Mutation spectrum of congenital heart disease in a consanguineous Turkish population
Backgrounds While many studies agree that consanguinity increases the rate of congenital heart disease (CHD), few genome analyses have been conducted with consanguineous CHD cohorts. Methods We recruited 73 CHD probands from consanguineous families in Turkey and used whole‐exome sequencing (WES) to...
Saved in:
Published in | Molecular genetics & genomic medicine Vol. 10; no. 6; pp. e1944 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.06.2022
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Backgrounds
While many studies agree that consanguinity increases the rate of congenital heart disease (CHD), few genome analyses have been conducted with consanguineous CHD cohorts.
Methods
We recruited 73 CHD probands from consanguineous families in Turkey and used whole‐exome sequencing (WES) to identify genetic lesions in these patients.
Results
On average, each patient had 6.95 rare damaging homozygous variants, 0.68 of which are loss‐of‐function (LoF) variants. Seven patients (9.6%) carried damaging homozygous variants in five causal CHD genes. Six of those patients exhibited laterality defects (six HTX and one D‐TGA). Three additional patients (4.1%) harbored other types of CHD‐associated genomic alterations, which overall explained 13.7% (10/73) of the cohort. The contribution from recessive variants in our cohort is higher than 1.8% reported from a cohort of 2871 CHD subjects where 5.6% of subjects met the criteria for consanguinity.
Conclusions
Our WES screen of a Turkish consanguineous population with structural CHD revealed its unique genetic architecture. Six of seven damaging homozygous variants in CHD causal genes occur in the setting of laterality defects implies a strong contribution from consanguinity to these defects specifically. Our study thus provided valuable information about the genetic landscape of CHD in consanguineous families in Turkey.
WES screen of 73 CHD probands from consanguineous unions in Turkey revealed that 13.7% of cases can be explained by genomic alterations, especially homozygous variants. Our study thus provided valuable information about the genetic landscape of CHD in consanguineous families in Turkey. |
---|---|
AbstractList | WES screen of 73 CHD probands from consanguineous unions in Turkey revealed that 13.7% of cases can be explained by genomic alterations, especially homozygous variants. Our study thus provided valuable information about the genetic landscape of CHD in consanguineous families in Turkey. While many studies agree that consanguinity increases the rate of congenital heart disease (CHD), few genome analyses have been conducted with consanguineous CHD cohorts.BACKGROUNDSWhile many studies agree that consanguinity increases the rate of congenital heart disease (CHD), few genome analyses have been conducted with consanguineous CHD cohorts.We recruited 73 CHD probands from consanguineous families in Turkey and used whole-exome sequencing (WES) to identify genetic lesions in these patients.METHODSWe recruited 73 CHD probands from consanguineous families in Turkey and used whole-exome sequencing (WES) to identify genetic lesions in these patients.On average, each patient had 6.95 rare damaging homozygous variants, 0.68 of which are loss-of-function (LoF) variants. Seven patients (9.6%) carried damaging homozygous variants in five causal CHD genes. Six of those patients exhibited laterality defects (six HTX and one D-TGA). Three additional patients (4.1%) harbored other types of CHD-associated genomic alterations, which overall explained 13.7% (10/73) of the cohort. The contribution from recessive variants in our cohort is higher than 1.8% reported from a cohort of 2871 CHD subjects where 5.6% of subjects met the criteria for consanguinity.RESULTSOn average, each patient had 6.95 rare damaging homozygous variants, 0.68 of which are loss-of-function (LoF) variants. Seven patients (9.6%) carried damaging homozygous variants in five causal CHD genes. Six of those patients exhibited laterality defects (six HTX and one D-TGA). Three additional patients (4.1%) harbored other types of CHD-associated genomic alterations, which overall explained 13.7% (10/73) of the cohort. The contribution from recessive variants in our cohort is higher than 1.8% reported from a cohort of 2871 CHD subjects where 5.6% of subjects met the criteria for consanguinity.Our WES screen of a Turkish consanguineous population with structural CHD revealed its unique genetic architecture. Six of seven damaging homozygous variants in CHD causal genes occur in the setting of laterality defects implies a strong contribution from consanguinity to these defects specifically. Our study thus provided valuable information about the genetic landscape of CHD in consanguineous families in Turkey.CONCLUSIONSOur WES screen of a Turkish consanguineous population with structural CHD revealed its unique genetic architecture. Six of seven damaging homozygous variants in CHD causal genes occur in the setting of laterality defects implies a strong contribution from consanguinity to these defects specifically. Our study thus provided valuable information about the genetic landscape of CHD in consanguineous families in Turkey. While many studies agree that consanguinity increases the rate of congenital heart disease (CHD), few genome analyses have been conducted with consanguineous CHD cohorts. We recruited 73 CHD probands from consanguineous families in Turkey and used whole-exome sequencing (WES) to identify genetic lesions in these patients. On average, each patient had 6.95 rare damaging homozygous variants, 0.68 of which are loss-of-function (LoF) variants. Seven patients (9.6%) carried damaging homozygous variants in five causal CHD genes. Six of those patients exhibited laterality defects (six HTX and one D-TGA). Three additional patients (4.1%) harbored other types of CHD-associated genomic alterations, which overall explained 13.7% (10/73) of the cohort. The contribution from recessive variants in our cohort is higher than 1.8% reported from a cohort of 2871 CHD subjects where 5.6% of subjects met the criteria for consanguinity. Our WES screen of a Turkish consanguineous population with structural CHD revealed its unique genetic architecture. Six of seven damaging homozygous variants in CHD causal genes occur in the setting of laterality defects implies a strong contribution from consanguinity to these defects specifically. Our study thus provided valuable information about the genetic landscape of CHD in consanguineous families in Turkey. Backgrounds While many studies agree that consanguinity increases the rate of congenital heart disease (CHD), few genome analyses have been conducted with consanguineous CHD cohorts. Methods We recruited 73 CHD probands from consanguineous families in Turkey and used whole‐exome sequencing (WES) to identify genetic lesions in these patients. Results On average, each patient had 6.95 rare damaging homozygous variants, 0.68 of which are loss‐of‐function (LoF) variants. Seven patients (9.6%) carried damaging homozygous variants in five causal CHD genes. Six of those patients exhibited laterality defects (six HTX and one D‐TGA). Three additional patients (4.1%) harbored other types of CHD‐associated genomic alterations, which overall explained 13.7% (10/73) of the cohort. The contribution from recessive variants in our cohort is higher than 1.8% reported from a cohort of 2871 CHD subjects where 5.6% of subjects met the criteria for consanguinity. Conclusions Our WES screen of a Turkish consanguineous population with structural CHD revealed its unique genetic architecture. Six of seven damaging homozygous variants in CHD causal genes occur in the setting of laterality defects implies a strong contribution from consanguinity to these defects specifically. Our study thus provided valuable information about the genetic landscape of CHD in consanguineous families in Turkey. WES screen of 73 CHD probands from consanguineous unions in Turkey revealed that 13.7% of cases can be explained by genomic alterations, especially homozygous variants. Our study thus provided valuable information about the genetic landscape of CHD in consanguineous families in Turkey. BackgroundsWhile many studies agree that consanguinity increases the rate of congenital heart disease (CHD), few genome analyses have been conducted with consanguineous CHD cohorts.MethodsWe recruited 73 CHD probands from consanguineous families in Turkey and used whole‐exome sequencing (WES) to identify genetic lesions in these patients.ResultsOn average, each patient had 6.95 rare damaging homozygous variants, 0.68 of which are loss‐of‐function (LoF) variants. Seven patients (9.6%) carried damaging homozygous variants in five causal CHD genes. Six of those patients exhibited laterality defects (six HTX and one D‐TGA). Three additional patients (4.1%) harbored other types of CHD‐associated genomic alterations, which overall explained 13.7% (10/73) of the cohort. The contribution from recessive variants in our cohort is higher than 1.8% reported from a cohort of 2871 CHD subjects where 5.6% of subjects met the criteria for consanguinity.ConclusionsOur WES screen of a Turkish consanguineous population with structural CHD revealed its unique genetic architecture. Six of seven damaging homozygous variants in CHD causal genes occur in the setting of laterality defects implies a strong contribution from consanguinity to these defects specifically. Our study thus provided valuable information about the genetic landscape of CHD in consanguineous families in Turkey. Abstract Backgrounds While many studies agree that consanguinity increases the rate of congenital heart disease (CHD), few genome analyses have been conducted with consanguineous CHD cohorts. Methods We recruited 73 CHD probands from consanguineous families in Turkey and used whole‐exome sequencing (WES) to identify genetic lesions in these patients. Results On average, each patient had 6.95 rare damaging homozygous variants, 0.68 of which are loss‐of‐function (LoF) variants. Seven patients (9.6%) carried damaging homozygous variants in five causal CHD genes. Six of those patients exhibited laterality defects (six HTX and one D‐TGA). Three additional patients (4.1%) harbored other types of CHD‐associated genomic alterations, which overall explained 13.7% (10/73) of the cohort. The contribution from recessive variants in our cohort is higher than 1.8% reported from a cohort of 2871 CHD subjects where 5.6% of subjects met the criteria for consanguinity. Conclusions Our WES screen of a Turkish consanguineous population with structural CHD revealed its unique genetic architecture. Six of seven damaging homozygous variants in CHD causal genes occur in the setting of laterality defects implies a strong contribution from consanguinity to these defects specifically. Our study thus provided valuable information about the genetic landscape of CHD in consanguineous families in Turkey. |
Author | Diab, Nicholas S. Ercan‐Sencicek, A. Gulhan Dong, Weilai Mane, Shrikant Yalcin, Ali Seyfi Yalim Kaymakcalan, Hande Bilguvar, Kaya Tanıdır, Cansaran Jin, Sheng Chih Gunel, Murat Brueckner, Martina Lifton, Richard P. |
AuthorAffiliation | 2 Laboratory of Human Genetics and Genomics The Rockefeller University New York New York USA 3 Department of Pediatrics Demiroglu Bilim University Istanbul Turkey 6 Biomedical research and translational medicine Masonic Medical Research Institute Utica New York USA 7 Department of Genetics Yale Center for Genomic Analysis New Haven Connecticut USA 4 Department of Genetics Washington University School of Medicine St. Louis Missouri USA 1 Department of Genetics Yale School of Medicine New Haven Connecticut USA 5 Department of Pediatrics Mehmet Akif Ersoy Hospital Istanbul Turkey |
AuthorAffiliation_xml | – name: 3 Department of Pediatrics Demiroglu Bilim University Istanbul Turkey – name: 4 Department of Genetics Washington University School of Medicine St. Louis Missouri USA – name: 2 Laboratory of Human Genetics and Genomics The Rockefeller University New York New York USA – name: 6 Biomedical research and translational medicine Masonic Medical Research Institute Utica New York USA – name: 7 Department of Genetics Yale Center for Genomic Analysis New Haven Connecticut USA – name: 5 Department of Pediatrics Mehmet Akif Ersoy Hospital Istanbul Turkey – name: 1 Department of Genetics Yale School of Medicine New Haven Connecticut USA |
Author_xml | – sequence: 1 givenname: Weilai surname: Dong fullname: Dong, Weilai organization: The Rockefeller University – sequence: 2 givenname: Hande orcidid: 0000-0001-7736-7634 surname: Kaymakcalan fullname: Kaymakcalan, Hande email: doctorhande@yahoo.com organization: Demiroglu Bilim University – sequence: 3 givenname: Sheng Chih orcidid: 0000-0002-5777-7262 surname: Jin fullname: Jin, Sheng Chih organization: Washington University School of Medicine – sequence: 4 givenname: Nicholas S. surname: Diab fullname: Diab, Nicholas S. organization: Yale School of Medicine – sequence: 5 givenname: Cansaran surname: Tanıdır fullname: Tanıdır, Cansaran organization: Mehmet Akif Ersoy Hospital – sequence: 6 givenname: Ali Seyfi Yalim surname: Yalcin fullname: Yalcin, Ali Seyfi Yalim organization: Demiroglu Bilim University – sequence: 7 givenname: A. Gulhan orcidid: 0000-0003-2838-3341 surname: Ercan‐Sencicek fullname: Ercan‐Sencicek, A. Gulhan organization: Masonic Medical Research Institute – sequence: 8 givenname: Shrikant surname: Mane fullname: Mane, Shrikant organization: Yale School of Medicine – sequence: 9 givenname: Murat surname: Gunel fullname: Gunel, Murat organization: Yale School of Medicine – sequence: 10 givenname: Richard P. surname: Lifton fullname: Lifton, Richard P. organization: The Rockefeller University – sequence: 11 givenname: Kaya surname: Bilguvar fullname: Bilguvar, Kaya organization: Yale Center for Genomic Analysis – sequence: 12 givenname: Martina surname: Brueckner fullname: Brueckner, Martina email: martina.brueckner@yale.edu organization: Yale School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35481623$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1v1DAQhiNUREvpgT-AInGBw7a2YzvxBamq2qVSKy7L2Zo4k6yXxA52Auq_x_tR1FYwF1uedx6_mpm32ZHzDrPsPSXnlBB2MXRdcU4V56-yE1YwvlBMqqMn9-PsLMYNSVFVnMryTXZcCF5RyYqTbHU_TzBZ7_I4opnCPOS-zY13HTo7QZ-vEcKUNzYiRMyty2GbjeC62Tr0c8xXc_hh4zof_Tj3O9a77HULfcSzw3mafb-5Xl19Xdx9W95eXd4tjCCKL1peKiEJSC5RVaxtBCvBGCkroUpTYA0VUgTJGhCVbAw03CgghJbAUtDiNLvdcxsPGz0GO0B40B6s3j340Olk3poedaFq1nI0rSyRQ_q0EoTJpqkZbQ2RdWJ92bPGuR6wMeimAP0z6POMs2vd-V9a0YpLKRLg0wEQ_M8Z46QHGw32PezapJkUshRSyiJJP76QbvwcXGpVUpVc8JISlVQfnjr6a-VxeElwsReY4GMM2Gpj98NMBm2vKdHbDdHbDdHbDUkVn19UPEL_pT3Qf9seH_4v1PfLZbGr-AO9jMri |
CitedBy_id | crossref_primary_10_1007_s00439_024_02703_z crossref_primary_10_3390_genes16010062 crossref_primary_10_1073_pnas_2419992122 crossref_primary_10_1002_mgg3_2041 crossref_primary_10_1016_j_jss_2023_12_004 |
Cites_doi | 10.1038/sj.ejhg.5201760 10.1038/nature15393 10.1038/ng.3376 10.1016/j.ajhg.2019.11.010 10.1073/pnas.211191098 10.1038/nature14269 10.1002/humu.22261 10.3390/genes10090631 10.1016/j.jacc.2016.11.060 10.1002/0471142905.hg0723s81 10.1093/hmg/ddu733 10.1002/1096‐8628(20010215)99:1<8::aid‐ajmg1116>3.0.co;2‐u 10.1038/s41598‐020‐76425‐3 10.1038/hgv.2015.4 10.1136/adc.59.3.242 10.1038/ng.3970 10.1073/pnas.0906079106 10.1038/nature19057 10.1038/s41436‐019‐0686‐8 10.4103/0974‐2069.84637 10.1038/s41586‐021‐03758‐y 10.1023/a:1007601919164 10.1093/nar/gkq603 10.1136/jmedgenet‐2015‐103336 10.1017/s1047951107000704 10.1016/S0168‐9525(03)00026‐X 10.1002/0471250953.bi1110s43 10.1038/ng.3410 10.1111/j.1399‐0004.1994.tb04032.x 10.1016/j.ajhg.2009.03.010 10.1002/ajmg.a.10020 10.1159/000153628 10.1016/j.jacc.2011.08.025 10.1086/519795 10.1086/521987 10.1093/bioinformatics/btp324 10.1017/S0021932016000055 10.1161/circresaha.116.309140 10.1002/ajmg.a.31309 10.1038/ng.727 10.1016/j.ajhg.2019.04.011 10.1146/annurev.genom.3.032802.120023 10.1038/nbt.1754 10.1016/0735‐1097(95)00358‐4 10.1111/cge.12737 10.1038/ng.2892 10.1016/j.cell.2004.09.011 10.1186/s12864‐015‐1991‐5 10.1161/CIRCGENETICS.115.001058 10.1042/BJ20030174 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by Wiley Periodicals LLC. 2022 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals LLC. 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC. – notice: 2022 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals LLC. – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD 8FE 8FH ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI RC3 7X8 5PM DOA |
DOI | 10.1002/mgg3.1944 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Dong et al |
EISSN | 2324-9269 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_39b2f4ecf67e4a60a85026ddb21fc06b PMC9184665 35481623 10_1002_mgg3_1944 MGG31944 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Turkey |
GeographicLocations_xml | – name: Turkey |
GrantInformation_xml | – fundername: The Yale Center for Mendelian Genomics funderid: UM1HG006504 – fundername: National Institutes of Health – fundername: National Human Genome Research Institute – fundername: National Heart, Lung, and Blood Institute – fundername: American Heart Association funderid: 19PRE34380842 – fundername: NHLBI NIH HHS grantid: R35 HL145249 – fundername: NHLBI NIH HHS grantid: R00 HL143036 – fundername: NHGRI NIH HHS grantid: UM1 HG006504 – fundername: NHLBI NIH HHS grantid: U01 HL098162 – fundername: NCATS NIH HHS grantid: UL1 TR001863 – fundername: NHLBI NIH HHS grantid: K99 HL143036 – fundername: NHGRI NIH HHS grantid: U24 HG008956 – fundername: ; – fundername: The Yale Center for Mendelian Genomics grantid: UM1HG006504 – fundername: ; grantid: 19PRE34380842 |
GroupedDBID | 0R~ 1OC 24P 31~ 53G 5VS 8-1 8FE 8FH AAHHS AAZKR ABDBF ACCFJ ACCMX ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI CCPQU D-9 DIK EBS EJD GODZA GROUPED_DOAJ HCIFZ HYE HZ~ IAO IHR INH ITC KQ8 LK8 M48 M7P M~E O9- OK1 PIMPY PROAC RPM TUS WIN AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 8FD AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5094-f479560a646e982fd527acc668597c3eba8e1ea62da586dcad4c9a0017a222213 |
IEDL.DBID | M48 |
ISSN | 2324-9269 |
IngestDate | Wed Aug 27 01:31:37 EDT 2025 Thu Aug 21 14:09:31 EDT 2025 Fri Jul 11 01:58:01 EDT 2025 Wed Aug 13 04:18:31 EDT 2025 Thu Apr 03 07:09:48 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 Tue Jul 01 01:58:12 EDT 2025 Wed Jan 22 16:24:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | congenital heart disease mutation genetics consanguinity |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2022 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5094-f479560a646e982fd527acc668597c3eba8e1ea62da586dcad4c9a0017a222213 |
Notes | Funding information Weilai Dong, Hande Kaymakcalan, Sheng Chih Jin, and Nicholas S. Diab contributed equally to this work. This work is supported by The Yale Center for Mendelian Genomics (UM1HG006504) which is funded by the National Human Genome Research Institute and National Heart, Lung, and Blood Institute. The GSP Coordinating Center (U24 HG008956) contributed to cross‐program scientific initiatives and provided logistical and general study coordination. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. W.D. is supported by the American Heart Association Predoctoral Fellowship (19PRE34380842) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding informationThis work is supported by The Yale Center for Mendelian Genomics (UM1HG006504) which is funded by the National Human Genome Research Institute and National Heart, Lung, and Blood Institute. The GSP Coordinating Center (U24 HG008956) contributed to cross‐program scientific initiatives and provided logistical and general study coordination. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. W.D. is supported by the American Heart Association Predoctoral Fellowship (19PRE34380842) |
ORCID | 0000-0002-5777-7262 0000-0001-7736-7634 0000-0003-2838-3341 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/mgg3.1944 |
PMID | 35481623 |
PQID | 2674547109 |
PQPubID | 2034370 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_39b2f4ecf67e4a60a85026ddb21fc06b pubmedcentral_primary_oai_pubmedcentral_nih_gov_9184665 proquest_miscellaneous_2656756663 proquest_journals_2674547109 pubmed_primary_35481623 crossref_citationtrail_10_1002_mgg3_1944 crossref_primary_10_1002_mgg3_1944 wiley_primary_10_1002_mgg3_1944_MGG31944 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bognor Regis – name: Hoboken |
PublicationTitle | Molecular genetics & genomic medicine |
PublicationTitleAlternate | Mol Genet Genomic Med |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2009; 84 2010; 107 2017; 49 2019; 10 1949; 18 1986; 36 2003; 19 2020; 10 2011; 58 2015; 47 2000; 16 2021; 597 2016; 90 1984; 59 1995; 26 2017; 120 2001; 99 2016; 48 2011; 29 2001; 98 2007; 17 2015; 2 2009; 25 2010; 38 2015; 16 2015; 4 2017; 69 2013; 43 2015; 521 2015; 52 1994; 45 2019; 104 2002; 3 2020; 106 2014; 46 2015; 526 2011; 4 2015; 8 2007; 15 2003; 372 2015; 24 2014; 81 2013; 34 2016; 536 2006; 140 2011; 43 2007; 81 2020; 22 2014 2004; 119 2003; 116A e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 Server E. V. (e_1_2_9_46_1) 2014 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 Khan I. (e_1_2_9_31_1) 2015; 4 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 Campbell M. (e_1_2_9_14_1) 1949; 18 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 140 start-page: 1524 issue: 14 year: 2006 end-page: 1530 article-title: Consanguineous marriage and congenital heart defects: A case‐control study in the neonatal period publication-title: American Journal of Medical Genetics. Part A – volume: 90 start-page: 3 issue: 1 year: 2016 end-page: 15 article-title: Genetics of human Bardet‐Biedl syndrome, an updates publication-title: Clinical Genetics – volume: 17 start-page: 414 issue: 4 year: 2007 end-page: 422 article-title: Congenital cardiac disease and inbreeding: Specific defects escape higher risk due to parental consanguinity publication-title: Cardiology in the Young – volume: 16 start-page: 834 year: 2015 article-title: Copy number variations in the genome of the Qatari population publication-title: BMC Genomics – volume: 49 start-page: 1593 issue: 11 year: 2017 end-page: 1601 article-title: Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands publication-title: Nature Genetics – volume: 15 start-page: 272 issue: 3 year: 2007 end-page: 278 article-title: Multiple mutations responsible for frequent genetic diseases in isolated populations publication-title: European Journal of Human Genetics – volume: 16 start-page: 805 issue: 9 year: 2000 end-page: 814 article-title: Risk factors for congenital heart diseases in Alexandria, Egypt publication-title: European Journal of Epidemiology – volume: 81 start-page: 1084 issue: 5 year: 2007 end-page: 1097 article-title: Rapid and accurate haplotype phasing and missing‐data inference for whole‐genome association studies by use of localized haplotype clustering publication-title: American Journal of Human Genetics – year: 2014 – volume: 106 start-page: 26 issue: 1 year: 2020 end-page: 40 article-title: Complete sequence of the 22q11.2 allele in 1,053 subjects with 22q11.2 deletion syndrome reveals modifiers of conotruncal heart defects publication-title: American Journal of Human Genetics – volume: 81 start-page: 7 year: 2014 end-page: 23 article-title: Using XHMM software to detect copy number variation in whole‐exome sequencing data publication-title: Current Protocols in Human Genetics – volume: 47 start-page: 1363 issue: 11 year: 2015 end-page: 1369 article-title: Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families publication-title: Nature Genetics – volume: 99 start-page: 8 issue: 1 year: 2001 end-page: 13 article-title: Consanguinity and congenital heart disease in Saudi Arabia publication-title: American Journal of Medical Genetics – volume: 58 start-page: 2241 issue: 21 year: 2011 end-page: 2247 article-title: Birth prevalence of congenital heart disease worldwide: A systematic review and meta‐analysis publication-title: Journal of the American College of Cardiology – volume: 107 start-page: 1779 issue: Suppl 1 year: 2010 end-page: 1786 article-title: Evolution in health and medicine Sackler colloquium: Consanguinity, human evolution, and complex diseases publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 116A start-page: 342 issue: 4 year: 2003 end-page: 347 article-title: Parental consanguinity and congenital heart malformations in a developing country publication-title: American Journal of Medical Genetics. Part A – volume: 526 start-page: 68 issue: 7571 year: 2015 end-page: 74 article-title: A global reference for human genetic variation publication-title: Nature – volume: 45 start-page: 288 issue: 6 year: 1994 end-page: 291 article-title: Inbreeding and congenital heart diseases in a north Indian population publication-title: Clinical Genetics – volume: 120 start-page: 923 issue: 6 year: 2017 end-page: 940 article-title: Genetics and genomics of congenital heart disease publication-title: Circulation Research – volume: 69 start-page: 859 issue: 7 year: 2017 end-page: 870 article-title: Advances in the genetics of congenital heart disease: A Clinician's guide publication-title: Journal of the American College of Cardiology – volume: 38 issue: 16 year: 2010 article-title: ANNOVAR: Functional annotation of genetic variants from high‐throughput sequencing data publication-title: Nucleic Acids Research – volume: 19 start-page: 162 issue: 3 year: 2003 end-page: 167 article-title: Lateralization defects and ciliary dyskinesia: Lessons from algae publication-title: Trends in Genetics – volume: 597 start-page: E3 issue: 7874 year: 2021 end-page: E4 article-title: Addendum: The mutational constraint spectrum quantified from variation in 141,456 humans publication-title: Nature – volume: 29 start-page: 24 issue: 1 year: 2011 end-page: 26 article-title: Integrative genomics viewer publication-title: Nature Biotechnology – volume: 22 start-page: 245 issue: 2 year: 2020 end-page: 257 article-title: Technical standards for the interpretation and reporting of constitutional copy‐number variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the clinical genome resource (ClinGen) publication-title: Genetics in Medicine – volume: 26 start-page: 1545 issue: 6 year: 1995 end-page: 1548 article-title: High prevalence of muscular ventricular septal defect in neonates publication-title: Journal of the American College of Cardiology – volume: 81 start-page: 559 issue: 3 year: 2007 end-page: 575 article-title: PLINK: A tool set for whole‐genome association and population‐based linkage analyses publication-title: American Journal of Human Genetics – volume: 48 start-page: 616 issue: 5 year: 2016 end-page: 630 article-title: The prevalence of consanguineous marriages and affecting factors in Turkey: A national survey publication-title: Journal of Biosocial Science – volume: 43 start-page: 79 issue: 1 year: 2011 end-page: 84 article-title: The coiled‐coil domain containing protein CCDC40 is essential for motile cilia function and left‐right axis formation publication-title: Nature Genetics – volume: 521 start-page: 520 issue: 7553 year: 2015 end-page: 524 article-title: Global genetic analysis in mice unveils central role for cilia in congenital heart disease publication-title: Nature – volume: 43 start-page: 11.10 year: 2013 end-page: 11.33 article-title: From FastQ data to high confidence variant calls: The genome analysis toolkit best practices pipeline publication-title: Current Protocols in Bioinformatics – volume: 34 start-page: 462 issue: 3 year: 2013 end-page: 472 article-title: Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms publication-title: Human Mutation – volume: 8 start-page: 529 year: 2015 end-page: 536 article-title: History of our understanding of the causes of congenital heart disease publication-title: Circulation. Cardiovascular Genetics – volume: 3 start-page: 199 year: 2002 end-page: 242 article-title: Molecular mechanisms for genomic disorders publication-title: Annual Review of Genomics and Human Genetics – volume: 52 start-page: 840 issue: 12 year: 2015 end-page: 847 article-title: A human laterality disorder caused by a homozygous deleterious mutation in MMP21 publication-title: Journal of Medical Genetics – volume: 24 start-page: 2125 issue: 8 year: 2015 end-page: 2137 article-title: Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies publication-title: Human Molecular Genetics – volume: 119 start-page: 19 issue: 1 year: 2004 end-page: 31 article-title: Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism publication-title: Cell – volume: 2 year: 2015 article-title: DGCR6 at the proximal part of the DiGeorge critical region is involved in conotruncal heart defects publication-title: Human Genome Variation – volume: 104 start-page: 1182 issue: 6 year: 2019 end-page: 1201 article-title: Lessons learned from large‐scale, first‐tier clinical exome sequencing in a highly consanguineous population publication-title: American Journal of Human Genetics – volume: 84 start-page: 524 issue: 4 year: 2009 end-page: 533 article-title: DECIPHER: Database of chromosomal imbalance and phenotype in humans using Ensembl resources publication-title: American Journal of Human Genetics – volume: 59 start-page: 242 issue: 3 year: 1984 end-page: 245 article-title: Consanguinity and complex cardiac anomalies with situs ambiguus publication-title: Archives of Disease in Childhood – volume: 10 issue: 9 year: 2019 article-title: Further defining the phenotypic Spectrum of B3GAT3 mutations and literature review on Linkeropathy syndromes publication-title: Genes (Basel) – volume: 18 start-page: 379 issue: 72 year: 1949 end-page: 391 article-title: Genetic and environmental factors in congenital heart disease publication-title: The Quarterly Journal of Medicine – volume: 4 start-page: 111 issue: 2 year: 2011 end-page: 116 article-title: Assessing the influence of consanguinity on congenital heart disease publication-title: Annals of Pediatric Cardiology – volume: 46 start-page: 310 issue: 3 year: 2014 end-page: 315 article-title: A general framework for estimating the relative pathogenicity of human genetic variants publication-title: Nature Genetics – volume: 36 start-page: 213 issue: 4 year: 1986 end-page: 217 article-title: Consanguinity and congenital heart disease in the rural Arab population in northern Israel publication-title: Human Heredity – volume: 10 issue: 1 year: 2020 article-title: ClassifyCNV: A tool for clinical annotation of copy‐number variants publication-title: Scientific Reports – volume: 25 start-page: 1754 issue: 14 year: 2009 end-page: 1760 article-title: Fast and accurate short read alignment with burrows‐wheeler transform publication-title: Bioinformatics – volume: 98 start-page: 12174 issue: 21 year: 2001 end-page: 12179 article-title: Cardiovascular, skeletal, and renal defects in mice with a targeted disruption of the Pkd1 gene publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 47 start-page: 1260 issue: 11 year: 2015 end-page: 1263 article-title: MMP21 is mutated in human heterotaxy and is required for normal left‐right asymmetry in vertebrates publication-title: Nature Genetics – volume: 536 start-page: 285 issue: 7616 year: 2016 end-page: 291 article-title: Analysis of protein‐coding genetic variation in 60, 706 humans publication-title: Nature – volume: 372 start-page: 503 issue: Pt 2 year: 2003 end-page: 515 article-title: The structure and regulation of the human and mouse matrix metalloproteinase‐21 gene and protein publication-title: The Biochemical Journal – volume: 4 start-page: 37 issue: 1 year: 2015 end-page: 39 article-title: Bardet‐Biedl syndrome associated with Dextrocardia and Situs inversus publication-title: Journal of Islamabad Medical and Dental College – ident: e_1_2_9_54_1 doi: 10.1038/sj.ejhg.5201760 – ident: e_1_2_9_4_1 doi: 10.1038/nature15393 – ident: e_1_2_9_26_1 doi: 10.1038/ng.3376 – ident: e_1_2_9_53_1 doi: 10.1016/j.ajhg.2019.11.010 – ident: e_1_2_9_12_1 doi: 10.1073/pnas.211191098 – ident: e_1_2_9_36_1 doi: 10.1038/nature14269 – ident: e_1_2_9_3_1 doi: 10.1002/humu.22261 – ident: e_1_2_9_43_1 doi: 10.3390/genes10090631 – ident: e_1_2_9_11_1 doi: 10.1016/j.jacc.2016.11.060 – ident: e_1_2_9_20_1 doi: 10.1002/0471142905.hg0723s81 – ident: e_1_2_9_16_1 doi: 10.1093/hmg/ddu733 – ident: e_1_2_9_7_1 doi: 10.1002/1096‐8628(20010215)99:1<8::aid‐ajmg1116>3.0.co;2‐u – ident: e_1_2_9_27_1 doi: 10.1038/s41598‐020‐76425‐3 – ident: e_1_2_9_21_1 doi: 10.1038/hgv.2015.4 – ident: e_1_2_9_22_1 doi: 10.1136/adc.59.3.242 – ident: e_1_2_9_29_1 doi: 10.1038/ng.3970 – ident: e_1_2_9_10_1 doi: 10.1073/pnas.0906079106 – ident: e_1_2_9_34_1 doi: 10.1038/nature19057 – ident: e_1_2_9_42_1 doi: 10.1038/s41436‐019‐0686‐8 – ident: e_1_2_9_9_1 doi: 10.4103/0974‐2069.84637 – ident: e_1_2_9_25_1 doi: 10.1038/s41586‐021‐03758‐y – ident: e_1_2_9_6_1 doi: 10.1023/a:1007601919164 – ident: e_1_2_9_50_1 doi: 10.1093/nar/gkq603 – ident: e_1_2_9_40_1 doi: 10.1136/jmedgenet‐2015‐103336 – ident: e_1_2_9_15_1 doi: 10.1017/s1047951107000704 – ident: e_1_2_9_17_1 doi: 10.1016/S0168‐9525(03)00026‐X – ident: e_1_2_9_48_1 doi: 10.1002/0471250953.bi1110s43 – volume: 4 start-page: 37 issue: 1 year: 2015 ident: e_1_2_9_31_1 article-title: Bardet‐Biedl syndrome associated with Dextrocardia and Situs inversus publication-title: Journal of Islamabad Medical and Dental College – ident: e_1_2_9_2_1 doi: 10.1038/ng.3410 – ident: e_1_2_9_5_1 doi: 10.1111/j.1399‐0004.1994.tb04032.x – ident: e_1_2_9_19_1 doi: 10.1016/j.ajhg.2009.03.010 – ident: e_1_2_9_39_1 doi: 10.1002/ajmg.a.10020 – ident: e_1_2_9_24_1 doi: 10.1159/000153628 – ident: e_1_2_9_49_1 doi: 10.1016/j.jacc.2011.08.025 – ident: e_1_2_9_41_1 doi: 10.1086/519795 – ident: e_1_2_9_13_1 doi: 10.1086/521987 – ident: e_1_2_9_35_1 doi: 10.1093/bioinformatics/btp324 – ident: e_1_2_9_30_1 doi: 10.1017/S0021932016000055 – ident: e_1_2_9_52_1 doi: 10.1161/circresaha.116.309140 – volume: 18 start-page: 379 issue: 72 year: 1949 ident: e_1_2_9_14_1 article-title: Genetic and environmental factors in congenital heart disease publication-title: The Quarterly Journal of Medicine – ident: e_1_2_9_51_1 doi: 10.1002/ajmg.a.31309 – ident: e_1_2_9_8_1 doi: 10.1038/ng.727 – ident: e_1_2_9_38_1 doi: 10.1016/j.ajhg.2019.04.011 – ident: e_1_2_9_28_1 doi: 10.1146/annurev.genom.3.032802.120023 – ident: e_1_2_9_44_1 doi: 10.1038/nbt.1754 – ident: e_1_2_9_45_1 doi: 10.1016/0735‐1097(95)00358‐4 – ident: e_1_2_9_32_1 doi: 10.1111/cge.12737 – volume-title: NHLBI GO exome sequencing project (ESP) year: 2014 ident: e_1_2_9_46_1 – ident: e_1_2_9_33_1 doi: 10.1038/ng.2892 – ident: e_1_2_9_47_1 doi: 10.1016/j.cell.2004.09.011 – ident: e_1_2_9_18_1 doi: 10.1186/s12864‐015‐1991‐5 – ident: e_1_2_9_23_1 doi: 10.1161/CIRCGENETICS.115.001058 – ident: e_1_2_9_37_1 doi: 10.1042/BJ20030174 |
SSID | ssj0000884167 |
Score | 2.2202888 |
Snippet | Backgrounds
While many studies agree that consanguinity increases the rate of congenital heart disease (CHD), few genome analyses have been conducted with... While many studies agree that consanguinity increases the rate of congenital heart disease (CHD), few genome analyses have been conducted with consanguineous... BackgroundsWhile many studies agree that consanguinity increases the rate of congenital heart disease (CHD), few genome analyses have been conducted with... WES screen of 73 CHD probands from consanguineous unions in Turkey revealed that 13.7% of cases can be explained by genomic alterations, especially homozygous... Abstract Backgrounds While many studies agree that consanguinity increases the rate of congenital heart disease (CHD), few genome analyses have been conducted... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1944 |
SubjectTerms | Birth defects Cardiovascular disease Cardiovascular diseases Congenital diseases congenital heart disease Consanguinity Coronary artery disease Defects Exome Sequencing Families & family life Genes Genetics Genomes Heart Defects, Congenital - genetics Heart diseases Heart rate Humans Mutation Original Population studies Turkey Womens health |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VHKpeEB9tCV0qgzhwSdnYjp0cadUFIW1Pi8TN8lcACbII2P_fGScb7aogLr1FsRM547HnvUzyBuAYEX6hhQu5jVbnUiJBcVUR87LB8FYJ5HIuqX3-URdX8vK6vF4p9UXfhHXywJ3hTkXteCOjb5SO0qqxrUqkDSE4XjR-rBztvhjzVshU2oMrSqfppZTQmJ8-3NyIH8jY5VoASjr9r4HLf7-RXMWuKfhMtmCzR43srBvtNnyI7Q58nPZ58V2YTRddSp2lPyefFg9s3jCkuugeVBWEUd3qF9ZnY9hdyyy1PtPLSrwBsn82Wzwhlrxlj0NFr89wNfk9-3WR9_USck8yeHkjNbEdq6SKdcWbUHJtvVeqQtbg0e62ikW0igdbVip4G6SvLcUpiyiBF-ILbLTzNu4BU1EUHq8TCP-kct7insmt8j7ExtU6ZHCyNKLxvZg41bS4N50MMjdkb0P2zuBo6PrYKWi81uknzcTQgUSv0wl0BdO7gnnPFTIYLefR9Cvx2XClSbOsGNcZHA7NuIYoMWKThbFPibwJiZzI4Gs37cNIBFK6AjFiBnrNIdaGut7S3t0mne4a2bNSJdoquc7bT2-m5-eCDvb_hxm-wSdO_2ikV0Uj2ECniweInF7c97RI_gKOmhhU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BKyEuiDcpBRnEgUvoxnac5IQo6kNIWyG0lXqz_Mq2Ek2W3e7_74zjDawo3KK1N4rHM_b3jZNvAD4gwi8qYX1ugqlyKZGg2LoIedni9lYL5HI2qn2eqdNz-e2ivEgJt1V6rXKzJsaF2veOcuQHXFWkPVVMms-LXzlVjaLT1VRC4z7s4hJcI_naPTw6-_5jzLJgDCHiqDaSQhN-cD2fi0_I3OXWRhT1-u8CmX-_K_knho2b0PFjeJTQI_syTPcTuBe6p_Bgms7Hn8Fsuh6O1ln8gnK5vmZ9y5DyoptQdRBG9atvWDqVYVcdM9S6oqQl3qBfr9hsvURMeckWY2Wv53B-fDT7epqnugm5Izm8vJUVsR6jpApNzVtf8so4p1SN7MGh_U0dimAU96aslXfGS9cY2q8MogVeiBew0_VdeAVMBVE4_J9AGCiVdQbXTm6Ucz60tql8Bh83RtQuiYpTbYufepBD5prsrcneGbwfuy4GJY27Oh3STIwdSPw6_tAv5zrFkhaN5a0MrlVVkAYHWpfIJL23vGjdRNkM9jfzqFNErvRv_8ng3diMsUQHJCZaGPuUyJ-Q0IkMXg7TPj6JQGpXIFbMoNpyiK1H3W7pri6jXneDLFqpEm0VXeffo9fTkxNBF3v_H8FreMjpK4yYDNqHHXSn8Aax0Y19mwLgFipkEHk priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BlapeqpYWmpYit-LQS8rGduxEPQHiQ5W24rBI3Cx_ZUGCLNpl_39nnGzaVanELYonUTLjid-z4zcAB4jwCy1cyG20OpcSCYqripiXDQ5vlUAu55La5y91cSV_XpfXG_BjtRem04cYJtwoM9L3mhLcusXhH9HQ--lUfEcKLjfhBW2tJeF8Li-HCRZMHwQbOhWX4zKvuapXykIjfjhcvTYeJdn-p7Dmv79M_g1l01h09gZe9yCSHXVRfwsbsd2Gl-N-mfwdTMbLboWdpY2U8-U9mzUMmS_2FioSwqiM9SPrF2fYbcsstS5o7hJvMFsu2GQ5R2h5wx6GAl_v4ersdHJykfflE3JPqnh5IzWRH6ukinXFm1Bybb1XqkIS4TEMtopFtIoHW1YqeBukry0NWxZBAy_EDmy1szZ-AKaiKDxeJxANSuW8xU8ot8r7EBtX65DBt5UTje-1xanExZ3pVJG5IX8b8ncGXwfTh05Q4ymjY4rEYEAa2OnEbD41fUoZUTveyOgbpaO0-KJViYQyBMeLxo-Uy2BvFUfTJ-bCcKVJwqwY1Rl8GZoxpWidxCYPo02JNAp5nchgtwv78CQCGV6BkDEDvdYh1h51vaW9vUmy3TWSaaVK9FXqOv9_ezM-Pxd08PH5pp_gFaeNGWl-aA-2sGvFzwiXHt1-Sovfc-EQ9g priority: 102 providerName: Wiley-Blackwell |
Title | Mutation spectrum of congenital heart disease in a consanguineous Turkish population |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmgg3.1944 https://www.ncbi.nlm.nih.gov/pubmed/35481623 https://www.proquest.com/docview/2674547109 https://www.proquest.com/docview/2656756663 https://pubmed.ncbi.nlm.nih.gov/PMC9184665 https://doaj.org/article/39b2f4ecf67e4a60a85026ddb21fc06b |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD70AqUvY93VXRu0sYe9uKslWbIfxlhHLwxSykigb0aS5bTQOm3SQPvvd458oWHZy95CJCf2uVjfp2N_B-AzIvxEC1vGxhsdS4kExWaJj9MKl7dMIJezQe3zXJ2N5a_L9HINuh6brQHnK6kd9ZMaz24OHu-fvmPCf2sFRL_eTibiAMm4XIdNXJA05eewRfnhhpxRbU13ukLPj9iGLYGYPVFcLC1MQb9_Fej8-9nJ55g2LEonL-FFiybZj8b9O7Dm61ewNWzr5a9hNFw0pXYW3qicLW7ZtGJIgTFsqFsIo37WD6yt0rDrmhkandMmJv7AdDFno8UMMeYVu-s7fb2B8cnx6OdZ3PZRiB3J48WV1MSCjJLK5xmvypRr45xSGbIJh_4wmU-8Ubw0aaZKZ0rpckPrl0H0wBPxFjbqae3fA1NeJA6PEwgLpbLO4L2UG-Vc6Sub6zKCL50RC9eKjFOvi5uikUfmBZm-INNH8Kmfetcoa6yadESe6CeQGHb4YjqbFG1uFSK3vJLeVUp7afBCsxSZZVlanlTuUNkI9jo_Fl2AFVxp0jJLDvMIPvbDmFtUMDHBwjgnRT6FBE9E8K5xe38mXdhEoJcCYulUl0fq66ug350jq1YqRVuF0Pn31RfD01NBH3b_-08-wDanFzbCvtEebGCk-X2EUQ92AOtcXgxg8-j4_OL3IGxGDELi_AEh2SGI |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeJr7JGGAQSLyENbbjJA8IMdjWsbVCqJP2Fhzb6SaxprSrEP8UfyN3zgdUDN72VtVOZJ_vzr-fL74DeIEIP0pEYUPtdBJKiQSlSCMXxiVub6lALlf4bJ8jNTiWH0_ikzX42d6Foc8qW5_oHbWtDJ2Rb3OVUO6pqJ-9nX0LqWoURVfbEhq1Why6H9-Rsi3eHHzA9X3J-d7u-P0gbKoKhIaSxYWlTIgTaCWVy1Je2pgn2hilUsTWBkenUxc5rbjVcaqs0VaaTJM317iX8kjge6_BuhRIZXqwvrM7-vS5O9VBm0WEk7QpjPp8-3wyEa-jTMqVjc_XB7gM1P79beafmNlvenu3YKNBq-xdrV63Yc1N78D1YROPvwvj4bIO5TN_Y3O-PGdVyZBio1pSNRJG9bIvWBMFYmdTpql1QYek-IJquWDj5Rwx7CmbdZXE7sHxlUj0PvSm1dQ9BKaciAw-JxB2SlUYjb6aa2WMdWWRJTaAV60Qc9MkMadaGl_zOv0yz0neOck7gOdd11mdueOyTju0El0HSrbt_6jmk7yx3VxkBS-lM6VKnNQ40TRG5mptwaPS9FURwFa7jnnjARb5b30N4FnXjLZLARntJYx9YuRrSCBFAA_qZe9GIpBKRohNA0hWFGJlqKst07NTnx88Q9auVIyy8qrz79nnw_19QT82_z-Dp3BjMB4e5UcHo8NHcJPTDRB_ELUFPVQt9xhx2UXxpDEGBl-u2v5-AQ7pTKQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTpp4QeM7bIBBIPES2tiOnTwgxNi6jdFqQp20N89xnG4SS0q7CvGv8ddxdj6gYvC2tyh2Ivt8Z_9-PvsO4BUi_EiyLA-11TLkHAlKlkQ2jAtc3hKGXC7z0T7H4uCEfzqNT9fgZ3sXxh2rbOdEP1HnlXF75H0qpIs9FQ3SftEcizjeHb6ffQtdBinnaW3TadQqcmR_fEf6tnh3uItj_ZrS4d7k40HYZBgIjQscFxZcOn6gBRc2TWiRx1RqY4RIEGcbbKlObGS1oLmOE5EbnXOTajeza1xXacTwv7dgXSIrGvRgfWdvfPyl2-FB-0W0I9twRgPav5xO2dso5XxlEfS5Aq4DuH-f0_wTP_sFcLgJdxrkSj7UqnYX1mx5DzZGjW_-PkxGy9qtT_ztzfnyklQFQbqNKuoykxCXO_uKNB4hclES7UoXbsMUf1AtF2SynCOePSezLqvYAzi5EYk-hF5ZlfYxEGFZZPA7hhCUi8xonLepFsbktshSmQfwphWiMk1Ac5dX46uqQzFT5eStnLwDeNlVndVRPK6rtONGoqvgAm_7F9V8qho7VizNaMGtKYS0XGNHkxhZbJ5nNCrMQGQBbLfjqJrZYKF-624AL7pitGPnnNFewlgnRu6GZJIF8Kge9q4lDGllhDg1ALmiECtNXS0pL859rPAUGbwQMcrKq86_e69G-_vMPTz5fw-ewwbanfp8OD7agtvUXQbxe1Lb0EPNsk8Rol1lzxpbIHB20-b3C2oUUNk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutation+spectrum+of+congenital+heart+disease+in+a+consanguineous+Turkish+population&rft.jtitle=Molecular+genetics+%26+genomic+medicine&rft.au=Dong%2C+Weilai&rft.au=Kaymakcalan%2C+Hande&rft.au=Jin%2C+Sheng+Chih&rft.au=Diab%2C+Nicholas+S.&rft.date=2022-06-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2324-9269&rft.volume=10&rft.issue=6&rft_id=info:doi/10.1002%2Fmgg3.1944&rft_id=info%3Apmid%2F35481623&rft.externalDocID=PMC9184665 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2324-9269&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2324-9269&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2324-9269&client=summon |