HMGB1 as a therapeutic target in disease
High‐mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating gene transcription. HMGB1 has since been reevaluated to be a prototypical damage‐associated molecular pattern (DAMP) protein, and together with...
Saved in:
Published in | Journal of cellular physiology Vol. 236; no. 5; pp. 3406 - 3419 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High‐mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating gene transcription. HMGB1 has since been reevaluated to be a prototypical damage‐associated molecular pattern (DAMP) protein, and together with its exogenous counterpart, pathogen‐associated molecular pattern (PAMP), completes the body's alarmin system against disturbances in homeostasis. HMGB1 can be released into the extracellular matrix (ECM) by either granulocytes or necrotic cells to serve as a chemotaxis/cytokine during infection, endotoxemia, hypoxia, ischemia–reperfusion events, and cancer. Different isoforms of HMGB1 present with distinctive physiological functions in ECM—fully‐reduced HMGB1 (all thiol) acts as the initial damage signal to recruit circulating myeloid cells, disulfide HMGB1 behaves as a cytokine to activate macrophages and neutrophils, and both signals are turned off when HMGB1 is terminally oxidized into the final sulfonate form. Targeting HMGB1 constitutes a favorable therapeutic strategy for inflammation and inflammatory diseases. Antagonists such as ethyl pyruvate inhibit HMGB1 by interfering with its cytoplasmic exportation, while others such as glycyrrhizin directly bind to HMGB1 and render it unavailable for its receptors. The fact that a mixture of different HMGB1 isoforms is present in the ECM poses a challenge in pinpointing the exact role of an individual antagonist. A more discriminative probe for HMGB1 may be necessary to advance our knowledge of HMGB1, HMGB1 antagonists, and inflammatory‐related diseases.
Graphical
High‐mobility group box 1 (HMGB1) has captured much attention as a prototypical damage‐associated molecular pattern molecule that actively participates in inflammation, inflammatory diseases, and cancer. Targeting HMGB1 has been proven successful in treating inflammation and inflammatory diseases, especially in sepsis, sterile inflammation, autoimmune diseases, and cancer. Continued efforts in the field of HMGB1 can help to fill the gaps in our knowledge and bring HMGB1 antagonists closer to the next step of targeted clinical use. |
---|---|
AbstractList | High‐mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating gene transcription. HMGB1 has since been reevaluated to be a prototypical damage‐associated molecular pattern (DAMP) protein, and together with its exogenous counterpart, pathogen‐associated molecular pattern (PAMP), completes the body's alarmin system against disturbances in homeostasis. HMGB1 can be released into the extracellular matrix (ECM) by either granulocytes or necrotic cells to serve as a chemotaxis/cytokine during infection, endotoxemia, hypoxia, ischemia–reperfusion events, and cancer. Different isoforms of HMGB1 present with distinctive physiological functions in ECM—fully‐reduced HMGB1 (all thiol) acts as the initial damage signal to recruit circulating myeloid cells, disulfide HMGB1 behaves as a cytokine to activate macrophages and neutrophils, and both signals are turned off when HMGB1 is terminally oxidized into the final sulfonate form. Targeting HMGB1 constitutes a favorable therapeutic strategy for inflammation and inflammatory diseases. Antagonists such as ethyl pyruvate inhibit HMGB1 by interfering with its cytoplasmic exportation, while others such as glycyrrhizin directly bind to HMGB1 and render it unavailable for its receptors. The fact that a mixture of different HMGB1 isoforms is present in the ECM poses a challenge in pinpointing the exact role of an individual antagonist. A more discriminative probe for HMGB1 may be necessary to advance our knowledge of HMGB1, HMGB1 antagonists, and inflammatory‐related diseases. High-mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating gene transcription. HMGB1 has since been reevaluated to be a prototypical damage-associated molecular pattern (DAMP) protein, and together with its exogenous counterpart, pathogen-associated molecular pattern (PAMP), completes the body's alarmin system against disturbances in homeostasis. HMGB1 can be released into the extracellular matrix (ECM) by either granulocytes or necrotic cells to serve as a chemotaxis/cytokine during infection, endotoxemia, hypoxia, ischemia-reperfusion events, and cancer. Different isoforms of HMGB1 present with distinctive physiological functions in ECM-fully-reduced HMGB1 (all thiol) acts as the initial damage signal to recruit circulating myeloid cells, disulfide HMGB1 behaves as a cytokine to activate macrophages and neutrophils, and both signals are turned off when HMGB1 is terminally oxidized into the final sulfonate form. Targeting HMGB1 constitutes a favorable therapeutic strategy for inflammation and inflammatory diseases. Antagonists such as ethyl pyruvate inhibit HMGB1 by interfering with its cytoplasmic exportation, while others such as glycyrrhizin directly bind to HMGB1 and render it unavailable for its receptors. The fact that a mixture of different HMGB1 isoforms is present in the ECM poses a challenge in pinpointing the exact role of an individual antagonist. A more discriminative probe for HMGB1 may be necessary to advance our knowledge of HMGB1, HMGB1 antagonists, and inflammatory-related diseases.High-mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating gene transcription. HMGB1 has since been reevaluated to be a prototypical damage-associated molecular pattern (DAMP) protein, and together with its exogenous counterpart, pathogen-associated molecular pattern (PAMP), completes the body's alarmin system against disturbances in homeostasis. HMGB1 can be released into the extracellular matrix (ECM) by either granulocytes or necrotic cells to serve as a chemotaxis/cytokine during infection, endotoxemia, hypoxia, ischemia-reperfusion events, and cancer. Different isoforms of HMGB1 present with distinctive physiological functions in ECM-fully-reduced HMGB1 (all thiol) acts as the initial damage signal to recruit circulating myeloid cells, disulfide HMGB1 behaves as a cytokine to activate macrophages and neutrophils, and both signals are turned off when HMGB1 is terminally oxidized into the final sulfonate form. Targeting HMGB1 constitutes a favorable therapeutic strategy for inflammation and inflammatory diseases. Antagonists such as ethyl pyruvate inhibit HMGB1 by interfering with its cytoplasmic exportation, while others such as glycyrrhizin directly bind to HMGB1 and render it unavailable for its receptors. The fact that a mixture of different HMGB1 isoforms is present in the ECM poses a challenge in pinpointing the exact role of an individual antagonist. A more discriminative probe for HMGB1 may be necessary to advance our knowledge of HMGB1, HMGB1 antagonists, and inflammatory-related diseases. High‐mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating gene transcription. HMGB1 has since been reevaluated to be a prototypical damage‐associated molecular pattern (DAMP) protein, and together with its exogenous counterpart, pathogen‐associated molecular pattern (PAMP), completes the body's alarmin system against disturbances in homeostasis. HMGB1 can be released into the extracellular matrix (ECM) by either granulocytes or necrotic cells to serve as a chemotaxis/cytokine during infection, endotoxemia, hypoxia, ischemia–reperfusion events, and cancer. Different isoforms of HMGB1 present with distinctive physiological functions in ECM—fully‐reduced HMGB1 (all thiol) acts as the initial damage signal to recruit circulating myeloid cells, disulfide HMGB1 behaves as a cytokine to activate macrophages and neutrophils, and both signals are turned off when HMGB1 is terminally oxidized into the final sulfonate form. Targeting HMGB1 constitutes a favorable therapeutic strategy for inflammation and inflammatory diseases. Antagonists such as ethyl pyruvate inhibit HMGB1 by interfering with its cytoplasmic exportation, while others such as glycyrrhizin directly bind to HMGB1 and render it unavailable for its receptors. The fact that a mixture of different HMGB1 isoforms is present in the ECM poses a challenge in pinpointing the exact role of an individual antagonist. A more discriminative probe for HMGB1 may be necessary to advance our knowledge of HMGB1, HMGB1 antagonists, and inflammatory‐related diseases. Graphical High‐mobility group box 1 (HMGB1) has captured much attention as a prototypical damage‐associated molecular pattern molecule that actively participates in inflammation, inflammatory diseases, and cancer. Targeting HMGB1 has been proven successful in treating inflammation and inflammatory diseases, especially in sepsis, sterile inflammation, autoimmune diseases, and cancer. Continued efforts in the field of HMGB1 can help to fill the gaps in our knowledge and bring HMGB1 antagonists closer to the next step of targeted clinical use. High-mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating gene transcription. HMGB1 has since been reevaluated to be a prototypical damage-associated molecular pattern (DAMP) protein, and together with its exogenous counterpart, pathogen-associated molecular pattern (PAMP), completes the body’s alarmin system against disturbances in homeostasis. HMGB1 can be released into the extracellular matrix (ECM) by either granulocytes or necrotic cells to serve as a chemotaxis/cytokine during infection, endotoxemia, hypoxia, ischemia-reperfusion events, and cancer. Different isoforms of HMGB1 present with distinctive physiological functions in ECM—fully-reduced HMGB1 (all thiol) acts as the initial damage signal to recruit circulating myeloid cells, disulfide HMGB1 behaves as a cytokine to activate macrophages and neutrophils, and both signals are turned off when HMGB1 is terminally oxidized into the final sulfonate form. Targeting HMGB1 constitutes a favorable therapeutic strategy for inflammation and inflammatory diseases. Antagonists such as ethyl pyruvate (EP) inhibit HMGB1 by interfering with its cytoplasmic exportation, while others such as glycyrrhizin directly bind to HMGB1 and render it unavailable for its receptors. The fact that a mixture of different HMGB1 isoforms is present in the ECM poses a challenge in pinpointing the exact role of an individual antagonist. A more discriminative probe for HMGB1 may be necessary to advance our knowledge of HMGB1, HMGB1 antagonists, and inflammatory-related diseases. |
Author | Pass, Harvey I. Xue, Jiaming Yang, Haining Li, Shuangjing Carbone, Michele Gaudino, Giovanni Suarez, Joelle S. Minaai, Michael |
AuthorAffiliation | 2 John A. Burns School of Medicine, University of Hawai’i, Honolulu, HI, 96813, USA 3 Central Laboratory of Liaocheng People’s Hospital, Liaocheng, Shandong, China 1 Thoracic Oncology Program, University of Hawai’i Cancer Center, Honolulu, HI, 96813, USA 4 Department of Cardiothoracic Surgery, New York University Langone Medical Center, New York, New York |
AuthorAffiliation_xml | – name: 3 Central Laboratory of Liaocheng People’s Hospital, Liaocheng, Shandong, China – name: 4 Department of Cardiothoracic Surgery, New York University Langone Medical Center, New York, New York – name: 1 Thoracic Oncology Program, University of Hawai’i Cancer Center, Honolulu, HI, 96813, USA – name: 2 John A. Burns School of Medicine, University of Hawai’i, Honolulu, HI, 96813, USA |
Author_xml | – sequence: 1 givenname: Jiaming surname: Xue fullname: Xue, Jiaming organization: University of Hawaii – sequence: 2 givenname: Joelle S. orcidid: 0000-0003-1528-2701 surname: Suarez fullname: Suarez, Joelle S. organization: University of Hawaii Cancer Center – sequence: 3 givenname: Michael surname: Minaai fullname: Minaai, Michael organization: University of Hawaii Cancer Center – sequence: 4 givenname: Shuangjing surname: Li fullname: Li, Shuangjing organization: Central Laboratory of Liaocheng People's Hospital – sequence: 5 givenname: Giovanni orcidid: 0000-0002-1572-6571 surname: Gaudino fullname: Gaudino, Giovanni organization: University of Hawaii Cancer Center – sequence: 6 givenname: Harvey I. orcidid: 0000-0003-3222-3471 surname: Pass fullname: Pass, Harvey I. organization: New York University Langone Medical Center – sequence: 7 givenname: Michele surname: Carbone fullname: Carbone, Michele organization: University of Hawaii Cancer Center – sequence: 8 givenname: Haining orcidid: 0000-0003-1417-2420 surname: Yang fullname: Yang, Haining email: haining@hawaii.edu organization: University of Hawaii Cancer Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33107103$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU0vBEEQhjtCWMvBH5BJXDgM1V8z2xcJG3YJ4cC509NbQ29mZ1b3DPHvNbsE4dSHet4nb1dtktW6qZGQHQqHFIAdTe38kANlcoX0KKg8FZlkq6QXZzRVUtANshnCFACU4nydbHBOIafAe2R_fD06pYkJiUnaR_Rmjl3rbNIa_4Bt4upk4gKagFtkrTRVwO3l2yf352d3w3F6dTO6GJ5cpVaCkmmUFhwxHxg-YcqiYqVSyAo7KBlMSi5YzoEZgSAGUECZFaJARkWmZFHyTPI-OV54510xw4nFuvWm0nPvZsa_6sY4_XNSu0f90DzrAQXBQETB_lLgm6cOQ6tnLlisKlNj0wXNhIzrySTlEd37hU6bztfxe5FSAnIGEeuT3e-Nvqp8LjECRwvA-iYEj6W2rjWta94LukpT0O9n0vFM-uNMMXHwK_Ep_Ytd2l9cha__g_pyeLtIvAF3IJ4b |
CitedBy_id | crossref_primary_10_1016_j_cellsig_2023_110904 crossref_primary_10_3390_ijms25020771 crossref_primary_10_1016_j_cyto_2023_156340 crossref_primary_10_3390_biomedicines11020437 crossref_primary_10_1007_s10571_022_01240_5 crossref_primary_10_1016_j_heliyon_2023_e21926 crossref_primary_10_1016_j_intimp_2023_109757 crossref_primary_10_1016_j_intimp_2024_112886 crossref_primary_10_31083_j_fbl2707203 crossref_primary_10_1002_brb3_3457 crossref_primary_10_1016_j_bpc_2022_106863 crossref_primary_10_1111_gtc_13017 crossref_primary_10_1016_j_transproceed_2025_02_050 crossref_primary_10_2174_0118715303250834230923234802 crossref_primary_10_3390_cancers14071710 crossref_primary_10_1371_journal_pcbi_1009953 crossref_primary_10_2478_jtim_2022_0012 crossref_primary_10_3390_biom11060800 crossref_primary_10_3390_cells13231946 crossref_primary_10_3390_biology13060374 crossref_primary_10_1016_j_canlet_2023_216494 crossref_primary_10_1128_mbio_03387_24 crossref_primary_10_7759_cureus_68083 crossref_primary_10_1097_CM9_0000000000003186 crossref_primary_10_1016_j_cellsig_2024_111445 crossref_primary_10_3389_fncel_2021_770472 crossref_primary_10_1097_HC9_0000000000000474 crossref_primary_10_1007_s10787_022_00974_4 crossref_primary_10_1016_j_bbih_2023_100641 crossref_primary_10_1016_j_jep_2024_118612 crossref_primary_10_1097_HC9_0000000000000350 crossref_primary_10_1002_cbdv_202301260 crossref_primary_10_1186_s12967_022_03416_5 crossref_primary_10_1016_j_bbrep_2024_101851 crossref_primary_10_1016_j_ajpath_2022_08_008 crossref_primary_10_1016_j_ejphar_2025_177519 crossref_primary_10_1111_jcmm_18348 crossref_primary_10_3390_nano13182598 crossref_primary_10_1016_j_labinv_2022_100054 crossref_primary_10_3390_brainsci12091119 crossref_primary_10_3390_cells11050849 crossref_primary_10_1016_j_jconrel_2024_09_016 crossref_primary_10_1177_15330338211038488 crossref_primary_10_3389_fimmu_2021_774807 crossref_primary_10_1089_ars_2023_0236 crossref_primary_10_3389_fcell_2024_1423869 crossref_primary_10_1021_acs_jafc_4c04250 crossref_primary_10_31083_j_fbl2906229 crossref_primary_10_1007_s12035_024_04657_9 crossref_primary_10_1186_s12969_023_00909_5 crossref_primary_10_1111_nyas_14623 crossref_primary_10_1016_j_ecoenv_2023_114637 crossref_primary_10_1186_s13046_023_02857_0 crossref_primary_10_3389_fimmu_2024_1334109 crossref_primary_10_3390_cells10102763 crossref_primary_10_3892_or_2023_8653 crossref_primary_10_1007_s00018_024_05169_4 crossref_primary_10_7555_JBR_37_20230095 crossref_primary_10_4103_NRR_NRR_D_23_01964 crossref_primary_10_4110_in_2023_23_e26 crossref_primary_10_1016_j_jid_2023_09_269 crossref_primary_10_1152_ajpgi_00243_2021 crossref_primary_10_3390_pharmaceutics16081074 crossref_primary_10_3389_fonc_2024_1336191 crossref_primary_10_1016_j_arr_2024_102550 crossref_primary_10_3389_fimmu_2021_782792 crossref_primary_10_1093_ibd_izac225 crossref_primary_10_3389_fimmu_2022_815257 crossref_primary_10_3390_biom11101451 crossref_primary_10_1002_jbt_23569 crossref_primary_10_1016_j_isci_2023_106143 crossref_primary_10_2174_1389201025666230905092218 crossref_primary_10_3389_fmed_2021_756988 crossref_primary_10_3390_ijms222413480 crossref_primary_10_1007_s12640_022_00553_z crossref_primary_10_3390_ijms25105351 crossref_primary_10_1360_SSV_2024_0039 crossref_primary_10_1016_j_tox_2023_153528 crossref_primary_10_1038_s12276_022_00736_w crossref_primary_10_3389_freae_2023_1337345 crossref_primary_10_1016_j_isci_2022_104872 crossref_primary_10_1177_14791641241271949 crossref_primary_10_3389_fimmu_2025_1505794 crossref_primary_10_1186_s10020_023_00717_3 crossref_primary_10_1038_s41419_024_06536_6 crossref_primary_10_1080_08923973_2022_2054819 crossref_primary_10_3389_fcell_2021_654913 crossref_primary_10_32604_biocell_2024_053652 crossref_primary_10_1016_j_ynstr_2025_100721 crossref_primary_10_1007_s00101_022_01197_6 crossref_primary_10_1093_burnst_tkad023 crossref_primary_10_1016_j_lfs_2025_123410 crossref_primary_10_3389_fneur_2022_1029891 crossref_primary_10_1016_j_jep_2025_119631 crossref_primary_10_3389_fendo_2023_1141516 crossref_primary_10_1016_j_neubiorev_2021_04_035 crossref_primary_10_1134_S1062359023602331 crossref_primary_10_1002_cbin_12229 crossref_primary_10_3389_fimmu_2021_679398 crossref_primary_10_3389_fimmu_2022_1094925 crossref_primary_10_1002_ptr_7938 crossref_primary_10_1016_j_bbcan_2024_189105 crossref_primary_10_2485_jhtb_31_245 crossref_primary_10_1515_med_2024_1132 crossref_primary_10_1016_j_phrs_2023_106996 crossref_primary_10_1016_j_fct_2024_114762 crossref_primary_10_2174_0115672026332275240731054001 crossref_primary_10_3390_molecules26175414 crossref_primary_10_1016_j_heliyon_2024_e41464 crossref_primary_10_1007_s00018_024_05529_0 crossref_primary_10_1007_s12033_024_01104_x crossref_primary_10_1186_s40001_023_01412_z crossref_primary_10_3389_fonc_2024_1449696 crossref_primary_10_3390_cancers13133265 crossref_primary_10_1007_s00520_023_07830_3 crossref_primary_10_1111_cas_15400 crossref_primary_10_3389_fphar_2021_731386 crossref_primary_10_3390_ijms23169327 crossref_primary_10_1016_j_toxlet_2022_11_004 crossref_primary_10_1097_MD_0000000000032991 crossref_primary_10_1016_j_biopha_2024_117310 crossref_primary_10_1016_j_isci_2024_110996 crossref_primary_10_3390_ph17111493 crossref_primary_10_1016_j_intimp_2024_113753 crossref_primary_10_1016_j_jff_2022_105386 crossref_primary_10_1016_j_virusres_2023_199240 crossref_primary_10_1016_j_isci_2023_107268 crossref_primary_10_1016_j_molimm_2023_11_004 crossref_primary_10_1016_j_neuro_2023_01_007 crossref_primary_10_3389_fimmu_2022_924642 crossref_primary_10_3389_fonc_2023_1204722 crossref_primary_10_3390_microorganisms12061155 crossref_primary_10_15407_fz69_06_120 crossref_primary_10_3389_fnagi_2023_1221548 crossref_primary_10_1007_s12015_021_10285_w crossref_primary_10_2147_JIR_S477415 crossref_primary_10_1007_s10565_024_09893_2 crossref_primary_10_1186_s12967_023_04614_5 crossref_primary_10_2147_EB_S352730 crossref_primary_10_1016_j_exger_2023_112118 crossref_primary_10_3390_antiox12040794 crossref_primary_10_1007_s11046_021_00595_5 crossref_primary_10_1016_j_lfs_2024_123361 crossref_primary_10_4240_wjgs_v16_i7_2003 crossref_primary_10_1007_s00210_024_02977_0 crossref_primary_10_1177_27325016241235621 crossref_primary_10_3390_cells10051044 crossref_primary_10_3390_children8060478 crossref_primary_10_3390_biom12040544 crossref_primary_10_1016_j_heliyon_2023_e21713 crossref_primary_10_3389_fonc_2022_1056917 crossref_primary_10_1002_cmdc_202100334 crossref_primary_10_3389_fphar_2024_1530735 crossref_primary_10_3389_fneur_2022_873802 crossref_primary_10_1016_j_bbadis_2024_167085 crossref_primary_10_1007_s12016_022_08941_1 crossref_primary_10_1021_acs_jmedchem_4c01912 crossref_primary_10_2174_0113894501316051240821060249 crossref_primary_10_3389_fnmol_2022_1013033 crossref_primary_10_1186_s10020_021_00323_1 crossref_primary_10_1371_journal_pone_0307038 crossref_primary_10_3390_cells11233781 crossref_primary_10_1111_psyg_12794 crossref_primary_10_3389_fmicb_2022_964112 crossref_primary_10_3389_fimmu_2024_1498781 crossref_primary_10_1016_j_intimp_2025_114294 crossref_primary_10_1007_s12035_024_04081_z crossref_primary_10_1016_j_pharmthera_2022_108328 crossref_primary_10_2147_IJN_S420803 crossref_primary_10_1002_npr2_12358 crossref_primary_10_1016_j_jtha_2024_07_030 crossref_primary_10_1016_j_jtho_2023_03_013 crossref_primary_10_3892_or_2022_8412 crossref_primary_10_1016_j_mtbio_2025_101542 |
Cites_doi | 10.1038/s41598-017-06205-z 10.1165/rcmb.2008-0119OC 10.1084/jem.20141318 10.4161/auto.7.1.14005 10.3892/mmr.2016.5340 10.3389/fimmu.2016.00182 10.1002/jcb.28082 10.1016/j.jss.2004.10.019 10.1038/nri1594 10.1016/j.biopha.2015.01.013 10.1073/pnas.1121146109 10.1189/jlb.5HI0316-128RR 10.21037/atm.2017.04.29 10.1093/embo-reports/kvf198 10.1038/onc.2012.49 10.1016/j.molimm.2012.10.037 10.1016/j.bbadis.2017.07.012 10.3892/mmr.2017.6496 10.1002/art.11161 10.1038/nature00858 10.1126/science.1168988 10.1073/pnas.2007622117 10.1073/pnas.1522288113 10.1097/MPA.0b013e31818166b4 10.1073/pnas.192222999 10.1097/01.shk.0000225404.51320.82 10.1097/MD.0000000000014069 10.1371/journal.pone.0115982 10.1016/j.chembiol.2007.03.007 10.1155/2012/295081 10.1073/pnas.1006542107 10.1084/jem.20042614 10.1042/BSR20181016 10.1002/art.27590 10.1016/j.prp.2018.12.024 10.1038/srep21884 10.1016/j.bcp.2013.05.013 10.1158/0008-5472.Can-14-2147 10.1074/jbc.270.43.25752 10.4049/jimmunol.1000803 10.3389/fimmu.2017.00142 10.15252/embr.201947788 10.1096/fj.07-8770com 10.4049/jimmunol.181.7.5015 10.1016/j.ijbiomac.2018.05.044 10.1111/cei.12062 10.1073/pnas.1216195109 10.1002/art.23729 10.1038/onc.2012.631 10.1111/sji.12165 10.1038/sj.embor.embor741 10.1038/35012626 10.3390/diagnostics5020219 10.1158/0008-5472.Can-11-3481 10.18632/oncotarget.15152 10.2119/2008-00034.Klune 10.1016/j.neulet.2013.11.006 10.1158/1078-0432.CCR-11-2259 10.2147/OTT.S206932 10.1080/15384047.2015.1017691 10.1016/j.biopha.2019.109248 10.1038/ni1457 10.1016/j.bbrc.2013.12.064 10.1038/nrrheum.2011.222 10.1002/ijc.29125 10.1002/jcb.26021 10.1093/emboj/cdg516 10.4049/jimmunol.0801873 10.1073/pnas.1003893107 10.1038/s41419-018-1019-6 10.18632/oncotarget.10413 10.1073/pnas.0604008103 10.1172/jci.insight.85375 10.1523/jneurosci.2435-08.2008 10.2119/molmed.2010.00264 10.1194/jlr.C400018-JLR200 10.1084/jem.20111739 10.3892/ol.2016.5198 10.1007/s10875-008-9252-x 10.1016/j.biopha.2018.08.059 10.1007/s00296-010-1636-6 10.1083/jcb.200911078 10.1523/jneurosci.3815-05.2006 10.1038/cddis.2014.48 10.1038/srep15971 10.1053/j.gastro.2013.12.015 10.1073/pnas.2434651100 10.1002/jcp.26383 10.1016/j.intimp.2015.03.014 10.1155/2018/2754941 10.26355/eurrev_201803_14583 10.1189/jlb.1108713 10.1158/0008-5472.Can-11-2291 10.1002/j.1460-2075.1992.tb05144.x 10.1186/s13075-020-02195-y 10.1038/nm1124 10.1073/pnas.1316925111 10.1007/s11010-014-1978-6 10.3858/emm.2012.44.4.021 10.1084/jem.20160217 10.1084/jem.20120189 10.18632/oncotarget.7050 10.1016/S0021-9258(18)55361-8 10.1002/eji.201444908 10.2119/molmed.2015.00243 10.1007/s13577-019-00244-6 10.1016/j.bbrc.2018.01.097 10.1186/s13046-017-0519-z 10.1007/s13277-016-5261-1 10.1080/15384101.2017.1288324 10.18632/oncotarget.13136 10.1111/cei.12036 10.1126/science.285.5425.248 10.1126/scitranslmed.aao3089 10.1038/srep46243 10.2119/molmed.2013.00164 10.3109/08916934.2012.719946 10.3389/fimmu.2018.01518 10.1016/j.jep.2011.12.041 10.18632/aging.102591 10.1248/bpb.b18-00818 10.1146/annurev.immunol.021908.132603 |
ContentType | Journal Article |
Copyright | 2020 Wiley Periodicals LLC 2020 Wiley Periodicals LLC. 2021 Wiley Periodicals LLC |
Copyright_xml | – notice: 2020 Wiley Periodicals LLC – notice: 2020 Wiley Periodicals LLC. – notice: 2021 Wiley Periodicals LLC |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 5PM |
DOI | 10.1002/jcp.30125 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4652 |
EndPage | 3419 |
ExternalDocumentID | PMC8104204 33107103 10_1002_jcp_30125 JCP30125 |
Genre | reviewArticle Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Cancer Institute funderid: 1R01CA237235‐01A1; 5U01CA214195‐04; R01 CA198138 – fundername: U.S. Department of Defense funderid: W81XWH‐16‐1‐0440 – fundername: National Institute of Environmental Health Sciences funderid: 1R01ES030948‐01 – fundername: NCI NIH HHS grantid: 5U01CA214195-04 – fundername: NCI NIH HHS grantid: R01 CA160715 – fundername: NCI NIH HHS grantid: U01 CA214195 – fundername: NIEHS NIH HHS grantid: 1R01ES030948-01 – fundername: NIEHS NIH HHS grantid: R01 ES030948 – fundername: NCI NIH HHS grantid: R01 CA198138 – fundername: NCI NIH HHS grantid: R01 CA237235 – fundername: NCI NIH HHS grantid: 1R01CA237235-01A1 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IH2 IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL S10 SAMSI SUPJJ SV3 TN5 TWZ UB1 UPT V2E V8K VQP W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ X7M XG1 XJT XOL XPP XSW XV2 Y6R YQT YZZ ZGI ZXP ZZTAW ~IA ~WT AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5095-103b3ee78a3d29ce92f99e2bc8f20df3427302a4e0480b0f6b4be214695bf3653 |
IEDL.DBID | DR2 |
ISSN | 0021-9541 1097-4652 |
IngestDate | Thu Aug 21 18:32:53 EDT 2025 Fri Jul 11 05:43:29 EDT 2025 Sat Jul 26 01:16:26 EDT 2025 Mon Jul 21 05:56:54 EDT 2025 Tue Jul 01 03:23:43 EDT 2025 Thu Apr 24 22:58:37 EDT 2025 Wed Jan 22 16:31:51 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | targeted therapy antagonist HMGB1 |
Language | English |
License | 2020 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5095-103b3ee78a3d29ce92f99e2bc8f20df3427302a4e0480b0f6b4be214695bf3653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Author Contributions J.X., S.L., and H.Y. wrote the manuscript. J.S., G.G., and H.P. provided constructive feedback and revised the manuscript, M.M. designed the figures. M.C. and H.Y. supervised the study. |
ORCID | 0000-0003-1528-2701 0000-0002-1572-6571 0000-0003-1417-2420 0000-0003-3222-3471 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8104204 |
PMID | 33107103 |
PQID | 2494072051 |
PQPubID | 1006363 |
PageCount | 0 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8104204 proquest_miscellaneous_2454656513 proquest_journals_2494072051 pubmed_primary_33107103 crossref_citationtrail_10_1002_jcp_30125 crossref_primary_10_1002_jcp_30125 wiley_primary_10_1002_jcp_30125_JCP30125 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2021 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of cellular physiology |
PublicationTitleAlternate | J Cell Physiol |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009; 86 2010; 107 2015; 70 2019; 11 2019; 98 2015; 75 2019; 12 2002; 99 1999; 285 2010; 185 2012; 18 2016; 37 2014; 20 2018; 9 2019; 20 2013; 55 2018; 215 2015; 136 2010; 28 2000; 405 2006; 26 2008; 28 2007; 8 2003; 48 2010; 190 2014; 558 2018; 107 2019; 32 2009; 182 2013; 86 2008; 58 2019; 39 2002; 3 2002; 418 2014; 390 2018; 22 2012; 32 2016; 14 1995; 270 2011; 7 2007; 14 2012; 109 2016; 12 2016; 6 2016; 7 2016; 1 2019; 42 2018; 116 2018; 119 2002; 62 2005; 124 2018; 233 2005; 5 2016; 21 2019; 215 2020; 22 2013; 172 2018; 10 2012; 45 2012; 44 2014; 33 2003; 22 2006; 103 2014; 146 2017; 5 2018; 120 2017; 7 2017; 8 2009; 41 2012; 2012 2017; 1863 2020; 121 2011; 17 1992; 11 2010; 62 1994; 21 2012; 209 2012; 72 2015; 45 2018; 496 2014; 5 1991; 266 2017; 36 2015; 212 2016; 113 2003; 4 2014; 9 2007; 21 2009; 323 2014; 443 2004; 101 2012; 140 2015; 5 2015; 16 2012 2008; 14 2014; 111 2005; 46 2009; 29 2004; 10 2008; 181 2015; 26 2018; 2018 2017; 15 2013; 32 2017; 16 2005; 201 2020; 117 2014; 79 2017; 101 2009; 38 2012; 8 e_1_2_12_6_1 e_1_2_12_17_1 e_1_2_12_111_1 e_1_2_12_115_1 e_1_2_12_108_1 e_1_2_12_20_1 e_1_2_12_66_1 e_1_2_12_43_1 e_1_2_12_85_1 e_1_2_12_24_1 e_1_2_12_47_1 e_1_2_12_89_1 e_1_2_12_62_1 e_1_2_12_81_1 e_1_2_12_100_1 e_1_2_12_123_1 e_1_2_12_28_1 e_1_2_12_104_1 e_1_2_12_31_1 e_1_2_12_77_1 e_1_2_12_54_1 e_1_2_12_96_1 e_1_2_12_35_1 e_1_2_12_58_1 e_1_2_12_12_1 e_1_2_12_73_1 e_1_2_12_50_1 e_1_2_12_92_1 e_1_2_12_3_1 e_1_2_12_18_1 e_1_2_12_110_1 e_1_2_12_114_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_107_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 e_1_2_12_40_1 e_1_2_12_82_1 e_1_2_12_122_1 e_1_2_12_29_1 e_1_2_12_126_1 e_1_2_12_103_1 e_1_2_12_119_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_74_1 e_1_2_12_97_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_78_1 e_1_2_12_13_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_70_1 e_1_2_12_93_1 e_1_2_12_4_1 e_1_2_12_19_1 Huttunen H. J. (e_1_2_12_30_1) 2002; 62 e_1_2_12_38_1 e_1_2_12_113_1 e_1_2_12_41_1 e_1_2_12_87_1 e_1_2_12_106_1 e_1_2_12_22_1 e_1_2_12_64_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_68_1 e_1_2_12_83_1 e_1_2_12_60_1 Ayer L. M. (e_1_2_12_2_1) 1994; 21 e_1_2_12_49_1 e_1_2_12_121_1 e_1_2_12_102_1 e_1_2_12_125_1 e_1_2_12_52_1 e_1_2_12_98_1 e_1_2_12_118_1 e_1_2_12_33_1 e_1_2_12_75_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_79_1 e_1_2_12_14_1 e_1_2_12_90_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_94_1 e_1_2_12_71_1 e_1_2_12_5_1 e_1_2_12_16_1 e_1_2_12_112_1 e_1_2_12_39_1 e_1_2_12_116_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_109_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_80_1 e_1_2_12_61_1 e_1_2_12_84_1 e_1_2_12_27_1 e_1_2_12_101_1 e_1_2_12_120_1 e_1_2_12_105_1 e_1_2_12_124_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_99_1 e_1_2_12_117_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_15_1 e_1_2_12_91_1 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_95_1 e_1_2_12_9_1 |
References_xml | – volume: 124 start-page: 59 issue: 1 year: 2005 end-page: 66 article-title: The role of HMGB‐1 on the development of necrosis during hepatic ischemia and hepatic ischemia/reperfusion injury in mice publication-title: Journal of Surgical Research – volume: 2012 year: 2012 article-title: Enhanced HMGB1 expression may contribute to Th17 cells activation in rheumatoid arthritis publication-title: Clinical and Developmental Immunology – volume: 5 start-page: 238 issue: 11 year: 2017 article-title: Mesothelioma: Recent highlights publication-title: Annals of Translational Medicine – volume: 140 start-page: 33 issue: 1 year: 2012 end-page: 45 article-title: Fighting fire with fire: Poisonous Chinese herbal medicine for cancer therapy publication-title: Journal of Ethnopharmacology – volume: 107 start-page: 12611 issue: 28 year: 2010 end-page: 12616 article-title: Programmed necrosis induced by asbestos in human mesothelial cells causes high‐mobility group box 1 protein release and resultant inflammation publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 72 start-page: 3290 issue: 13 year: 2012 end-page: 3301 article-title: Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma publication-title: Cancer Research – volume: 75 start-page: 1645 issue: 8 year: 2015 end-page: 1656 article-title: High‐mobility group box 1 promotes hepatocellular carcinoma progression through miR‐21‐mediated matrix metalloproteinase activity publication-title: Cancer Research – volume: 28 start-page: 367 year: 2010 end-page: 388 article-title: HMGB1 and RAGE in inflammation and cancer publication-title: Annual Review of Immunology – volume: 17 start-page: 1039 issue: 9‐10 year: 2011 end-page: 1044 article-title: Monoclonal anti‐HMGB1 (high mobility group box chromosomal protein 1) antibody protection in two experimental arthritis models publication-title: Molecular Medicine – volume: 1 issue: 7 year: 2016 article-title: Identification of CD163 as an antiinflammatory receptor for HMGB1‐haptoglobin complexes publication-title: JCI Insight – volume: 215 start-page: 303 issue: 1 year: 2018 end-page: 318 article-title: High mobility group box 1 orchestrates tissue regeneration via CXCR4 publication-title: Journal of Experimetnal Medicine – volume: 2018 year: 2018 article-title: MicroRNA‐mediated regulation of HMGB1 in human hepatocellular carcinoma publication-title: BioMed Research International – volume: 8 start-page: 195 issue: 4 year: 2012 end-page: 202 article-title: HMGB1: A multifunctional alarmin driving autoimmune and inflammatory disease publication-title: Nature Reviews Rheumatology – volume: 121 year: 2020 article-title: Long non‐coding RNA NEAT1 promotes bladder progression through regulating miR‐410 mediated HMGB1 publication-title: Biomedicine & Pharmacotherapy – volume: 11 start-page: 12624 issue: 24 year: 2019 end-page: 12640 article-title: Long noncoding RNA NNT‐AS1 enhances the malignant phenotype of bladder cancer by acting as a competing endogenous RNA on microRNA‐496 thereby increasing HMGB1 expression publication-title: Aging – volume: 22 start-page: 110 issue: 1 year: 2020 article-title: Increased serum calpain activity is associated with HMGB1 levels in systemic sclerosis publication-title: Arthritis Research & Therapy – volume: 7 start-page: 20507 issue: 15 year: 2016 end-page: 20519 article-title: The effect of HMGB1 on the clinicopathological and prognostic features of non‐small cell lung cancer publication-title: Oncotarget – volume: 1863 start-page: 2693 issue: 11 year: 2017 end-page: 2704 article-title: Non‐oxidizable HMGB1 induces cardiac fibroblasts migration via CXCR4 in a CXCL12‐independent manner and worsens tissue remodeling after myocardial infarction publication-title: Biochimica et Biophysica Acta, Molecular Basis of Disease – volume: 103 start-page: 10397 issue: 27 year: 2006 end-page: 10402 article-title: TNF‐alpha inhibits asbestos‐induced cytotoxicity via a NF‐kappa B‐dependent pathway, a possible mechanism for asbestos‐induced oncogenesis publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 32 start-page: 395 issue: 2 year: 2012 end-page: 402 article-title: Elevated plasma level of HMGB1 is associated with disease activity and combined alterations with IFN‐alpha and TNF‐alpha in systemic lupus erythematosus publication-title: Rheumatology International – volume: 62 start-page: 2963 issue: 10 year: 2010 end-page: 2972 article-title: Protective targeting of high mobility group box chromosomal protein 1 in a spontaneous arthritis model publication-title: Arthtitis and Rheumatism – volume: 7 start-page: 5850 issue: 1 year: 2017 article-title: Therapeutic targeting of HMGB1 during experimental sepsis modulates the inflammatory cytokine profile to one associated with improved clinical outcomes publication-title: Scientific Reports – volume: 11 start-page: 1055 issue: 3 year: 1992 end-page: 1063 article-title: The DNA binding site of HMG1 protein is composed of two similar segments (HMG boxes), both of which have counterparts in other eukaryotic regulatory proteins publication-title: The EMBO Journal – volume: 117 start-page: 25543 issue: 41 year: 2020 end-page: 25552 article-title: Asbestos induces mesothelial cell transformation via HMGB1‐driven autophagy publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 443 start-page: 1162 issue: 4 year: 2014 end-page: 1168 article-title: Ethyl pyruvate inhibits proliferation and induces apoptosis of hepatocellular carcinoma via regulation of the HMGB1‐RAGE and AKT pathways publication-title: Biochemical and Biophysical Research Communications – volume: 5 year: 2014 article-title: HMGB1‐LPS complex promotes transformation of osteoarthritis synovial fibroblasts to a rheumatoid arthritis synovial fibroblast‐like phenotype publication-title: Cell Death & Disease – volume: 101 start-page: 1281 issue: 6 year: 2017 end-page: 1287 article-title: Frontline science: HMGB1 induces neutrophil dysfunction in experimental sepsis and in patients who survive septic shock publication-title: Journal of Leukocyte Biology – volume: 107 start-page: 11942 issue: 26 year: 2010 end-page: 11947 article-title: A critical cysteine is required for HMGB1 binding to toll‐like receptor 4 and activation of macrophage cytokine release publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 120 start-page: 8044 year: 2018 end-page: 8052 article-title: miR‐505 acts as a tumor suppressor in gastric cancer progression through targeting HMGB1 publication-title: Journal of Cellular Biochemistry – volume: 9 start-page: 1518 year: 2018 article-title: Glycyrrhizin Protects mice against experimental autoimmune encephalomyelitis by inhibiting high‐mobility group box 1 (HMGB1) expression and neuronal HMGB1 release publication-title: Frontiers in Immunology – volume: 418 start-page: 191 issue: 6894 year: 2002 end-page: 195 article-title: Release of chromatin protein HMGB1 by necrotic cells triggers inflammation publication-title: Nature – volume: 285 start-page: 248 issue: 5425 year: 1999 end-page: 251 article-title: HMG‐1 as a late mediator of endotoxin lethality in mice publication-title: Science – volume: 20 issue: 10 year: 2019 article-title: Diflunisal targets the HMGB1/CXCL12 heterocomplex and blocks immune cell recruitment publication-title: EMBO Reports – volume: 4 start-page: 131 issue: 2 year: 2003 end-page: 136 article-title: Priming the nucleosome: A role for HMGB proteins? publication-title: EMBO Reports – volume: 12 start-page: 5729 year: 2019 end-page: 5739 article-title: MiR‐34c acts as a tumor suppressor in non‐small cell lung cancer by inducing endoplasmic reticulum stress through targeting HMGB1 publication-title: OncoTargets and Therapy – volume: 29 start-page: 180 issue: 2 year: 2009 end-page: 189 article-title: Clinical significance of serum HMGB‐1 and sRAGE levels in systemic sclerosis: Association with disease severity publication-title: Journal of Clinical Immunology – volume: 266 start-page: 16722 issue: 25 year: 1991 end-page: 16729 article-title: 30‐kDa heparin‐binding protein of brain (amphoterin) involved in neurite outgrowth. Amino acid sequence and localization in the filopodia of the advancing plasma membrane publication-title: Journal of Biological Chemistry – volume: 21 start-page: 3904 issue: 14 year: 2007 end-page: 3916 article-title: Anti‐high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats publication-title: FASEB Journal – volume: 14 start-page: 1026 issue: 1 year: 2016 end-page: 1032 article-title: HMGB1 knockdown effectively inhibits the progression of rectal cancer by suppressing HMGB1 expression and promoting apoptosis of rectal cancer cells publication-title: Molecular Medicine Reports – volume: 270 start-page: 25752 issue: 43 year: 1995 end-page: 25761 article-title: The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co‐expression of rage and amphoterin in the developing nervous system publication-title: Journal of Biological Chemistry – volume: 99 start-page: 12351 issue: 19 year: 2002 end-page: 12356 article-title: Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 9 issue: 12 year: 2014 article-title: Glycyrrhizin suppresses the expressions of HMGB1 and relieves the severity of traumatic pancreatitis in rats publication-title: PLoS One – volume: 16 start-page: 511 issue: 4 year: 2015 end-page: 517 article-title: HMGB1‐mediated autophagy modulates sensitivity of colorectal cancer cells to oxaliplatin via MEK/ERK signaling pathway publication-title: Cancer Biology & Therapy – volume: 37 start-page: 13155 issue: 10 year: 2016 end-page: 13166 article-title: Downregulation of HMGB1 by miR‐34a is sufficient to suppress proliferation, migration and invasion of human cervical and colorectal cancer cells publication-title: Tumour Biology – volume: 109 start-page: 21052 issue: 51 year: 2012 end-page: 21057 article-title: Human macrophage and dendritic cell‐specific silencing of high‐mobility group protein B1 ameliorates sepsis in a humanized mouse model publication-title: Proceedings of the National Academy of Sciences of the United States of America of the United States of America – volume: 28 start-page: 12023 issue: 46 year: 2008 end-page: 12031 article-title: The HMGB1 receptor RAGE mediates ischemic brain damage publication-title: Journal of Neuroscience – volume: 21 start-page: 951 issue: 1 year: 2016 end-page: 958 article-title: HMGB1 mediates anemia of inflammation in murine sepsis survivors publication-title: Molecular Medicine – volume: 48 start-page: 2052 issue: 7 year: 2003 end-page: 2058 article-title: Successful treatment of collagen‐induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity publication-title: Arthtitis and Rheumatism – volume: 7 start-page: 112 issue: 1 year: 2011 end-page: 114 article-title: DAMP‐mediated autophagy contributes to drug resistance publication-title: Autophagy – volume: 41 start-page: 651 issue: 6 year: 2009 end-page: 660 article-title: Quercetin prevents LPS‐induced high‐mobility group box 1 release and proinflammatory function publication-title: American Journal of Respiratory Cell and Molecular Biology – volume: 209 start-page: 551 issue: 3 year: 2012 end-page: 563 article-title: HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4 publication-title: Journal of Experimetnal Medicine – volume: 12 start-page: 4181 issue: 5 year: 2016 end-page: 4186 article-title: MicroRNA‐181b is downregulated in non‐small cell lung cancer and inhibits cell motility by directly targeting HMGB1 publication-title: Oncology Letters – volume: 15 start-page: 4021 issue: 6 year: 2017 end-page: 4026 article-title: Association between high mobility group box1 protein expression and cell death in acute pancreatitis publication-title: Molecular Medicine Reports – volume: 70 start-page: 72 year: 2015 end-page: 79 article-title: Expression of microRNA‐325‐3p and its potential functions by targeting HMGB1 in non‐small cell lung cancer publication-title: Biomedicine & Pharmacotherapy – volume: 107 start-page: 997 year: 2018 end-page: 1003 article-title: MiR‐1284 enhances sensitivity of cervical cancer cells to cisplatin via downregulating HMGB1 publication-title: Biomedicine & Pharmacotherapy – volume: 172 start-page: 417 issue: 3 year: 2013 end-page: 426 article-title: Ethyl pyruvate significantly inhibits tumour necrosis factor‐alpha, interleukin‐1beta and high mobility group box 1 releasing and attenuates sodium taurocholate‐induced severe acute pancreatitis associated with acute lung injury publication-title: Clinical and Experimental Immunology – volume: 22 start-page: 1700 issue: 6 year: 2018 end-page: 1708 article-title: MicroRNA‐520a‐3p suppresses non‐small‐cell lung carcinoma by inhibition of High Mobility Group Box 1 (HMGB1) publication-title: European Review for Medical and Pharmacological Sciences – volume: 45 start-page: 1216 issue: 4 year: 2015 end-page: 1227 article-title: HMGB1 induces angiogenesis in rheumatoid arthritis via HIF‐1alpha activation publication-title: European Journal of Immunology – volume: 233 start-page: 6750 issue: 9 year: 2018 end-page: 6757 article-title: LncRNA MALAT1 induces colon cancer development by regulating miR‐129‐5p/HMGB1 axis publication-title: Journal of Cellular Physiology – volume: 185 start-page: 4385 issue: 7 year: 2010 end-page: 4392 article-title: Inflammasome‐dependent release of the alarmin HMGB1 in endotoxemia publication-title: Journal of Immunology – volume: 201 start-page: 1135 issue: 7 year: 2005 end-page: 1143 article-title: The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia‐reperfusion publication-title: Journal of Experimetnal Medicine – volume: 8 start-page: 142 year: 2017 article-title: The HMGB1‐CXCL12 complex promotes inflammatory cell infiltration in uveitogenic T cell‐induced chronic experimental autoimmune uveitis publication-title: Frontiers in Immunology – volume: 113 start-page: E155 issue: 2 year: 2016 end-page: E164 article-title: Critical role of RAGE and HMGB1 in inflammatory heart disease publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 7 year: 2017 article-title: Anti‐high mobility group box‐1 (HMGB1) antibody inhibits hemorrhage‐induced brain injury and improved neurological deficits in rats publication-title: Scientific Reports – volume: 86 start-page: 410 issue: 3 year: 2013 end-page: 418 article-title: Chloroquine inhibits HMGB1 inflammatory signaling and protects mice from lethal sepsis publication-title: Biochemical Pharmacology – volume: 36 start-page: 51 issue: 1 year: 2017 article-title: The long non‐coding RNA TP73‐AS1 modulates HCC cell proliferation through miR‐200a‐dependent HMGB1/RAGE regulation publication-title: Journal of Experimental & Clinical Cancer Research – volume: 58 start-page: 2675 issue: 9 year: 2008 end-page: 2685 article-title: Extracellular high mobility group box chromosomal protein 1 is a coupling factor for hypoxia and inflammation in arthritis publication-title: Arthtitis and Rheumatism – volume: 39 issue: 5 year: 2019 article-title: The effect of HMGB1 on the clinicopathological and prognostic features of cervical cancer publication-title: Bioscience Reports – volume: 98 issue: 3 year: 2019 article-title: Increased HMGB1 expression correlates with higher expression of c‐IAP2 and pERK in colorectal cancer publication-title: Medicine – volume: 72 start-page: 1996 issue: 8 year: 2012 end-page: 2005 article-title: p53/HMGB1 complexes regulate autophagy and apoptosis publication-title: Cancer Research – volume: 7 start-page: 50417 issue: 31 year: 2016 end-page: 50427 article-title: HMGB1 overexpression as a prognostic factor for survival in cancer: a meta‐analysis and systematic review publication-title: Oncotarget – volume: 14 start-page: 476 issue: 7‐8 year: 2008 end-page: 484 article-title: HMGB1: Endogenous danger signaling publication-title: Molecular Medicine – volume: 8 start-page: 22649 issue: 14 year: 2017 end-page: 22661 article-title: HMGB1 targeting by ethyl pyruvate suppresses malignant phenotype of human mesothelioma publication-title: Oncotarget – volume: 405 start-page: 354 issue: 6784 year: 2000 end-page: 360 article-title: Blockade of RAGE‐amphoterin signalling suppresses tumour growth and metastases publication-title: Nature – volume: 119 start-page: 3007 issue: 4 year: 2018 end-page: 3016 article-title: The long non‐coding RNA TP73‐AS1 interacted with miR‐142 to modulate brain glioma growth through HMGB1/RAGE pathway publication-title: Journal of Cellular Biochemistry – volume: 136 start-page: 1381 issue: 6 year: 2015 end-page: 1389 article-title: 5‐Fluorouracil causes leukocytes attraction in the peritoneal cavity by activating autophagy and HMGB1 release in colon carcinoma cells publication-title: International Journal of Cancer – volume: 33 start-page: 567 issue: 5 year: 2014 end-page: 577 article-title: The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics publication-title: Oncogene – volume: 86 start-page: 625 issue: 3 year: 2009 end-page: 632 article-title: Low‐dose cisplatin administration in murine cecal ligation and puncture prevents the systemic release of HMGB1 and attenuates lethality publication-title: Journal of Leukocyte Biology – volume: 32 start-page: 363 issue: 3 year: 2013 end-page: 374 article-title: Tumor angiogenesis is enforced by autocrine regulation of high‐mobility group box 1 publication-title: Oncogene – volume: 79 start-page: 333 issue: 5 year: 2014 end-page: 337 article-title: High‐mobility group box 1 inhibition alleviates lupus‐like disease in BXSB mice publication-title: Scandinavian Journal of Immunology – volume: 181 start-page: 5015 issue: 7 year: 2008 end-page: 5023 article-title: Calcium/calmodulin‐dependent protein kinase (CaMK) IV mediates nucleocytoplasmic shuttling and release of HMGB1 during lipopolysaccharide stimulation of macrophages publication-title: Journal of Immunology – volume: 496 start-page: 738 issue: 2 year: 2018 end-page: 745 article-title: Long non‐coding RNA UCA1 promotes lung cancer cell proliferation and migration via microRNA‐193a/HMGB1 axis publication-title: Biochemical and Biophysical Research Communications – volume: 323 start-page: 1722 issue: 5922 year: 2009 end-page: 1725 article-title: CD24 and Siglec‐10 selectively repress tissue damage‐induced immune responses publication-title: Science – volume: 16 start-page: 578 issue: 6 year: 2017 end-page: 587 article-title: MALAT1 promotes osteosarcoma development by regulation of HMGB1 via miR‐142‐3p and miR‐129‐5p publication-title: Cell Cycle – volume: 20 start-page: 138 year: 2014 end-page: 146 article-title: The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases publication-title: Molecular Medicine – volume: 14 start-page: 431 issue: 4 year: 2007 end-page: 441 article-title: Glycyrrhizin binds to high‐mobility group box 1 protein and inhibits its cytokine activities publication-title: Chemistry and Biology – volume: 21 start-page: 2071 issue: 11 year: 1994 end-page: 2075 article-title: Antibodies to high mobility group proteins in systemic sclerosis publication-title: Journal of Rheumatology – volume: 55 start-page: 76 issue: 1 year: 2013 end-page: 82 article-title: HMGB1 and leukocyte migration during trauma and sterile inflammation publication-title: Molecular Immunology – volume: 215 start-page: 676 issue: 4 year: 2019 end-page: 682 article-title: miR‐129‐5p attenuates cell proliferation and epithelial mesenchymal transition via HMGB1 in gastric cancer publication-title: Pathology‐Research and Practice – volume: 109 start-page: 7505 issue: 19 year: 2012 end-page: 7510 article-title: Astrocytic high‐mobility group box 1 promotes endothelial progenitor cell‐mediated neurovascular remodeling during stroke recovery publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 558 start-page: 159 year: 2014 end-page: 163 article-title: Ethyl pyruvate inhibits HMGB1 phosphorylation and secretion in activated microglia and in the postischemic brain publication-title: Neuroscience Letters – volume: 22 start-page: 5551 issue: 20 year: 2003 end-page: 5560 article-title: Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion publication-title: The EMBO Journal – volume: 32 start-page: 352 issue: 3 year: 2019 end-page: 359 article-title: MiR‐1179 inhibits the proliferation of gastric cancer cells by targeting HMGB1 publication-title: Human Cell – volume: 10 issue: 451 year: 2018 article-title: Platelet microparticles sustain autophagy‐associated activation of neutrophils in systemic sclerosis publication-title: Science Translational Medicine – volume: 26 start-page: 6413 issue: 24 year: 2006 end-page: 6421 article-title: HMGB1, a novel cytokine‐like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain publication-title: Journal of Neuroscience – volume: 209 start-page: 1519 issue: 9 year: 2012 end-page: 1528 article-title: Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release publication-title: Journal of Experimetnal Medicine – volume: 8 start-page: 4001 issue: 3 year: 2017 end-page: 4007 article-title: MiR‐142 inhibits the development of cervical cancer by targeting HMGB1 publication-title: Oncotarget – volume: 5 start-page: 331 issue: 4 year: 2005 end-page: 342 article-title: High‐mobility group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal publication-title: Nature Reviews Immunology – volume: 3 start-page: 995 issue: 10 year: 2002 end-page: 1001 article-title: The nuclear protein HMGB1 is secreted by monocytes via a non‐classical, vesicle‐mediated secretory pathway publication-title: EMBO Reports – volume: 42 start-page: 892 year: 2019 end-page: 899 article-title: Triptolide suppresses growth of breast cancer by targeting HMGB1 in vitro and in vivo publication-title: Biological and Pharmaceutical Bulletin – volume: 6 year: 2016 article-title: HMGB1 facilitated macrophage reprogramming towards a proinflammatory M1‐like phenotype in experimental autoimmune myocarditis development publication-title: Scientific Reports – volume: 101 start-page: 296 issue: 1 year: 2004 end-page: 301 article-title: Reversing established sepsis with antagonists of endogenous high‐mobility group box 1 publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 10 start-page: 1216 issue: 11 year: 2004 end-page: 1221 article-title: Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis publication-title: Nature Medicine – volume: 62 start-page: 4805 issue: 16 year: 2002 end-page: 4811 article-title: Receptor for advanced glycation end products‐binding COOH‐terminal motif of amphoterin inhibits invasive migration and metastasis publication-title: Cancer Research – volume: 46 start-page: 623 issue: 4 year: 2005 end-page: 627 article-title: Suppression of HMGB1 release by stearoyl lysophosphatidylcholine: An additional mechanism for its therapeutic effects in experimental sepsis publication-title: Journal of Lipid Research – volume: 8 start-page: 487 issue: 5 year: 2007 end-page: 496 article-title: Toll‐like receptor 9‐dependent activation by DNA‐containing immune complexes is mediated by HMGB1 and RAGE publication-title: Nature Immunology – volume: 111 start-page: 3068 issue: 8 year: 2014 end-page: 3073 article-title: JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 116 start-page: 545 year: 2018 end-page: 551 article-title: LncRNA ZEB2‐AS1 promotes pancreatic cancer cell growth and invasion through regulating the miR‐204/HMGB1 axis publication-title: International Journal of Biological Macromolecules – volume: 44 start-page: 260 issue: 4 year: 2012 end-page: 267 article-title: Toll‐like receptor 4 on islet beta cells senses expression changes in high‐mobility group box 1 and contributes to the initiation of type 1 diabetes publication-title: Experimental & Molecular Medicine – volume: 18 start-page: 598 issue: 3 year: 2012 end-page: 604 article-title: Molecular pathways: Targeting mechanisms of asbestos and erionite carcinogenesis in mesothelioma publication-title: Clinical Cancer Research – year: 2012 – volume: 38 start-page: 143 issue: 2 year: 2009 end-page: 148 article-title: Protective effect of HMGB1 a box on organ injury of acute pancreatitis in mice publication-title: Pancreas – volume: 212 start-page: 5 issue: 1 year: 2015 end-page: 14 article-title: MD‐2 is required for disulfide HMGB1‐dependent TLR4 signaling publication-title: Journal of Experimetnal Medicine – volume: 390 start-page: 271 issue: 1‐2 year: 2014 end-page: 280 article-title: The role of HMGB1‐RAGE axis in migration and invasion of hepatocellular carcinoma cell lines publication-title: Molecular and Cellular Biochemistry – volume: 5 year: 2015 article-title: Deacetylation‐mediated interaction of SIRT1‐HMGB1 improves survival in a mouse model of endotoxemia publication-title: Scientific Reports – volume: 45 start-page: 584 issue: 8 year: 2012 end-page: 587 article-title: Circulating platelets as a source of the damage‐associated molecular pattern HMGB1 in patients with systemic sclerosis publication-title: Autoimmunity – volume: 26 start-page: 112 issue: 1 year: 2015 end-page: 118 article-title: Glycyrrhizin reduces HMGB1 secretion in lipopolysaccharide‐activated RAW 264.7 cells and endotoxemic mice by p38/Nrf2‐dependent induction of HO‐1 publication-title: International Immunopharmacology – volume: 190 start-page: 881 issue: 5 year: 2010 end-page: 892 article-title: Endogenous HMGB1 regulates autophagy publication-title: Journal of Cell Biology – volume: 26 start-page: 174 issue: 2 year: 2006 end-page: 179 article-title: HMGB1 signals through toll‐like receptor (TLR) 4 and TLR2 publication-title: Shock – volume: 7 start-page: 182 year: 2016 article-title: Disruption of a regulatory network consisting of neutrophils and platelets fosters persisting inflammation in rheumatic diseases publication-title: Frontiers in Immunology – volume: 182 start-page: 5800 issue: 9 year: 2009 end-page: 5809 article-title: HMGB1 is phosphorylated by classical protein kinase C and is secreted by a calcium‐dependent mechanism publication-title: Journal of Immunology – volume: 9 start-page: 1004 issue: 10 year: 2018 article-title: HMGB1 promotes ERK‐mediated mitochondrial Drp1 phosphorylation for chemoresistance through RAGE in colorectal cancer publication-title: Cell Death & Disease – volume: 172 start-page: 37 issue: 1 year: 2013 end-page: 43 article-title: Anti‐high mobility group box 1 monoclonal antibody ameliorates experimental autoimmune encephalomyelitis publication-title: Clinical and Experimental Immunology – volume: 5 start-page: 219 issue: 2 year: 2015 end-page: 253 article-title: Circulating HMGB1 and RAGE as clinical biomarkers in malignant and autoimmune diseases publication-title: Diagnostics – volume: 146 start-page: 1097 issue: 4 year: 2014 end-page: 1107 article-title: Intracellular Hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice publication-title: Gastroenterology – ident: e_1_2_12_78_1 doi: 10.1038/s41598-017-06205-z – ident: e_1_2_12_83_1 doi: 10.1165/rcmb.2008-0119OC – ident: e_1_2_12_114_1 doi: 10.1084/jem.20141318 – ident: e_1_2_12_49_1 doi: 10.4161/auto.7.1.14005 – ident: e_1_2_12_99_1 doi: 10.3892/mmr.2016.5340 – ident: e_1_2_12_60_1 doi: 10.3389/fimmu.2016.00182 – ident: e_1_2_12_85_1 doi: 10.1002/jcb.28082 – ident: e_1_2_12_101_1 doi: 10.1016/j.jss.2004.10.019 – ident: e_1_2_12_52_1 doi: 10.1038/nri1594 – ident: e_1_2_12_116_1 doi: 10.1016/j.biopha.2015.01.013 – volume: 21 start-page: 2071 issue: 11 year: 1994 ident: e_1_2_12_2_1 article-title: Antibodies to high mobility group proteins in systemic sclerosis publication-title: Journal of Rheumatology – ident: e_1_2_12_27_1 doi: 10.1073/pnas.1121146109 – ident: e_1_2_12_24_1 doi: 10.1189/jlb.5HI0316-128RR – ident: e_1_2_12_8_1 doi: 10.21037/atm.2017.04.29 – ident: e_1_2_12_18_1 – ident: e_1_2_12_23_1 doi: 10.1093/embo-reports/kvf198 – ident: e_1_2_12_4_1 doi: 10.1038/onc.2012.49 – ident: e_1_2_12_94_1 doi: 10.1016/j.molimm.2012.10.037 – ident: e_1_2_12_19_1 doi: 10.1016/j.bbadis.2017.07.012 – ident: e_1_2_12_22_1 doi: 10.3892/mmr.2017.6496 – ident: e_1_2_12_40_1 doi: 10.1002/art.11161 – ident: e_1_2_12_71_1 doi: 10.1038/nature00858 – ident: e_1_2_12_13_1 doi: 10.1126/science.1168988 – ident: e_1_2_12_107_1 doi: 10.1073/pnas.2007622117 – ident: e_1_2_12_3_1 doi: 10.1073/pnas.1522288113 – ident: e_1_2_12_120_1 doi: 10.1097/MPA.0b013e31818166b4 – ident: e_1_2_12_90_1 doi: 10.1073/pnas.192222999 – ident: e_1_2_12_119_1 doi: 10.1097/01.shk.0000225404.51320.82 – ident: e_1_2_12_122_1 doi: 10.1097/MD.0000000000014069 – ident: e_1_2_12_106_1 doi: 10.1371/journal.pone.0115982 – ident: e_1_2_12_62_1 doi: 10.1016/j.chembiol.2007.03.007 – ident: e_1_2_12_75_1 doi: 10.1155/2012/295081 – ident: e_1_2_12_113_1 doi: 10.1073/pnas.1006542107 – ident: e_1_2_12_88_1 doi: 10.1084/jem.20042614 – ident: e_1_2_12_45_1 doi: 10.1042/BSR20181016 – ident: e_1_2_12_65_1 doi: 10.1002/art.27590 – ident: e_1_2_12_96_1 doi: 10.1016/j.prp.2018.12.024 – ident: e_1_2_12_79_1 doi: 10.1038/srep21884 – ident: e_1_2_12_110_1 doi: 10.1016/j.bcp.2013.05.013 – ident: e_1_2_12_12_1 doi: 10.1158/0008-5472.Can-14-2147 – ident: e_1_2_12_28_1 doi: 10.1074/jbc.270.43.25752 – ident: e_1_2_12_41_1 doi: 10.4049/jimmunol.1000803 – ident: e_1_2_12_121_1 doi: 10.3389/fimmu.2017.00142 – ident: e_1_2_12_17_1 doi: 10.15252/embr.201947788 – ident: e_1_2_12_48_1 doi: 10.1096/fj.07-8770com – ident: e_1_2_12_125_1 doi: 10.4049/jimmunol.181.7.5015 – ident: e_1_2_12_21_1 doi: 10.1016/j.ijbiomac.2018.05.044 – ident: e_1_2_12_54_1 doi: 10.1111/cei.12062 – ident: e_1_2_12_117_1 doi: 10.1073/pnas.1216195109 – ident: e_1_2_12_25_1 doi: 10.1002/art.23729 – ident: e_1_2_12_35_1 doi: 10.1038/onc.2012.631 – ident: e_1_2_12_124_1 doi: 10.1111/sji.12165 – ident: e_1_2_12_87_1 doi: 10.1038/sj.embor.embor741 – ident: e_1_2_12_81_1 doi: 10.1038/35012626 – ident: e_1_2_12_69_1 doi: 10.3390/diagnostics5020219 – ident: e_1_2_12_34_1 doi: 10.1158/0008-5472.Can-11-3481 – ident: e_1_2_12_68_1 doi: 10.18632/oncotarget.15152 – ident: e_1_2_12_39_1 doi: 10.2119/2008-00034.Klune – ident: e_1_2_12_76_1 doi: 10.1016/j.neulet.2013.11.006 – ident: e_1_2_12_7_1 doi: 10.1158/1078-0432.CCR-11-2259 – ident: e_1_2_12_89_1 doi: 10.2147/OTT.S206932 – ident: e_1_2_12_50_1 doi: 10.1080/15384047.2015.1017691 – ident: e_1_2_12_74_1 doi: 10.1016/j.biopha.2019.109248 – ident: e_1_2_12_84_1 doi: 10.1038/ni1457 – ident: e_1_2_12_15_1 doi: 10.1016/j.bbrc.2013.12.064 – ident: e_1_2_12_26_1 doi: 10.1038/nrrheum.2011.222 – ident: e_1_2_12_16_1 doi: 10.1002/ijc.29125 – ident: e_1_2_12_123_1 doi: 10.1002/jcb.26021 – ident: e_1_2_12_6_1 doi: 10.1093/emboj/cdg516 – ident: e_1_2_12_64_1 doi: 10.4049/jimmunol.0801873 – ident: e_1_2_12_111_1 doi: 10.1073/pnas.1003893107 – ident: e_1_2_12_29_1 doi: 10.1038/s41419-018-1019-6 – ident: e_1_2_12_104_1 doi: 10.18632/oncotarget.10413 – volume: 62 start-page: 4805 issue: 16 year: 2002 ident: e_1_2_12_30_1 article-title: Receptor for advanced glycation end products‐binding COOH‐terminal motif of amphoterin inhibits invasive migration and metastasis publication-title: Cancer Research – ident: e_1_2_12_109_1 doi: 10.1073/pnas.0604008103 – ident: e_1_2_12_115_1 doi: 10.1172/jci.insight.85375 – ident: e_1_2_12_63_1 doi: 10.1523/jneurosci.2435-08.2008 – ident: e_1_2_12_72_1 doi: 10.2119/molmed.2010.00264 – ident: e_1_2_12_10_1 doi: 10.1194/jlr.C400018-JLR200 – ident: e_1_2_12_73_1 doi: 10.1084/jem.20111739 – ident: e_1_2_12_46_1 doi: 10.3892/ol.2016.5198 – ident: e_1_2_12_118_1 doi: 10.1007/s10875-008-9252-x – ident: e_1_2_12_11_1 doi: 10.1016/j.biopha.2018.08.059 – ident: e_1_2_12_56_1 doi: 10.1007/s00296-010-1636-6 – ident: e_1_2_12_82_1 doi: 10.1083/jcb.200911078 – ident: e_1_2_12_37_1 doi: 10.1523/jneurosci.3815-05.2006 – ident: e_1_2_12_70_1 doi: 10.1038/cddis.2014.48 – ident: e_1_2_12_31_1 doi: 10.1038/srep15971 – ident: e_1_2_12_36_1 doi: 10.1053/j.gastro.2013.12.015 – ident: e_1_2_12_112_1 doi: 10.1073/pnas.2434651100 – ident: e_1_2_12_102_1 doi: 10.1002/jcp.26383 – ident: e_1_2_12_38_1 doi: 10.1016/j.intimp.2015.03.014 – ident: e_1_2_12_108_1 doi: 10.1155/2018/2754941 – ident: e_1_2_12_55_1 doi: 10.26355/eurrev_201803_14583 – ident: e_1_2_12_66_1 doi: 10.1189/jlb.1108713 – ident: e_1_2_12_51_1 doi: 10.1158/0008-5472.Can-11-2291 – ident: e_1_2_12_5_1 doi: 10.1002/j.1460-2075.1992.tb05144.x – ident: e_1_2_12_126_1 doi: 10.1186/s13075-020-02195-y – ident: e_1_2_12_97_1 doi: 10.1038/nm1124 – ident: e_1_2_12_53_1 doi: 10.1073/pnas.1316925111 – ident: e_1_2_12_14_1 doi: 10.1007/s11010-014-1978-6 – ident: e_1_2_12_44_1 doi: 10.3858/emm.2012.44.4.021 – ident: e_1_2_12_86_1 doi: 10.1084/jem.20160217 – ident: e_1_2_12_93_1 doi: 10.1084/jem.20120189 – ident: e_1_2_12_20_1 doi: 10.18632/oncotarget.7050 – ident: e_1_2_12_61_1 doi: 10.1016/S0021-9258(18)55361-8 – ident: e_1_2_12_67_1 doi: 10.1002/eji.201444908 – ident: e_1_2_12_92_1 doi: 10.2119/molmed.2015.00243 – ident: e_1_2_12_43_1 doi: 10.1007/s13577-019-00244-6 – ident: e_1_2_12_105_1 doi: 10.1016/j.bbrc.2018.01.097 – ident: e_1_2_12_42_1 doi: 10.1186/s13046-017-0519-z – ident: e_1_2_12_9_1 doi: 10.1007/s13277-016-5261-1 – ident: e_1_2_12_47_1 doi: 10.1080/15384101.2017.1288324 – ident: e_1_2_12_33_1 doi: 10.18632/oncotarget.13136 – ident: e_1_2_12_91_1 doi: 10.1111/cei.12036 – ident: e_1_2_12_95_1 doi: 10.1126/science.285.5425.248 – ident: e_1_2_12_58_1 doi: 10.1126/scitranslmed.aao3089 – ident: e_1_2_12_98_1 doi: 10.1038/srep46243 – ident: e_1_2_12_57_1 doi: 10.2119/molmed.2013.00164 – ident: e_1_2_12_59_1 doi: 10.3109/08916934.2012.719946 – ident: e_1_2_12_80_1 doi: 10.3389/fimmu.2018.01518 – ident: e_1_2_12_100_1 doi: 10.1016/j.jep.2011.12.041 – ident: e_1_2_12_103_1 doi: 10.18632/aging.102591 – ident: e_1_2_12_32_1 doi: 10.1248/bpb.b18-00818 – ident: e_1_2_12_77_1 doi: 10.1146/annurev.immunol.021908.132603 |
SSID | ssj0009933 |
Score | 2.6687393 |
SecondaryResourceType | review_article |
Snippet | High‐mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating... High-mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3406 |
SubjectTerms | Alarmins - metabolism Animals antagonist Antagonists Chemotaxis Cytokines Cytokines - metabolism Damage patterns Endotoxemia Endotoxemia - metabolism Extracellular matrix Glycyrrhizin HMGB1 HMGB1 protein HMGB1 Protein - metabolism Homeostasis Humans Hypoxia Inflammation Inflammation - metabolism Inflammatory diseases Ischemia Isoforms Leukocytes (granulocytic) Leukocytes (neutrophilic) Macrophages Macrophages - metabolism Myeloid cells Proteins Pyruvic acid Reperfusion targeted therapy Transcription |
Title | HMGB1 as a therapeutic target in disease |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.30125 https://www.ncbi.nlm.nih.gov/pubmed/33107103 https://www.proquest.com/docview/2494072051 https://www.proquest.com/docview/2454656513 https://pubmed.ncbi.nlm.nih.gov/PMC8104204 |
Volume | 236 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB9EEHzx23PvVoki4ku1m6TtBp9U1EW4Q0TBh4OSpCl-XZXb3Yf1r3cm_dD1A8S3QqY0zWSS3yQzvwHYzDOdJy6jFGXFA9yv40DLTAdhZLtCI-AIrY-2-BP3LuXpVXQ1AXt1LkzJD9EcuJFl-PWaDFyb_u4LaeitRYcdl1dKMKdYLQJE5y_UUaoqI-9DECLZqVmFQr7bvDm-F70DmO_jJF_jV78BHc_C37rrZdzJ3c5wYHbs0xtWx2_-2xzMVMCU7ZczaR4mXLEAi_sFOuX_RmyL-VBRfwa_AFNlBcvRImz3fp8cdJjuM81epXKxMsCc3RSsugFagsvjo4vDXlAVXwgsYghiJxVGOJd0tci4sk7xXCnHje3mPMxyIRH3hFxLR0npJsxjI42jKuEqMjmqQyzDZPFQuBVgTsYyt45odGKZRYlCH08JldlQuihxcQu2azWktmImpwIZ92nJqcxTHI_Uj0cLNhrRx5KO4yOhdq3LtLLIfopuJnHB4RrUgvWmGW2JLkh04R6GJEOl4eOoI1rwo1R98xWBOBjRGLYkY5OiESCe7vGW4uba83V30eXlocTf9Dr_vOPp6eGZf_j5ddFfMM1pjvsYzDZMDv4P3SripIFZ8wbxDFNyCy8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5FoIpeSgt9pKXtFhXExcTZXdvZQw80FMJTFQKJm7ter0Vo6yCSqEp_U_9K_1Nn1g9IKRIXDr1Z2pG8np2nd-YbgPdZqrPIptSirLiH_jr0tEy15wemIzQGHL5x1RaHYe9E7p4Gpw34VfXCFPgQ9Q830gxnr0nB6Yd06wo19Nxgxo72tSqp3LOTH5iwDT_sbOLprnC-9em42_PKmQKeQddIoJsiEdZGHS1SroxVPFPK8sR0Mu6nmZDozn2upaVe68TPwkQmloZfqyDJREgzItDgz9IEcULq3zy6AqtS5eB6V_QQyHaFY-TzVr3Vae93I6S9WZl5PWJ2Lm9rHn5XzCoqXb6uj0fJuvn5F47k_8LNx_CojL3ZRqEsT6Bh8wVY3Mj1aPB9wlaZq4Z11wwL8KAY0jlZhLXewfbHNtNDptm1bjVW1NCzfs7KS66ncHIvu38GM_kgty-AWRnKzFhCCgplGkQK01glVGp8aYPIhk1Yq849NiX4Os0A-RYXsNE8Rv7Hjv9NWK5JLwrEkX8RLVXCE5dGZxhjJk1wd2hmm_CuXkZzQXdAOreDMdEEhJAXtEUTnheyVr9FYKiPASeuRFNSWBMQFPn0St4_c5DkHczquS_xM52Q3b7xeLf72T28vDvpW5jrHR_sx_s7h3uv4CEnBXMlp0swM7oc29cYFo6SN04bGXy5b4H9A3pLZ80 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hqqJe-gAK29LWIKi4BLy2k6wPHCjbZXkUIVQkbsFxbBVos6i7q2r7l_pX-qMYOw_YUiQuHLhF8khxxvOMZ74BWLaZsrHJXIuyZAH66yhQIlMBDXWLKww4qPbVFgdR91jsnoQnE_Cn6oUp8CHqH25OM7y9dgp-mdn1a9DQc40JO5rXqqJyz4x-Yb7W39hp4-GuMNb5_HWrG5QjBQKNntFhbvKUGxO3FM-Y1EYyK6VhqW5ZRjPLBXpzypQwrtU6pTZKRWrc7GsZppZHbkQE2vsnIqLSzYloH11jVclybr2veQhFs4Ixomy93uq487sV0d4uzLwZMHuP13kBfyteFYUuF2vDQbqmf_8DI_lImPkSnpeRN9ksVOUVTJh8GmY2czXo_RiRj8TXwvpLhml4WozoHM3AavfL9qcmUX2iyI1eNVJU0JOznJRXXLNw_CC7fw2TeS8380CMiITVxuEERSILY4lJrOQy01SYMDZRA1arY090Cb3uJoB8TwrQaJYg_xPP_wYs1aSXBd7I_4gWKtlJSpPTTzCPdmB3aGQbsFgvo7FwN0AqN72howkdPl7Y5A2YK0StfgvHQB_DTVyJx4SwJnBA5OMr-dk3D0jewpyeUYGf6WXs7o0nu1uH_uHN_Uk_wNRhu5Ps7xzsvYVnzKmXrzddgMnBz6F5hzHhIH3vdZHA6UPL6xW7_mZ8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HMGB1+as+a+therapeutic+target+in+disease&rft.jtitle=Journal+of+cellular+physiology&rft.au=Xue%2C+Jiaming&rft.au=Suarez%2C+Joelle+S.&rft.au=Minaai%2C+Michael&rft.au=Li%2C+Shuangjing&rft.date=2021-05-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=236&rft.issue=5&rft.spage=3406&rft.epage=3419&rft_id=info:doi/10.1002%2Fjcp.30125&rft.externalDBID=10.1002%252Fjcp.30125&rft.externalDocID=JCP30125 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon |