HMGB1 as a therapeutic target in disease

High‐mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating gene transcription. HMGB1 has since been reevaluated to be a prototypical damage‐associated molecular pattern (DAMP) protein, and together with...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 236; no. 5; pp. 3406 - 3419
Main Authors Xue, Jiaming, Suarez, Joelle S., Minaai, Michael, Li, Shuangjing, Gaudino, Giovanni, Pass, Harvey I., Carbone, Michele, Yang, Haining
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High‐mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating gene transcription. HMGB1 has since been reevaluated to be a prototypical damage‐associated molecular pattern (DAMP) protein, and together with its exogenous counterpart, pathogen‐associated molecular pattern (PAMP), completes the body's alarmin system against disturbances in homeostasis. HMGB1 can be released into the extracellular matrix (ECM) by either granulocytes or necrotic cells to serve as a chemotaxis/cytokine during infection, endotoxemia, hypoxia, ischemia–reperfusion events, and cancer. Different isoforms of HMGB1 present with distinctive physiological functions in ECM—fully‐reduced HMGB1 (all thiol) acts as the initial damage signal to recruit circulating myeloid cells, disulfide HMGB1 behaves as a cytokine to activate macrophages and neutrophils, and both signals are turned off when HMGB1 is terminally oxidized into the final sulfonate form. Targeting HMGB1 constitutes a favorable therapeutic strategy for inflammation and inflammatory diseases. Antagonists such as ethyl pyruvate inhibit HMGB1 by interfering with its cytoplasmic exportation, while others such as glycyrrhizin directly bind to HMGB1 and render it unavailable for its receptors. The fact that a mixture of different HMGB1 isoforms is present in the ECM poses a challenge in pinpointing the exact role of an individual antagonist. A more discriminative probe for HMGB1 may be necessary to advance our knowledge of HMGB1, HMGB1 antagonists, and inflammatory‐related diseases. Graphical High‐mobility group box 1 (HMGB1) has captured much attention as a prototypical damage‐associated molecular pattern molecule that actively participates in inflammation, inflammatory diseases, and cancer. Targeting HMGB1 has been proven successful in treating inflammation and inflammatory diseases, especially in sepsis, sterile inflammation, autoimmune diseases, and cancer. Continued efforts in the field of HMGB1 can help to fill the gaps in our knowledge and bring HMGB1 antagonists closer to the next step of targeted clinical use.
AbstractList High‐mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating gene transcription. HMGB1 has since been reevaluated to be a prototypical damage‐associated molecular pattern (DAMP) protein, and together with its exogenous counterpart, pathogen‐associated molecular pattern (PAMP), completes the body's alarmin system against disturbances in homeostasis. HMGB1 can be released into the extracellular matrix (ECM) by either granulocytes or necrotic cells to serve as a chemotaxis/cytokine during infection, endotoxemia, hypoxia, ischemia–reperfusion events, and cancer. Different isoforms of HMGB1 present with distinctive physiological functions in ECM—fully‐reduced HMGB1 (all thiol) acts as the initial damage signal to recruit circulating myeloid cells, disulfide HMGB1 behaves as a cytokine to activate macrophages and neutrophils, and both signals are turned off when HMGB1 is terminally oxidized into the final sulfonate form. Targeting HMGB1 constitutes a favorable therapeutic strategy for inflammation and inflammatory diseases. Antagonists such as ethyl pyruvate inhibit HMGB1 by interfering with its cytoplasmic exportation, while others such as glycyrrhizin directly bind to HMGB1 and render it unavailable for its receptors. The fact that a mixture of different HMGB1 isoforms is present in the ECM poses a challenge in pinpointing the exact role of an individual antagonist. A more discriminative probe for HMGB1 may be necessary to advance our knowledge of HMGB1, HMGB1 antagonists, and inflammatory‐related diseases.
High-mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating gene transcription. HMGB1 has since been reevaluated to be a prototypical damage-associated molecular pattern (DAMP) protein, and together with its exogenous counterpart, pathogen-associated molecular pattern (PAMP), completes the body's alarmin system against disturbances in homeostasis. HMGB1 can be released into the extracellular matrix (ECM) by either granulocytes or necrotic cells to serve as a chemotaxis/cytokine during infection, endotoxemia, hypoxia, ischemia-reperfusion events, and cancer. Different isoforms of HMGB1 present with distinctive physiological functions in ECM-fully-reduced HMGB1 (all thiol) acts as the initial damage signal to recruit circulating myeloid cells, disulfide HMGB1 behaves as a cytokine to activate macrophages and neutrophils, and both signals are turned off when HMGB1 is terminally oxidized into the final sulfonate form. Targeting HMGB1 constitutes a favorable therapeutic strategy for inflammation and inflammatory diseases. Antagonists such as ethyl pyruvate inhibit HMGB1 by interfering with its cytoplasmic exportation, while others such as glycyrrhizin directly bind to HMGB1 and render it unavailable for its receptors. The fact that a mixture of different HMGB1 isoforms is present in the ECM poses a challenge in pinpointing the exact role of an individual antagonist. A more discriminative probe for HMGB1 may be necessary to advance our knowledge of HMGB1, HMGB1 antagonists, and inflammatory-related diseases.High-mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating gene transcription. HMGB1 has since been reevaluated to be a prototypical damage-associated molecular pattern (DAMP) protein, and together with its exogenous counterpart, pathogen-associated molecular pattern (PAMP), completes the body's alarmin system against disturbances in homeostasis. HMGB1 can be released into the extracellular matrix (ECM) by either granulocytes or necrotic cells to serve as a chemotaxis/cytokine during infection, endotoxemia, hypoxia, ischemia-reperfusion events, and cancer. Different isoforms of HMGB1 present with distinctive physiological functions in ECM-fully-reduced HMGB1 (all thiol) acts as the initial damage signal to recruit circulating myeloid cells, disulfide HMGB1 behaves as a cytokine to activate macrophages and neutrophils, and both signals are turned off when HMGB1 is terminally oxidized into the final sulfonate form. Targeting HMGB1 constitutes a favorable therapeutic strategy for inflammation and inflammatory diseases. Antagonists such as ethyl pyruvate inhibit HMGB1 by interfering with its cytoplasmic exportation, while others such as glycyrrhizin directly bind to HMGB1 and render it unavailable for its receptors. The fact that a mixture of different HMGB1 isoforms is present in the ECM poses a challenge in pinpointing the exact role of an individual antagonist. A more discriminative probe for HMGB1 may be necessary to advance our knowledge of HMGB1, HMGB1 antagonists, and inflammatory-related diseases.
High‐mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating gene transcription. HMGB1 has since been reevaluated to be a prototypical damage‐associated molecular pattern (DAMP) protein, and together with its exogenous counterpart, pathogen‐associated molecular pattern (PAMP), completes the body's alarmin system against disturbances in homeostasis. HMGB1 can be released into the extracellular matrix (ECM) by either granulocytes or necrotic cells to serve as a chemotaxis/cytokine during infection, endotoxemia, hypoxia, ischemia–reperfusion events, and cancer. Different isoforms of HMGB1 present with distinctive physiological functions in ECM—fully‐reduced HMGB1 (all thiol) acts as the initial damage signal to recruit circulating myeloid cells, disulfide HMGB1 behaves as a cytokine to activate macrophages and neutrophils, and both signals are turned off when HMGB1 is terminally oxidized into the final sulfonate form. Targeting HMGB1 constitutes a favorable therapeutic strategy for inflammation and inflammatory diseases. Antagonists such as ethyl pyruvate inhibit HMGB1 by interfering with its cytoplasmic exportation, while others such as glycyrrhizin directly bind to HMGB1 and render it unavailable for its receptors. The fact that a mixture of different HMGB1 isoforms is present in the ECM poses a challenge in pinpointing the exact role of an individual antagonist. A more discriminative probe for HMGB1 may be necessary to advance our knowledge of HMGB1, HMGB1 antagonists, and inflammatory‐related diseases. Graphical High‐mobility group box 1 (HMGB1) has captured much attention as a prototypical damage‐associated molecular pattern molecule that actively participates in inflammation, inflammatory diseases, and cancer. Targeting HMGB1 has been proven successful in treating inflammation and inflammatory diseases, especially in sepsis, sterile inflammation, autoimmune diseases, and cancer. Continued efforts in the field of HMGB1 can help to fill the gaps in our knowledge and bring HMGB1 antagonists closer to the next step of targeted clinical use.
High-mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating gene transcription. HMGB1 has since been reevaluated to be a prototypical damage-associated molecular pattern (DAMP) protein, and together with its exogenous counterpart, pathogen-associated molecular pattern (PAMP), completes the body’s alarmin system against disturbances in homeostasis. HMGB1 can be released into the extracellular matrix (ECM) by either granulocytes or necrotic cells to serve as a chemotaxis/cytokine during infection, endotoxemia, hypoxia, ischemia-reperfusion events, and cancer. Different isoforms of HMGB1 present with distinctive physiological functions in ECM—fully-reduced HMGB1 (all thiol) acts as the initial damage signal to recruit circulating myeloid cells, disulfide HMGB1 behaves as a cytokine to activate macrophages and neutrophils, and both signals are turned off when HMGB1 is terminally oxidized into the final sulfonate form. Targeting HMGB1 constitutes a favorable therapeutic strategy for inflammation and inflammatory diseases. Antagonists such as ethyl pyruvate (EP) inhibit HMGB1 by interfering with its cytoplasmic exportation, while others such as glycyrrhizin directly bind to HMGB1 and render it unavailable for its receptors. The fact that a mixture of different HMGB1 isoforms is present in the ECM poses a challenge in pinpointing the exact role of an individual antagonist. A more discriminative probe for HMGB1 may be necessary to advance our knowledge of HMGB1, HMGB1 antagonists, and inflammatory-related diseases.
Author Pass, Harvey I.
Xue, Jiaming
Yang, Haining
Li, Shuangjing
Carbone, Michele
Gaudino, Giovanni
Suarez, Joelle S.
Minaai, Michael
AuthorAffiliation 2 John A. Burns School of Medicine, University of Hawai’i, Honolulu, HI, 96813, USA
3 Central Laboratory of Liaocheng People’s Hospital, Liaocheng, Shandong, China
1 Thoracic Oncology Program, University of Hawai’i Cancer Center, Honolulu, HI, 96813, USA
4 Department of Cardiothoracic Surgery, New York University Langone Medical Center, New York, New York
AuthorAffiliation_xml – name: 3 Central Laboratory of Liaocheng People’s Hospital, Liaocheng, Shandong, China
– name: 4 Department of Cardiothoracic Surgery, New York University Langone Medical Center, New York, New York
– name: 1 Thoracic Oncology Program, University of Hawai’i Cancer Center, Honolulu, HI, 96813, USA
– name: 2 John A. Burns School of Medicine, University of Hawai’i, Honolulu, HI, 96813, USA
Author_xml – sequence: 1
  givenname: Jiaming
  surname: Xue
  fullname: Xue, Jiaming
  organization: University of Hawaii
– sequence: 2
  givenname: Joelle S.
  orcidid: 0000-0003-1528-2701
  surname: Suarez
  fullname: Suarez, Joelle S.
  organization: University of Hawaii Cancer Center
– sequence: 3
  givenname: Michael
  surname: Minaai
  fullname: Minaai, Michael
  organization: University of Hawaii Cancer Center
– sequence: 4
  givenname: Shuangjing
  surname: Li
  fullname: Li, Shuangjing
  organization: Central Laboratory of Liaocheng People's Hospital
– sequence: 5
  givenname: Giovanni
  orcidid: 0000-0002-1572-6571
  surname: Gaudino
  fullname: Gaudino, Giovanni
  organization: University of Hawaii Cancer Center
– sequence: 6
  givenname: Harvey I.
  orcidid: 0000-0003-3222-3471
  surname: Pass
  fullname: Pass, Harvey I.
  organization: New York University Langone Medical Center
– sequence: 7
  givenname: Michele
  surname: Carbone
  fullname: Carbone, Michele
  organization: University of Hawaii Cancer Center
– sequence: 8
  givenname: Haining
  orcidid: 0000-0003-1417-2420
  surname: Yang
  fullname: Yang, Haining
  email: haining@hawaii.edu
  organization: University of Hawaii Cancer Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33107103$$D View this record in MEDLINE/PubMed
BookMark eNp1kU0vBEEQhjtCWMvBH5BJXDgM1V8z2xcJG3YJ4cC509NbQ29mZ1b3DPHvNbsE4dSHet4nb1dtktW6qZGQHQqHFIAdTe38kANlcoX0KKg8FZlkq6QXZzRVUtANshnCFACU4nydbHBOIafAe2R_fD06pYkJiUnaR_Rmjl3rbNIa_4Bt4upk4gKagFtkrTRVwO3l2yf352d3w3F6dTO6GJ5cpVaCkmmUFhwxHxg-YcqiYqVSyAo7KBlMSi5YzoEZgSAGUECZFaJARkWmZFHyTPI-OV54510xw4nFuvWm0nPvZsa_6sY4_XNSu0f90DzrAQXBQETB_lLgm6cOQ6tnLlisKlNj0wXNhIzrySTlEd37hU6bztfxe5FSAnIGEeuT3e-Nvqp8LjECRwvA-iYEj6W2rjWta94LukpT0O9n0vFM-uNMMXHwK_Ep_Ytd2l9cha__g_pyeLtIvAF3IJ4b
CitedBy_id crossref_primary_10_1016_j_cellsig_2023_110904
crossref_primary_10_3390_ijms25020771
crossref_primary_10_1016_j_cyto_2023_156340
crossref_primary_10_3390_biomedicines11020437
crossref_primary_10_1007_s10571_022_01240_5
crossref_primary_10_1016_j_heliyon_2023_e21926
crossref_primary_10_1016_j_intimp_2023_109757
crossref_primary_10_1016_j_intimp_2024_112886
crossref_primary_10_31083_j_fbl2707203
crossref_primary_10_1002_brb3_3457
crossref_primary_10_1016_j_bpc_2022_106863
crossref_primary_10_1111_gtc_13017
crossref_primary_10_1016_j_transproceed_2025_02_050
crossref_primary_10_2174_0118715303250834230923234802
crossref_primary_10_3390_cancers14071710
crossref_primary_10_1371_journal_pcbi_1009953
crossref_primary_10_2478_jtim_2022_0012
crossref_primary_10_3390_biom11060800
crossref_primary_10_3390_cells13231946
crossref_primary_10_3390_biology13060374
crossref_primary_10_1016_j_canlet_2023_216494
crossref_primary_10_1128_mbio_03387_24
crossref_primary_10_7759_cureus_68083
crossref_primary_10_1097_CM9_0000000000003186
crossref_primary_10_1016_j_cellsig_2024_111445
crossref_primary_10_3389_fncel_2021_770472
crossref_primary_10_1097_HC9_0000000000000474
crossref_primary_10_1007_s10787_022_00974_4
crossref_primary_10_1016_j_bbih_2023_100641
crossref_primary_10_1016_j_jep_2024_118612
crossref_primary_10_1097_HC9_0000000000000350
crossref_primary_10_1002_cbdv_202301260
crossref_primary_10_1186_s12967_022_03416_5
crossref_primary_10_1016_j_bbrep_2024_101851
crossref_primary_10_1016_j_ajpath_2022_08_008
crossref_primary_10_1016_j_ejphar_2025_177519
crossref_primary_10_1111_jcmm_18348
crossref_primary_10_3390_nano13182598
crossref_primary_10_1016_j_labinv_2022_100054
crossref_primary_10_3390_brainsci12091119
crossref_primary_10_3390_cells11050849
crossref_primary_10_1016_j_jconrel_2024_09_016
crossref_primary_10_1177_15330338211038488
crossref_primary_10_3389_fimmu_2021_774807
crossref_primary_10_1089_ars_2023_0236
crossref_primary_10_3389_fcell_2024_1423869
crossref_primary_10_1021_acs_jafc_4c04250
crossref_primary_10_31083_j_fbl2906229
crossref_primary_10_1007_s12035_024_04657_9
crossref_primary_10_1186_s12969_023_00909_5
crossref_primary_10_1111_nyas_14623
crossref_primary_10_1016_j_ecoenv_2023_114637
crossref_primary_10_1186_s13046_023_02857_0
crossref_primary_10_3389_fimmu_2024_1334109
crossref_primary_10_3390_cells10102763
crossref_primary_10_3892_or_2023_8653
crossref_primary_10_1007_s00018_024_05169_4
crossref_primary_10_7555_JBR_37_20230095
crossref_primary_10_4103_NRR_NRR_D_23_01964
crossref_primary_10_4110_in_2023_23_e26
crossref_primary_10_1016_j_jid_2023_09_269
crossref_primary_10_1152_ajpgi_00243_2021
crossref_primary_10_3390_pharmaceutics16081074
crossref_primary_10_3389_fonc_2024_1336191
crossref_primary_10_1016_j_arr_2024_102550
crossref_primary_10_3389_fimmu_2021_782792
crossref_primary_10_1093_ibd_izac225
crossref_primary_10_3389_fimmu_2022_815257
crossref_primary_10_3390_biom11101451
crossref_primary_10_1002_jbt_23569
crossref_primary_10_1016_j_isci_2023_106143
crossref_primary_10_2174_1389201025666230905092218
crossref_primary_10_3389_fmed_2021_756988
crossref_primary_10_3390_ijms222413480
crossref_primary_10_1007_s12640_022_00553_z
crossref_primary_10_3390_ijms25105351
crossref_primary_10_1360_SSV_2024_0039
crossref_primary_10_1016_j_tox_2023_153528
crossref_primary_10_1038_s12276_022_00736_w
crossref_primary_10_3389_freae_2023_1337345
crossref_primary_10_1016_j_isci_2022_104872
crossref_primary_10_1177_14791641241271949
crossref_primary_10_3389_fimmu_2025_1505794
crossref_primary_10_1186_s10020_023_00717_3
crossref_primary_10_1038_s41419_024_06536_6
crossref_primary_10_1080_08923973_2022_2054819
crossref_primary_10_3389_fcell_2021_654913
crossref_primary_10_32604_biocell_2024_053652
crossref_primary_10_1016_j_ynstr_2025_100721
crossref_primary_10_1007_s00101_022_01197_6
crossref_primary_10_1093_burnst_tkad023
crossref_primary_10_1016_j_lfs_2025_123410
crossref_primary_10_3389_fneur_2022_1029891
crossref_primary_10_1016_j_jep_2025_119631
crossref_primary_10_3389_fendo_2023_1141516
crossref_primary_10_1016_j_neubiorev_2021_04_035
crossref_primary_10_1134_S1062359023602331
crossref_primary_10_1002_cbin_12229
crossref_primary_10_3389_fimmu_2021_679398
crossref_primary_10_3389_fimmu_2022_1094925
crossref_primary_10_1002_ptr_7938
crossref_primary_10_1016_j_bbcan_2024_189105
crossref_primary_10_2485_jhtb_31_245
crossref_primary_10_1515_med_2024_1132
crossref_primary_10_1016_j_phrs_2023_106996
crossref_primary_10_1016_j_fct_2024_114762
crossref_primary_10_2174_0115672026332275240731054001
crossref_primary_10_3390_molecules26175414
crossref_primary_10_1016_j_heliyon_2024_e41464
crossref_primary_10_1007_s00018_024_05529_0
crossref_primary_10_1007_s12033_024_01104_x
crossref_primary_10_1186_s40001_023_01412_z
crossref_primary_10_3389_fonc_2024_1449696
crossref_primary_10_3390_cancers13133265
crossref_primary_10_1007_s00520_023_07830_3
crossref_primary_10_1111_cas_15400
crossref_primary_10_3389_fphar_2021_731386
crossref_primary_10_3390_ijms23169327
crossref_primary_10_1016_j_toxlet_2022_11_004
crossref_primary_10_1097_MD_0000000000032991
crossref_primary_10_1016_j_biopha_2024_117310
crossref_primary_10_1016_j_isci_2024_110996
crossref_primary_10_3390_ph17111493
crossref_primary_10_1016_j_intimp_2024_113753
crossref_primary_10_1016_j_jff_2022_105386
crossref_primary_10_1016_j_virusres_2023_199240
crossref_primary_10_1016_j_isci_2023_107268
crossref_primary_10_1016_j_molimm_2023_11_004
crossref_primary_10_1016_j_neuro_2023_01_007
crossref_primary_10_3389_fimmu_2022_924642
crossref_primary_10_3389_fonc_2023_1204722
crossref_primary_10_3390_microorganisms12061155
crossref_primary_10_15407_fz69_06_120
crossref_primary_10_3389_fnagi_2023_1221548
crossref_primary_10_1007_s12015_021_10285_w
crossref_primary_10_2147_JIR_S477415
crossref_primary_10_1007_s10565_024_09893_2
crossref_primary_10_1186_s12967_023_04614_5
crossref_primary_10_2147_EB_S352730
crossref_primary_10_1016_j_exger_2023_112118
crossref_primary_10_3390_antiox12040794
crossref_primary_10_1007_s11046_021_00595_5
crossref_primary_10_1016_j_lfs_2024_123361
crossref_primary_10_4240_wjgs_v16_i7_2003
crossref_primary_10_1007_s00210_024_02977_0
crossref_primary_10_1177_27325016241235621
crossref_primary_10_3390_cells10051044
crossref_primary_10_3390_children8060478
crossref_primary_10_3390_biom12040544
crossref_primary_10_1016_j_heliyon_2023_e21713
crossref_primary_10_3389_fonc_2022_1056917
crossref_primary_10_1002_cmdc_202100334
crossref_primary_10_3389_fphar_2024_1530735
crossref_primary_10_3389_fneur_2022_873802
crossref_primary_10_1016_j_bbadis_2024_167085
crossref_primary_10_1007_s12016_022_08941_1
crossref_primary_10_1021_acs_jmedchem_4c01912
crossref_primary_10_2174_0113894501316051240821060249
crossref_primary_10_3389_fnmol_2022_1013033
crossref_primary_10_1186_s10020_021_00323_1
crossref_primary_10_1371_journal_pone_0307038
crossref_primary_10_3390_cells11233781
crossref_primary_10_1111_psyg_12794
crossref_primary_10_3389_fmicb_2022_964112
crossref_primary_10_3389_fimmu_2024_1498781
crossref_primary_10_1016_j_intimp_2025_114294
crossref_primary_10_1007_s12035_024_04081_z
crossref_primary_10_1016_j_pharmthera_2022_108328
crossref_primary_10_2147_IJN_S420803
crossref_primary_10_1002_npr2_12358
crossref_primary_10_1016_j_jtha_2024_07_030
crossref_primary_10_1016_j_jtho_2023_03_013
crossref_primary_10_3892_or_2022_8412
crossref_primary_10_1016_j_mtbio_2025_101542
Cites_doi 10.1038/s41598-017-06205-z
10.1165/rcmb.2008-0119OC
10.1084/jem.20141318
10.4161/auto.7.1.14005
10.3892/mmr.2016.5340
10.3389/fimmu.2016.00182
10.1002/jcb.28082
10.1016/j.jss.2004.10.019
10.1038/nri1594
10.1016/j.biopha.2015.01.013
10.1073/pnas.1121146109
10.1189/jlb.5HI0316-128RR
10.21037/atm.2017.04.29
10.1093/embo-reports/kvf198
10.1038/onc.2012.49
10.1016/j.molimm.2012.10.037
10.1016/j.bbadis.2017.07.012
10.3892/mmr.2017.6496
10.1002/art.11161
10.1038/nature00858
10.1126/science.1168988
10.1073/pnas.2007622117
10.1073/pnas.1522288113
10.1097/MPA.0b013e31818166b4
10.1073/pnas.192222999
10.1097/01.shk.0000225404.51320.82
10.1097/MD.0000000000014069
10.1371/journal.pone.0115982
10.1016/j.chembiol.2007.03.007
10.1155/2012/295081
10.1073/pnas.1006542107
10.1084/jem.20042614
10.1042/BSR20181016
10.1002/art.27590
10.1016/j.prp.2018.12.024
10.1038/srep21884
10.1016/j.bcp.2013.05.013
10.1158/0008-5472.Can-14-2147
10.1074/jbc.270.43.25752
10.4049/jimmunol.1000803
10.3389/fimmu.2017.00142
10.15252/embr.201947788
10.1096/fj.07-8770com
10.4049/jimmunol.181.7.5015
10.1016/j.ijbiomac.2018.05.044
10.1111/cei.12062
10.1073/pnas.1216195109
10.1002/art.23729
10.1038/onc.2012.631
10.1111/sji.12165
10.1038/sj.embor.embor741
10.1038/35012626
10.3390/diagnostics5020219
10.1158/0008-5472.Can-11-3481
10.18632/oncotarget.15152
10.2119/2008-00034.Klune
10.1016/j.neulet.2013.11.006
10.1158/1078-0432.CCR-11-2259
10.2147/OTT.S206932
10.1080/15384047.2015.1017691
10.1016/j.biopha.2019.109248
10.1038/ni1457
10.1016/j.bbrc.2013.12.064
10.1038/nrrheum.2011.222
10.1002/ijc.29125
10.1002/jcb.26021
10.1093/emboj/cdg516
10.4049/jimmunol.0801873
10.1073/pnas.1003893107
10.1038/s41419-018-1019-6
10.18632/oncotarget.10413
10.1073/pnas.0604008103
10.1172/jci.insight.85375
10.1523/jneurosci.2435-08.2008
10.2119/molmed.2010.00264
10.1194/jlr.C400018-JLR200
10.1084/jem.20111739
10.3892/ol.2016.5198
10.1007/s10875-008-9252-x
10.1016/j.biopha.2018.08.059
10.1007/s00296-010-1636-6
10.1083/jcb.200911078
10.1523/jneurosci.3815-05.2006
10.1038/cddis.2014.48
10.1038/srep15971
10.1053/j.gastro.2013.12.015
10.1073/pnas.2434651100
10.1002/jcp.26383
10.1016/j.intimp.2015.03.014
10.1155/2018/2754941
10.26355/eurrev_201803_14583
10.1189/jlb.1108713
10.1158/0008-5472.Can-11-2291
10.1002/j.1460-2075.1992.tb05144.x
10.1186/s13075-020-02195-y
10.1038/nm1124
10.1073/pnas.1316925111
10.1007/s11010-014-1978-6
10.3858/emm.2012.44.4.021
10.1084/jem.20160217
10.1084/jem.20120189
10.18632/oncotarget.7050
10.1016/S0021-9258(18)55361-8
10.1002/eji.201444908
10.2119/molmed.2015.00243
10.1007/s13577-019-00244-6
10.1016/j.bbrc.2018.01.097
10.1186/s13046-017-0519-z
10.1007/s13277-016-5261-1
10.1080/15384101.2017.1288324
10.18632/oncotarget.13136
10.1111/cei.12036
10.1126/science.285.5425.248
10.1126/scitranslmed.aao3089
10.1038/srep46243
10.2119/molmed.2013.00164
10.3109/08916934.2012.719946
10.3389/fimmu.2018.01518
10.1016/j.jep.2011.12.041
10.18632/aging.102591
10.1248/bpb.b18-00818
10.1146/annurev.immunol.021908.132603
ContentType Journal Article
Copyright 2020 Wiley Periodicals LLC
2020 Wiley Periodicals LLC.
2021 Wiley Periodicals LLC
Copyright_xml – notice: 2020 Wiley Periodicals LLC
– notice: 2020 Wiley Periodicals LLC.
– notice: 2021 Wiley Periodicals LLC
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
5PM
DOI 10.1002/jcp.30125
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
Genetics Abstracts
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 3419
ExternalDocumentID PMC8104204
33107103
10_1002_jcp_30125
JCP30125
Genre reviewArticle
Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Cancer Institute
  funderid: 1R01CA237235‐01A1; 5U01CA214195‐04; R01 CA198138
– fundername: U.S. Department of Defense
  funderid: W81XWH‐16‐1‐0440
– fundername: National Institute of Environmental Health Sciences
  funderid: 1R01ES030948‐01
– fundername: NCI NIH HHS
  grantid: 5U01CA214195-04
– fundername: NCI NIH HHS
  grantid: R01 CA160715
– fundername: NCI NIH HHS
  grantid: U01 CA214195
– fundername: NIEHS NIH HHS
  grantid: 1R01ES030948-01
– fundername: NIEHS NIH HHS
  grantid: R01 ES030948
– fundername: NCI NIH HHS
  grantid: R01 CA198138
– fundername: NCI NIH HHS
  grantid: R01 CA237235
– fundername: NCI NIH HHS
  grantid: 1R01CA237235-01A1
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5095-103b3ee78a3d29ce92f99e2bc8f20df3427302a4e0480b0f6b4be214695bf3653
IEDL.DBID DR2
ISSN 0021-9541
1097-4652
IngestDate Thu Aug 21 18:32:53 EDT 2025
Fri Jul 11 05:43:29 EDT 2025
Sat Jul 26 01:16:26 EDT 2025
Mon Jul 21 05:56:54 EDT 2025
Tue Jul 01 03:23:43 EDT 2025
Thu Apr 24 22:58:37 EDT 2025
Wed Jan 22 16:31:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords targeted therapy
antagonist
HMGB1
Language English
License 2020 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5095-103b3ee78a3d29ce92f99e2bc8f20df3427302a4e0480b0f6b4be214695bf3653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Author Contributions
J.X., S.L., and H.Y. wrote the manuscript. J.S., G.G., and H.P. provided constructive feedback and revised the manuscript, M.M. designed the figures. M.C. and H.Y. supervised the study.
ORCID 0000-0003-1528-2701
0000-0002-1572-6571
0000-0003-1417-2420
0000-0003-3222-3471
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8104204
PMID 33107103
PQID 2494072051
PQPubID 1006363
PageCount 0
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8104204
proquest_miscellaneous_2454656513
proquest_journals_2494072051
pubmed_primary_33107103
crossref_citationtrail_10_1002_jcp_30125
crossref_primary_10_1002_jcp_30125
wiley_primary_10_1002_jcp_30125_JCP30125
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J Cell Physiol
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 86
2010; 107
2015; 70
2019; 11
2019; 98
2015; 75
2019; 12
2002; 99
1999; 285
2010; 185
2012; 18
2016; 37
2014; 20
2018; 9
2019; 20
2013; 55
2018; 215
2015; 136
2010; 28
2000; 405
2006; 26
2008; 28
2007; 8
2003; 48
2010; 190
2014; 558
2018; 107
2019; 32
2009; 182
2013; 86
2008; 58
2019; 39
2002; 3
2002; 418
2014; 390
2018; 22
2012; 32
2016; 14
1995; 270
2011; 7
2007; 14
2012; 109
2016; 12
2016; 6
2016; 7
2016; 1
2019; 42
2018; 116
2018; 119
2002; 62
2005; 124
2018; 233
2005; 5
2016; 21
2019; 215
2020; 22
2013; 172
2018; 10
2012; 45
2012; 44
2014; 33
2003; 22
2006; 103
2014; 146
2017; 5
2018; 120
2017; 7
2017; 8
2009; 41
2012; 2012
2017; 1863
2020; 121
2011; 17
1992; 11
2010; 62
1994; 21
2012; 209
2012; 72
2015; 45
2018; 496
2014; 5
1991; 266
2017; 36
2015; 212
2016; 113
2003; 4
2014; 9
2007; 21
2009; 323
2014; 443
2004; 101
2012; 140
2015; 5
2015; 16
2012
2008; 14
2014; 111
2005; 46
2009; 29
2004; 10
2008; 181
2015; 26
2018; 2018
2017; 15
2013; 32
2017; 16
2005; 201
2020; 117
2014; 79
2017; 101
2009; 38
2012; 8
e_1_2_12_6_1
e_1_2_12_17_1
e_1_2_12_111_1
e_1_2_12_115_1
e_1_2_12_108_1
e_1_2_12_20_1
e_1_2_12_66_1
e_1_2_12_43_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_47_1
e_1_2_12_89_1
e_1_2_12_62_1
e_1_2_12_81_1
e_1_2_12_100_1
e_1_2_12_123_1
e_1_2_12_28_1
e_1_2_12_104_1
e_1_2_12_31_1
e_1_2_12_77_1
e_1_2_12_54_1
e_1_2_12_96_1
e_1_2_12_35_1
e_1_2_12_58_1
e_1_2_12_12_1
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_92_1
e_1_2_12_3_1
e_1_2_12_18_1
e_1_2_12_110_1
e_1_2_12_114_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_107_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_40_1
e_1_2_12_82_1
e_1_2_12_122_1
e_1_2_12_29_1
e_1_2_12_126_1
e_1_2_12_103_1
e_1_2_12_119_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
e_1_2_12_13_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_19_1
Huttunen H. J. (e_1_2_12_30_1) 2002; 62
e_1_2_12_38_1
e_1_2_12_113_1
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_106_1
e_1_2_12_22_1
e_1_2_12_64_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_68_1
e_1_2_12_83_1
e_1_2_12_60_1
Ayer L. M. (e_1_2_12_2_1) 1994; 21
e_1_2_12_49_1
e_1_2_12_121_1
e_1_2_12_102_1
e_1_2_12_125_1
e_1_2_12_52_1
e_1_2_12_98_1
e_1_2_12_118_1
e_1_2_12_33_1
e_1_2_12_75_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_71_1
e_1_2_12_5_1
e_1_2_12_16_1
e_1_2_12_112_1
e_1_2_12_39_1
e_1_2_12_116_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_109_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_80_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_120_1
e_1_2_12_105_1
e_1_2_12_124_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_117_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_15_1
e_1_2_12_91_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_9_1
References_xml – volume: 124
  start-page: 59
  issue: 1
  year: 2005
  end-page: 66
  article-title: The role of HMGB‐1 on the development of necrosis during hepatic ischemia and hepatic ischemia/reperfusion injury in mice
  publication-title: Journal of Surgical Research
– volume: 2012
  year: 2012
  article-title: Enhanced HMGB1 expression may contribute to Th17 cells activation in rheumatoid arthritis
  publication-title: Clinical and Developmental Immunology
– volume: 5
  start-page: 238
  issue: 11
  year: 2017
  article-title: Mesothelioma: Recent highlights
  publication-title: Annals of Translational Medicine
– volume: 140
  start-page: 33
  issue: 1
  year: 2012
  end-page: 45
  article-title: Fighting fire with fire: Poisonous Chinese herbal medicine for cancer therapy
  publication-title: Journal of Ethnopharmacology
– volume: 107
  start-page: 12611
  issue: 28
  year: 2010
  end-page: 12616
  article-title: Programmed necrosis induced by asbestos in human mesothelial cells causes high‐mobility group box 1 protein release and resultant inflammation
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 72
  start-page: 3290
  issue: 13
  year: 2012
  end-page: 3301
  article-title: Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma
  publication-title: Cancer Research
– volume: 75
  start-page: 1645
  issue: 8
  year: 2015
  end-page: 1656
  article-title: High‐mobility group box 1 promotes hepatocellular carcinoma progression through miR‐21‐mediated matrix metalloproteinase activity
  publication-title: Cancer Research
– volume: 28
  start-page: 367
  year: 2010
  end-page: 388
  article-title: HMGB1 and RAGE in inflammation and cancer
  publication-title: Annual Review of Immunology
– volume: 17
  start-page: 1039
  issue: 9‐10
  year: 2011
  end-page: 1044
  article-title: Monoclonal anti‐HMGB1 (high mobility group box chromosomal protein 1) antibody protection in two experimental arthritis models
  publication-title: Molecular Medicine
– volume: 1
  issue: 7
  year: 2016
  article-title: Identification of CD163 as an antiinflammatory receptor for HMGB1‐haptoglobin complexes
  publication-title: JCI Insight
– volume: 215
  start-page: 303
  issue: 1
  year: 2018
  end-page: 318
  article-title: High mobility group box 1 orchestrates tissue regeneration via CXCR4
  publication-title: Journal of Experimetnal Medicine
– volume: 2018
  year: 2018
  article-title: MicroRNA‐mediated regulation of HMGB1 in human hepatocellular carcinoma
  publication-title: BioMed Research International
– volume: 8
  start-page: 195
  issue: 4
  year: 2012
  end-page: 202
  article-title: HMGB1: A multifunctional alarmin driving autoimmune and inflammatory disease
  publication-title: Nature Reviews Rheumatology
– volume: 121
  year: 2020
  article-title: Long non‐coding RNA NEAT1 promotes bladder progression through regulating miR‐410 mediated HMGB1
  publication-title: Biomedicine & Pharmacotherapy
– volume: 11
  start-page: 12624
  issue: 24
  year: 2019
  end-page: 12640
  article-title: Long noncoding RNA NNT‐AS1 enhances the malignant phenotype of bladder cancer by acting as a competing endogenous RNA on microRNA‐496 thereby increasing HMGB1 expression
  publication-title: Aging
– volume: 22
  start-page: 110
  issue: 1
  year: 2020
  article-title: Increased serum calpain activity is associated with HMGB1 levels in systemic sclerosis
  publication-title: Arthritis Research & Therapy
– volume: 7
  start-page: 20507
  issue: 15
  year: 2016
  end-page: 20519
  article-title: The effect of HMGB1 on the clinicopathological and prognostic features of non‐small cell lung cancer
  publication-title: Oncotarget
– volume: 1863
  start-page: 2693
  issue: 11
  year: 2017
  end-page: 2704
  article-title: Non‐oxidizable HMGB1 induces cardiac fibroblasts migration via CXCR4 in a CXCL12‐independent manner and worsens tissue remodeling after myocardial infarction
  publication-title: Biochimica et Biophysica Acta, Molecular Basis of Disease
– volume: 103
  start-page: 10397
  issue: 27
  year: 2006
  end-page: 10402
  article-title: TNF‐alpha inhibits asbestos‐induced cytotoxicity via a NF‐kappa B‐dependent pathway, a possible mechanism for asbestos‐induced oncogenesis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 32
  start-page: 395
  issue: 2
  year: 2012
  end-page: 402
  article-title: Elevated plasma level of HMGB1 is associated with disease activity and combined alterations with IFN‐alpha and TNF‐alpha in systemic lupus erythematosus
  publication-title: Rheumatology International
– volume: 62
  start-page: 2963
  issue: 10
  year: 2010
  end-page: 2972
  article-title: Protective targeting of high mobility group box chromosomal protein 1 in a spontaneous arthritis model
  publication-title: Arthtitis and Rheumatism
– volume: 7
  start-page: 5850
  issue: 1
  year: 2017
  article-title: Therapeutic targeting of HMGB1 during experimental sepsis modulates the inflammatory cytokine profile to one associated with improved clinical outcomes
  publication-title: Scientific Reports
– volume: 11
  start-page: 1055
  issue: 3
  year: 1992
  end-page: 1063
  article-title: The DNA binding site of HMG1 protein is composed of two similar segments (HMG boxes), both of which have counterparts in other eukaryotic regulatory proteins
  publication-title: The EMBO Journal
– volume: 117
  start-page: 25543
  issue: 41
  year: 2020
  end-page: 25552
  article-title: Asbestos induces mesothelial cell transformation via HMGB1‐driven autophagy
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 443
  start-page: 1162
  issue: 4
  year: 2014
  end-page: 1168
  article-title: Ethyl pyruvate inhibits proliferation and induces apoptosis of hepatocellular carcinoma via regulation of the HMGB1‐RAGE and AKT pathways
  publication-title: Biochemical and Biophysical Research Communications
– volume: 5
  year: 2014
  article-title: HMGB1‐LPS complex promotes transformation of osteoarthritis synovial fibroblasts to a rheumatoid arthritis synovial fibroblast‐like phenotype
  publication-title: Cell Death & Disease
– volume: 101
  start-page: 1281
  issue: 6
  year: 2017
  end-page: 1287
  article-title: Frontline science: HMGB1 induces neutrophil dysfunction in experimental sepsis and in patients who survive septic shock
  publication-title: Journal of Leukocyte Biology
– volume: 107
  start-page: 11942
  issue: 26
  year: 2010
  end-page: 11947
  article-title: A critical cysteine is required for HMGB1 binding to toll‐like receptor 4 and activation of macrophage cytokine release
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 120
  start-page: 8044
  year: 2018
  end-page: 8052
  article-title: miR‐505 acts as a tumor suppressor in gastric cancer progression through targeting HMGB1
  publication-title: Journal of Cellular Biochemistry
– volume: 9
  start-page: 1518
  year: 2018
  article-title: Glycyrrhizin Protects mice against experimental autoimmune encephalomyelitis by inhibiting high‐mobility group box 1 (HMGB1) expression and neuronal HMGB1 release
  publication-title: Frontiers in Immunology
– volume: 418
  start-page: 191
  issue: 6894
  year: 2002
  end-page: 195
  article-title: Release of chromatin protein HMGB1 by necrotic cells triggers inflammation
  publication-title: Nature
– volume: 285
  start-page: 248
  issue: 5425
  year: 1999
  end-page: 251
  article-title: HMG‐1 as a late mediator of endotoxin lethality in mice
  publication-title: Science
– volume: 20
  issue: 10
  year: 2019
  article-title: Diflunisal targets the HMGB1/CXCL12 heterocomplex and blocks immune cell recruitment
  publication-title: EMBO Reports
– volume: 4
  start-page: 131
  issue: 2
  year: 2003
  end-page: 136
  article-title: Priming the nucleosome: A role for HMGB proteins?
  publication-title: EMBO Reports
– volume: 12
  start-page: 5729
  year: 2019
  end-page: 5739
  article-title: MiR‐34c acts as a tumor suppressor in non‐small cell lung cancer by inducing endoplasmic reticulum stress through targeting HMGB1
  publication-title: OncoTargets and Therapy
– volume: 29
  start-page: 180
  issue: 2
  year: 2009
  end-page: 189
  article-title: Clinical significance of serum HMGB‐1 and sRAGE levels in systemic sclerosis: Association with disease severity
  publication-title: Journal of Clinical Immunology
– volume: 266
  start-page: 16722
  issue: 25
  year: 1991
  end-page: 16729
  article-title: 30‐kDa heparin‐binding protein of brain (amphoterin) involved in neurite outgrowth. Amino acid sequence and localization in the filopodia of the advancing plasma membrane
  publication-title: Journal of Biological Chemistry
– volume: 21
  start-page: 3904
  issue: 14
  year: 2007
  end-page: 3916
  article-title: Anti‐high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats
  publication-title: FASEB Journal
– volume: 14
  start-page: 1026
  issue: 1
  year: 2016
  end-page: 1032
  article-title: HMGB1 knockdown effectively inhibits the progression of rectal cancer by suppressing HMGB1 expression and promoting apoptosis of rectal cancer cells
  publication-title: Molecular Medicine Reports
– volume: 270
  start-page: 25752
  issue: 43
  year: 1995
  end-page: 25761
  article-title: The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co‐expression of rage and amphoterin in the developing nervous system
  publication-title: Journal of Biological Chemistry
– volume: 99
  start-page: 12351
  issue: 19
  year: 2002
  end-page: 12356
  article-title: Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 9
  issue: 12
  year: 2014
  article-title: Glycyrrhizin suppresses the expressions of HMGB1 and relieves the severity of traumatic pancreatitis in rats
  publication-title: PLoS One
– volume: 16
  start-page: 511
  issue: 4
  year: 2015
  end-page: 517
  article-title: HMGB1‐mediated autophagy modulates sensitivity of colorectal cancer cells to oxaliplatin via MEK/ERK signaling pathway
  publication-title: Cancer Biology & Therapy
– volume: 37
  start-page: 13155
  issue: 10
  year: 2016
  end-page: 13166
  article-title: Downregulation of HMGB1 by miR‐34a is sufficient to suppress proliferation, migration and invasion of human cervical and colorectal cancer cells
  publication-title: Tumour Biology
– volume: 109
  start-page: 21052
  issue: 51
  year: 2012
  end-page: 21057
  article-title: Human macrophage and dendritic cell‐specific silencing of high‐mobility group protein B1 ameliorates sepsis in a humanized mouse model
  publication-title: Proceedings of the National Academy of Sciences of the United States of America of the United States of America
– volume: 28
  start-page: 12023
  issue: 46
  year: 2008
  end-page: 12031
  article-title: The HMGB1 receptor RAGE mediates ischemic brain damage
  publication-title: Journal of Neuroscience
– volume: 21
  start-page: 951
  issue: 1
  year: 2016
  end-page: 958
  article-title: HMGB1 mediates anemia of inflammation in murine sepsis survivors
  publication-title: Molecular Medicine
– volume: 48
  start-page: 2052
  issue: 7
  year: 2003
  end-page: 2058
  article-title: Successful treatment of collagen‐induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity
  publication-title: Arthtitis and Rheumatism
– volume: 7
  start-page: 112
  issue: 1
  year: 2011
  end-page: 114
  article-title: DAMP‐mediated autophagy contributes to drug resistance
  publication-title: Autophagy
– volume: 41
  start-page: 651
  issue: 6
  year: 2009
  end-page: 660
  article-title: Quercetin prevents LPS‐induced high‐mobility group box 1 release and proinflammatory function
  publication-title: American Journal of Respiratory Cell and Molecular Biology
– volume: 209
  start-page: 551
  issue: 3
  year: 2012
  end-page: 563
  article-title: HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4
  publication-title: Journal of Experimetnal Medicine
– volume: 12
  start-page: 4181
  issue: 5
  year: 2016
  end-page: 4186
  article-title: MicroRNA‐181b is downregulated in non‐small cell lung cancer and inhibits cell motility by directly targeting HMGB1
  publication-title: Oncology Letters
– volume: 15
  start-page: 4021
  issue: 6
  year: 2017
  end-page: 4026
  article-title: Association between high mobility group box1 protein expression and cell death in acute pancreatitis
  publication-title: Molecular Medicine Reports
– volume: 70
  start-page: 72
  year: 2015
  end-page: 79
  article-title: Expression of microRNA‐325‐3p and its potential functions by targeting HMGB1 in non‐small cell lung cancer
  publication-title: Biomedicine & Pharmacotherapy
– volume: 107
  start-page: 997
  year: 2018
  end-page: 1003
  article-title: MiR‐1284 enhances sensitivity of cervical cancer cells to cisplatin via downregulating HMGB1
  publication-title: Biomedicine & Pharmacotherapy
– volume: 172
  start-page: 417
  issue: 3
  year: 2013
  end-page: 426
  article-title: Ethyl pyruvate significantly inhibits tumour necrosis factor‐alpha, interleukin‐1beta and high mobility group box 1 releasing and attenuates sodium taurocholate‐induced severe acute pancreatitis associated with acute lung injury
  publication-title: Clinical and Experimental Immunology
– volume: 22
  start-page: 1700
  issue: 6
  year: 2018
  end-page: 1708
  article-title: MicroRNA‐520a‐3p suppresses non‐small‐cell lung carcinoma by inhibition of High Mobility Group Box 1 (HMGB1)
  publication-title: European Review for Medical and Pharmacological Sciences
– volume: 45
  start-page: 1216
  issue: 4
  year: 2015
  end-page: 1227
  article-title: HMGB1 induces angiogenesis in rheumatoid arthritis via HIF‐1alpha activation
  publication-title: European Journal of Immunology
– volume: 233
  start-page: 6750
  issue: 9
  year: 2018
  end-page: 6757
  article-title: LncRNA MALAT1 induces colon cancer development by regulating miR‐129‐5p/HMGB1 axis
  publication-title: Journal of Cellular Physiology
– volume: 185
  start-page: 4385
  issue: 7
  year: 2010
  end-page: 4392
  article-title: Inflammasome‐dependent release of the alarmin HMGB1 in endotoxemia
  publication-title: Journal of Immunology
– volume: 201
  start-page: 1135
  issue: 7
  year: 2005
  end-page: 1143
  article-title: The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia‐reperfusion
  publication-title: Journal of Experimetnal Medicine
– volume: 8
  start-page: 142
  year: 2017
  article-title: The HMGB1‐CXCL12 complex promotes inflammatory cell infiltration in uveitogenic T cell‐induced chronic experimental autoimmune uveitis
  publication-title: Frontiers in Immunology
– volume: 113
  start-page: E155
  issue: 2
  year: 2016
  end-page: E164
  article-title: Critical role of RAGE and HMGB1 in inflammatory heart disease
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 7
  year: 2017
  article-title: Anti‐high mobility group box‐1 (HMGB1) antibody inhibits hemorrhage‐induced brain injury and improved neurological deficits in rats
  publication-title: Scientific Reports
– volume: 86
  start-page: 410
  issue: 3
  year: 2013
  end-page: 418
  article-title: Chloroquine inhibits HMGB1 inflammatory signaling and protects mice from lethal sepsis
  publication-title: Biochemical Pharmacology
– volume: 36
  start-page: 51
  issue: 1
  year: 2017
  article-title: The long non‐coding RNA TP73‐AS1 modulates HCC cell proliferation through miR‐200a‐dependent HMGB1/RAGE regulation
  publication-title: Journal of Experimental & Clinical Cancer Research
– volume: 58
  start-page: 2675
  issue: 9
  year: 2008
  end-page: 2685
  article-title: Extracellular high mobility group box chromosomal protein 1 is a coupling factor for hypoxia and inflammation in arthritis
  publication-title: Arthtitis and Rheumatism
– volume: 39
  issue: 5
  year: 2019
  article-title: The effect of HMGB1 on the clinicopathological and prognostic features of cervical cancer
  publication-title: Bioscience Reports
– volume: 98
  issue: 3
  year: 2019
  article-title: Increased HMGB1 expression correlates with higher expression of c‐IAP2 and pERK in colorectal cancer
  publication-title: Medicine
– volume: 72
  start-page: 1996
  issue: 8
  year: 2012
  end-page: 2005
  article-title: p53/HMGB1 complexes regulate autophagy and apoptosis
  publication-title: Cancer Research
– volume: 7
  start-page: 50417
  issue: 31
  year: 2016
  end-page: 50427
  article-title: HMGB1 overexpression as a prognostic factor for survival in cancer: a meta‐analysis and systematic review
  publication-title: Oncotarget
– volume: 14
  start-page: 476
  issue: 7‐8
  year: 2008
  end-page: 484
  article-title: HMGB1: Endogenous danger signaling
  publication-title: Molecular Medicine
– volume: 8
  start-page: 22649
  issue: 14
  year: 2017
  end-page: 22661
  article-title: HMGB1 targeting by ethyl pyruvate suppresses malignant phenotype of human mesothelioma
  publication-title: Oncotarget
– volume: 405
  start-page: 354
  issue: 6784
  year: 2000
  end-page: 360
  article-title: Blockade of RAGE‐amphoterin signalling suppresses tumour growth and metastases
  publication-title: Nature
– volume: 119
  start-page: 3007
  issue: 4
  year: 2018
  end-page: 3016
  article-title: The long non‐coding RNA TP73‐AS1 interacted with miR‐142 to modulate brain glioma growth through HMGB1/RAGE pathway
  publication-title: Journal of Cellular Biochemistry
– volume: 136
  start-page: 1381
  issue: 6
  year: 2015
  end-page: 1389
  article-title: 5‐Fluorouracil causes leukocytes attraction in the peritoneal cavity by activating autophagy and HMGB1 release in colon carcinoma cells
  publication-title: International Journal of Cancer
– volume: 33
  start-page: 567
  issue: 5
  year: 2014
  end-page: 577
  article-title: The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics
  publication-title: Oncogene
– volume: 86
  start-page: 625
  issue: 3
  year: 2009
  end-page: 632
  article-title: Low‐dose cisplatin administration in murine cecal ligation and puncture prevents the systemic release of HMGB1 and attenuates lethality
  publication-title: Journal of Leukocyte Biology
– volume: 32
  start-page: 363
  issue: 3
  year: 2013
  end-page: 374
  article-title: Tumor angiogenesis is enforced by autocrine regulation of high‐mobility group box 1
  publication-title: Oncogene
– volume: 79
  start-page: 333
  issue: 5
  year: 2014
  end-page: 337
  article-title: High‐mobility group box 1 inhibition alleviates lupus‐like disease in BXSB mice
  publication-title: Scandinavian Journal of Immunology
– volume: 181
  start-page: 5015
  issue: 7
  year: 2008
  end-page: 5023
  article-title: Calcium/calmodulin‐dependent protein kinase (CaMK) IV mediates nucleocytoplasmic shuttling and release of HMGB1 during lipopolysaccharide stimulation of macrophages
  publication-title: Journal of Immunology
– volume: 496
  start-page: 738
  issue: 2
  year: 2018
  end-page: 745
  article-title: Long non‐coding RNA UCA1 promotes lung cancer cell proliferation and migration via microRNA‐193a/HMGB1 axis
  publication-title: Biochemical and Biophysical Research Communications
– volume: 323
  start-page: 1722
  issue: 5922
  year: 2009
  end-page: 1725
  article-title: CD24 and Siglec‐10 selectively repress tissue damage‐induced immune responses
  publication-title: Science
– volume: 16
  start-page: 578
  issue: 6
  year: 2017
  end-page: 587
  article-title: MALAT1 promotes osteosarcoma development by regulation of HMGB1 via miR‐142‐3p and miR‐129‐5p
  publication-title: Cell Cycle
– volume: 20
  start-page: 138
  year: 2014
  end-page: 146
  article-title: The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases
  publication-title: Molecular Medicine
– volume: 14
  start-page: 431
  issue: 4
  year: 2007
  end-page: 441
  article-title: Glycyrrhizin binds to high‐mobility group box 1 protein and inhibits its cytokine activities
  publication-title: Chemistry and Biology
– volume: 21
  start-page: 2071
  issue: 11
  year: 1994
  end-page: 2075
  article-title: Antibodies to high mobility group proteins in systemic sclerosis
  publication-title: Journal of Rheumatology
– volume: 55
  start-page: 76
  issue: 1
  year: 2013
  end-page: 82
  article-title: HMGB1 and leukocyte migration during trauma and sterile inflammation
  publication-title: Molecular Immunology
– volume: 215
  start-page: 676
  issue: 4
  year: 2019
  end-page: 682
  article-title: miR‐129‐5p attenuates cell proliferation and epithelial mesenchymal transition via HMGB1 in gastric cancer
  publication-title: Pathology‐Research and Practice
– volume: 109
  start-page: 7505
  issue: 19
  year: 2012
  end-page: 7510
  article-title: Astrocytic high‐mobility group box 1 promotes endothelial progenitor cell‐mediated neurovascular remodeling during stroke recovery
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 558
  start-page: 159
  year: 2014
  end-page: 163
  article-title: Ethyl pyruvate inhibits HMGB1 phosphorylation and secretion in activated microglia and in the postischemic brain
  publication-title: Neuroscience Letters
– volume: 22
  start-page: 5551
  issue: 20
  year: 2003
  end-page: 5560
  article-title: Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion
  publication-title: The EMBO Journal
– volume: 32
  start-page: 352
  issue: 3
  year: 2019
  end-page: 359
  article-title: MiR‐1179 inhibits the proliferation of gastric cancer cells by targeting HMGB1
  publication-title: Human Cell
– volume: 10
  issue: 451
  year: 2018
  article-title: Platelet microparticles sustain autophagy‐associated activation of neutrophils in systemic sclerosis
  publication-title: Science Translational Medicine
– volume: 26
  start-page: 6413
  issue: 24
  year: 2006
  end-page: 6421
  article-title: HMGB1, a novel cytokine‐like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain
  publication-title: Journal of Neuroscience
– volume: 209
  start-page: 1519
  issue: 9
  year: 2012
  end-page: 1528
  article-title: Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release
  publication-title: Journal of Experimetnal Medicine
– volume: 8
  start-page: 4001
  issue: 3
  year: 2017
  end-page: 4007
  article-title: MiR‐142 inhibits the development of cervical cancer by targeting HMGB1
  publication-title: Oncotarget
– volume: 5
  start-page: 331
  issue: 4
  year: 2005
  end-page: 342
  article-title: High‐mobility group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal
  publication-title: Nature Reviews Immunology
– volume: 3
  start-page: 995
  issue: 10
  year: 2002
  end-page: 1001
  article-title: The nuclear protein HMGB1 is secreted by monocytes via a non‐classical, vesicle‐mediated secretory pathway
  publication-title: EMBO Reports
– volume: 42
  start-page: 892
  year: 2019
  end-page: 899
  article-title: Triptolide suppresses growth of breast cancer by targeting HMGB1 in vitro and in vivo
  publication-title: Biological and Pharmaceutical Bulletin
– volume: 6
  year: 2016
  article-title: HMGB1 facilitated macrophage reprogramming towards a proinflammatory M1‐like phenotype in experimental autoimmune myocarditis development
  publication-title: Scientific Reports
– volume: 101
  start-page: 296
  issue: 1
  year: 2004
  end-page: 301
  article-title: Reversing established sepsis with antagonists of endogenous high‐mobility group box 1
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 10
  start-page: 1216
  issue: 11
  year: 2004
  end-page: 1221
  article-title: Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis
  publication-title: Nature Medicine
– volume: 62
  start-page: 4805
  issue: 16
  year: 2002
  end-page: 4811
  article-title: Receptor for advanced glycation end products‐binding COOH‐terminal motif of amphoterin inhibits invasive migration and metastasis
  publication-title: Cancer Research
– volume: 46
  start-page: 623
  issue: 4
  year: 2005
  end-page: 627
  article-title: Suppression of HMGB1 release by stearoyl lysophosphatidylcholine: An additional mechanism for its therapeutic effects in experimental sepsis
  publication-title: Journal of Lipid Research
– volume: 8
  start-page: 487
  issue: 5
  year: 2007
  end-page: 496
  article-title: Toll‐like receptor 9‐dependent activation by DNA‐containing immune complexes is mediated by HMGB1 and RAGE
  publication-title: Nature Immunology
– volume: 111
  start-page: 3068
  issue: 8
  year: 2014
  end-page: 3073
  article-title: JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 116
  start-page: 545
  year: 2018
  end-page: 551
  article-title: LncRNA ZEB2‐AS1 promotes pancreatic cancer cell growth and invasion through regulating the miR‐204/HMGB1 axis
  publication-title: International Journal of Biological Macromolecules
– volume: 44
  start-page: 260
  issue: 4
  year: 2012
  end-page: 267
  article-title: Toll‐like receptor 4 on islet beta cells senses expression changes in high‐mobility group box 1 and contributes to the initiation of type 1 diabetes
  publication-title: Experimental & Molecular Medicine
– volume: 18
  start-page: 598
  issue: 3
  year: 2012
  end-page: 604
  article-title: Molecular pathways: Targeting mechanisms of asbestos and erionite carcinogenesis in mesothelioma
  publication-title: Clinical Cancer Research
– year: 2012
– volume: 38
  start-page: 143
  issue: 2
  year: 2009
  end-page: 148
  article-title: Protective effect of HMGB1 a box on organ injury of acute pancreatitis in mice
  publication-title: Pancreas
– volume: 212
  start-page: 5
  issue: 1
  year: 2015
  end-page: 14
  article-title: MD‐2 is required for disulfide HMGB1‐dependent TLR4 signaling
  publication-title: Journal of Experimetnal Medicine
– volume: 390
  start-page: 271
  issue: 1‐2
  year: 2014
  end-page: 280
  article-title: The role of HMGB1‐RAGE axis in migration and invasion of hepatocellular carcinoma cell lines
  publication-title: Molecular and Cellular Biochemistry
– volume: 5
  year: 2015
  article-title: Deacetylation‐mediated interaction of SIRT1‐HMGB1 improves survival in a mouse model of endotoxemia
  publication-title: Scientific Reports
– volume: 45
  start-page: 584
  issue: 8
  year: 2012
  end-page: 587
  article-title: Circulating platelets as a source of the damage‐associated molecular pattern HMGB1 in patients with systemic sclerosis
  publication-title: Autoimmunity
– volume: 26
  start-page: 112
  issue: 1
  year: 2015
  end-page: 118
  article-title: Glycyrrhizin reduces HMGB1 secretion in lipopolysaccharide‐activated RAW 264.7 cells and endotoxemic mice by p38/Nrf2‐dependent induction of HO‐1
  publication-title: International Immunopharmacology
– volume: 190
  start-page: 881
  issue: 5
  year: 2010
  end-page: 892
  article-title: Endogenous HMGB1 regulates autophagy
  publication-title: Journal of Cell Biology
– volume: 26
  start-page: 174
  issue: 2
  year: 2006
  end-page: 179
  article-title: HMGB1 signals through toll‐like receptor (TLR) 4 and TLR2
  publication-title: Shock
– volume: 7
  start-page: 182
  year: 2016
  article-title: Disruption of a regulatory network consisting of neutrophils and platelets fosters persisting inflammation in rheumatic diseases
  publication-title: Frontiers in Immunology
– volume: 182
  start-page: 5800
  issue: 9
  year: 2009
  end-page: 5809
  article-title: HMGB1 is phosphorylated by classical protein kinase C and is secreted by a calcium‐dependent mechanism
  publication-title: Journal of Immunology
– volume: 9
  start-page: 1004
  issue: 10
  year: 2018
  article-title: HMGB1 promotes ERK‐mediated mitochondrial Drp1 phosphorylation for chemoresistance through RAGE in colorectal cancer
  publication-title: Cell Death & Disease
– volume: 172
  start-page: 37
  issue: 1
  year: 2013
  end-page: 43
  article-title: Anti‐high mobility group box 1 monoclonal antibody ameliorates experimental autoimmune encephalomyelitis
  publication-title: Clinical and Experimental Immunology
– volume: 5
  start-page: 219
  issue: 2
  year: 2015
  end-page: 253
  article-title: Circulating HMGB1 and RAGE as clinical biomarkers in malignant and autoimmune diseases
  publication-title: Diagnostics
– volume: 146
  start-page: 1097
  issue: 4
  year: 2014
  end-page: 1107
  article-title: Intracellular Hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice
  publication-title: Gastroenterology
– ident: e_1_2_12_78_1
  doi: 10.1038/s41598-017-06205-z
– ident: e_1_2_12_83_1
  doi: 10.1165/rcmb.2008-0119OC
– ident: e_1_2_12_114_1
  doi: 10.1084/jem.20141318
– ident: e_1_2_12_49_1
  doi: 10.4161/auto.7.1.14005
– ident: e_1_2_12_99_1
  doi: 10.3892/mmr.2016.5340
– ident: e_1_2_12_60_1
  doi: 10.3389/fimmu.2016.00182
– ident: e_1_2_12_85_1
  doi: 10.1002/jcb.28082
– ident: e_1_2_12_101_1
  doi: 10.1016/j.jss.2004.10.019
– ident: e_1_2_12_52_1
  doi: 10.1038/nri1594
– ident: e_1_2_12_116_1
  doi: 10.1016/j.biopha.2015.01.013
– volume: 21
  start-page: 2071
  issue: 11
  year: 1994
  ident: e_1_2_12_2_1
  article-title: Antibodies to high mobility group proteins in systemic sclerosis
  publication-title: Journal of Rheumatology
– ident: e_1_2_12_27_1
  doi: 10.1073/pnas.1121146109
– ident: e_1_2_12_24_1
  doi: 10.1189/jlb.5HI0316-128RR
– ident: e_1_2_12_8_1
  doi: 10.21037/atm.2017.04.29
– ident: e_1_2_12_18_1
– ident: e_1_2_12_23_1
  doi: 10.1093/embo-reports/kvf198
– ident: e_1_2_12_4_1
  doi: 10.1038/onc.2012.49
– ident: e_1_2_12_94_1
  doi: 10.1016/j.molimm.2012.10.037
– ident: e_1_2_12_19_1
  doi: 10.1016/j.bbadis.2017.07.012
– ident: e_1_2_12_22_1
  doi: 10.3892/mmr.2017.6496
– ident: e_1_2_12_40_1
  doi: 10.1002/art.11161
– ident: e_1_2_12_71_1
  doi: 10.1038/nature00858
– ident: e_1_2_12_13_1
  doi: 10.1126/science.1168988
– ident: e_1_2_12_107_1
  doi: 10.1073/pnas.2007622117
– ident: e_1_2_12_3_1
  doi: 10.1073/pnas.1522288113
– ident: e_1_2_12_120_1
  doi: 10.1097/MPA.0b013e31818166b4
– ident: e_1_2_12_90_1
  doi: 10.1073/pnas.192222999
– ident: e_1_2_12_119_1
  doi: 10.1097/01.shk.0000225404.51320.82
– ident: e_1_2_12_122_1
  doi: 10.1097/MD.0000000000014069
– ident: e_1_2_12_106_1
  doi: 10.1371/journal.pone.0115982
– ident: e_1_2_12_62_1
  doi: 10.1016/j.chembiol.2007.03.007
– ident: e_1_2_12_75_1
  doi: 10.1155/2012/295081
– ident: e_1_2_12_113_1
  doi: 10.1073/pnas.1006542107
– ident: e_1_2_12_88_1
  doi: 10.1084/jem.20042614
– ident: e_1_2_12_45_1
  doi: 10.1042/BSR20181016
– ident: e_1_2_12_65_1
  doi: 10.1002/art.27590
– ident: e_1_2_12_96_1
  doi: 10.1016/j.prp.2018.12.024
– ident: e_1_2_12_79_1
  doi: 10.1038/srep21884
– ident: e_1_2_12_110_1
  doi: 10.1016/j.bcp.2013.05.013
– ident: e_1_2_12_12_1
  doi: 10.1158/0008-5472.Can-14-2147
– ident: e_1_2_12_28_1
  doi: 10.1074/jbc.270.43.25752
– ident: e_1_2_12_41_1
  doi: 10.4049/jimmunol.1000803
– ident: e_1_2_12_121_1
  doi: 10.3389/fimmu.2017.00142
– ident: e_1_2_12_17_1
  doi: 10.15252/embr.201947788
– ident: e_1_2_12_48_1
  doi: 10.1096/fj.07-8770com
– ident: e_1_2_12_125_1
  doi: 10.4049/jimmunol.181.7.5015
– ident: e_1_2_12_21_1
  doi: 10.1016/j.ijbiomac.2018.05.044
– ident: e_1_2_12_54_1
  doi: 10.1111/cei.12062
– ident: e_1_2_12_117_1
  doi: 10.1073/pnas.1216195109
– ident: e_1_2_12_25_1
  doi: 10.1002/art.23729
– ident: e_1_2_12_35_1
  doi: 10.1038/onc.2012.631
– ident: e_1_2_12_124_1
  doi: 10.1111/sji.12165
– ident: e_1_2_12_87_1
  doi: 10.1038/sj.embor.embor741
– ident: e_1_2_12_81_1
  doi: 10.1038/35012626
– ident: e_1_2_12_69_1
  doi: 10.3390/diagnostics5020219
– ident: e_1_2_12_34_1
  doi: 10.1158/0008-5472.Can-11-3481
– ident: e_1_2_12_68_1
  doi: 10.18632/oncotarget.15152
– ident: e_1_2_12_39_1
  doi: 10.2119/2008-00034.Klune
– ident: e_1_2_12_76_1
  doi: 10.1016/j.neulet.2013.11.006
– ident: e_1_2_12_7_1
  doi: 10.1158/1078-0432.CCR-11-2259
– ident: e_1_2_12_89_1
  doi: 10.2147/OTT.S206932
– ident: e_1_2_12_50_1
  doi: 10.1080/15384047.2015.1017691
– ident: e_1_2_12_74_1
  doi: 10.1016/j.biopha.2019.109248
– ident: e_1_2_12_84_1
  doi: 10.1038/ni1457
– ident: e_1_2_12_15_1
  doi: 10.1016/j.bbrc.2013.12.064
– ident: e_1_2_12_26_1
  doi: 10.1038/nrrheum.2011.222
– ident: e_1_2_12_16_1
  doi: 10.1002/ijc.29125
– ident: e_1_2_12_123_1
  doi: 10.1002/jcb.26021
– ident: e_1_2_12_6_1
  doi: 10.1093/emboj/cdg516
– ident: e_1_2_12_64_1
  doi: 10.4049/jimmunol.0801873
– ident: e_1_2_12_111_1
  doi: 10.1073/pnas.1003893107
– ident: e_1_2_12_29_1
  doi: 10.1038/s41419-018-1019-6
– ident: e_1_2_12_104_1
  doi: 10.18632/oncotarget.10413
– volume: 62
  start-page: 4805
  issue: 16
  year: 2002
  ident: e_1_2_12_30_1
  article-title: Receptor for advanced glycation end products‐binding COOH‐terminal motif of amphoterin inhibits invasive migration and metastasis
  publication-title: Cancer Research
– ident: e_1_2_12_109_1
  doi: 10.1073/pnas.0604008103
– ident: e_1_2_12_115_1
  doi: 10.1172/jci.insight.85375
– ident: e_1_2_12_63_1
  doi: 10.1523/jneurosci.2435-08.2008
– ident: e_1_2_12_72_1
  doi: 10.2119/molmed.2010.00264
– ident: e_1_2_12_10_1
  doi: 10.1194/jlr.C400018-JLR200
– ident: e_1_2_12_73_1
  doi: 10.1084/jem.20111739
– ident: e_1_2_12_46_1
  doi: 10.3892/ol.2016.5198
– ident: e_1_2_12_118_1
  doi: 10.1007/s10875-008-9252-x
– ident: e_1_2_12_11_1
  doi: 10.1016/j.biopha.2018.08.059
– ident: e_1_2_12_56_1
  doi: 10.1007/s00296-010-1636-6
– ident: e_1_2_12_82_1
  doi: 10.1083/jcb.200911078
– ident: e_1_2_12_37_1
  doi: 10.1523/jneurosci.3815-05.2006
– ident: e_1_2_12_70_1
  doi: 10.1038/cddis.2014.48
– ident: e_1_2_12_31_1
  doi: 10.1038/srep15971
– ident: e_1_2_12_36_1
  doi: 10.1053/j.gastro.2013.12.015
– ident: e_1_2_12_112_1
  doi: 10.1073/pnas.2434651100
– ident: e_1_2_12_102_1
  doi: 10.1002/jcp.26383
– ident: e_1_2_12_38_1
  doi: 10.1016/j.intimp.2015.03.014
– ident: e_1_2_12_108_1
  doi: 10.1155/2018/2754941
– ident: e_1_2_12_55_1
  doi: 10.26355/eurrev_201803_14583
– ident: e_1_2_12_66_1
  doi: 10.1189/jlb.1108713
– ident: e_1_2_12_51_1
  doi: 10.1158/0008-5472.Can-11-2291
– ident: e_1_2_12_5_1
  doi: 10.1002/j.1460-2075.1992.tb05144.x
– ident: e_1_2_12_126_1
  doi: 10.1186/s13075-020-02195-y
– ident: e_1_2_12_97_1
  doi: 10.1038/nm1124
– ident: e_1_2_12_53_1
  doi: 10.1073/pnas.1316925111
– ident: e_1_2_12_14_1
  doi: 10.1007/s11010-014-1978-6
– ident: e_1_2_12_44_1
  doi: 10.3858/emm.2012.44.4.021
– ident: e_1_2_12_86_1
  doi: 10.1084/jem.20160217
– ident: e_1_2_12_93_1
  doi: 10.1084/jem.20120189
– ident: e_1_2_12_20_1
  doi: 10.18632/oncotarget.7050
– ident: e_1_2_12_61_1
  doi: 10.1016/S0021-9258(18)55361-8
– ident: e_1_2_12_67_1
  doi: 10.1002/eji.201444908
– ident: e_1_2_12_92_1
  doi: 10.2119/molmed.2015.00243
– ident: e_1_2_12_43_1
  doi: 10.1007/s13577-019-00244-6
– ident: e_1_2_12_105_1
  doi: 10.1016/j.bbrc.2018.01.097
– ident: e_1_2_12_42_1
  doi: 10.1186/s13046-017-0519-z
– ident: e_1_2_12_9_1
  doi: 10.1007/s13277-016-5261-1
– ident: e_1_2_12_47_1
  doi: 10.1080/15384101.2017.1288324
– ident: e_1_2_12_33_1
  doi: 10.18632/oncotarget.13136
– ident: e_1_2_12_91_1
  doi: 10.1111/cei.12036
– ident: e_1_2_12_95_1
  doi: 10.1126/science.285.5425.248
– ident: e_1_2_12_58_1
  doi: 10.1126/scitranslmed.aao3089
– ident: e_1_2_12_98_1
  doi: 10.1038/srep46243
– ident: e_1_2_12_57_1
  doi: 10.2119/molmed.2013.00164
– ident: e_1_2_12_59_1
  doi: 10.3109/08916934.2012.719946
– ident: e_1_2_12_80_1
  doi: 10.3389/fimmu.2018.01518
– ident: e_1_2_12_100_1
  doi: 10.1016/j.jep.2011.12.041
– ident: e_1_2_12_103_1
  doi: 10.18632/aging.102591
– ident: e_1_2_12_32_1
  doi: 10.1248/bpb.b18-00818
– ident: e_1_2_12_77_1
  doi: 10.1146/annurev.immunol.021908.132603
SSID ssj0009933
Score 2.6687393
SecondaryResourceType review_article
Snippet High‐mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating...
High-mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3406
SubjectTerms Alarmins - metabolism
Animals
antagonist
Antagonists
Chemotaxis
Cytokines
Cytokines - metabolism
Damage patterns
Endotoxemia
Endotoxemia - metabolism
Extracellular matrix
Glycyrrhizin
HMGB1
HMGB1 protein
HMGB1 Protein - metabolism
Homeostasis
Humans
Hypoxia
Inflammation
Inflammation - metabolism
Inflammatory diseases
Ischemia
Isoforms
Leukocytes (granulocytic)
Leukocytes (neutrophilic)
Macrophages
Macrophages - metabolism
Myeloid cells
Proteins
Pyruvic acid
Reperfusion
targeted therapy
Transcription
Title HMGB1 as a therapeutic target in disease
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.30125
https://www.ncbi.nlm.nih.gov/pubmed/33107103
https://www.proquest.com/docview/2494072051
https://www.proquest.com/docview/2454656513
https://pubmed.ncbi.nlm.nih.gov/PMC8104204
Volume 236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB9EEHzx23PvVoki4ku1m6TtBp9U1EW4Q0TBh4OSpCl-XZXb3Yf1r3cm_dD1A8S3QqY0zWSS3yQzvwHYzDOdJy6jFGXFA9yv40DLTAdhZLtCI-AIrY-2-BP3LuXpVXQ1AXt1LkzJD9EcuJFl-PWaDFyb_u4LaeitRYcdl1dKMKdYLQJE5y_UUaoqI-9DECLZqVmFQr7bvDm-F70DmO_jJF_jV78BHc_C37rrZdzJ3c5wYHbs0xtWx2_-2xzMVMCU7ZczaR4mXLEAi_sFOuX_RmyL-VBRfwa_AFNlBcvRImz3fp8cdJjuM81epXKxMsCc3RSsugFagsvjo4vDXlAVXwgsYghiJxVGOJd0tci4sk7xXCnHje3mPMxyIRH3hFxLR0npJsxjI42jKuEqMjmqQyzDZPFQuBVgTsYyt45odGKZRYlCH08JldlQuihxcQu2azWktmImpwIZ92nJqcxTHI_Uj0cLNhrRx5KO4yOhdq3LtLLIfopuJnHB4RrUgvWmGW2JLkh04R6GJEOl4eOoI1rwo1R98xWBOBjRGLYkY5OiESCe7vGW4uba83V30eXlocTf9Dr_vOPp6eGZf_j5ddFfMM1pjvsYzDZMDv4P3SripIFZ8wbxDFNyCy8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5FoIpeSgt9pKXtFhXExcTZXdvZQw80FMJTFQKJm7ter0Vo6yCSqEp_U_9K_1Nn1g9IKRIXDr1Z2pG8np2nd-YbgPdZqrPIptSirLiH_jr0tEy15wemIzQGHL5x1RaHYe9E7p4Gpw34VfXCFPgQ9Q830gxnr0nB6Yd06wo19Nxgxo72tSqp3LOTH5iwDT_sbOLprnC-9em42_PKmQKeQddIoJsiEdZGHS1SroxVPFPK8sR0Mu6nmZDozn2upaVe68TPwkQmloZfqyDJREgzItDgz9IEcULq3zy6AqtS5eB6V_QQyHaFY-TzVr3Vae93I6S9WZl5PWJ2Lm9rHn5XzCoqXb6uj0fJuvn5F47k_8LNx_CojL3ZRqEsT6Bh8wVY3Mj1aPB9wlaZq4Z11wwL8KAY0jlZhLXewfbHNtNDptm1bjVW1NCzfs7KS66ncHIvu38GM_kgty-AWRnKzFhCCgplGkQK01glVGp8aYPIhk1Yq849NiX4Os0A-RYXsNE8Rv7Hjv9NWK5JLwrEkX8RLVXCE5dGZxhjJk1wd2hmm_CuXkZzQXdAOreDMdEEhJAXtEUTnheyVr9FYKiPASeuRFNSWBMQFPn0St4_c5DkHczquS_xM52Q3b7xeLf72T28vDvpW5jrHR_sx_s7h3uv4CEnBXMlp0swM7oc29cYFo6SN04bGXy5b4H9A3pLZ80
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hqqJe-gAK29LWIKi4BLy2k6wPHCjbZXkUIVQkbsFxbBVos6i7q2r7l_pX-qMYOw_YUiQuHLhF8khxxvOMZ74BWLaZsrHJXIuyZAH66yhQIlMBDXWLKww4qPbVFgdR91jsnoQnE_Cn6oUp8CHqH25OM7y9dgp-mdn1a9DQc40JO5rXqqJyz4x-Yb7W39hp4-GuMNb5_HWrG5QjBQKNntFhbvKUGxO3FM-Y1EYyK6VhqW5ZRjPLBXpzypQwrtU6pTZKRWrc7GsZppZHbkQE2vsnIqLSzYloH11jVclybr2veQhFs4Ixomy93uq487sV0d4uzLwZMHuP13kBfyteFYUuF2vDQbqmf_8DI_lImPkSnpeRN9ksVOUVTJh8GmY2czXo_RiRj8TXwvpLhml4WozoHM3AavfL9qcmUX2iyI1eNVJU0JOznJRXXLNw_CC7fw2TeS8380CMiITVxuEERSILY4lJrOQy01SYMDZRA1arY090Cb3uJoB8TwrQaJYg_xPP_wYs1aSXBd7I_4gWKtlJSpPTTzCPdmB3aGQbsFgvo7FwN0AqN72howkdPl7Y5A2YK0StfgvHQB_DTVyJx4SwJnBA5OMr-dk3D0jewpyeUYGf6WXs7o0nu1uH_uHN_Uk_wNRhu5Ps7xzsvYVnzKmXrzddgMnBz6F5hzHhIH3vdZHA6UPL6xW7_mZ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HMGB1+as+a+therapeutic+target+in+disease&rft.jtitle=Journal+of+cellular+physiology&rft.au=Xue%2C+Jiaming&rft.au=Suarez%2C+Joelle+S.&rft.au=Minaai%2C+Michael&rft.au=Li%2C+Shuangjing&rft.date=2021-05-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=236&rft.issue=5&rft.spage=3406&rft.epage=3419&rft_id=info:doi/10.1002%2Fjcp.30125&rft.externalDBID=10.1002%252Fjcp.30125&rft.externalDocID=JCP30125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon