Hepatocellular Carcinoma Detection by Plasma Methylated DNA: Discovery, Phase I Pilot, and Phase II Clinical Validation
Early detection improves hepatocellular carcinoma (HCC) outcomes, but better noninvasive surveillance tools are needed. We aimed to identify and validate methylated DNA markers (MDMs) for HCC detection. Reduced representation bisulfite sequencing was performed on DNA extracted from 18 HCC and 35 con...
Saved in:
Published in | Hepatology (Baltimore, Md.) Vol. 69; no. 3; pp. 1180 - 1192 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Early detection improves hepatocellular carcinoma (HCC) outcomes, but better noninvasive surveillance tools are needed. We aimed to identify and validate methylated DNA markers (MDMs) for HCC detection. Reduced representation bisulfite sequencing was performed on DNA extracted from 18 HCC and 35 control tissues. Candidate MDMs were confirmed by quantitative methylation‐specific PCR in DNA from independent tissues (74 HCC, 29 controls). A phase I plasma pilot incorporated quantitative allele‐specific real‐time target and signal amplification assays on independent plasma‐extracted DNA from 21 HCC cases and 30 controls with cirrhosis. A phase II plasma study was then performed in 95 HCC cases, 51 controls with cirrhosis, and 98 healthy controls using target enrichment long‐probe quantitative amplified signal (TELQAS) assays. Recursive partitioning identified best MDM combinations. The entire MDM panel was statistically cross‐validated by randomly splitting the data 2:1 for training and testing. Random forest (rForest) regression models performed on the training set predicted disease status in the testing set; median areas under the receiver operating characteristics curve (AUCs; and 95% confidence interval [CI]) were reported after 500 iterations. In phase II, a six‐marker MDM panel (homeobox A1 [HOXA1], empty spiracles homeobox 1 [EMX1], AK055957, endothelin‐converting enzyme 1 [ECE1], phosphofructokinase [PFKP], and C‐type lectin domain containing 11A [CLEC11A]) normalized by beta‐1,3‐galactosyltransferase 6 (B3GALT6) level yielded a best‐fit AUC of 0.96 (95% CI, 0.93‐0.99) with HCC sensitivity of 95% (88%‐98%) at specificity of 92% (86%‐96%). The panel detected 3 of 4 (75%) stage 0, 39 of 42 (93%) stage A, 13 of 14 (93%) stage B, 28 of 28 (100%) stage C, and 7 of 7 (100%) stage D HCCs. The AUC value for alpha‐fetoprotein (AFP) was 0.80 (0.74‐0.87) compared to 0.94 (0.9‐0.97) for the cross‐validated MDM panel (P < 0.0001). Conclusion: MDMs identified in this study proved to accurately detect HCC by plasma testing. Further optimization and clinical testing of this promising approach are indicated. |
---|---|
AbstractList | Early detection improves hepatocellular carcinoma (HCC) outcomes, but better noninvasive surveillance tools are needed. We aimed to identify and validate methylated DNA markers (MDMs) for HCC detection. Reduced representation bisulfite sequencing was performed on DNA extracted from 18 HCC and 35 control tissues. Candidate MDMs were confirmed by quantitative methylation-specific PCR in DNA from independent tissues (74 HCC, 29 controls). A phase I plasma pilot incorporated quantitative allele-specific real-time target and signal amplification assays on independent plasma-extracted DNA from 21 HCC cases and 30 controls with cirrhosis. A phase II plasma study was then performed in 95 HCC cases, 51 controls with cirrhosis, and 98 healthy controls using target enrichment long-probe quantitative amplified signal (TELQAS) assays. Recursive partitioning identified best MDM combinations. The entire MDM panel was statistically cross-validated by randomly splitting the data 2:1 for training and testing. Random forest (rForest) regression models performed on the training set predicted disease status in the testing set; median areas under the receiver operating characteristics curve (AUCs; and 95% confidence interval [CI]) were reported after 500 iterations. In phase II, a six-marker MDM panel (homeobox A1 [HOXA1], empty spiracles homeobox 1 [EMX1], AK055957, endothelin-converting enzyme 1 [ECE1], phosphofructokinase [PFKP], and C-type lectin domain containing 11A [CLEC11A]) normalized by beta-1,3-galactosyltransferase 6 (B3GALT6) level yielded a best-fit AUC of 0.96 (95% CI, 0.93-0.99) with HCC sensitivity of 95% (88%-98%) at specificity of 92% (86%-96%). The panel detected 3 of 4 (75%) stage 0, 39 of 42 (93%) stage A, 13 of 14 (93%) stage B, 28 of 28 (100%) stage C, and 7 of 7 (100%) stage D HCCs. The AUC value for alpha-fetoprotein (AFP) was 0.80 (0.74-0.87) compared to 0.94 (0.9-0.97) for the cross-validated MDM panel (P < 0.0001). Conclusion: MDMs identified in this study proved to accurately detect HCC by plasma testing. Further optimization and clinical testing of this promising approach are indicated. Early detection improves hepatocellular carcinoma (HCC) outcomes, but better noninvasive surveillance tools are needed. We aimed to identify and validate methylated DNA markers (MDMs) for HCC detection. Reduced representation bisulfite sequencing was performed on DNA extracted from 18 HCC and 35 control tissues. Candidate MDMs were confirmed by quantitative methylation specific PCR in DNA from independent tissues (74 HCC, 29 controls). A phase I plasma pilot incorporated quantitative allele-specific real time target and signal amplification assays on independent plasma-extracted DNA from 21 HCC cases and 30 cirrhotic controls. A phase II plasma study was then performed in 95 HCC cases, 51 cirrhosis controls, and 98 healthy controls using target enrichment long-probe quantitative amplified signal (TELQAS) assays. Recursive partitioning identified best MDM combinations. The entire MDM panel was statistically cross-validated by randomly splitting the data 2:1 for training and testing. Random forest regression models performed on the training set predicted disease status in the testing set; the median AUC (and 95% CI) were reported after 500 iterations. In phase II, a 6-marker MDM panel (HOXA1, EMX1, AK055957, ECE1, PFKP and CLEC11A , normalized by B3GALT6 level yielded a best fit AUC of 0.96 (95% CI, 0.93–0.99) with HCC sensitivity of 95% (88–98%) at specificity of 92% (86–96%). The panel detected 3/4 (75%) stage 0, 39/42 (93%) stage A, 13/14 (93%) ge B, 28/28 (100%) stage C and 7/7 (100%) stage D HCC. The AUC value for AFP was 0.80 (0.74–0.87) compared to 0.94 (0.9–0.97) for the cross-validated MDM panel, P<0.0001. Early detection improves hepatocellular carcinoma (HCC) outcomes, but better noninvasive surveillance tools are needed. We aimed to identify and validate methylated DNA markers (MDMs) for HCC detection. Reduced representation bisulfite sequencing was performed on DNA extracted from 18 HCC and 35 control tissues. Candidate MDMs were confirmed by quantitative methylation-specific PCR in DNA from independent tissues (74 HCC, 29 controls). A phase I plasma pilot incorporated quantitative allele-specific real-time target and signal amplification assays on independent plasma-extracted DNA from 21 HCC cases and 30 controls with cirrhosis. A phase II plasma study was then performed in 95 HCC cases, 51 controls with cirrhosis, and 98 healthy controls using target enrichment long-probe quantitative amplified signal (TELQAS) assays. Recursive partitioning identified best MDM combinations. The entire MDM panel was statistically cross-validated by randomly splitting the data 2:1 for training and testing. Random forest (rForest) regression models performed on the training set predicted disease status in the testing set; median areas under the receiver operating characteristics curve (AUCs; and 95% confidence interval [CI]) were reported after 500 iterations. In phase II, a six-marker MDM panel (homeobox A1 [HOXA1], empty spiracles homeobox 1 [EMX1], AK055957, endothelin-converting enzyme 1 [ECE1], phosphofructokinase [PFKP], and C-type lectin domain containing 11A [CLEC11A]) normalized by beta-1,3-galactosyltransferase 6 (B3GALT6) level yielded a best-fit AUC of 0.96 (95% CI, 0.93-0.99) with HCC sensitivity of 95% (88%-98%) at specificity of 92% (86%-96%). The panel detected 3 of 4 (75%) stage 0, 39 of 42 (93%) stage A, 13 of 14 (93%) stage B, 28 of 28 (100%) stage C, and 7 of 7 (100%) stage D HCCs. The AUC value for alpha-fetoprotein (AFP) was 0.80 (0.74-0.87) compared to 0.94 (0.9-0.97) for the cross-validated MDM panel (P < 0.0001). Conclusion: MDMs identified in this study proved to accurately detect HCC by plasma testing. Further optimization and clinical testing of this promising approach are indicated.Early detection improves hepatocellular carcinoma (HCC) outcomes, but better noninvasive surveillance tools are needed. We aimed to identify and validate methylated DNA markers (MDMs) for HCC detection. Reduced representation bisulfite sequencing was performed on DNA extracted from 18 HCC and 35 control tissues. Candidate MDMs were confirmed by quantitative methylation-specific PCR in DNA from independent tissues (74 HCC, 29 controls). A phase I plasma pilot incorporated quantitative allele-specific real-time target and signal amplification assays on independent plasma-extracted DNA from 21 HCC cases and 30 controls with cirrhosis. A phase II plasma study was then performed in 95 HCC cases, 51 controls with cirrhosis, and 98 healthy controls using target enrichment long-probe quantitative amplified signal (TELQAS) assays. Recursive partitioning identified best MDM combinations. The entire MDM panel was statistically cross-validated by randomly splitting the data 2:1 for training and testing. Random forest (rForest) regression models performed on the training set predicted disease status in the testing set; median areas under the receiver operating characteristics curve (AUCs; and 95% confidence interval [CI]) were reported after 500 iterations. In phase II, a six-marker MDM panel (homeobox A1 [HOXA1], empty spiracles homeobox 1 [EMX1], AK055957, endothelin-converting enzyme 1 [ECE1], phosphofructokinase [PFKP], and C-type lectin domain containing 11A [CLEC11A]) normalized by beta-1,3-galactosyltransferase 6 (B3GALT6) level yielded a best-fit AUC of 0.96 (95% CI, 0.93-0.99) with HCC sensitivity of 95% (88%-98%) at specificity of 92% (86%-96%). The panel detected 3 of 4 (75%) stage 0, 39 of 42 (93%) stage A, 13 of 14 (93%) stage B, 28 of 28 (100%) stage C, and 7 of 7 (100%) stage D HCCs. The AUC value for alpha-fetoprotein (AFP) was 0.80 (0.74-0.87) compared to 0.94 (0.9-0.97) for the cross-validated MDM panel (P < 0.0001). Conclusion: MDMs identified in this study proved to accurately detect HCC by plasma testing. Further optimization and clinical testing of this promising approach are indicated. Early detection improves hepatocellular carcinoma (HCC) outcomes, but better noninvasive surveillance tools are needed. We aimed to identify and validate methylated DNA markers (MDMs) for HCC detection. Reduced representation bisulfite sequencing was performed on DNA extracted from 18 HCC and 35 control tissues. Candidate MDMs were confirmed by quantitative methylation‐specific PCR in DNA from independent tissues (74 HCC, 29 controls). A phase I plasma pilot incorporated quantitative allele‐specific real‐time target and signal amplification assays on independent plasma‐extracted DNA from 21 HCC cases and 30 controls with cirrhosis. A phase II plasma study was then performed in 95 HCC cases, 51 controls with cirrhosis, and 98 healthy controls using target enrichment long‐probe quantitative amplified signal (TELQAS) assays. Recursive partitioning identified best MDM combinations. The entire MDM panel was statistically cross‐validated by randomly splitting the data 2:1 for training and testing. Random forest (rForest) regression models performed on the training set predicted disease status in the testing set; median areas under the receiver operating characteristics curve (AUCs; and 95% confidence interval [CI]) were reported after 500 iterations. In phase II, a six‐marker MDM panel (homeobox A1 [ HOXA1 ], empty spiracles homeobox 1 [ EMX1 ], AK055957 , endothelin‐converting enzyme 1 [ ECE1 ], phosphofructokinase [ PFKP ], and C‐type lectin domain containing 11A [ CLEC11A ]) normalized by beta‐1,3‐galactosyltransferase 6 ( B3GALT6 ) level yielded a best‐fit AUC of 0.96 (95% CI, 0.93‐0.99) with HCC sensitivity of 95% (88%‐98%) at specificity of 92% (86%‐96%). The panel detected 3 of 4 (75%) stage 0, 39 of 42 (93%) stage A, 13 of 14 (93%) stage B, 28 of 28 (100%) stage C, and 7 of 7 (100%) stage D HCCs. The AUC value for alpha‐fetoprotein (AFP) was 0.80 (0.74‐0.87) compared to 0.94 (0.9‐0.97) for the cross‐validated MDM panel ( P < 0.0001). Conclusion : MDMs identified in this study proved to accurately detect HCC by plasma testing. Further optimization and clinical testing of this promising approach are indicated. Early detection improves hepatocellular carcinoma (HCC) outcomes, but better noninvasive surveillance tools are needed. We aimed to identify and validate methylated DNA markers (MDMs) for HCC detection. Reduced representation bisulfite sequencing was performed on DNA extracted from 18 HCC and 35 control tissues. Candidate MDMs were confirmed by quantitative methylation‐specific PCR in DNA from independent tissues (74 HCC, 29 controls). A phase I plasma pilot incorporated quantitative allele‐specific real‐time target and signal amplification assays on independent plasma‐extracted DNA from 21 HCC cases and 30 controls with cirrhosis. A phase II plasma study was then performed in 95 HCC cases, 51 controls with cirrhosis, and 98 healthy controls using target enrichment long‐probe quantitative amplified signal (TELQAS) assays. Recursive partitioning identified best MDM combinations. The entire MDM panel was statistically cross‐validated by randomly splitting the data 2:1 for training and testing. Random forest (rForest) regression models performed on the training set predicted disease status in the testing set; median areas under the receiver operating characteristics curve (AUCs; and 95% confidence interval [CI]) were reported after 500 iterations. In phase II, a six‐marker MDM panel (homeobox A1 [HOXA1], empty spiracles homeobox 1 [EMX1], AK055957, endothelin‐converting enzyme 1 [ECE1], phosphofructokinase [PFKP], and C‐type lectin domain containing 11A [CLEC11A]) normalized by beta‐1,3‐galactosyltransferase 6 (B3GALT6) level yielded a best‐fit AUC of 0.96 (95% CI, 0.93‐0.99) with HCC sensitivity of 95% (88%‐98%) at specificity of 92% (86%‐96%). The panel detected 3 of 4 (75%) stage 0, 39 of 42 (93%) stage A, 13 of 14 (93%) stage B, 28 of 28 (100%) stage C, and 7 of 7 (100%) stage D HCCs. The AUC value for alpha‐fetoprotein (AFP) was 0.80 (0.74‐0.87) compared to 0.94 (0.9‐0.97) for the cross‐validated MDM panel (P < 0.0001). Conclusion: MDMs identified in this study proved to accurately detect HCC by plasma testing. Further optimization and clinical testing of this promising approach are indicated. |
Author | Berger, Calise K. Giama, Nasra H. Lidgard, Graham P. Kisiel, John B. Foote, Patrick H. Lewis, Jason T. Ahlquist, David A. Abdallah, Mohamed A. Taylor, William R. Slettedahl, Seth W. Burger, Kelli N. Yab, Tracy C. Giakoumopoulos, Maria Smyrk, Thomas C. Ghoz, Hassan M. Onyirioha, Kristeen Dukek, Brian A. V.S.R. Kanipakam, Reddappa Mahoney, Douglas W. Allawi, Hatim T. Roberts, Lewis R. |
AuthorAffiliation | 1. Mayo Clinic, 200 First Street SW, Rochester, MN 55905 2. Exact Sciences Development Company, LLC, 441 Charmany Drive, Madison, WI 53719 |
AuthorAffiliation_xml | – name: 1. Mayo Clinic, 200 First Street SW, Rochester, MN 55905 – name: 2. Exact Sciences Development Company, LLC, 441 Charmany Drive, Madison, WI 53719 |
Author_xml | – sequence: 1 givenname: John B. surname: Kisiel fullname: Kisiel, John B. email: kisiel.john@mayo.edu organization: Mayo Clinic – sequence: 2 givenname: Brian A. surname: Dukek fullname: Dukek, Brian A. organization: Mayo Clinic – sequence: 3 givenname: Reddappa surname: V.S.R. Kanipakam fullname: V.S.R. Kanipakam, Reddappa organization: Mayo Clinic – sequence: 4 givenname: Hassan M. surname: Ghoz fullname: Ghoz, Hassan M. organization: Mayo Clinic – sequence: 5 givenname: Tracy C. surname: Yab fullname: Yab, Tracy C. organization: Mayo Clinic – sequence: 6 givenname: Calise K. surname: Berger fullname: Berger, Calise K. organization: Mayo Clinic – sequence: 7 givenname: William R. surname: Taylor fullname: Taylor, William R. organization: Mayo Clinic – sequence: 8 givenname: Patrick H. surname: Foote fullname: Foote, Patrick H. organization: Mayo Clinic – sequence: 9 givenname: Nasra H. surname: Giama fullname: Giama, Nasra H. organization: Mayo Clinic – sequence: 10 givenname: Kristeen surname: Onyirioha fullname: Onyirioha, Kristeen organization: Mayo Clinic – sequence: 11 givenname: Mohamed A. surname: Abdallah fullname: Abdallah, Mohamed A. organization: Mayo Clinic – sequence: 12 givenname: Kelli N. surname: Burger fullname: Burger, Kelli N. organization: Mayo Clinic – sequence: 13 givenname: Seth W. surname: Slettedahl fullname: Slettedahl, Seth W. organization: Mayo Clinic – sequence: 14 givenname: Douglas W. surname: Mahoney fullname: Mahoney, Douglas W. organization: Mayo Clinic – sequence: 15 givenname: Thomas C. surname: Smyrk fullname: Smyrk, Thomas C. organization: Mayo Clinic – sequence: 16 givenname: Jason T. surname: Lewis fullname: Lewis, Jason T. organization: Mayo Clinic – sequence: 17 givenname: Maria surname: Giakoumopoulos fullname: Giakoumopoulos, Maria organization: Exact Sciences Development Company, LLC – sequence: 18 givenname: Hatim T. surname: Allawi fullname: Allawi, Hatim T. organization: Exact Sciences Development Company, LLC – sequence: 19 givenname: Graham P. surname: Lidgard fullname: Lidgard, Graham P. organization: Exact Sciences Development Company, LLC – sequence: 20 givenname: Lewis R. surname: Roberts fullname: Roberts, Lewis R. organization: Mayo Clinic – sequence: 21 givenname: David A. surname: Ahlquist fullname: Ahlquist, David A. organization: Mayo Clinic |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30168613$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kcFuEzEQhi1URNPCgRdAlriA1G1t76435oBUJYVEKpADcLVmvRPiyrGDvdtq3x6HtBUgcbI0_vTpn_lPyJEPHgl5ydk5Z0xcbHB3XjJRVU_IhNeiKcqyZkdkwkTDCsVLdUxOUrphjKlKTJ-R45JxOZW8nJC7Be6gDwadGxxEOoNorA9boHPs0fQ2eNqOdOUg5dkn7Dejgx47Ov98-Y7ObTLhFuN4RlcbSEiXdGVd6M8o-O5htKQzZ7014Oh3cLaDvfQ5eboGl_DF_XtKvn24-jpbFNdfPi5nl9eFqXPYAivZKF6rqgNeY91JQMMMl3zacmxB1A3DTjStMpKbVjY1tGUlKuy6NbZcQXlK3h-8u6HdYmfQ9xGc3kW7hTjqAFb__ePtRv8It1pWQikus-DNvSCGnwOmXm_z0vlc4DEMSQveKMF5M2UZff0PehOG6PN6mZpKUfGy3gvfHigTQ0oR149hONP7OnWuU_-uM7Ov_kz_SD70l4GLA3BnHY7_N-nF1eqg_AVgmKuX |
CitedBy_id | crossref_primary_10_3390_cancers13061265 crossref_primary_10_7717_peerj_14303 crossref_primary_10_1371_journal_pone_0300477 crossref_primary_10_1158_1078_0432_CCR_20_0235 crossref_primary_10_3892_wasj_2024_221 crossref_primary_10_1097_MEG_0000000000001523 crossref_primary_10_1016_j_jhep_2023_11_030 crossref_primary_10_1016_j_cld_2020_07_001 crossref_primary_10_3390_cancers15245778 crossref_primary_10_1016_j_cgh_2020_04_019 crossref_primary_10_1002_hep4_1918 crossref_primary_10_1038_s41598_024_53754_1 crossref_primary_10_1158_2159_8290_CD_22_0659 crossref_primary_10_1016_j_nantod_2023_101940 crossref_primary_10_1002_bies_201900122 crossref_primary_10_3748_wjg_v25_i29_3929 crossref_primary_10_1016_j_ctrv_2024_102763 crossref_primary_10_1177_1756284820931734 crossref_primary_10_2342_ymj_72_85 crossref_primary_10_3389_fimmu_2024_1324959 crossref_primary_10_14309_ajg_0000000000000284 crossref_primary_10_1097_HEP_0000000000000668 crossref_primary_10_2217_hep_2020_0012 crossref_primary_10_1002_cam4_2799 crossref_primary_10_1007_s11938_021_00342_1 crossref_primary_10_1016_j_livres_2022_04_001 crossref_primary_10_1186_s13046_023_02867_y crossref_primary_10_1016_j_cld_2023_05_002 crossref_primary_10_1080_14737159_2021_1981290 crossref_primary_10_1038_s41575_019_0229_4 crossref_primary_10_3350_cmh_2019_0010 crossref_primary_10_3389_fmicb_2023_1267844 crossref_primary_10_1111_liv_15251 crossref_primary_10_2174_2210298103666230410105139 crossref_primary_10_3390_cancers15194784 crossref_primary_10_1148_radiol_2021204134 crossref_primary_10_1016_j_jhepr_2022_100578 crossref_primary_10_1016_j_cgh_2021_08_010 crossref_primary_10_1002_hep_31796 crossref_primary_10_1158_1940_6207_CAPR_23_0107 crossref_primary_10_1007_s11904_019_00475_0 crossref_primary_10_1158_1078_0432_CCR_19_0740 crossref_primary_10_1002_hep_31175 crossref_primary_10_1186_s40001_022_00910_w crossref_primary_10_1016_j_trac_2020_115965 crossref_primary_10_14309_ajg_0000000000000656 crossref_primary_10_1016_j_ygyno_2022_03_018 crossref_primary_10_1007_s11901_019_00491_z crossref_primary_10_3389_fonc_2022_1016952 crossref_primary_10_1111_cas_14138 crossref_primary_10_23736_S2724_5985_23_03309_0 crossref_primary_10_1186_s12916_021_02201_3 crossref_primary_10_1002_hep4_1823 crossref_primary_10_1016_j_semcancer_2021_02_015 crossref_primary_10_1186_s13046_021_01940_8 crossref_primary_10_1002_hep_32779 crossref_primary_10_3390_cancers15153880 crossref_primary_10_1002_hep_31327 crossref_primary_10_1136_gutjnl_2021_325036 crossref_primary_10_1016_j_gie_2021_03_937 crossref_primary_10_1016_j_soc_2023_06_005 crossref_primary_10_1016_j_jhep_2019_08_025 crossref_primary_10_1186_s13148_023_01508_7 crossref_primary_10_1186_s40364_024_00569_x crossref_primary_10_1158_1078_0432_CCR_20_2589 crossref_primary_10_1136_gutjnl_2019_320282 crossref_primary_10_1038_s41572_020_00240_3 crossref_primary_10_3390_cancers13194743 crossref_primary_10_3389_fendo_2021_816748 crossref_primary_10_3390_cancers13071558 crossref_primary_10_1021_acs_analchem_3c04013 crossref_primary_10_4251_wjgo_v13_i5_351 crossref_primary_10_3389_fmed_2023_1218705 crossref_primary_10_1002_hep_32308 crossref_primary_10_1186_s13148_022_01420_6 crossref_primary_10_3390_cancers15030859 crossref_primary_10_1016_j_cld_2022_08_004 crossref_primary_10_1038_s41419_023_06293_y crossref_primary_10_1038_s41598_020_59690_0 crossref_primary_10_1007_s10620_020_06550_6 crossref_primary_10_1002_ctm2_1652 crossref_primary_10_1186_s13148_020_00952_z crossref_primary_10_7759_cureus_19274 crossref_primary_10_1136_bmj_m3544 crossref_primary_10_1126_scitranslmed_abp8704 crossref_primary_10_1002_hep_31588 crossref_primary_10_3390_cancers15020494 crossref_primary_10_1016_j_gastrohep_2024_502207 crossref_primary_10_1016_j_aohep_2023_101176 crossref_primary_10_1016_j_cgh_2020_08_065 crossref_primary_10_1016_j_ejca_2023_112960 crossref_primary_10_3892_ol_2023_14155 crossref_primary_10_1159_000536211 crossref_primary_10_3389_fonc_2022_781820 crossref_primary_10_1016_j_suc_2023_08_006 crossref_primary_10_1200_PO_23_00389 crossref_primary_10_1007_s12029_020_00390_3 crossref_primary_10_1007_s10637_023_01363_6 crossref_primary_10_1016_j_xinn_2022_100259 crossref_primary_10_1186_s13148_019_0747_5 crossref_primary_10_3389_fimmu_2023_1282469 crossref_primary_10_3390_biomedicines11051306 crossref_primary_10_1080_14737140_2022_2074404 crossref_primary_10_2217_epi_2021_0118 crossref_primary_10_1016_j_ejca_2022_10_015 crossref_primary_10_1016_j_eng_2021_02_020 crossref_primary_10_1186_s12876_023_02900_6 crossref_primary_10_1016_j_jhepr_2021_100304 crossref_primary_10_1002_hep4_1469 crossref_primary_10_4166_kjg_2023_076 crossref_primary_10_1002_jcp_29600 crossref_primary_10_3389_fgene_2022_1065693 crossref_primary_10_1093_clinchem_hvad168 crossref_primary_10_1007_s00438_022_01906_1 crossref_primary_10_3390_bios12070484 crossref_primary_10_1016_j_jcmgh_2022_02_008 crossref_primary_10_1002_advs_202102051 crossref_primary_10_1016_j_gastha_2022_01_006 crossref_primary_10_1080_15592294_2023_2299044 crossref_primary_10_1093_infdis_jiaa647 crossref_primary_10_1002_lci2_66 crossref_primary_10_1042_BSR20203945 crossref_primary_10_2217_epi_2020_0132 crossref_primary_10_4251_wjgo_v13_i4_197 crossref_primary_10_1002_hep4_1730 crossref_primary_10_1038_s41575_019_0186_y crossref_primary_10_1055_s_0042_1748924 crossref_primary_10_3390_cancers15030817 crossref_primary_10_1053_j_gastro_2020_09_058 crossref_primary_10_3390_cancers13092274 |
Cites_doi | 10.1055/s-2007-1007122 10.1126/science.aar3247 10.1002/hep.1840070527 10.1056/NEJMoa1213261 10.1016/j.cgh.2015.12.042 10.1016/j.cgh.2011.11.025 10.1093/bioinformatics/bts337 10.1002/cncr.29971 10.1056/NEJMra1001683 10.3322/caac.21262 10.1002/hep.29086 10.1007/s11606-011-1952-x 10.1371/journal.pmed.1001624 10.7150/jca.15823 10.1200/JCO.2015.64.7412 10.1053/j.gastro.2009.04.005 10.1373/clinchem.2011.171264 10.1111/j.1365-2036.2009.04014.x 10.3322/caac.21387 10.1038/nmat4997 10.1186/s13059-014-0550-8 10.1016/j.cgh.2013.04.023 10.1097/00000441-199203000-00004 10.1158/1538-7445.AM2017-712 10.2307/2531595 10.1158/1078-0432.CCR-14-2469 10.1002/ijc.30211 10.1056/NEJMoa1311194 10.1002/cncr.26558 10.18632/oncotarget.2444 |
ContentType | Journal Article |
Copyright | 2018 by the American Association for the Study of Liver Diseases. 2019 by the American Association for the Study of Liver Diseases. |
Copyright_xml | – notice: 2018 by the American Association for the Study of Liver Diseases. – notice: 2019 by the American Association for the Study of Liver Diseases. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7T5 7TM 7TO 7U9 H94 K9. 7X8 5PM |
DOI | 10.1002/hep.30244 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1527-3350 |
EndPage | 1192 |
ExternalDocumentID | 10_1002_hep_30244 30168613 HEP30244 |
Genre | article Validation Study Clinical Trial, Phase II Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Maxine and Jack Zarrow Family Foundation of Tulsa Oklahoma – fundername: Dana and Edmund Gong Foundation – fundername: Exact Sciences – fundername: Carol M. Gatton endowment for Digestive Diseases Research – fundername: Paul Calabresi Program in Clinical‐Translational Research funderid: CA90628 – fundername: NCI NIH HHS grantid: R37 CA214679 – fundername: NCI NIH HHS grantid: K12 CA090628 |
GroupedDBID | --- --K .3N .55 .GA .GJ .Y3 05W 0R~ 10A 186 1B1 1CY 1L6 1OB 1OC 1ZS 1~5 24P 31~ 33P 3O- 3SF 3WU 4.4 4G. 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 7-5 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEDT AAESR AAEVG AAHHS AALRI AAONW AAQFI AAQQT AAQXK AASGY AAXRX AAXUO AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABMAC ABOCM ABPVW ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMUD ADOZA ADXAS ADZMN ADZOD AECAP AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFFNX AFGKR AFPWT AFUWQ AFZJQ AHMBA AIACR AIURR AIWBW AJAOE AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD F00 F01 F04 F5P FD8 FDB FEDTE FGOYB FUBAC G-S G.N GNP GODZA H.X HBH HF~ HHY HHZ HVGLF HZ~ IHE IX1 J0M J5H JPC KBYEO KQQ LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M41 M65 MJL MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ NNB NQ- O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K R2- RGB RIG RIWAO RJQFR ROL RPZ RWI RX1 RYL SEW SSZ SUPJJ TEORI UB1 V2E V9Y W2D W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI X7M XG1 XV2 ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX ACLDA ACRPL ACYXJ ADNMO CITATION 7T5 7TM 7TO 7U9 H94 K9. 7X8 5PM |
ID | FETCH-LOGICAL-c5094-e46791594da15e5d6aec0c1618b1eba2570ed27b9c61cb675ab3424eddfeb19a3 |
IEDL.DBID | DR2 |
ISSN | 0270-9139 1527-3350 |
IngestDate | Tue Sep 17 21:21:26 EDT 2024 Thu Dec 05 23:04:35 EST 2024 Fri Nov 22 19:32:33 EST 2024 Fri Dec 06 07:08:26 EST 2024 Sat Nov 02 12:08:42 EDT 2024 Sat Aug 24 01:03:40 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | 2018 by the American Association for the Study of Liver Diseases. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5094-e46791594da15e5d6aec0c1618b1eba2570ed27b9c61cb675ab3424eddfeb19a3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://europepmc.org/articles/pmc6429916?pdf=render |
PMID | 30168613 |
PQID | 2186241356 |
PQPubID | 996352 |
PageCount | 0 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6429916 proquest_miscellaneous_2179211780 proquest_journals_2186241356 crossref_primary_10_1002_hep_30244 pubmed_primary_30168613 wiley_primary_10_1002_hep_30244_HEP30244 |
PublicationCentury | 2000 |
PublicationDate | March 2019 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Hepatology (Baltimore, Md.) |
PublicationTitleAlternate | Hepatology |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 19 2013; 368 2017; 67 1987; 7 1992; 303 2016; 122 2014; 370 2017; 152 2002 2018; 67 2012; 58 2012; 10 2016; 14 2009; 137 2016; 34 2016; 7 2009; 30 2014; 5 2013; 11 2018; 359 1999; 19 2017; 16 2004; 130 2017; 77 2015; 112 2015; 65 2015; 21 1988; 44 2014; 15 2016; 139 2012; 28 2012; 27 2014; 6 2011; 365 2012; 118 2014; 11 (hep30244-bib-0022-20241017) 2017; 77 (hep30244-bib-0011-20241017) 2012; 27 (hep30244-bib-0020-20241017) 2015; 21 (hep30244-bib-0012-20241017) 2009; 137 (hep30244-bib-0034-20241017) 2013; 368 (hep30244-bib-0021-20241017) 2017; 152 (hep30244-bib-0033-20241017) 2014; 6 (hep30244-bib-0036-20241017) 2014; 5 (hep30244-bib-0037-20241017) 1987; 7 (hep30244-bib-0006-20241017) 2011; 365 (hep30244-bib-0017-20241017) 2017; 16 (hep30244-bib-0023-20241017) 1999; 19 (hep30244-bib-0013-20241017) 2012; 10 (hep30244-bib-0010-20241017) 2009; 30 (hep30244-bib-0016-20241017) 2015; 112 (hep30244-bib-0002-20241017) 2017; 67 (hep30244-bib-0007-20241017) 2004; 130 (hep30244-bib-0038-20241017) 2018; 359 (hep30244-bib-0028-20241017) 1992; 303 (hep30244-bib-0019-20241017) 2014; 370 (hep30244-bib-0029-20241017) 1988; 44 (hep30244-bib-0018-20241017) 2012; 58 (hep30244-bib-0008-20241017) 2014; 11 (hep30244-bib-0014-20241017) 2016; 14 (hep30244-bib-0024-20241017) 2012; 28 (hep30244-bib-0031-20241017) 2014; 15 (hep30244-bib-0003-20241017) 2016; 139 (hep30244-bib-0009-20241017) 2018; 67 (hep30244-bib-0015-20241017) 2015; 19 (hep30244-bib-0001-20241017) 2015; 65 (hep30244-bib-0026-20241017) 2013; 11 (hep30244-bib-0035-20241017) 2016; 7 (hep30244-bib-0005-20241017) 2016; 34 (hep30244-bib-0025-20241017) 2012; 118 (hep30244-bib-0004-20241017) 2016; 122 |
References_xml | – volume: 7 start-page: 1907 year: 2016 end-page: 1914 article-title: Detecting circulating tumor DNA in hepatocellular carcinoma patients using droplet digital PCR is feasible and reflects intratumoral heterogeneity publication-title: J Cancer – volume: 118 start-page: 2623 year: 2012 end-page: 2631 article-title: Stool DNA testing for the detection of pancreatic cancer: assessment of methylation marker candidates publication-title: Cancer – volume: 139 start-page: 1534 year: 2016 end-page: 1545 article-title: International trends in liver cancer incidence, overall and by histologic subtype, 1978‐2007 publication-title: Int J Cancer – volume: 28 start-page: 2180 year: 2012 end-page: 2181 article-title: SAAP‐RRBS: streamlined analysis and annotation pipeline for reduced representation bisulfite sequencing publication-title: Bioinformatics – volume: 7 start-page: 952 year: 1987 end-page: 963 article-title: Conceptual review of the hepatic vascular bed publication-title: Hepatology – volume: 67 start-page: 7 year: 2017 end-page: 30 article-title: Cancer statistics, 2017 publication-title: CA Cancer J Clin – volume: 365 start-page: 1118 year: 2011 end-page: 1127 article-title: Hepatocellular carcinoma publication-title: N Engl J Med – volume: 30 start-page: 37 year: 2009 end-page: 47 article-title: Meta‐analysis: surveillance with ultrasound for early‐stage hepatocellular carcinoma in patients with cirrhosis publication-title: Aliment Pharmacol Ther – volume: 6 start-page: 224ra224 year: 2014 article-title: Detection of circulating tumor DNA in early‐ and late‐stage human malignancies publication-title: Sci Transl Med – volume: 65 start-page: 87 year: 2015 end-page: 108 article-title: Global cancer statistics, 2012 publication-title: CA Cancer J Clin – volume: 77 start-page: A712 year: 2017 article-title: Detection of lung cancer by assay of novel methylated DNA markers in plasma publication-title: Cancer Res – volume: 5 start-page: 9425 year: 2014 end-page: 9443 article-title: Epigenetic signatures of alcohol abuse and hepatitis infection during human hepatocarcinogenesis publication-title: Oncotarget – volume: 11 start-page: 1313 year: 2013 end-page: 1318 article-title: Clinical performance of an automated stool DNA assay for detection of colorectal neoplasia publication-title: Clin Gastroenterol Hepatol – volume: 44 start-page: 837 year: 1988 end-page: 845 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics – volume: 368 start-page: 1199 year: 2013 end-page: 1209 article-title: Analysis of circulating tumor DNA to monitor metastatic breast cancer publication-title: N Engl J Med – volume: 359 start-page: 926 year: 2018 end-page: 930 article-title: Detection and localization of surgically resectable cancers with a multi‐analyte blood test publication-title: Science – volume: 303 start-page: 157 year: 1992 end-page: 159 article-title: Alpha‐fetoprotein levels in normal adults publication-title: Am J Med Sci – volume: 34 start-page: 1787 year: 2016 end-page: 1794 article-title: Future of hepatocellular carcinoma incidence in the United States forecast through 2030 publication-title: J Clin Oncol – volume: 130 start-page: 417 year: 2004 end-page: 422 article-title: Randomized controlled trial of screening for hepatocellular carcinoma publication-title: J Cancer Res Clin Oncol – volume: 27 start-page: 861 year: 2012 end-page: 867 article-title: Utilization of hepatocellular carcinoma surveillance among American patients: a systematic review publication-title: J Gen Intern Med – volume: 14 start-page: 875 year: 2016 end-page: 886.e6 article-title: Role of the GALAD and BALAD‐2 serologic models in diagnosis of hepatocellular carcinoma and prediction of survival in patients publication-title: Clin Gastroenterol Hepatol – volume: 19 start-page: 329 year: 1999 end-page: 338 article-title: Prognosis of hepatocellular carcinoma: the BCLC staging classification publication-title: Semin Liver Dis – volume: 19 start-page: 263 year: 2015 end-page: 273 article-title: Liquit biopsy in liver cancer publication-title: Discov Med – volume: 122 start-page: 1757 year: 2016 end-page: 1765 article-title: Population attributable fractions of risk factors for hepatocellular carcinoma in the United States publication-title: Cancer – volume: 11 start-page: e1001624 year: 2014 article-title: Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta‐analysis publication-title: PLoS Med – volume: 58 start-page: 375 year: 2012 end-page: 383 article-title: Quantification of methylated markers with a multiplex methylation‐specific technology publication-title: Clin Chem – volume: 112 start-page: E5503 year: 2015 end-page: E5512 article-title: Plasma DNA tissue mapping by genome‐wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments publication-title: Proc Natl Acad Sci U S A – year: 2002 – volume: 10 start-page: 428 year: 2012 end-page: 433 article-title: Determinants of serum alpha‐fetoprotein levels in hepatitis C‐infected patients publication-title: Clin Gastroenterol Hepatol – volume: 16 start-page: 1155 year: 2017 end-page: 1161 article-title: Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma publication-title: Nat Mater – volume: 152 start-page: S1041 issue: Suppl 1 year: 2017 end-page: S1042 article-title: Detection of cholangiocarcinoma by assay of methylated DNA markers in plasma publication-title: Gastroenterology – volume: 370 start-page: 1287 year: 2014 end-page: 1297 article-title: Multitarget stool DNA testing for colorectal‐cancer screening publication-title: N Engl J Med – volume: 15 start-page: 550 year: 2014 article-title: Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2 publication-title: Genome Biol – volume: 67 start-page: 358 year: 2018 end-page: 380 article-title: AASLD guidelines for the treatment of hepatocellular carcinoma publication-title: Hepatology – volume: 21 start-page: 4473 year: 2015 end-page: 4481 article-title: New DNA methylation markers for pancreatic cancer: discovery, tissue validation, and pilot testing in pancreatic juice publication-title: Clin Cancer Res – volume: 137 start-page: 110 year: 2009 end-page: 118 article-title: Alpha‐fetoprotein, des‐gamma carboxyprothrombin, and lectin‐bound alpha‐fetoprotein in early hepatocellular carcinoma publication-title: Gastroenterology – volume: 19 start-page: 329 year: 1999 ident: hep30244-bib-0023-20241017 article-title: Prognosis of hepatocellular carcinoma: the BCLC staging classification publication-title: Semin Liver Dis doi: 10.1055/s-2007-1007122 – volume: 359 start-page: 926 year: 2018 ident: hep30244-bib-0038-20241017 article-title: Detection and localization of surgically resectable cancers with a multi‐analyte blood test publication-title: Science doi: 10.1126/science.aar3247 – volume: 7 start-page: 952 year: 1987 ident: hep30244-bib-0037-20241017 article-title: Conceptual review of the hepatic vascular bed publication-title: Hepatology doi: 10.1002/hep.1840070527 – volume: 368 start-page: 1199 year: 2013 ident: hep30244-bib-0034-20241017 article-title: Analysis of circulating tumor DNA to monitor metastatic breast cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa1213261 – volume: 14 start-page: 875 year: 2016 ident: hep30244-bib-0014-20241017 article-title: Role of the GALAD and BALAD‐2 serologic models in diagnosis of hepatocellular carcinoma and prediction of survival in patients publication-title: Clin Gastroenterol Hepatol doi: 10.1016/j.cgh.2015.12.042 – volume: 10 start-page: 428 year: 2012 ident: hep30244-bib-0013-20241017 article-title: Determinants of serum alpha‐fetoprotein levels in hepatitis C‐infected patients publication-title: Clin Gastroenterol Hepatol doi: 10.1016/j.cgh.2011.11.025 – volume: 28 start-page: 2180 year: 2012 ident: hep30244-bib-0024-20241017 article-title: SAAP‐RRBS: streamlined analysis and annotation pipeline for reduced representation bisulfite sequencing publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts337 – volume: 122 start-page: 1757 year: 2016 ident: hep30244-bib-0004-20241017 article-title: Population attributable fractions of risk factors for hepatocellular carcinoma in the United States publication-title: Cancer doi: 10.1002/cncr.29971 – volume: 365 start-page: 1118 year: 2011 ident: hep30244-bib-0006-20241017 article-title: Hepatocellular carcinoma publication-title: N Engl J Med doi: 10.1056/NEJMra1001683 – volume: 65 start-page: 87 year: 2015 ident: hep30244-bib-0001-20241017 article-title: Global cancer statistics, 2012 publication-title: CA Cancer J Clin doi: 10.3322/caac.21262 – volume: 67 start-page: 358 year: 2018 ident: hep30244-bib-0009-20241017 article-title: AASLD guidelines for the treatment of hepatocellular carcinoma publication-title: Hepatology doi: 10.1002/hep.29086 – volume: 27 start-page: 861 year: 2012 ident: hep30244-bib-0011-20241017 article-title: Utilization of hepatocellular carcinoma surveillance among American patients: a systematic review publication-title: J Gen Intern Med doi: 10.1007/s11606-011-1952-x – volume: 11 start-page: e1001624 year: 2014 ident: hep30244-bib-0008-20241017 article-title: Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta‐analysis publication-title: PLoS Med doi: 10.1371/journal.pmed.1001624 – volume: 7 start-page: 1907 year: 2016 ident: hep30244-bib-0035-20241017 article-title: Detecting circulating tumor DNA in hepatocellular carcinoma patients using droplet digital PCR is feasible and reflects intratumoral heterogeneity publication-title: J Cancer doi: 10.7150/jca.15823 – volume: 34 start-page: 1787 year: 2016 ident: hep30244-bib-0005-20241017 article-title: Future of hepatocellular carcinoma incidence in the United States forecast through 2030 publication-title: J Clin Oncol doi: 10.1200/JCO.2015.64.7412 – volume: 137 start-page: 110 year: 2009 ident: hep30244-bib-0012-20241017 article-title: Alpha‐fetoprotein, des‐gamma carboxyprothrombin, and lectin‐bound alpha‐fetoprotein in early hepatocellular carcinoma publication-title: Gastroenterology doi: 10.1053/j.gastro.2009.04.005 – volume: 58 start-page: 375 year: 2012 ident: hep30244-bib-0018-20241017 article-title: Quantification of methylated markers with a multiplex methylation‐specific technology publication-title: Clin Chem doi: 10.1373/clinchem.2011.171264 – volume: 30 start-page: 37 year: 2009 ident: hep30244-bib-0010-20241017 article-title: Meta‐analysis: surveillance with ultrasound for early‐stage hepatocellular carcinoma in patients with cirrhosis publication-title: Aliment Pharmacol Ther doi: 10.1111/j.1365-2036.2009.04014.x – volume: 67 start-page: 7 year: 2017 ident: hep30244-bib-0002-20241017 article-title: Cancer statistics, 2017 publication-title: CA Cancer J Clin doi: 10.3322/caac.21387 – volume: 16 start-page: 1155 year: 2017 ident: hep30244-bib-0017-20241017 article-title: Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma publication-title: Nat Mater doi: 10.1038/nmat4997 – volume: 6 start-page: 224ra224 year: 2014 ident: hep30244-bib-0033-20241017 article-title: Detection of circulating tumor DNA in early‐ and late‐stage human malignancies publication-title: Sci Transl Med – volume: 15 start-page: 550 year: 2014 ident: hep30244-bib-0031-20241017 article-title: Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 11 start-page: 1313 year: 2013 ident: hep30244-bib-0026-20241017 article-title: Clinical performance of an automated stool DNA assay for detection of colorectal neoplasia publication-title: Clin Gastroenterol Hepatol doi: 10.1016/j.cgh.2013.04.023 – volume: 303 start-page: 157 year: 1992 ident: hep30244-bib-0028-20241017 article-title: Alpha‐fetoprotein levels in normal adults publication-title: Am J Med Sci doi: 10.1097/00000441-199203000-00004 – volume: 19 start-page: 263 year: 2015 ident: hep30244-bib-0015-20241017 article-title: Liquit biopsy in liver cancer publication-title: Discov Med – volume: 77 start-page: A712 year: 2017 ident: hep30244-bib-0022-20241017 article-title: Detection of lung cancer by assay of novel methylated DNA markers in plasma publication-title: Cancer Res doi: 10.1158/1538-7445.AM2017-712 – volume: 44 start-page: 837 year: 1988 ident: hep30244-bib-0029-20241017 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – volume: 130 start-page: 417 year: 2004 ident: hep30244-bib-0007-20241017 article-title: Randomized controlled trial of screening for hepatocellular carcinoma publication-title: J Cancer Res Clin Oncol – volume: 152 start-page: S1041 issue: Suppl 1 year: 2017 ident: hep30244-bib-0021-20241017 article-title: Detection of cholangiocarcinoma by assay of methylated DNA markers in plasma publication-title: Gastroenterology – volume: 112 start-page: E5503 year: 2015 ident: hep30244-bib-0016-20241017 article-title: Plasma DNA tissue mapping by genome‐wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments publication-title: Proc Natl Acad Sci U S A – volume: 21 start-page: 4473 year: 2015 ident: hep30244-bib-0020-20241017 article-title: New DNA methylation markers for pancreatic cancer: discovery, tissue validation, and pilot testing in pancreatic juice publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-14-2469 – volume: 139 start-page: 1534 year: 2016 ident: hep30244-bib-0003-20241017 article-title: International trends in liver cancer incidence, overall and by histologic subtype, 1978‐2007 publication-title: Int J Cancer doi: 10.1002/ijc.30211 – volume: 370 start-page: 1287 year: 2014 ident: hep30244-bib-0019-20241017 article-title: Multitarget stool DNA testing for colorectal‐cancer screening publication-title: N Engl J Med doi: 10.1056/NEJMoa1311194 – volume: 118 start-page: 2623 year: 2012 ident: hep30244-bib-0025-20241017 article-title: Stool DNA testing for the detection of pancreatic cancer: assessment of methylation marker candidates publication-title: Cancer doi: 10.1002/cncr.26558 – volume: 5 start-page: 9425 year: 2014 ident: hep30244-bib-0036-20241017 article-title: Epigenetic signatures of alcohol abuse and hepatitis infection during human hepatocarcinogenesis publication-title: Oncotarget doi: 10.18632/oncotarget.2444 |
SSID | ssj0009428 |
Score | 2.6467254 |
Snippet | Early detection improves hepatocellular carcinoma (HCC) outcomes, but better noninvasive surveillance tools are needed. We aimed to identify and validate... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1180 |
SubjectTerms | Bisulfite Carcinoma, Hepatocellular Cirrhosis Deoxyribonucleic acid DNA DNA Methylation DNA sequencing DNA, Neoplasm - blood DNA, Neoplasm - metabolism Early Detection of Cancer - methods Endothelins Female Hepatocellular carcinoma Hepatology Homeobox HOXA1 protein Humans Liver cancer Liver cirrhosis Liver Neoplasms - blood Male Middle Aged Phosphofructokinase Pilot Projects Plasma Regression analysis Single-Blind Method Spiracles |
Title | Hepatocellular Carcinoma Detection by Plasma Methylated DNA: Discovery, Phase I Pilot, and Phase II Clinical Validation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhep.30244 https://www.ncbi.nlm.nih.gov/pubmed/30168613 https://www.proquest.com/docview/2186241356 https://www.proquest.com/docview/2179211780 https://pubmed.ncbi.nlm.nih.gov/PMC6429916 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPSAuQHmGFmQQBw5Nm4fzcDlV3VZbpK1WiKIekCI_JtpVlwR1s6rKr-_YeZSlQkLcItuRE3vG8409_gbgQ1yiFBigj_aGDMcy80WgyWtN8oBqIt2SVU_O0vE5_3yRXGzAp_4uTMsPMWy4Wc1w67VVcKmW-3ekoTMkh50sjOUCDePMhvONvtxRRwnu8qqS1xXY02XRswoF0f7w5rotugcw78dJ_o5fnQE6eQzf-09v404u91aN2tO__mB1_M9_ewKPOmDKDltJ2oINrJ7Cg0l39P4MrsdkuJrabvTbyFV2ZJMQVfUPyUbYuHiuiqkbNiU0TmUTJAFYEI41bHR2eMBG86W2waI3u2w6I8PJTtl0vqibXSYr0xedso6ldMG-kXvQZnt6Ducnx1-Pxn6XtcHXlozPR1p6BYEkbmSYYGJSiZpmPw1zFaKSNmsemihTQqehVuSvSBXziKMxJdkNIeMXsFnVFb4CRsuR5sakkTY0FoormYeZiXlSap2VIvHgfT9_xc-WnKNoaZijgoawcEPowU4_s0Wnn8vCZuKyJ4pJ6sG7oZo0y46irLBe2TaZIPc4ywMPXraCMPRCy2KaExLyIFsTkaGBZe1er6nmM8fenVoEEFK_H50E_P3Di_Hx1D28_vem2_CQEJ1og-R2YLO5WuEbQk2NeuvU4xZlZxPI |
link.rule.ids | 230,314,780,784,885,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgGXljehBQziwKFpk6zzMOJSdVtlobtaoRb1UkV-RbtiSSqaFSq_nrGdpCwVEuIW2Y6c2DOeb-zxNwBvB6XmTAfa1-aGDNVl6rNAotcaZwHWRNKRVY8nSX5KP57FZ2vwobsL4_gh-g03oxl2vTYKbjak965ZQ2caPXY0MfQW3EZ1D01A1_DzNXkUozazKvpdgTlfZh2vUBDt9a-uWqMbEPNmpOTvCNaaoKNNOO8-3kWefN1dNmJX_vyD1_F__-4-bLTYlOw7YXoAa7p6CHfG7en7I_iRo-1qarPXb4JXyYHJQ1TV3zgZ6saGdFVEXJEpAnIsG2uUgQVCWUWGk_33ZDi_lCZe9GqHTGdoO8mITOeLutkhvFJd0Yi0RKUL8gU9BJfw6TGcHh2eHOR-m7jBl4aPz9c4HQxxElU8jHWsEq4lCkASZiLUgpvEeVpFqWAyCaVAl4WLAY2oVqpE08H44AmsV3WlnwHBFUlSpZJIKhwLQQXPwlQNaFxKmZYs9uBNN4HFhePnKBwTc1TgEBZ2CD3Y7qa2aFX0sjDJuMyhYpx48LqvRuUyo8grXS9Nm5Shh5xmgQdPnST0veDKmGQIhjxIV2Skb2CIu1drqvnMEngnBgSE2O87KwJ___AiP5zah-f_3vQV3M1PxsfF8WjyaQvuIcBjLmZuG9ab70v9AkFUI15aXfkFm5YX6Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlVceD8CBQziwKFpk6zjxHCqmq52gV1FiKIekCK_ol2xJBXNCpVfzzhOUpYKCXGLbEdO7BnPN_b4G4BXo9IIbgLjG3tDhpoy8Xmg0GuN0wBrIuXIqmdzNjmh707j0y1429-FcfwQw4ab1Yx2vbYKfqbLg0vS0IVBhx0tDL0G1ymLuCXOzz5eckdx2iZWRbcrsMfLvKcVCqKD4dVNY3QFYV4NlPwdwLYWaHwLvvTf7gJPvu6vG7mvfv5B6_ifP3cbbnbIlBw6UboDW6a6Czuz7uz9HvyYoOVqarvTb0NXyZHNQlTV3wTJTNMGdFVEXpAc4TiWzQxKwAqBrCbZ_PANyZbnykaLXuyRfIGWk0xJvlzVzR4Rle6LpqSjKV2Rz-gfuHRP9-FkfPzpaOJ3aRt8Zdn4fINrL0eURLUIYxNrJozC6WdhKkMjhU2bZ3SUSK5YqCQ6LEKOaESN1iUaDi5GD2C7qivzCAiuR4pqzSKlcSwklSINEz2icalUUvLYg5f9_BVnjp2jcDzMUYFDWLRD6MFuP7NFp6DnhU3FZY8UY-bBi6EaVcuOoqhMvbZtEo7-cZIGHjx0gjD0gusiSxEKeZBsiMjQwNJ2b9ZUy0VL380sBAix39etBPz9w4vJcd4-PP73ps9hJ8_GxYfp_P0TuIHojruAuV3Ybr6vzVNEUI181mrKL0m7Fpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hepatocellular+Carcinoma+Detection+by+Plasma+Methylated+DNA%3A+Discovery%2C+Phase+I+Pilot%2C+and+Phase+II+Clinical+Validation&rft.jtitle=Hepatology+%28Baltimore%2C+Md.%29&rft.au=Kisiel%2C+John+B.&rft.au=Dukek%2C+Brian+A.&rft.au=V.S.R.+Kanipakam%2C+Reddappa&rft.au=Ghoz%2C+Hassan+M.&rft.date=2019-03-01&rft.issn=0270-9139&rft.eissn=1527-3350&rft.volume=69&rft.issue=3&rft.spage=1180&rft.epage=1192&rft_id=info:doi/10.1002%2Fhep.30244&rft.externalDBID=10.1002%252Fhep.30244&rft.externalDocID=HEP30244 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-9139&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-9139&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-9139&client=summon |