 doi: 10.1007/BF00440340 – ident: e_1_2_12_39_1 doi: 10.1016/j.tplants.2016.01.016 – ident: e_1_2_12_45_1 doi: 10.1016/S0044-328X(76)80136-5 – ident: e_1_2_12_84_1 doi: 10.1007/978-3-540-28516-8_26 – ident: e_1_2_12_26_1 doi: 10.1007/BF02042249 – ident: e_1_2_12_6_1 doi: 10.1038/286259a0 – ident: e_1_2_12_97_1 doi: 10.1007/s00425-004-1363-x – ident: e_1_2_12_79_1 doi: 10.1126/science.274.5294.1914 – ident: e_1_2_12_126_1 doi: 10.1016/j.cell.2019.03.006 – ident: e_1_2_12_64_1 doi: 10.1105/tpc.104.026609 – ident: e_1_2_12_73_1 doi: 10.1105/tpc.109.068395 – ident: e_1_2_12_47_1 doi: 10.1103/RevModPhys.88.035007 – ident: e_1_2_12_32_1 doi: 10.1111/j.1365-3040.2006.01614.x – ident: e_1_2_12_100_1 doi: 10.1111/j.1365-3040.1995.tb00541.x – ident: e_1_2_12_108_1 doi: 10.1016/j.tplants.2005.11.009 – ident: e_1_2_12_21_1 doi: 10.1111/tpj.13624 – ident: e_1_2_12_114_1 doi: 10.1104/pp.110.161679 – ident: e_1_2_12_17_1 doi: 10.1078/0176-1617-00914 – ident: e_1_2_12_54_1 doi: 10.1111/j.1365-313X.2009.03924.x – ident: e_1_2_12_15_1 doi: 10.1007/978-3-540-28516-8_21 – ident: e_1_2_12_109_1 doi: 10.1111/j.1365-3040.2003.01148.x – ident: e_1_2_12_42_1 doi: 10.1007/BF00394867 – ident: e_1_2_12_123_1 doi: 10.1093/emboj/cdg104 – ident: e_1_2_12_121_1 doi: 10.1093/jxb/ery153 – ident: e_1_2_12_50_1 doi: 10.1111/1365-3040.ep11604644 – ident: e_1_2_12_31_1 doi: 10.1093/jxb/45.4.463 – ident: e_1_2_12_3_1 doi: 10.1073/pnas.1905142117 – ident: e_1_2_12_14_1 doi: 10.3390/ijms19040926 – ident: e_1_2_12_19_1 doi: 10.1093/jxb/ern166 – ident: e_1_2_12_111_1 doi: 10.1126/science.aat7744 – ident: e_1_2_12_23_1 doi: 10.1016/S0021-9258(18)49965-6 – ident: e_1_2_12_37_1 doi: 10.1016/j.cub.2008.04.039 – ident: e_1_2_12_63_1 doi: 10.1104/pp.19.01242 – ident: e_1_2_12_61_1 doi: 10.1111/nph.14754 – ident: e_1_2_12_28_1 doi: 10.1111/j.1469-8137.2006.01787.x – ident: e_1_2_12_55_1 doi: 10.1111/nph.14352 – ident: e_1_2_12_92_1 doi: 10.1038/33725 – ident: e_1_2_12_57_1 doi: 10.1073/pnas.1912386116 – ident: e_1_2_12_43_1 doi: 10.2307/1541650 – ident: e_1_2_12_105_1 doi: 10.1111/j.1399-3054.1984.tb06347.x – ident: e_1_2_12_75_1 doi: 10.1038/nature12478 – ident: e_1_2_12_5_1 doi: 10.1093/jxb/44.4.741 – ident: e_1_2_12_48_1 doi: 10.1104/pp.116.2.643 – ident: e_1_2_12_66_1 doi: 10.1111/j.1365-3040.1991.tb00953.x – ident: e_1_2_12_77_1 doi: 10.1105/tpc.109.070094 – ident: e_1_2_12_7_1 doi: 10.1111/j.1365-313X.2006.03002.x – ident: e_1_2_12_36_1 doi: 10.1002/1873-3468.13102 – ident: e_1_2_12_80_1 doi: 10.1111/j.1469-8137.2009.03002.x – ident: e_1_2_12_58_1 doi: 10.1038/nplants.2014.25 – ident: e_1_2_12_96_1 doi: 10.1111/j.1469-8137.1981.tb01687.x – ident: e_1_2_12_119_1 doi: 10.1038/s41477-018-0106-0 – ident: e_1_2_12_72_1 doi: 10.1126/scisignal.2000448 – ident: e_1_2_12_69_1 doi: 10.1105/tpc.19.00057 – ident: e_1_2_12_103_1 doi: 10.1034/j.1399-3054.1998.1030107.x – volume: 169 start-page: 2244 year: 2015 ident: e_1_2_12_33_1 article-title: Axial and radial oxylipin transport publication-title: Plant Physiology – ident: e_1_2_12_94_1 doi: 10.1111/j.1365-313X.2010.04283.x – ident: e_1_2_12_120_1 doi: 10.1038/360062a0 – ident: e_1_2_12_22_1 doi: 10.1111/nph.12897 – ident: e_1_2_12_59_1 doi: 10.1104/pp.105.064196 – ident: e_1_2_12_93_1 doi: 10.1016/j.molp.2019.05.013 – ident: e_1_2_12_60_1 doi: 10.1111/j.1469-8137.2004.01238.x – ident: e_1_2_12_89_1 doi: 10.1111/nph.12807 – ident: e_1_2_12_118_1 doi: 10.1016/j.jplph.2012.02.013 – ident: e_1_2_12_82_1 doi: 10.1104/pp.106.088989 |
SSID | ssj0009562 |
Score | 2.6342466 |
SecondaryResourceType | review_article |
Snippet | Plants in nature are constantly exposed to organisms that touch them and wound them.A highly conserved response to these stimuli is a rapid collapse of... Summary Plants in nature are constantly exposed to organisms that touch them and wound them. A highly conserved response to these stimuli is a rapid collapse... Plants in nature are constantly exposed to organisms that touch them and wound them. A highly conserved response to these stimuli is a rapid collapse of... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1037 |
SubjectTerms | action potential Arabidopsis Arabidopsis Proteins Calcium Calcium ions Cell walls Depolarization electric field electroosmosis ethylene Field strength Genes Glutamate receptors glutamic acid Homology Hormones jasmonate Jasmonic acid Leaves mechanostimulation Membrane potential Membranes oxidoreductases Phloem Plant Leaves Power plants Propagation respiratory burst Respiratory burst oxidase Signaling Stimuli Tansley review Touch Turgor Wounds Xylem |
Title | Wound- and mechanostimulated electrical signals control hormone responses |
URI | https://www.jstor.org/stable/26928220 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16646 https://www.ncbi.nlm.nih.gov/pubmed/32392391 https://www.proquest.com/docview/2423395108 https://www.proquest.com/docview/2401815194 https://www.proquest.com/docview/2561540371 |
Volume | 227 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA0iLtz4rtYXo7joZkonSTMTXKkoRUFELHYhDEkmQ0Gdim0XuvIT_Ea_xHszD6pUEXcDuSGZ3NzMSebkXEIOjOEo60V9I1LpcxtSX7EEAk9SnbQTE1jt2BaXotPl5712b4Yclndhcn2I6sANI8Ot1xjgSg8ngjx76jcDITjKbSNXCwHRNZ0Q3BW0VGAGo16hKoQsnqrml29RTkecBjS_4lb34TlbJHdll3O-yX1zPNJN8_pNzfGf77REFgpA6h3lM2iZzNhshcwdDwA0vqySi1tMu_Tx9u6pLPEeLd4THsCq8IhZv2zi5Vl00NEeMkFgLnsF-d3rAxoeZNZ7zlm4drhGumenNycdv8i_4BsUhfFpKNqWh6EUViYBTyVNNfjWWt2OjAJcErUSZdIoYUYFxomJqYhL3JSkXBjNamQ2g4Y28Ga40sxKxpgSHPZwUaRaoYL6EP6BDlp10ig9EZtCnBxzZDzE5SYFhiZ2Q1Mn-5XpU67IMc2o5txZWVAhkTALDW2X_o2LaB3GiCkZQs2oTvaqYogz_HmiMjsYow1KmwHe5b_YABgFBMzCoE7W87lTdYBRQKJMQknDzYCf-x5fXnXcw-bfTbfIPMWDAMdM3Cazo-ex3QG0NNK7Liw-ARBTD5w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VggQX_guhLRgEUi8bZW3Huz5wgJYqJSVCqBW5bW2vV5XabqomESonHqEPwqvwEjwJM94ftaggLj1wi7ST7Ox6ZvzZ-fwNwEvnJMl68cipQkfSJzwyIsfE09zm_dzF3ga2xUgNduX7cX-8AN-bszCVPkS74UaZEeo1JThtSJ_L8vJ4vxsrJVVNqRz60y-4YJu-3trA0X3F-ea7nfVBVPcUiBwJnUQ8UX0vk0Qrr_NYFpoXFv313vZTZ3CuTXu5cUWaC2diFwSyTCo1Ae1CKmcF_u41uE4dxEmpf-MTPyfxq3ij-YxejWsdI-INta5emP0qAuRl0PYiUg5T3eYd-NG8pIrhctCdz2zXff1NP_J_eYt34XaNudmbKknuwYIv78ONtxPExacPYPiZOkv9_HbGTJmzI09HoSdY-I6osZnPWdUoiGKZEdkF05XV_H62j4B_Unp2UhGN_fQh7F7JgyzBYok3ekyH340VXgshjJK4TE1T00sMfh8rXGzjXgfWmqHPXK2_Tm1ADrNmHYZDkYWh6MCL1vS4Eh25zGgpxE9rwZUmTjDeaKUJqKwuSNOMYLMgNJ124Hl7GUsJ_T9kSj-Zkw2ptyGkl3-xQbyNIF8kcQceVcHaOiA4gm2h8cpaCLk_-56NPg7Chyf_bvoMbg52Pmxn21uj4TLc4rTvEYiYK7A4O5n7VQSHM_s05CSDvasO31_g422i |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VghCX8lsaKGAQSL04inc3a--BAxCilKCoQlTk5u6fVQnqRE0iVE48Au_Bq_AUPAkz6x-1qCAuPXCz5Ik99s7Mfut8-w3AU2sFyXqx2MpCxcKnLNbcYeIpZlzf2cSbwLaYyNG-eDPtT9fge7MXptKHaD-4UWaEek0JPnfFqSQv54fdREoha0bl2J98xvXa4vnuAAf3GWPD1-9fjeK6pUBsSeckZqnse5GmSnrlElEoVhh013vTz6zGqTbrOW2LzHGrExv0sXQmFOHsQkhrOF73ElwWsqeoT8TgHTul8CtZI_mMXk1rGSOiDbWunpn8Kv7jecj2LFAOM93wOvxo3lFFcPnYXS1N1375TT7yP3mJN2CjRtzRiypFbsKaL2_BlZczRMUnt2H8gfpK_fz6LdKli448bYSeYdk7orZm3kVVmyCK5IioLpisUc3ujw4R7s9KHx1XNGO_uAP7F_Igm7Be4o22aOu7NtwrzrmWAhepWaZ7qcbfY31LTNLrwE4z8rmt1depCcinvFmF4VDkYSg68KQ1nVeSI-cZbYbwaS2YVMQIxhttN_GU1-VokRNo5oSlsw48bk9jIaF_h3TpZyuyIe02BPTiLzaIthHi8zTpwN0qVlsHOEOozRWe2QkR92ff88neKBzc-3fTR3B1bzDM3-5OxvfhGqOPHoGFuQ3ry-OVf4DIcGkehoyM4OCio_cXFchsUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wound%E2%80%90+and+mechanostimulated+electrical+signals+control+hormone+responses&rft.jtitle=The+New+phytologist&rft.au=Farmer%2C+Edward+E.&rft.au=Gao%2C+Yong%E2%80%90Qiang&rft.au=Lenzoni%2C+Gioia&rft.au=Wolfender%2C+Jean%E2%80%90Luc&rft.date=2020-08-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=227&rft.issue=4&rft.spage=1037&rft.epage=1050&rft_id=info:doi/10.1111%2Fnph.16646&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_16646 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |