Hepatocyte Deletion of Triglyceride‐Synthesis Enzyme Acyl CoA: Diacylglycerol Acyltransferase 2 Reduces Steatosis Without Increasing Inflammation or Fibrosis in Mice

Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation in hepatocytes and represents a huge public health problem owing to its propensity to progress to nonalcoholic steatohepatitis, fibrosis, and liver failure. The lipids stored in hepatic steatosis (HS) are primaril...

Full description

Saved in:
Bibliographic Details
Published inHepatology (Baltimore, Md.) Vol. 70; no. 6; pp. 1972 - 1985
Main Authors Gluchowski, Nina L., Gabriel, Katlyn R., Chitraju, Chandramohan, Bronson, Roderick T., Mejhert, Niklas, Boland, Sebastian, Wang, Kun, Lai, Zon Weng, Farese, Robert V., Walther, Tobias C.
Format Journal Article
LanguageEnglish
Published United States Wolters Kluwer Health, Inc 01.12.2019
Subjects
Online AccessGet full text
ISSN0270-9139
1527-3350
1527-3350
DOI10.1002/hep.30765

Cover

Abstract Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation in hepatocytes and represents a huge public health problem owing to its propensity to progress to nonalcoholic steatohepatitis, fibrosis, and liver failure. The lipids stored in hepatic steatosis (HS) are primarily triglycerides (TGs) synthesized by two acyl‐CoA:diacylglycerol acyltransferase (DGAT) enzymes. Either DGAT1 or DGAT2 catalyzes this reaction, and these enzymes have been suggested to differentially utilize exogenous or endogenously synthesized fatty acids, respectively. DGAT2 has been linked to storage of fatty acids from de novo lipogenesis, a process increased in NAFLD. However, whether DGAT2 is more responsible for lipid accumulation in NAFLD and progression to fibrosis is currently unknown. Also, it is unresolved whether DGAT2 can be safely inhibited as a therapy for NAFLD. Here, we induced NAFLD‐like disease in mice by feeding a diet rich in fructose, saturated fat, and cholesterol and found that hepatocyte‐specific Dgat2 deficiency reduced expression of de novo lipogenesis genes and lowered liver TGs by ~70%. Importantly, the reduction in steatosis was not accompanied by increased inflammation or fibrosis, and insulin and glucose metabolism were unchanged. Conclusion: This study suggests that hepatic DGAT2 deficiency successfully reduces diet‐induced HS and supports development of DGAT2 inhibitors as a therapeutic strategy for treating NAFLD and preventing downstream consequences.
AbstractList Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation in hepatocytes and represents a huge public health problem owing to its propensity to progress to nonalcoholic steatohepatitis, fibrosis, and liver failure. The lipids stored in hepatic steatosis (HS) are primarily triglycerides (TGs) synthesized by two acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. Either DGAT1 or DGAT2 catalyzes this reaction, and these enzymes have been suggested to differentially utilize exogenous or endogenously synthesized fatty acids, respectively. DGAT2 has been linked to storage of fatty acids from de novo lipogenesis, a process increased in NAFLD. However, whether DGAT2 is more responsible for lipid accumulation in NAFLD and progression to fibrosis is currently unknown. Also, it is unresolved whether DGAT2 can be safely inhibited as a therapy for NAFLD. Here, we induced NAFLD-like disease in mice by feeding a diet rich in fructose, saturated fat, and cholesterol and found that hepatocyte-specific Dgat2 deficiency reduced expression of de novo lipogenesis genes and lowered liver TGs by ~70%. Importantly, the reduction in steatosis was not accompanied by increased inflammation or fibrosis, and insulin and glucose metabolism were unchanged. Conclusion: This study suggests that hepatic DGAT2 deficiency successfully reduces diet-induced HS and supports development of DGAT2 inhibitors as a therapeutic strategy for treating NAFLD and preventing downstream consequences.Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation in hepatocytes and represents a huge public health problem owing to its propensity to progress to nonalcoholic steatohepatitis, fibrosis, and liver failure. The lipids stored in hepatic steatosis (HS) are primarily triglycerides (TGs) synthesized by two acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. Either DGAT1 or DGAT2 catalyzes this reaction, and these enzymes have been suggested to differentially utilize exogenous or endogenously synthesized fatty acids, respectively. DGAT2 has been linked to storage of fatty acids from de novo lipogenesis, a process increased in NAFLD. However, whether DGAT2 is more responsible for lipid accumulation in NAFLD and progression to fibrosis is currently unknown. Also, it is unresolved whether DGAT2 can be safely inhibited as a therapy for NAFLD. Here, we induced NAFLD-like disease in mice by feeding a diet rich in fructose, saturated fat, and cholesterol and found that hepatocyte-specific Dgat2 deficiency reduced expression of de novo lipogenesis genes and lowered liver TGs by ~70%. Importantly, the reduction in steatosis was not accompanied by increased inflammation or fibrosis, and insulin and glucose metabolism were unchanged. Conclusion: This study suggests that hepatic DGAT2 deficiency successfully reduces diet-induced HS and supports development of DGAT2 inhibitors as a therapeutic strategy for treating NAFLD and preventing downstream consequences.
Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation in hepatocytes and represents a huge public health problem owing to its propensity to progress to nonalcoholic steatohepatitis, fibrosis, and liver failure. The lipids stored in hepatic steatosis (HS) are primarily triglycerides (TGs) synthesized by two acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. Either DGAT1 or DGAT2 catalyzes this reaction, and these enzymes have been suggested to differentially utilize exogenous or endogenously synthesized fatty acids, respectively. DGAT2 has been linked to storage of fatty acids from de novo lipogenesis, a process increased in NAFLD. However, whether DGAT2 is more responsible for lipid accumulation in NAFLD and progression to fibrosis is currently unknown. Also, it is unresolved whether DGAT2 can be safely inhibited as a therapy for NAFLD. Here, we induced NAFLD-like disease in mice by feeding a diet rich in fructose, saturated fat, and cholesterol and found that hepatocyte-specific Dgat2 deficiency reduced expression of de novo lipogenesis genes and lowered liver TGs by ~70%. Importantly, the reduction in steatosis was not accompanied by increased inflammation or fibrosis, and insulin and glucose metabolism were unchanged. Conclusion: This study suggests that hepatic DGAT2 deficiency successfully reduces diet-induced HS and supports development of DGAT2 inhibitors as a therapeutic strategy for treating NAFLD and preventing downstream consequences.
Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation in hepatocytes and represents a huge public health problem owing to its propensity to progress to nonalcoholic steatohepatitis, fibrosis, and liver failure. The lipids stored in hepatic steatosis (HS) are primarily triglycerides (TGs) synthesized by two acyl‐CoA:diacylglycerol acyltransferase (DGAT) enzymes. Either DGAT1 or DGAT2 catalyzes this reaction, and these enzymes have been suggested to differentially utilize exogenous or endogenously synthesized fatty acids, respectively. DGAT2 has been linked to storage of fatty acids from de novo lipogenesis, a process increased in NAFLD. However, whether DGAT2 is more responsible for lipid accumulation in NAFLD and progression to fibrosis is currently unknown. Also, it is unresolved whether DGAT2 can be safely inhibited as a therapy for NAFLD. Here, we induced NAFLD‐like disease in mice by feeding a diet rich in fructose, saturated fat, and cholesterol and found that hepatocyte‐specific Dgat2 deficiency reduced expression of de novo lipogenesis genes and lowered liver TGs by ~70%. Importantly, the reduction in steatosis was not accompanied by increased inflammation or fibrosis, and insulin and glucose metabolism were unchanged. Conclusion: This study suggests that hepatic DGAT2 deficiency successfully reduces diet‐induced HS and supports development of DGAT2 inhibitors as a therapeutic strategy for treating NAFLD and preventing downstream consequences.
Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation in hepatocytes and represents a huge public health problem owing to its propensity to progress to nonalcoholic steatohepatitis, fibrosis, and liver failure. The lipids stored in hepatic steatosis (HS) are primarily triglycerides (TGs) synthesized by two acyl‐CoA:diacylglycerol acyltransferase (DGAT) enzymes. Either DGAT1 or DGAT2 catalyzes this reaction, and these enzymes have been suggested to differentially utilize exogenous or endogenously synthesized fatty acids, respectively. DGAT2 has been linked to storage of fatty acids from de novo lipogenesis, a process increased in NAFLD. However, whether DGAT2 is more responsible for lipid accumulation in NAFLD and progression to fibrosis is currently unknown. Also, it is unresolved whether DGAT2 can be safely inhibited as a therapy for NAFLD. Here, we induced NAFLD‐like disease in mice by feeding a diet rich in fructose, saturated fat, and cholesterol and found that hepatocyte‐specific Dgat2 deficiency reduced expression of de novo lipogenesis genes and lowered liver TGs by ~70%. Importantly, the reduction in steatosis was not accompanied by increased inflammation or fibrosis, and insulin and glucose metabolism were unchanged. Conclusion: This study suggests that hepatic DGAT2 deficiency successfully reduces diet‐induced HS and supports development of DGAT2 inhibitors as a therapeutic strategy for treating NAFLD and preventing downstream consequences.
Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation in hepatocytes and represents a huge public health problem owing to its propensity to progress to nonalcoholic steatohepatitis, fibrosis, and liver failure. The lipids stored in hepatic steatosis (HS) are primarily triglycerides (TGs) synthesized by two acyl‐CoA:diacylglycerol acyltransferase (DGAT) enzymes. Either DGAT1 or DGAT2 catalyzes this reaction, and these enzymes have been suggested to differentially utilize exogenous or endogenously synthesized fatty acids, respectively. DGAT2 has been linked to storage of fatty acids from de novo lipogenesis, a process increased in NAFLD. However, whether DGAT2 is more responsible for lipid accumulation in NAFLD and progression to fibrosis is currently unknown. Also, it is unresolved whether DGAT2 can be safely inhibited as a therapy for NAFLD. Here, we induced NAFLD‐like disease in mice by feeding a diet rich in fructose, saturated fat, and cholesterol and found that hepatocyte‐specific Dgat2 deficiency reduced expression of de novo lipogenesis genes and lowered liver TGs by ~70%. Importantly, the reduction in steatosis was not accompanied by increased inflammation or fibrosis, and insulin and glucose metabolism were unchanged. Conclusion: This study suggests that hepatic DGAT2 deficiency successfully reduces diet‐induced HS and supports development of DGAT2 inhibitors as a therapeutic strategy for treating NAFLD and preventing downstream consequences.
Author Gabriel, Katlyn R.
Farese, Robert V.
Chitraju, Chandramohan
Boland, Sebastian
Mejhert, Niklas
Lai, Zon Weng
Gluchowski, Nina L.
Bronson, Roderick T.
Walther, Tobias C.
Wang, Kun
AuthorAffiliation 4 Howard Hughes Medical Institute, Boston, MA
5 Rodent Histopathology Core, Harvard Medical School, Boston, MA
6 Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
3 Department of Cell Biology, Harvard Medical School, Boston, MA
2 Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
1 Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, MA
AuthorAffiliation_xml – name: 1 Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, MA
– name: 5 Rodent Histopathology Core, Harvard Medical School, Boston, MA
– name: 4 Howard Hughes Medical Institute, Boston, MA
– name: 2 Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
– name: 3 Department of Cell Biology, Harvard Medical School, Boston, MA
– name: 6 Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
Author_xml – sequence: 1
  givenname: Nina L.
  surname: Gluchowski
  fullname: Gluchowski, Nina L.
  organization: Harvard Medical School
– sequence: 2
  givenname: Katlyn R.
  surname: Gabriel
  fullname: Gabriel, Katlyn R.
  organization: Howard Hughes Medical Institute
– sequence: 3
  givenname: Chandramohan
  surname: Chitraju
  fullname: Chitraju, Chandramohan
  organization: Harvard Medical School
– sequence: 4
  givenname: Roderick T.
  surname: Bronson
  fullname: Bronson, Roderick T.
  organization: Harvard Medical School
– sequence: 5
  givenname: Niklas
  surname: Mejhert
  fullname: Mejhert, Niklas
  organization: Harvard Medical School
– sequence: 6
  givenname: Sebastian
  surname: Boland
  fullname: Boland, Sebastian
  organization: Harvard Medical School
– sequence: 7
  givenname: Kun
  surname: Wang
  fullname: Wang, Kun
  organization: Harvard Medical School
– sequence: 8
  givenname: Zon Weng
  surname: Lai
  fullname: Lai, Zon Weng
  organization: Harvard Medical School
– sequence: 9
  givenname: Robert V.
  surname: Farese
  fullname: Farese, Robert V.
  email: robert@hsph.harvard.edu
  organization: Broad Institute of Harvard and Massachusetts Institute of Technology
– sequence: 10
  givenname: Tobias C.
  surname: Walther
  fullname: Walther, Tobias C.
  email: twalther@hsph.harvard.edu
  organization: Broad Institute of Harvard and Massachusetts Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31081165$$D View this record in MEDLINE/PubMed
BookMark eNp9kstuEzEUhi1URNPCghdAltjAYlpfMjcWlaI0JZWKQLSIpeXxnElceexgz1BNVzwCb8F78SQ4mVJBJZAXPtL5zn-uB2jPOgsIPafkiBLCjtewOeIkz9JHaEJTliecp2QPTQjLSVJSXu6jgxCuCSHllBVP0D6npKA0SyfoxxI2snNq6ACfgoFOO4tdg6-8XplBgdc1_Pz2_XKw3RqCDnhhb4cW8EwNBs_d7A0-1TLaI-zMztF5aUMDXgbADH-EulcQ8GUHMdNW47Pu1q7v8LlVHmTQdhXNxsi2lWN-j8905XestvidVvAUPW6kCfDs7j9En84WV_NlcvH-7fl8dpGolJRpolhaQJ0rldIqpVlVVErSnKUyAwm84HVOZFXkkkiS8Ty-qi55I6cyo8BYU_NDdDLqbvqqhVqBjc0YsfG6lX4QTmrxt8fqtVi5ryIrSh5HHQVe3Ql496WH0IlWBwXGSAuuD4IxTsucTMssoi8foNeu9za2J7ZQNi3iniL14s-K7kv5vcMIvB4BFScWPDT3CCViex8i3ofY3Udkjx-wSne7ocdmtPlfxI02MPxbWiwXH8aIX0zz0J4
CitedBy_id crossref_primary_10_1016_j_bbalip_2023_159376
crossref_primary_10_1016_j_bbalip_2024_159530
crossref_primary_10_1096_fj_202002671RR
crossref_primary_10_1186_s12967_024_05084_z
crossref_primary_10_1016_j_bbadis_2025_167659
crossref_primary_10_1016_j_jbc_2023_103022
crossref_primary_10_1016_j_plipres_2022_101181
crossref_primary_10_1038_d41586_023_02502_y
crossref_primary_10_1038_s41574_021_00507_z
crossref_primary_10_3390_cells11182877
crossref_primary_10_1097_HEP_0000000000001141
crossref_primary_10_1016_j_isci_2024_109709
crossref_primary_10_3389_fphys_2022_940974
crossref_primary_10_1111_cts_13687
crossref_primary_10_1080_14656566_2020_1744564
crossref_primary_10_1016_j_molmet_2020_101134
crossref_primary_10_1080_10715762_2024_2421173
crossref_primary_10_1172_JCI152242
crossref_primary_10_1016_j_jbc_2024_107973
crossref_primary_10_3389_fphar_2022_1049818
crossref_primary_10_1038_s41598_022_20296_3
crossref_primary_10_1016_j_ejbt_2020_09_004
crossref_primary_10_3390_biology12040595
crossref_primary_10_3390_ijms21186799
crossref_primary_10_1016_j_ymthe_2024_08_021
crossref_primary_10_3390_ijms25115640
crossref_primary_10_1177_2515256420934671
crossref_primary_10_1007_s12272_022_01410_5
crossref_primary_10_2169_naika_109_64
crossref_primary_10_3389_fendo_2022_934847
crossref_primary_10_1016_j_jhep_2023_10_042
crossref_primary_10_3390_metabo14040218
crossref_primary_10_1016_j_ymthe_2021_11_007
crossref_primary_10_1161_CIRCRESAHA_123_323284
crossref_primary_10_1016_j_molmet_2020_101115
crossref_primary_10_3390_nu15183888
crossref_primary_10_1016_j_livres_2020_02_004
crossref_primary_10_1021_acs_jmedchem_2c01200
crossref_primary_10_3390_ijms25169074
crossref_primary_10_1093_cdn_nzab138
crossref_primary_10_1016_j_aohep_2022_100709
crossref_primary_10_1016_j_bbalip_2020_158741
crossref_primary_10_3390_ijms25105086
crossref_primary_10_1007_s11901_020_00533_x
crossref_primary_10_1016_j_lfs_2022_120522
crossref_primary_10_1016_j_molmet_2021_101238
crossref_primary_10_1016_j_taap_2024_117185
crossref_primary_10_1101_cshperspect_a041246
crossref_primary_10_3390_metabo14120723
crossref_primary_10_1007_s11101_023_09912_w
crossref_primary_10_1097_CM9_0000000000001263
crossref_primary_10_1186_s13287_021_02619_9
crossref_primary_10_1002_hep4_1822
crossref_primary_10_1016_j_jhepr_2023_100902
crossref_primary_10_3390_nu14224910
crossref_primary_10_1038_s41467_023_39404_6
crossref_primary_10_1038_s41586_023_06497_4
crossref_primary_10_1016_j_cmet_2024_01_011
crossref_primary_10_4093_dmj_2023_0368
crossref_primary_10_1096_fj_202300960RR
crossref_primary_10_1007_s00109_022_02282_4
crossref_primary_10_3390_antiox10121933
crossref_primary_10_1016_j_clinthera_2022_12_008
crossref_primary_10_1016_j_mmm_2023_03_005
crossref_primary_10_1186_s12986_023_00748_x
crossref_primary_10_1038_s12276_021_00712_w
crossref_primary_10_1038_s41467_020_15684_0
crossref_primary_10_3390_cells9102244
crossref_primary_10_3390_gidisord5020020
crossref_primary_10_1016_j_cca_2019_12_029
crossref_primary_10_1097_MOL_0000000000000756
crossref_primary_10_3390_ijms222011085
crossref_primary_10_1097_MCO_0000000000000993
crossref_primary_10_52547_ibj_3647
crossref_primary_10_1038_s41574_023_00809_4
crossref_primary_10_1016_j_tips_2020_12_001
crossref_primary_10_1038_s41574_023_00845_0
crossref_primary_10_3389_fphar_2021_634344
crossref_primary_10_1016_j_chemosphere_2023_139997
crossref_primary_10_1038_s41591_021_01489_1
crossref_primary_10_3390_biom12060824
crossref_primary_10_1080_15548627_2021_1895658
crossref_primary_10_1053_j_gastro_2020_01_051
Cites_doi 10.1093/nar/gkv007
10.1093/nar/gkp427
10.1371/journal.pone.0127991
10.1016/j.cmet.2016.09.016
10.1074/jbc.M311000200
10.1074/jbc.274.1.305
10.1074/jbc.M101419200
10.1136/gut.2009.205088
10.1194/jlr.M020156
10.1111/j.1742-4658.2012.08684.x
10.1021/pr101065j
10.1016/S0021-9258(18)64849-5
10.1002/cld.708
10.1002/oby.20193
10.1016/j.cmet.2018.04.004
10.1016/j.cmet.2012.03.004
10.1038/ng.3977
10.1016/j.omtn.2017.07.003
10.1194/jlr.M013003
10.1021/acs.biochem.8b01096
10.1038/nbt.1511
10.1073/pnas.1103451108
10.1016/j.jhep.2014.11.034
10.3748/wjg.v23.i47.8263
10.1007/s12020-017-1261-1
10.1016/j.chroma.2016.02.054
10.1001/jama.2009.1619
10.1002/hep.22980
10.1074/jbc.M704213200
10.1002/hep.20783
10.1002/hep4.1134
10.1248/bpb.b14-00447
10.1021/acs.jmedchem.5b01345
10.1016/j.cmet.2007.05.005
10.1002/hep.27678
10.1002/hep.21655
10.1074/jbc.270.11.5772
10.1172/JCI23621
10.1074/jbc.M805768200
ContentType Journal Article
Copyright 2019 by the American Association for the Study of Liver Diseases.
Copyright_xml – notice: 2019 by the American Association for the Study of Liver Diseases.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
H94
K9.
7X8
5PM
DOI 10.1002/hep.30765
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

AIDS and Cancer Research Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1527-3350
EndPage 1985
ExternalDocumentID PMC6893913
31081165
10_1002_hep_30765
HEP30765
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Diabetes and Digestive and Kidney Diseases
  funderid: R01 DK101579
– fundername: NASPGHAN Foundation
  funderid: Young Investigator/Nestle Nutrition Award
– fundername: NIDDK NIH HHS
  grantid: R01 DK101579
– fundername: NIGMS NIH HHS
  grantid: R01 GM097194
– fundername: NCI NIH HHS
  grantid: P30 CA006516
– fundername: NIGMS NIH HHS
  grantid: R01 GM124348
GroupedDBID ---
--K
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
186
1B1
1CY
1L6
1OB
1OC
1ZS
1~5
24P
31~
33P
3O-
3SF
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AALRI
AANHP
AAONW
AAQFI
AAQQT
AAQXK
AASGY
AAXRX
AAXUO
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABMAC
ABOCM
ABPVW
ABWVN
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACLDA
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AECAP
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFFNX
AFGKR
AFPWT
AFUWQ
AFZJQ
AHMBA
AIACR
AIURR
AIWBW
AJAOE
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
F00
F01
F04
F5P
FD8
FDB
FEDTE
FGOYB
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IHE
IX1
J0M
J5H
JPC
KBYEO
KQQ
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
M65
MJL
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
NQ-
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
R2-
RGB
RIG
RIWAO
RJQFR
ROL
RPZ
RWI
RX1
RYL
SEW
SSZ
SUPJJ
TEORI
UB1
V2E
V9Y
W2D
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ABJNI
ACZKN
AFNMH
AGQPQ
AHQVU
CITATION
MEWTI
WXSBR
ACIJW
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
AAMMB
ADSXY
AEFGJ
AGXDD
AIDQK
AIDYY
H94
K9.
7X8
5PM
ID FETCH-LOGICAL-c5095-c258ed7cc51b516b8bca1725a6eae383d70ab87a0a0637373bd93fa4a61e22fd3
IEDL.DBID DR2
ISSN 0270-9139
1527-3350
IngestDate Thu Aug 21 18:23:58 EDT 2025
Fri Sep 05 14:04:17 EDT 2025
Wed Aug 13 10:07:48 EDT 2025
Wed Feb 19 02:07:25 EST 2025
Thu Apr 24 23:09:42 EDT 2025
Tue Jul 01 03:33:55 EDT 2025
Wed Jan 22 16:36:40 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 2019 by the American Association for the Study of Liver Diseases.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5095-c258ed7cc51b516b8bca1725a6eae383d70ab87a0a0637373bd93fa4a61e22fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6893913
PMID 31081165
PQID 2319648310
PQPubID 996352
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6893913
proquest_miscellaneous_2231970496
proquest_journals_2319648310
pubmed_primary_31081165
crossref_primary_10_1002_hep_30765
crossref_citationtrail_10_1002_hep_30765
wiley_primary_10_1002_hep_30765_HEP30765
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Hepatology (Baltimore, Md.)
PublicationTitleAlternate Hepatology
PublicationYear 2019
Publisher Wolters Kluwer Health, Inc
Publisher_xml – name: Wolters Kluwer Health, Inc
References 2015; 58
2017; 8
2010; 59
1957; 226
2007; 282
2013; 21
2017; 49
2005; 115
2017; 23
2015; 10
2011; 52
2005; 42
2011; 10
2012; 15
2016; 1440
2018; 27
2012; 53
1995; 270
2001; 276
2018; 2
2011; 108
2004; 279
2015; 62
2009; 50
2015; 61
2015; 43
2017; 56
1999; 274
2014; 37
2019
2008; 26
2007; 6
2017; 19
2009; 284
2012; 279
2018; 11
2007; 45
2016; 24
2009; 37
2009; 302
2018; 57
(hep30765-bib-0034-20241017) 1995; 270
(hep30765-bib-0008-20241017) 2009; 284
(hep30765-bib-0026-20241017) 2016; 1440
(hep30765-bib-0007-20241017) 2011; 52
(hep30765-bib-0030-20241017) 2009; 37
(hep30765-bib-0022-20241017) 2016; 24
(hep30765-bib-0023-20241017) 2019
(hep30765-bib-0037-20241017) 2011; 108
(hep30765-bib-0032-20241017) 2007; 282
(hep30765-bib-0014-20241017) 2018; 27
(hep30765-bib-0017-20241017) 2007; 45
(hep30765-bib-0027-20241017) 2008; 26
(hep30765-bib-0005-20241017) 2010; 59
(hep30765-bib-0031-20241017) 1999; 274
(hep30765-bib-0028-20241017) 2011; 10
(hep30765-bib-0001-20241017) 2017; 23
(hep30765-bib-0019-20241017) 2017; 8
(hep30765-bib-0033-20241017) 2007; 6
(hep30765-bib-0009-20241017) 2009; 50
(hep30765-bib-0024-20241017) 2013; 21
(hep30765-bib-0035-20241017) 2001; 276
(hep30765-bib-0002-20241017) 2018; 2
(hep30765-bib-0011-20241017) 2012; 279
(hep30765-bib-0016-20241017) 2005; 42
(hep30765-bib-0038-20241017) 2017; 56
(hep30765-bib-0015-20241017) 2018; 57
(hep30765-bib-0012-20241017) 2014; 37
(hep30765-bib-0041-20241017) 2017; 19
(hep30765-bib-0003-20241017) 2018; 11
(hep30765-bib-0040-20241017) 2009; 302
(hep30765-bib-0020-20241017) 2005; 115
(hep30765-bib-0036-20241017) 2012; 15
(hep30765-bib-0021-20241017) 2004; 279
(hep30765-bib-0010-20241017) 2012; 53
(hep30765-bib-0029-20241017) 2015; 43
(hep30765-bib-0006-20241017) 2015; 61
(hep30765-bib-0039-20241017) 2017; 49
(hep30765-bib-0025-20241017) 1957; 226
(hep30765-bib-0004-20241017) 2015; 62
(hep30765-bib-0013-20241017) 2015; 58
(hep30765-bib-0018-20241017) 2015; 10
References_xml – volume: 15
  start-page: 570
  year: 2012
  end-page: 573
  article-title: The problem of establishing relationships between hepatic steatosis and hepatic insulin resistance
  publication-title: Cell Metab
– volume: 2
  start-page: 199
  year: 2018
  end-page: 210
  article-title: Natural history of nonalcoholic fatty liver disease: a prospective follow‐up study with serial biopsies
  publication-title: Hepatol Commun
– volume: 52
  start-page: 657
  year: 2011
  end-page: 667
  article-title: DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes
  publication-title: J Lipid Res
– volume: 11
  start-page: 82
  year: 2018
  end-page: 86
  article-title: An update on the pharmacological treatment of nonalcoholic fatty liver disease: beyond lifestyle modifications
  publication-title: Clin Liver Dis
– volume: 10
  start-page: e0127991
  year: 2015
  article-title: Mouse models of diet‐induced nonalcoholic steatohepatitis reproduce the heterogeneity of the human disease
  publication-title: PLoS One
– volume: 21
  start-page: 1406
  year: 2013
  end-page: 1415
  article-title: Pharmacological inhibition of diacylglycerol acyltransferase 1 reduces body weight and modulates gut peptide release‐Potential insight into mechanism of action
  publication-title: Obesity
– volume: 42
  start-page: 362
  year: 2005
  end-page: 371
  article-title: Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice
  publication-title: Hepatology
– volume: 6
  start-page: 69
  year: 2007
  end-page: 78
  article-title: Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver
  publication-title: Cell Metab
– volume: 62
  start-page: 1148
  year: 2015
  end-page: 1155
  article-title: Evidence of NAFLD progression from steatosis to fibrosing‐steatohepatitis using paired biopsies: implications for prognosis and clinical management
  publication-title: J Hepatol
– volume: 282
  start-page: 22678
  year: 2007
  end-page: 22688
  article-title: Suppression of diacylglycerol acyltransferase‐2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet‐induced hepatic steatosis and insulin resistance
  publication-title: J Biol Chem
– volume: 56
  start-page: 366
  year: 2017
  end-page: 378
  article-title: Genetic interaction of DGAT2 and FAAH in the development of human obesity
  publication-title: Endocrine
– volume: 10
  start-page: 1794
  year: 2011
  end-page: 1805
  article-title: Andromeda: a peptide search engine integrated into the MaxQuant environment
  publication-title: J Proteome Res
– volume: 302
  start-page: 1993
  year: 2009
  end-page: 1915
  article-title: Major lipids, apolipoproteins, and risk of vascular disease
  publication-title: JAMA
– volume: 37
  start-page: 1655
  year: 2014
  end-page: 1660
  article-title: Discovery of a novel class of diacylglycerol acyltransferase 2 inhibitors with a 1H‐pyrrolo[2,3‐b]pyridine core
  publication-title: Biol Pharm Bull
– volume: 49
  start-page: 1758
  year: 2017
  end-page: 1766
  article-title: Exome‐wide association study of plasma lipids in >300,000 individuals
  publication-title: Nat Genet
– volume: 45
  start-page: 1366
  year: 2007
  end-page: 1374
  article-title: Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis
  publication-title: Hepatology
– volume: 226
  start-page: 497
  year: 1957
  end-page: 509
  article-title: A simple method for the isolation and purification of total lipides from animal tissues
  publication-title: J Biol Chem
– volume: 24
  start-page: 848
  year: 2016
  end-page: 862
  article-title: Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis
  publication-title: Cell Metab
– volume: 43
  start-page: e47
  year: 2015
  article-title: limma powers differential expression analyses for RNA‐sequencing and microarray studies
  publication-title: Nucleic Acids Res
– year: 2019
  article-title: The triglyceride synthesis enzymes DGAT1 and DGAT2 have distinct and overlapping functions in adipocytes
  publication-title: J Lipid Res
– volume: 26
  start-page: 1367
  year: 2008
  end-page: 1372
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification
  publication-title: Nat Biotechnol
– volume: 8
  start-page: 383
  year: 2017
  end-page: 394
  article-title: Strategies for in vivo screening and mitigation of hepatotoxicity associated with antisense drugs
  publication-title: Mol Ther Nucleic Acids
– volume: 23
  start-page: 8263
  year: 2017
  end-page: 8276
  article-title: Clinical epidemiology and disease burden of nonalcoholic fatty liver disease
  publication-title: World J Gastroenterol
– volume: 50
  start-page: 434
  year: 2009
  end-page: 442
  article-title: Specific role for acyl CoA: Diacylglycerol acyltransferase 1 (Dgat1) in hepatic steatosis due to exogenous fatty acids
  publication-title: Hepatology
– volume: 58
  start-page: 9345
  year: 2015
  end-page: 9353
  article-title: Discovery and pharmacology of a novel class of diacylglycerol acyltransferase 2 inhibitors
  publication-title: J Med Chem
– volume: 59
  start-page: 969
  year: 2010
  end-page: 974
  article-title: Disease progression of non‐alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years
  publication-title: Gut
– volume: 1440
  start-page: 123
  year: 2016
  end-page: 134
  article-title: Comprehensive untargeted lipidomic analysis using core–shell C30 particle column and high field orbitrap mass spectrometer
  publication-title: J Chromatogr A
– volume: 53
  start-page: 1106
  year: 2012
  end-page: 1116
  article-title: The use of stable isotope‐labeled glycerol and oleic acid to differentiate the hepatic functions of DGAT1 and ‐2
  publication-title: J Lipid Res
– volume: 279
  start-page: 11767
  year: 2004
  end-page: 11776
  article-title: Lipopenia and skin barrier abnormalities in DGAT2‐deficient mice
  publication-title: J Biol Chem
– volume: 37
  start-page: W305
  year: 2009
  end-page: W311
  article-title: ToppGene Suite for gene list enrichment analysis and candidate gene prioritization
  publication-title: Nucleic Acids Res
– volume: 27
  start-page: 1236
  year: 2018
  end-page: 1248.e6
  article-title: DGAT2 inhibition alters aspects of triglyceride metabolism in rodents but not in non‐human primates
  publication-title: Cell Metab
– volume: 19
  start-page: 310
  year: 2017
  end-page: 312
  article-title: HDL cholesterol metabolism and the risk of CHD: new insights from human genetics
  publication-title: Curr Cardiol Rep
– volume: 115
  start-page: 1343
  year: 2005
  end-page: 1351
  article-title: Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease
  publication-title: J Clin Invest
– volume: 284
  start-page: 5352
  year: 2009
  end-page: 5361
  article-title: The endoplasmic reticulum enzyme DGAT2 is found in mitochondria‐associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria
  publication-title: J Biol Chem
– volume: 279
  start-page: 3033
  year: 2012
  end-page: 3047
  article-title: Diacylglycerol acyltransferase 2 acts upstream of diacylglycerol acyltransferase 1 and utilizes nascent diglycerides and de novosynthesized fatty acids in HepG2 cells
  publication-title: FEBS J
– volume: 57
  start-page: 6997
  year: 2018
  end-page: 7010
  article-title: Mechanistic characterization of long residence time inhibitors of diacylglycerol acyltransferase 2 (DGAT2)
  publication-title: Biochemistry
– volume: 270
  start-page: 5772
  year: 1995
  end-page: 5778
  article-title: Cell toxicity induced by inhibition of acyl coenzyme A:cholesterol acyltransferase and accumulation of unesterified cholesterol
  publication-title: J Biol Chem
– volume: 274
  start-page: 305
  year: 1999
  end-page: 315
  article-title: Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell‐specific gene knock‐outs using Cre recombinase
  publication-title: J Biol Chem
– volume: 61
  start-page: 1392
  year: 2015
  end-page: 1405
  article-title: Challenges and opportunities in drug and biomarker development for nonalcoholic steatohepatitis: findings and recommendations from an American Association for the Study of Liver Diseases‐U.S. Food and Drug Administration Joint Workshop
  publication-title: Hepatology
– volume: 108
  start-page: 5748
  year: 2011
  end-page: 5752
  article-title: Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2
  publication-title: Proc Natl Acad Sci U S A
– volume: 276
  start-page: 42468
  year: 2001
  end-page: 42476
  article-title: Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway
  publication-title: J Biol Chem
– volume: 43
  start-page: e47
  year: 2015
  ident: hep30765-bib-0029-20241017
  article-title: limma powers differential expression analyses for RNA‐sequencing and microarray studies
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv007
– volume: 37
  start-page: W305
  year: 2009
  ident: hep30765-bib-0030-20241017
  article-title: ToppGene Suite for gene list enrichment analysis and candidate gene prioritization
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp427
– volume: 10
  start-page: e0127991
  year: 2015
  ident: hep30765-bib-0018-20241017
  article-title: Mouse models of diet‐induced nonalcoholic steatohepatitis reproduce the heterogeneity of the human disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0127991
– volume: 24
  start-page: 848
  year: 2016
  ident: hep30765-bib-0022-20241017
  article-title: Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.09.016
– volume: 279
  start-page: 11767
  year: 2004
  ident: hep30765-bib-0021-20241017
  article-title: Lipopenia and skin barrier abnormalities in DGAT2‐deficient mice
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M311000200
– volume: 274
  start-page: 305
  year: 1999
  ident: hep30765-bib-0031-20241017
  article-title: Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell‐specific gene knock‐outs using Cre recombinase
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.1.305
– volume: 276
  start-page: 42468
  year: 2001
  ident: hep30765-bib-0035-20241017
  article-title: Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M101419200
– volume: 59
  start-page: 969
  year: 2010
  ident: hep30765-bib-0005-20241017
  article-title: Disease progression of non‐alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years
  publication-title: Gut
  doi: 10.1136/gut.2009.205088
– volume: 53
  start-page: 1106
  year: 2012
  ident: hep30765-bib-0010-20241017
  article-title: The use of stable isotope‐labeled glycerol and oleic acid to differentiate the hepatic functions of DGAT1 and ‐2
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M020156
– volume: 279
  start-page: 3033
  year: 2012
  ident: hep30765-bib-0011-20241017
  article-title: Diacylglycerol acyltransferase 2 acts upstream of diacylglycerol acyltransferase 1 and utilizes nascent diglycerides and de novosynthesized fatty acids in HepG2 cells
  publication-title: FEBS J
  doi: 10.1111/j.1742-4658.2012.08684.x
– volume: 10
  start-page: 1794
  year: 2011
  ident: hep30765-bib-0028-20241017
  article-title: Andromeda: a peptide search engine integrated into the MaxQuant environment
  publication-title: J Proteome Res
  doi: 10.1021/pr101065j
– volume: 19
  start-page: 310
  year: 2017
  ident: hep30765-bib-0041-20241017
  article-title: HDL cholesterol metabolism and the risk of CHD: new insights from human genetics
  publication-title: Curr Cardiol Rep
– volume: 226
  start-page: 497
  year: 1957
  ident: hep30765-bib-0025-20241017
  article-title: A simple method for the isolation and purification of total lipides from animal tissues
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)64849-5
– volume: 11
  start-page: 82
  year: 2018
  ident: hep30765-bib-0003-20241017
  article-title: An update on the pharmacological treatment of nonalcoholic fatty liver disease: beyond lifestyle modifications
  publication-title: Clin Liver Dis
  doi: 10.1002/cld.708
– volume: 21
  start-page: 1406
  year: 2013
  ident: hep30765-bib-0024-20241017
  article-title: Pharmacological inhibition of diacylglycerol acyltransferase 1 reduces body weight and modulates gut peptide release‐Potential insight into mechanism of action
  publication-title: Obesity
  doi: 10.1002/oby.20193
– volume: 27
  start-page: 1236
  year: 2018
  ident: hep30765-bib-0014-20241017
  article-title: DGAT2 inhibition alters aspects of triglyceride metabolism in rodents but not in non‐human primates
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2018.04.004
– volume: 15
  start-page: 570
  year: 2012
  ident: hep30765-bib-0036-20241017
  article-title: The problem of establishing relationships between hepatic steatosis and hepatic insulin resistance
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2012.03.004
– volume: 49
  start-page: 1758
  year: 2017
  ident: hep30765-bib-0039-20241017
  article-title: Exome‐wide association study of plasma lipids in >300,000 individuals
  publication-title: Nat Genet
  doi: 10.1038/ng.3977
– volume: 8
  start-page: 383
  year: 2017
  ident: hep30765-bib-0019-20241017
  article-title: Strategies for in vivo screening and mitigation of hepatotoxicity associated with antisense drugs
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2017.07.003
– volume: 52
  start-page: 657
  year: 2011
  ident: hep30765-bib-0007-20241017
  article-title: DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M013003
– volume: 57
  start-page: 6997
  year: 2018
  ident: hep30765-bib-0015-20241017
  article-title: Mechanistic characterization of long residence time inhibitors of diacylglycerol acyltransferase 2 (DGAT2)
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.8b01096
– year: 2019
  ident: hep30765-bib-0023-20241017
  article-title: The triglyceride synthesis enzymes DGAT1 and DGAT2 have distinct and overlapping functions in adipocytes
  publication-title: J Lipid Res
– volume: 26
  start-page: 1367
  year: 2008
  ident: hep30765-bib-0027-20241017
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1511
– volume: 108
  start-page: 5748
  year: 2011
  ident: hep30765-bib-0037-20241017
  article-title: Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1103451108
– volume: 62
  start-page: 1148
  year: 2015
  ident: hep30765-bib-0004-20241017
  article-title: Evidence of NAFLD progression from steatosis to fibrosing‐steatohepatitis using paired biopsies: implications for prognosis and clinical management
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2014.11.034
– volume: 23
  start-page: 8263
  year: 2017
  ident: hep30765-bib-0001-20241017
  article-title: Clinical epidemiology and disease burden of nonalcoholic fatty liver disease
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v23.i47.8263
– volume: 56
  start-page: 366
  year: 2017
  ident: hep30765-bib-0038-20241017
  article-title: Genetic interaction of DGAT2 and FAAH in the development of human obesity
  publication-title: Endocrine
  doi: 10.1007/s12020-017-1261-1
– volume: 1440
  start-page: 123
  year: 2016
  ident: hep30765-bib-0026-20241017
  article-title: Comprehensive untargeted lipidomic analysis using core–shell C30 particle column and high field orbitrap mass spectrometer
  publication-title: J Chromatogr A
  doi: 10.1016/j.chroma.2016.02.054
– volume: 302
  start-page: 1993
  year: 2009
  ident: hep30765-bib-0040-20241017
  article-title: Major lipids, apolipoproteins, and risk of vascular disease
  publication-title: JAMA
  doi: 10.1001/jama.2009.1619
– volume: 50
  start-page: 434
  year: 2009
  ident: hep30765-bib-0009-20241017
  article-title: Specific role for acyl CoA: Diacylglycerol acyltransferase 1 (Dgat1) in hepatic steatosis due to exogenous fatty acids
  publication-title: Hepatology
  doi: 10.1002/hep.22980
– volume: 282
  start-page: 22678
  year: 2007
  ident: hep30765-bib-0032-20241017
  article-title: Suppression of diacylglycerol acyltransferase‐2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet‐induced hepatic steatosis and insulin resistance
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M704213200
– volume: 42
  start-page: 362
  year: 2005
  ident: hep30765-bib-0016-20241017
  article-title: Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice
  publication-title: Hepatology
  doi: 10.1002/hep.20783
– volume: 2
  start-page: 199
  year: 2018
  ident: hep30765-bib-0002-20241017
  article-title: Natural history of nonalcoholic fatty liver disease: a prospective follow‐up study with serial biopsies
  publication-title: Hepatol Commun
  doi: 10.1002/hep4.1134
– volume: 37
  start-page: 1655
  year: 2014
  ident: hep30765-bib-0012-20241017
  article-title: Discovery of a novel class of diacylglycerol acyltransferase 2 inhibitors with a 1H‐pyrrolo[2,3‐b]pyridine core
  publication-title: Biol Pharm Bull
  doi: 10.1248/bpb.b14-00447
– volume: 58
  start-page: 9345
  year: 2015
  ident: hep30765-bib-0013-20241017
  article-title: Discovery and pharmacology of a novel class of diacylglycerol acyltransferase 2 inhibitors
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.5b01345
– volume: 6
  start-page: 69
  year: 2007
  ident: hep30765-bib-0033-20241017
  article-title: Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2007.05.005
– volume: 61
  start-page: 1392
  year: 2015
  ident: hep30765-bib-0006-20241017
  article-title: Challenges and opportunities in drug and biomarker development for nonalcoholic steatohepatitis: findings and recommendations from an American Association for the Study of Liver Diseases‐U.S. Food and Drug Administration Joint Workshop
  publication-title: Hepatology
  doi: 10.1002/hep.27678
– volume: 45
  start-page: 1366
  year: 2007
  ident: hep30765-bib-0017-20241017
  article-title: Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis
  publication-title: Hepatology
  doi: 10.1002/hep.21655
– volume: 270
  start-page: 5772
  year: 1995
  ident: hep30765-bib-0034-20241017
  article-title: Cell toxicity induced by inhibition of acyl coenzyme A:cholesterol acyltransferase and accumulation of unesterified cholesterol
  publication-title: J Biol Chem
  doi: 10.1074/jbc.270.11.5772
– volume: 115
  start-page: 1343
  year: 2005
  ident: hep30765-bib-0020-20241017
  article-title: Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease
  publication-title: J Clin Invest
  doi: 10.1172/JCI23621
– volume: 284
  start-page: 5352
  year: 2009
  ident: hep30765-bib-0008-20241017
  article-title: The endoplasmic reticulum enzyme DGAT2 is found in mitochondria‐associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M805768200
SSID ssj0009428
Score 2.5760067
Snippet Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation in hepatocytes and represents a huge public health problem owing to its...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1972
SubjectTerms Acyltransferase
Animals
Cholesterol
Diacylglycerol O-acyltransferase
Diacylglycerol O-Acyltransferase - antagonists & inhibitors
Diacylglycerol O-Acyltransferase - deficiency
Diacylglycerol O-Acyltransferase - physiology
Dietary Fats - administration & dosage
Diglycerides
Enzymes
Fatty acids
Fatty liver
Fibrosis
Fructose
Glucose metabolism
Hepatitis - etiology
Hepatocytes
Hepatocytes - enzymology
Hepatology
Insulin
Lipids
Lipogenesis
Liver Cirrhosis, Experimental - etiology
Liver diseases
Mice
Mice, Inbred C57BL
Mice, Knockout
Non-alcoholic Fatty Liver Disease - drug therapy
Non-alcoholic Fatty Liver Disease - prevention & control
Nutrient deficiency
Public health
Steatosis
Triglycerides
Triglycerides - metabolism
Title Hepatocyte Deletion of Triglyceride‐Synthesis Enzyme Acyl CoA: Diacylglycerol Acyltransferase 2 Reduces Steatosis Without Increasing Inflammation or Fibrosis in Mice
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhep.30765
https://www.ncbi.nlm.nih.gov/pubmed/31081165
https://www.proquest.com/docview/2319648310
https://www.proquest.com/docview/2231970496
https://pubmed.ncbi.nlm.nih.gov/PMC6893913
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAX3o-FUhnEgUtax0mcBE6r7q4W0CJUWtEDUuRXtFGXGG2yh_TET-Bf8L_4JYydR1kKEkK5WPIksZ0Zzzfx-DNCz8FFyIiEyiM8Vl6Yat8TRFCPRDLwQyVU4NsNzot3bH4avjmLznbQq34vTMsPMfxws5bh5mtr4FxUh5ekoUsNATtE4XaDuR8wy5s_Ob6kjkpDd64qRF3Eri6nPasQoYfDndu-6ArAvJon-St-dQ5odhN96pve5p2cH2xqcSAvfmN1_M--3UI3OmCKx60m3UY7uryDri26pfe76PscHFdtZFNrPNGWstuU2OT4BML7VSNBkZX-8fXbh6YESFkVFZ6WF81njceyWeEjM36JJwWHcitsVq6idrBZr8GVYoqPLY2srrDNMa6NfcbHol6aTY1hFrPJ8-BmoZiDErcbLrFZ4xl01MkWJV7ArHcPnc6mJ0dzrzvlwQMlSSNP0ijRKpYy8kXkM5EIyQFVRZxpriF-VjHhIok54YCmYriESoOch5z5mtJcBffRbmlK_RBhGscyYAnzuU7DnIuUKsUgICS-yHmq2Qi96L93JjsKdHsSxypryZtpBgOfuYEfoWeD6JeW9-NPQnu90mSd6VcZdRxn9vy2EXo6VIPR2pUYXmqzARkrFENwBk160OrY8Ba4MbGcSCMUb2nfIGAJwbdrymLpiMEZgE_QdeimU66_NzybT9-7wqN_F32MrgNYTNtUnj20W683-gkAslrsg-W9frvv7O8nPwU32Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYAL78dCAYM4cEmbOImTIC6r7q4CdCtUtqKXKvIr2oglRrvZQ3riJ_Av-F_8EsbOoywFCaFcLHmS2MmM5xt7_BmhF-AiROgG0nFZJJ0gUZ7DXU4cNxS-F0gufc9scJ4e0vQ4eHsSnmyh191emIYfop9wM5Zhx2tj4GZCeu-cNXSuIGKHMDy8hC4HADRM6DU6OiePSgJ7sirEXa5ZX046XiGX7PW3bnqjCxDzYqbkrwjWuqDJDXTaNb7JPPm0u674rjj7jdfxf3t3E11vsSkeNsp0C22p8ja6Mm1X3--g7yn4rkqLulJ4pAxrty6xzvEMIvxFLUCXpfrx9duHugRUuSpWeFye1Z8VHop6gff18BUeFQzKjbBe2IrKIme1BG-KCT4yTLJqhU2acaXNMz4W1VyvKwwDmcmfB08LxRz0uNlzifUST6CnVrYo8RQGvrvoeDKe7adOe9CDA3qShI4gYaxkJETo8dCjPOaCAbAKGVVMQQgtI5fxOGIuA0AVwcVl4ucsYNRThOTSv4e2S12qBwiTKBI-janHVBLkjCdESgoxoevxnCWKDtDL7odnomVBN4dxLLKGv5lk8OEz--EH6Hkv-qWh_viT0E6nNVlr_auMWJozc4TbAD3rq8FuzWIMK5Veg4wRiiA-gybdb5SsfwvcGBtapAGKNtSvFzCc4Js1ZTG33OAU8CcoO3TTatffG56l4_e28PDfRZ-iq-lsepAdvDl89whdA-yYNJk9O2i7Wq7VY8BnFX9izfAnNV86_w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkSoupTy7UMAgDlzSJk7iJHBadXe1PLaqSit6QIr8ijbqNq52s4f0xE_gX_R_8UsYO4-yFCSEcrHkSWI7M55v4vFnhF6DixChG0jHZZF0gkR5Dnc5cdxQ-F4gufQ9s8F5ckDHJ8GH0_B0Db1r98LU_BDdDzdjGXa-NgZ-IbO9a9LQqYKAHaLw8Ba6HVBAEgYRHV1zRyWBPVgVwi7XLC8nLa2QS_a6W1ed0Q2EeTNR8lcAaz3Q6C762ra9Tjw5212WfFdc_kbr-J-d20KbDTLF_VqV7qE1VdxHG5Nm7f0BuhqD5yq1qEqFB8pwdusC6wwfQ3w_qwRoslQ_vn3_XBWAKRf5Ag-Ly-pc4b6oZnhf99_iQc6gXAvrma0oLW5Wc_ClmOAjwyOrFtgkGZfaPONLXk71ssQwjZnsefCzUMxAi-sdl1jP8Qg6amXzAk9g2nuITkbD4_2x0xzz4ICWJKEjSBgrGQkRejz0KI-5YACrQkYVUxBAy8hlPI6YywBORXBxmfgZCxj1FCGZ9B-h9UIXahthEkXCpzH1mEqCjPGESEkhInQ9nrFE0R56037vVDQc6OYojllaszeTFAY-tQPfQ6860Yua-ONPQjut0qSN7S9SYknOzAFuPfSyqwarNUsxrFB6CTJGKILoDJr0uNax7i1wY2xIkXooWtG-TsAwgq_WFPnUMoNTQJ-g69BNq1x_b3g6Hh7awpN_F32BNg4Ho_TT-4OPT9EdAI5Jndazg9bL-VI9A3BW8ufWCH8CaZA5rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hepatocyte+Deletion+of+Triglyceride-Synthesis+Enzyme+Acyl+CoA%3A+Diacylglycerol+Acyltransferase+2+Reduces+Steatosis+Without+Increasing+Inflammation+or+Fibrosis+in+Mice&rft.jtitle=Hepatology+%28Baltimore%2C+Md.%29&rft.au=Gluchowski%2C+Nina+L&rft.au=Gabriel%2C+Katlyn+R&rft.au=Chitraju%2C+Chandramohan&rft.au=Bronson%2C+Roderick+T&rft.date=2019-12-01&rft.issn=1527-3350&rft.eissn=1527-3350&rft.volume=70&rft.issue=6&rft.spage=1972&rft_id=info:doi/10.1002%2Fhep.30765&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-9139&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-9139&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-9139&client=summon