Hepatocellular Carcinoma Detection by Plasma Methylated DNA: Discovery, Phase I Pilot, and Phase II Clinical Validation

Early detection improves hepatocellular carcinoma (HCC) outcomes, but better noninvasive surveillance tools are needed. We aimed to identify and validate methylated DNA markers (MDMs) for HCC detection. Reduced representation bisulfite sequencing was performed on DNA extracted from 18 HCC and 35 con...

Full description

Saved in:
Bibliographic Details
Published inHepatology (Baltimore, Md.) Vol. 69; no. 3; pp. 1180 - 1192
Main Authors Kisiel, John B., Dukek, Brian A., V.S.R. Kanipakam, Reddappa, Ghoz, Hassan M., Yab, Tracy C., Berger, Calise K., Taylor, William R., Foote, Patrick H., Giama, Nasra H., Onyirioha, Kristeen, Abdallah, Mohamed A., Burger, Kelli N., Slettedahl, Seth W., Mahoney, Douglas W., Smyrk, Thomas C., Lewis, Jason T., Giakoumopoulos, Maria, Allawi, Hatim T., Lidgard, Graham P., Roberts, Lewis R., Ahlquist, David A.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Early detection improves hepatocellular carcinoma (HCC) outcomes, but better noninvasive surveillance tools are needed. We aimed to identify and validate methylated DNA markers (MDMs) for HCC detection. Reduced representation bisulfite sequencing was performed on DNA extracted from 18 HCC and 35 control tissues. Candidate MDMs were confirmed by quantitative methylation‐specific PCR in DNA from independent tissues (74 HCC, 29 controls). A phase I plasma pilot incorporated quantitative allele‐specific real‐time target and signal amplification assays on independent plasma‐extracted DNA from 21 HCC cases and 30 controls with cirrhosis. A phase II plasma study was then performed in 95 HCC cases, 51 controls with cirrhosis, and 98 healthy controls using target enrichment long‐probe quantitative amplified signal (TELQAS) assays. Recursive partitioning identified best MDM combinations. The entire MDM panel was statistically cross‐validated by randomly splitting the data 2:1 for training and testing. Random forest (rForest) regression models performed on the training set predicted disease status in the testing set; median areas under the receiver operating characteristics curve (AUCs; and 95% confidence interval [CI]) were reported after 500 iterations. In phase II, a six‐marker MDM panel (homeobox A1 [HOXA1], empty spiracles homeobox 1 [EMX1], AK055957, endothelin‐converting enzyme 1 [ECE1], phosphofructokinase [PFKP], and C‐type lectin domain containing 11A [CLEC11A]) normalized by beta‐1,3‐galactosyltransferase 6 (B3GALT6) level yielded a best‐fit AUC of 0.96 (95% CI, 0.93‐0.99) with HCC sensitivity of 95% (88%‐98%) at specificity of 92% (86%‐96%). The panel detected 3 of 4 (75%) stage 0, 39 of 42 (93%) stage A, 13 of 14 (93%) stage B, 28 of 28 (100%) stage C, and 7 of 7 (100%) stage D HCCs. The AUC value for alpha‐fetoprotein (AFP) was 0.80 (0.74‐0.87) compared to 0.94 (0.9‐0.97) for the cross‐validated MDM panel (P < 0.0001). Conclusion: MDMs identified in this study proved to accurately detect HCC by plasma testing. Further optimization and clinical testing of this promising approach are indicated.
AbstractList Early detection improves hepatocellular carcinoma (HCC) outcomes, but better noninvasive surveillance tools are needed. We aimed to identify and validate methylated DNA markers (MDMs) for HCC detection. Reduced representation bisulfite sequencing was performed on DNA extracted from 18 HCC and 35 control tissues. Candidate MDMs were confirmed by quantitative methylation-specific PCR in DNA from independent tissues (74 HCC, 29 controls). A phase I plasma pilot incorporated quantitative allele-specific real-time target and signal amplification assays on independent plasma-extracted DNA from 21 HCC cases and 30 controls with cirrhosis. A phase II plasma study was then performed in 95 HCC cases, 51 controls with cirrhosis, and 98 healthy controls using target enrichment long-probe quantitative amplified signal (TELQAS) assays. Recursive partitioning identified best MDM combinations. The entire MDM panel was statistically cross-validated by randomly splitting the data 2:1 for training and testing. Random forest (rForest) regression models performed on the training set predicted disease status in the testing set; median areas under the receiver operating characteristics curve (AUCs; and 95% confidence interval [CI]) were reported after 500 iterations. In phase II, a six-marker MDM panel (homeobox A1 [HOXA1], empty spiracles homeobox 1 [EMX1], AK055957, endothelin-converting enzyme 1 [ECE1], phosphofructokinase [PFKP], and C-type lectin domain containing 11A [CLEC11A]) normalized by beta-1,3-galactosyltransferase 6 (B3GALT6) level yielded a best-fit AUC of 0.96 (95% CI, 0.93-0.99) with HCC sensitivity of 95% (88%-98%) at specificity of 92% (86%-96%). The panel detected 3 of 4 (75%) stage 0, 39 of 42 (93%) stage A, 13 of 14 (93%) stage B, 28 of 28 (100%) stage C, and 7 of 7 (100%) stage D HCCs. The AUC value for alpha-fetoprotein (AFP) was 0.80 (0.74-0.87) compared to 0.94 (0.9-0.97) for the cross-validated MDM panel (P < 0.0001). Conclusion: MDMs identified in this study proved to accurately detect HCC by plasma testing. Further optimization and clinical testing of this promising approach are indicated.
Early detection improves hepatocellular carcinoma (HCC) outcomes, but better noninvasive surveillance tools are needed. We aimed to identify and validate methylated DNA markers (MDMs) for HCC detection. Reduced representation bisulfite sequencing was performed on DNA extracted from 18 HCC and 35 control tissues. Candidate MDMs were confirmed by quantitative methylation specific PCR in DNA from independent tissues (74 HCC, 29 controls). A phase I plasma pilot incorporated quantitative allele-specific real time target and signal amplification assays on independent plasma-extracted DNA from 21 HCC cases and 30 cirrhotic controls. A phase II plasma study was then performed in 95 HCC cases, 51 cirrhosis controls, and 98 healthy controls using target enrichment long-probe quantitative amplified signal (TELQAS) assays. Recursive partitioning identified best MDM combinations. The entire MDM panel was statistically cross-validated by randomly splitting the data 2:1 for training and testing. Random forest regression models performed on the training set predicted disease status in the testing set; the median AUC (and 95% CI) were reported after 500 iterations. In phase II, a 6-marker MDM panel (HOXA1, EMX1, AK055957, ECE1, PFKP and CLEC11A , normalized by B3GALT6 level yielded a best fit AUC of 0.96 (95% CI, 0.93–0.99) with HCC sensitivity of 95% (88–98%) at specificity of 92% (86–96%). The panel detected 3/4 (75%) stage 0, 39/42 (93%) stage A, 13/14 (93%) ge B, 28/28 (100%) stage C and 7/7 (100%) stage D HCC. The AUC value for AFP was 0.80 (0.74–0.87) compared to 0.94 (0.9–0.97) for the cross-validated MDM panel, P<0.0001.
Early detection improves hepatocellular carcinoma (HCC) outcomes, but better noninvasive surveillance tools are needed. We aimed to identify and validate methylated DNA markers (MDMs) for HCC detection. Reduced representation bisulfite sequencing was performed on DNA extracted from 18 HCC and 35 control tissues. Candidate MDMs were confirmed by quantitative methylation-specific PCR in DNA from independent tissues (74 HCC, 29 controls). A phase I plasma pilot incorporated quantitative allele-specific real-time target and signal amplification assays on independent plasma-extracted DNA from 21 HCC cases and 30 controls with cirrhosis. A phase II plasma study was then performed in 95 HCC cases, 51 controls with cirrhosis, and 98 healthy controls using target enrichment long-probe quantitative amplified signal (TELQAS) assays. Recursive partitioning identified best MDM combinations. The entire MDM panel was statistically cross-validated by randomly splitting the data 2:1 for training and testing. Random forest (rForest) regression models performed on the training set predicted disease status in the testing set; median areas under the receiver operating characteristics curve (AUCs; and 95% confidence interval [CI]) were reported after 500 iterations. In phase II, a six-marker MDM panel (homeobox A1 [HOXA1], empty spiracles homeobox 1 [EMX1], AK055957, endothelin-converting enzyme 1 [ECE1], phosphofructokinase [PFKP], and C-type lectin domain containing 11A [CLEC11A]) normalized by beta-1,3-galactosyltransferase 6 (B3GALT6) level yielded a best-fit AUC of 0.96 (95% CI, 0.93-0.99) with HCC sensitivity of 95% (88%-98%) at specificity of 92% (86%-96%). The panel detected 3 of 4 (75%) stage 0, 39 of 42 (93%) stage A, 13 of 14 (93%) stage B, 28 of 28 (100%) stage C, and 7 of 7 (100%) stage D HCCs. The AUC value for alpha-fetoprotein (AFP) was 0.80 (0.74-0.87) compared to 0.94 (0.9-0.97) for the cross-validated MDM panel (P < 0.0001). Conclusion: MDMs identified in this study proved to accurately detect HCC by plasma testing. Further optimization and clinical testing of this promising approach are indicated.Early detection improves hepatocellular carcinoma (HCC) outcomes, but better noninvasive surveillance tools are needed. We aimed to identify and validate methylated DNA markers (MDMs) for HCC detection. Reduced representation bisulfite sequencing was performed on DNA extracted from 18 HCC and 35 control tissues. Candidate MDMs were confirmed by quantitative methylation-specific PCR in DNA from independent tissues (74 HCC, 29 controls). A phase I plasma pilot incorporated quantitative allele-specific real-time target and signal amplification assays on independent plasma-extracted DNA from 21 HCC cases and 30 controls with cirrhosis. A phase II plasma study was then performed in 95 HCC cases, 51 controls with cirrhosis, and 98 healthy controls using target enrichment long-probe quantitative amplified signal (TELQAS) assays. Recursive partitioning identified best MDM combinations. The entire MDM panel was statistically cross-validated by randomly splitting the data 2:1 for training and testing. Random forest (rForest) regression models performed on the training set predicted disease status in the testing set; median areas under the receiver operating characteristics curve (AUCs; and 95% confidence interval [CI]) were reported after 500 iterations. In phase II, a six-marker MDM panel (homeobox A1 [HOXA1], empty spiracles homeobox 1 [EMX1], AK055957, endothelin-converting enzyme 1 [ECE1], phosphofructokinase [PFKP], and C-type lectin domain containing 11A [CLEC11A]) normalized by beta-1,3-galactosyltransferase 6 (B3GALT6) level yielded a best-fit AUC of 0.96 (95% CI, 0.93-0.99) with HCC sensitivity of 95% (88%-98%) at specificity of 92% (86%-96%). The panel detected 3 of 4 (75%) stage 0, 39 of 42 (93%) stage A, 13 of 14 (93%) stage B, 28 of 28 (100%) stage C, and 7 of 7 (100%) stage D HCCs. The AUC value for alpha-fetoprotein (AFP) was 0.80 (0.74-0.87) compared to 0.94 (0.9-0.97) for the cross-validated MDM panel (P < 0.0001). Conclusion: MDMs identified in this study proved to accurately detect HCC by plasma testing. Further optimization and clinical testing of this promising approach are indicated.
Early detection improves hepatocellular carcinoma (HCC) outcomes, but better noninvasive surveillance tools are needed. We aimed to identify and validate methylated DNA markers (MDMs) for HCC detection. Reduced representation bisulfite sequencing was performed on DNA extracted from 18 HCC and 35 control tissues. Candidate MDMs were confirmed by quantitative methylation‐specific PCR in DNA from independent tissues (74 HCC, 29 controls). A phase I plasma pilot incorporated quantitative allele‐specific real‐time target and signal amplification assays on independent plasma‐extracted DNA from 21 HCC cases and 30 controls with cirrhosis. A phase II plasma study was then performed in 95 HCC cases, 51 controls with cirrhosis, and 98 healthy controls using target enrichment long‐probe quantitative amplified signal (TELQAS) assays. Recursive partitioning identified best MDM combinations. The entire MDM panel was statistically cross‐validated by randomly splitting the data 2:1 for training and testing. Random forest (rForest) regression models performed on the training set predicted disease status in the testing set; median areas under the receiver operating characteristics curve (AUCs; and 95% confidence interval [CI]) were reported after 500 iterations. In phase II, a six‐marker MDM panel (homeobox A1 [ HOXA1 ], empty spiracles homeobox 1 [ EMX1 ], AK055957 , endothelin‐converting enzyme 1 [ ECE1 ], phosphofructokinase [ PFKP ], and C‐type lectin domain containing 11A [ CLEC11A ]) normalized by beta‐1,3‐galactosyltransferase 6 ( B3GALT6 ) level yielded a best‐fit AUC of 0.96 (95% CI, 0.93‐0.99) with HCC sensitivity of 95% (88%‐98%) at specificity of 92% (86%‐96%). The panel detected 3 of 4 (75%) stage 0, 39 of 42 (93%) stage A, 13 of 14 (93%) stage B, 28 of 28 (100%) stage C, and 7 of 7 (100%) stage D HCCs. The AUC value for alpha‐fetoprotein (AFP) was 0.80 (0.74‐0.87) compared to 0.94 (0.9‐0.97) for the cross‐validated MDM panel ( P  < 0.0001). Conclusion : MDMs identified in this study proved to accurately detect HCC by plasma testing. Further optimization and clinical testing of this promising approach are indicated.
Early detection improves hepatocellular carcinoma (HCC) outcomes, but better noninvasive surveillance tools are needed. We aimed to identify and validate methylated DNA markers (MDMs) for HCC detection. Reduced representation bisulfite sequencing was performed on DNA extracted from 18 HCC and 35 control tissues. Candidate MDMs were confirmed by quantitative methylation‐specific PCR in DNA from independent tissues (74 HCC, 29 controls). A phase I plasma pilot incorporated quantitative allele‐specific real‐time target and signal amplification assays on independent plasma‐extracted DNA from 21 HCC cases and 30 controls with cirrhosis. A phase II plasma study was then performed in 95 HCC cases, 51 controls with cirrhosis, and 98 healthy controls using target enrichment long‐probe quantitative amplified signal (TELQAS) assays. Recursive partitioning identified best MDM combinations. The entire MDM panel was statistically cross‐validated by randomly splitting the data 2:1 for training and testing. Random forest (rForest) regression models performed on the training set predicted disease status in the testing set; median areas under the receiver operating characteristics curve (AUCs; and 95% confidence interval [CI]) were reported after 500 iterations. In phase II, a six‐marker MDM panel (homeobox A1 [HOXA1], empty spiracles homeobox 1 [EMX1], AK055957, endothelin‐converting enzyme 1 [ECE1], phosphofructokinase [PFKP], and C‐type lectin domain containing 11A [CLEC11A]) normalized by beta‐1,3‐galactosyltransferase 6 (B3GALT6) level yielded a best‐fit AUC of 0.96 (95% CI, 0.93‐0.99) with HCC sensitivity of 95% (88%‐98%) at specificity of 92% (86%‐96%). The panel detected 3 of 4 (75%) stage 0, 39 of 42 (93%) stage A, 13 of 14 (93%) stage B, 28 of 28 (100%) stage C, and 7 of 7 (100%) stage D HCCs. The AUC value for alpha‐fetoprotein (AFP) was 0.80 (0.74‐0.87) compared to 0.94 (0.9‐0.97) for the cross‐validated MDM panel (P < 0.0001). Conclusion: MDMs identified in this study proved to accurately detect HCC by plasma testing. Further optimization and clinical testing of this promising approach are indicated.
Author Berger, Calise K.
Giama, Nasra H.
Lidgard, Graham P.
Kisiel, John B.
Foote, Patrick H.
Lewis, Jason T.
Ahlquist, David A.
Abdallah, Mohamed A.
Taylor, William R.
Slettedahl, Seth W.
Burger, Kelli N.
Yab, Tracy C.
Giakoumopoulos, Maria
Smyrk, Thomas C.
Ghoz, Hassan M.
Onyirioha, Kristeen
Dukek, Brian A.
V.S.R. Kanipakam, Reddappa
Mahoney, Douglas W.
Allawi, Hatim T.
Roberts, Lewis R.
AuthorAffiliation 1. Mayo Clinic, 200 First Street SW, Rochester, MN 55905
2. Exact Sciences Development Company, LLC, 441 Charmany Drive, Madison, WI 53719
AuthorAffiliation_xml – name: 1. Mayo Clinic, 200 First Street SW, Rochester, MN 55905
– name: 2. Exact Sciences Development Company, LLC, 441 Charmany Drive, Madison, WI 53719
Author_xml – sequence: 1
  givenname: John B.
  surname: Kisiel
  fullname: Kisiel, John B.
  email: kisiel.john@mayo.edu
  organization: Mayo Clinic
– sequence: 2
  givenname: Brian A.
  surname: Dukek
  fullname: Dukek, Brian A.
  organization: Mayo Clinic
– sequence: 3
  givenname: Reddappa
  surname: V.S.R. Kanipakam
  fullname: V.S.R. Kanipakam, Reddappa
  organization: Mayo Clinic
– sequence: 4
  givenname: Hassan M.
  surname: Ghoz
  fullname: Ghoz, Hassan M.
  organization: Mayo Clinic
– sequence: 5
  givenname: Tracy C.
  surname: Yab
  fullname: Yab, Tracy C.
  organization: Mayo Clinic
– sequence: 6
  givenname: Calise K.
  surname: Berger
  fullname: Berger, Calise K.
  organization: Mayo Clinic
– sequence: 7
  givenname: William R.
  surname: Taylor
  fullname: Taylor, William R.
  organization: Mayo Clinic
– sequence: 8
  givenname: Patrick H.
  surname: Foote
  fullname: Foote, Patrick H.
  organization: Mayo Clinic
– sequence: 9
  givenname: Nasra H.
  surname: Giama
  fullname: Giama, Nasra H.
  organization: Mayo Clinic
– sequence: 10
  givenname: Kristeen
  surname: Onyirioha
  fullname: Onyirioha, Kristeen
  organization: Mayo Clinic
– sequence: 11
  givenname: Mohamed A.
  surname: Abdallah
  fullname: Abdallah, Mohamed A.
  organization: Mayo Clinic
– sequence: 12
  givenname: Kelli N.
  surname: Burger
  fullname: Burger, Kelli N.
  organization: Mayo Clinic
– sequence: 13
  givenname: Seth W.
  surname: Slettedahl
  fullname: Slettedahl, Seth W.
  organization: Mayo Clinic
– sequence: 14
  givenname: Douglas W.
  surname: Mahoney
  fullname: Mahoney, Douglas W.
  organization: Mayo Clinic
– sequence: 15
  givenname: Thomas C.
  surname: Smyrk
  fullname: Smyrk, Thomas C.
  organization: Mayo Clinic
– sequence: 16
  givenname: Jason T.
  surname: Lewis
  fullname: Lewis, Jason T.
  organization: Mayo Clinic
– sequence: 17
  givenname: Maria
  surname: Giakoumopoulos
  fullname: Giakoumopoulos, Maria
  organization: Exact Sciences Development Company, LLC
– sequence: 18
  givenname: Hatim T.
  surname: Allawi
  fullname: Allawi, Hatim T.
  organization: Exact Sciences Development Company, LLC
– sequence: 19
  givenname: Graham P.
  surname: Lidgard
  fullname: Lidgard, Graham P.
  organization: Exact Sciences Development Company, LLC
– sequence: 20
  givenname: Lewis R.
  surname: Roberts
  fullname: Roberts, Lewis R.
  organization: Mayo Clinic
– sequence: 21
  givenname: David A.
  surname: Ahlquist
  fullname: Ahlquist, David A.
  organization: Mayo Clinic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30168613$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFuEzEQhi1URNPCgRdAlriA1G1t76435oBUJYVEKpADcLVmvRPiyrGDvdtq3x6HtBUgcbI0_vTpn_lPyJEPHgl5ydk5Z0xcbHB3XjJRVU_IhNeiKcqyZkdkwkTDCsVLdUxOUrphjKlKTJ-R45JxOZW8nJC7Be6gDwadGxxEOoNorA9boHPs0fQ2eNqOdOUg5dkn7Dejgx47Ov98-Y7ObTLhFuN4RlcbSEiXdGVd6M8o-O5htKQzZ7014Oh3cLaDvfQ5eboGl_DF_XtKvn24-jpbFNdfPi5nl9eFqXPYAivZKF6rqgNeY91JQMMMl3zacmxB1A3DTjStMpKbVjY1tGUlKuy6NbZcQXlK3h-8u6HdYmfQ9xGc3kW7hTjqAFb__ePtRv8It1pWQikus-DNvSCGnwOmXm_z0vlc4DEMSQveKMF5M2UZff0PehOG6PN6mZpKUfGy3gvfHigTQ0oR149hONP7OnWuU_-uM7Ov_kz_SD70l4GLA3BnHY7_N-nF1eqg_AVgmKuX
CitedBy_id crossref_primary_10_3390_cancers13061265
crossref_primary_10_7717_peerj_14303
crossref_primary_10_1371_journal_pone_0300477
crossref_primary_10_1158_1078_0432_CCR_20_0235
crossref_primary_10_3892_wasj_2024_221
crossref_primary_10_1097_MEG_0000000000001523
crossref_primary_10_1016_j_jhep_2023_11_030
crossref_primary_10_1016_j_cld_2020_07_001
crossref_primary_10_3390_cancers15245778
crossref_primary_10_1016_j_cgh_2020_04_019
crossref_primary_10_1002_hep4_1918
crossref_primary_10_1038_s41598_024_53754_1
crossref_primary_10_1158_2159_8290_CD_22_0659
crossref_primary_10_1016_j_nantod_2023_101940
crossref_primary_10_1002_bies_201900122
crossref_primary_10_3748_wjg_v25_i29_3929
crossref_primary_10_1016_j_ctrv_2024_102763
crossref_primary_10_1177_1756284820931734
crossref_primary_10_2342_ymj_72_85
crossref_primary_10_3389_fimmu_2024_1324959
crossref_primary_10_14309_ajg_0000000000000284
crossref_primary_10_1097_HEP_0000000000000668
crossref_primary_10_2217_hep_2020_0012
crossref_primary_10_1002_cam4_2799
crossref_primary_10_1007_s11938_021_00342_1
crossref_primary_10_1016_j_livres_2022_04_001
crossref_primary_10_1186_s13046_023_02867_y
crossref_primary_10_1016_j_cld_2023_05_002
crossref_primary_10_1080_14737159_2021_1981290
crossref_primary_10_1038_s41575_019_0229_4
crossref_primary_10_3350_cmh_2019_0010
crossref_primary_10_3389_fmicb_2023_1267844
crossref_primary_10_1111_liv_15251
crossref_primary_10_2174_2210298103666230410105139
crossref_primary_10_3390_cancers15194784
crossref_primary_10_1148_radiol_2021204134
crossref_primary_10_1016_j_jhepr_2022_100578
crossref_primary_10_1016_j_cgh_2021_08_010
crossref_primary_10_1002_hep_31796
crossref_primary_10_1158_1940_6207_CAPR_23_0107
crossref_primary_10_1007_s11904_019_00475_0
crossref_primary_10_1158_1078_0432_CCR_19_0740
crossref_primary_10_1002_hep_31175
crossref_primary_10_1186_s40001_022_00910_w
crossref_primary_10_1016_j_trac_2020_115965
crossref_primary_10_14309_ajg_0000000000000656
crossref_primary_10_1016_j_ygyno_2022_03_018
crossref_primary_10_1007_s11901_019_00491_z
crossref_primary_10_3389_fonc_2022_1016952
crossref_primary_10_1111_cas_14138
crossref_primary_10_23736_S2724_5985_23_03309_0
crossref_primary_10_1186_s12916_021_02201_3
crossref_primary_10_1002_hep4_1823
crossref_primary_10_1016_j_semcancer_2021_02_015
crossref_primary_10_1186_s13046_021_01940_8
crossref_primary_10_1002_hep_32779
crossref_primary_10_3390_cancers15153880
crossref_primary_10_1002_hep_31327
crossref_primary_10_1136_gutjnl_2021_325036
crossref_primary_10_1016_j_gie_2021_03_937
crossref_primary_10_1016_j_soc_2023_06_005
crossref_primary_10_1016_j_jhep_2019_08_025
crossref_primary_10_1186_s13148_023_01508_7
crossref_primary_10_1186_s40364_024_00569_x
crossref_primary_10_1158_1078_0432_CCR_20_2589
crossref_primary_10_1136_gutjnl_2019_320282
crossref_primary_10_1038_s41572_020_00240_3
crossref_primary_10_3390_cancers13194743
crossref_primary_10_3389_fendo_2021_816748
crossref_primary_10_3390_cancers13071558
crossref_primary_10_1021_acs_analchem_3c04013
crossref_primary_10_4251_wjgo_v13_i5_351
crossref_primary_10_3389_fmed_2023_1218705
crossref_primary_10_1002_hep_32308
crossref_primary_10_1186_s13148_022_01420_6
crossref_primary_10_3390_cancers15030859
crossref_primary_10_1016_j_cld_2022_08_004
crossref_primary_10_1038_s41419_023_06293_y
crossref_primary_10_1038_s41598_020_59690_0
crossref_primary_10_1007_s10620_020_06550_6
crossref_primary_10_1002_ctm2_1652
crossref_primary_10_1186_s13148_020_00952_z
crossref_primary_10_7759_cureus_19274
crossref_primary_10_1136_bmj_m3544
crossref_primary_10_1126_scitranslmed_abp8704
crossref_primary_10_1002_hep_31588
crossref_primary_10_3390_cancers15020494
crossref_primary_10_1016_j_gastrohep_2024_502207
crossref_primary_10_1016_j_aohep_2023_101176
crossref_primary_10_1016_j_cgh_2020_08_065
crossref_primary_10_1016_j_ejca_2023_112960
crossref_primary_10_3892_ol_2023_14155
crossref_primary_10_1159_000536211
crossref_primary_10_3389_fonc_2022_781820
crossref_primary_10_1016_j_suc_2023_08_006
crossref_primary_10_1200_PO_23_00389
crossref_primary_10_1007_s12029_020_00390_3
crossref_primary_10_1007_s10637_023_01363_6
crossref_primary_10_1016_j_xinn_2022_100259
crossref_primary_10_1186_s13148_019_0747_5
crossref_primary_10_3389_fimmu_2023_1282469
crossref_primary_10_3390_biomedicines11051306
crossref_primary_10_1080_14737140_2022_2074404
crossref_primary_10_2217_epi_2021_0118
crossref_primary_10_1016_j_ejca_2022_10_015
crossref_primary_10_1016_j_eng_2021_02_020
crossref_primary_10_1186_s12876_023_02900_6
crossref_primary_10_1016_j_jhepr_2021_100304
crossref_primary_10_1002_hep4_1469
crossref_primary_10_4166_kjg_2023_076
crossref_primary_10_1002_jcp_29600
crossref_primary_10_3389_fgene_2022_1065693
crossref_primary_10_1093_clinchem_hvad168
crossref_primary_10_1007_s00438_022_01906_1
crossref_primary_10_3390_bios12070484
crossref_primary_10_1016_j_jcmgh_2022_02_008
crossref_primary_10_1002_advs_202102051
crossref_primary_10_1016_j_gastha_2022_01_006
crossref_primary_10_1080_15592294_2023_2299044
crossref_primary_10_1093_infdis_jiaa647
crossref_primary_10_1002_lci2_66
crossref_primary_10_1042_BSR20203945
crossref_primary_10_2217_epi_2020_0132
crossref_primary_10_4251_wjgo_v13_i4_197
crossref_primary_10_1002_hep4_1730
crossref_primary_10_1038_s41575_019_0186_y
crossref_primary_10_1055_s_0042_1748924
crossref_primary_10_3390_cancers15030817
crossref_primary_10_1053_j_gastro_2020_09_058
crossref_primary_10_3390_cancers13092274
Cites_doi 10.1055/s-2007-1007122
10.1126/science.aar3247
10.1002/hep.1840070527
10.1056/NEJMoa1213261
10.1016/j.cgh.2015.12.042
10.1016/j.cgh.2011.11.025
10.1093/bioinformatics/bts337
10.1002/cncr.29971
10.1056/NEJMra1001683
10.3322/caac.21262
10.1002/hep.29086
10.1007/s11606-011-1952-x
10.1371/journal.pmed.1001624
10.7150/jca.15823
10.1200/JCO.2015.64.7412
10.1053/j.gastro.2009.04.005
10.1373/clinchem.2011.171264
10.1111/j.1365-2036.2009.04014.x
10.3322/caac.21387
10.1038/nmat4997
10.1186/s13059-014-0550-8
10.1016/j.cgh.2013.04.023
10.1097/00000441-199203000-00004
10.1158/1538-7445.AM2017-712
10.2307/2531595
10.1158/1078-0432.CCR-14-2469
10.1002/ijc.30211
10.1056/NEJMoa1311194
10.1002/cncr.26558
10.18632/oncotarget.2444
ContentType Journal Article
Copyright 2018 by the American Association for the Study of Liver Diseases.
2019 by the American Association for the Study of Liver Diseases.
Copyright_xml – notice: 2018 by the American Association for the Study of Liver Diseases.
– notice: 2019 by the American Association for the Study of Liver Diseases.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7T5
7TM
7TO
7U9
H94
K9.
7X8
5PM
DOI 10.1002/hep.30244
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
CrossRef
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-3350
EndPage 1192
ExternalDocumentID 10_1002_hep_30244
30168613
HEP30244
Genre article
Validation Study
Clinical Trial, Phase II
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Maxine and Jack Zarrow Family Foundation of Tulsa Oklahoma
– fundername: Dana and Edmund Gong Foundation
– fundername: Exact Sciences
– fundername: Carol M. Gatton endowment for Digestive Diseases Research
– fundername: Paul Calabresi Program in Clinical‐Translational Research
  funderid: CA90628
– fundername: NCI NIH HHS
  grantid: R37 CA214679
– fundername: NCI NIH HHS
  grantid: K12 CA090628
GroupedDBID ---
--K
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
186
1B1
1CY
1L6
1OB
1OC
1ZS
1~5
24P
31~
33P
3O-
3SF
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AALRI
AAONW
AAQFI
AAQQT
AAQXK
AASGY
AAXRX
AAXUO
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABMAC
ABOCM
ABPVW
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADOZA
ADXAS
ADZMN
ADZOD
AECAP
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFFNX
AFGKR
AFPWT
AFUWQ
AFZJQ
AHMBA
AIACR
AIURR
AIWBW
AJAOE
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
F00
F01
F04
F5P
FD8
FDB
FEDTE
FGOYB
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IHE
IX1
J0M
J5H
JPC
KBYEO
KQQ
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
M65
MJL
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
NQ-
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
R2-
RGB
RIG
RIWAO
RJQFR
ROL
RPZ
RWI
RX1
RYL
SEW
SSZ
SUPJJ
TEORI
UB1
V2E
V9Y
W2D
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
ACLDA
ACRPL
ACYXJ
ADNMO
CITATION
7T5
7TM
7TO
7U9
H94
K9.
7X8
5PM
ID FETCH-LOGICAL-c5094-e46791594da15e5d6aec0c1618b1eba2570ed27b9c61cb675ab3424eddfeb19a3
IEDL.DBID DR2
ISSN 0270-9139
1527-3350
IngestDate Tue Sep 17 21:21:26 EDT 2024
Thu Dec 05 23:04:35 EST 2024
Fri Nov 22 19:32:33 EST 2024
Fri Dec 06 07:08:26 EST 2024
Sat Nov 02 12:08:42 EDT 2024
Sat Aug 24 01:03:40 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2018 by the American Association for the Study of Liver Diseases.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5094-e46791594da15e5d6aec0c1618b1eba2570ed27b9c61cb675ab3424eddfeb19a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://europepmc.org/articles/pmc6429916?pdf=render
PMID 30168613
PQID 2186241356
PQPubID 996352
PageCount 0
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6429916
proquest_miscellaneous_2179211780
proquest_journals_2186241356
crossref_primary_10_1002_hep_30244
pubmed_primary_30168613
wiley_primary_10_1002_hep_30244_HEP30244
PublicationCentury 2000
PublicationDate March 2019
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Hepatology (Baltimore, Md.)
PublicationTitleAlternate Hepatology
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 19
2013; 368
2017; 67
1987; 7
1992; 303
2016; 122
2014; 370
2017; 152
2002
2018; 67
2012; 58
2012; 10
2016; 14
2009; 137
2016; 34
2016; 7
2009; 30
2014; 5
2013; 11
2018; 359
1999; 19
2017; 16
2004; 130
2017; 77
2015; 112
2015; 65
2015; 21
1988; 44
2014; 15
2016; 139
2012; 28
2012; 27
2014; 6
2011; 365
2012; 118
2014; 11
(hep30244-bib-0022-20241017) 2017; 77
(hep30244-bib-0011-20241017) 2012; 27
(hep30244-bib-0020-20241017) 2015; 21
(hep30244-bib-0012-20241017) 2009; 137
(hep30244-bib-0034-20241017) 2013; 368
(hep30244-bib-0021-20241017) 2017; 152
(hep30244-bib-0033-20241017) 2014; 6
(hep30244-bib-0036-20241017) 2014; 5
(hep30244-bib-0037-20241017) 1987; 7
(hep30244-bib-0006-20241017) 2011; 365
(hep30244-bib-0017-20241017) 2017; 16
(hep30244-bib-0023-20241017) 1999; 19
(hep30244-bib-0013-20241017) 2012; 10
(hep30244-bib-0010-20241017) 2009; 30
(hep30244-bib-0016-20241017) 2015; 112
(hep30244-bib-0002-20241017) 2017; 67
(hep30244-bib-0007-20241017) 2004; 130
(hep30244-bib-0038-20241017) 2018; 359
(hep30244-bib-0028-20241017) 1992; 303
(hep30244-bib-0019-20241017) 2014; 370
(hep30244-bib-0029-20241017) 1988; 44
(hep30244-bib-0018-20241017) 2012; 58
(hep30244-bib-0008-20241017) 2014; 11
(hep30244-bib-0014-20241017) 2016; 14
(hep30244-bib-0024-20241017) 2012; 28
(hep30244-bib-0031-20241017) 2014; 15
(hep30244-bib-0003-20241017) 2016; 139
(hep30244-bib-0009-20241017) 2018; 67
(hep30244-bib-0015-20241017) 2015; 19
(hep30244-bib-0001-20241017) 2015; 65
(hep30244-bib-0026-20241017) 2013; 11
(hep30244-bib-0035-20241017) 2016; 7
(hep30244-bib-0005-20241017) 2016; 34
(hep30244-bib-0025-20241017) 2012; 118
(hep30244-bib-0004-20241017) 2016; 122
References_xml – volume: 7
  start-page: 1907
  year: 2016
  end-page: 1914
  article-title: Detecting circulating tumor DNA in hepatocellular carcinoma patients using droplet digital PCR is feasible and reflects intratumoral heterogeneity
  publication-title: J Cancer
– volume: 118
  start-page: 2623
  year: 2012
  end-page: 2631
  article-title: Stool DNA testing for the detection of pancreatic cancer: assessment of methylation marker candidates
  publication-title: Cancer
– volume: 139
  start-page: 1534
  year: 2016
  end-page: 1545
  article-title: International trends in liver cancer incidence, overall and by histologic subtype, 1978‐2007
  publication-title: Int J Cancer
– volume: 28
  start-page: 2180
  year: 2012
  end-page: 2181
  article-title: SAAP‐RRBS: streamlined analysis and annotation pipeline for reduced representation bisulfite sequencing
  publication-title: Bioinformatics
– volume: 7
  start-page: 952
  year: 1987
  end-page: 963
  article-title: Conceptual review of the hepatic vascular bed
  publication-title: Hepatology
– volume: 67
  start-page: 7
  year: 2017
  end-page: 30
  article-title: Cancer statistics, 2017
  publication-title: CA Cancer J Clin
– volume: 365
  start-page: 1118
  year: 2011
  end-page: 1127
  article-title: Hepatocellular carcinoma
  publication-title: N Engl J Med
– volume: 30
  start-page: 37
  year: 2009
  end-page: 47
  article-title: Meta‐analysis: surveillance with ultrasound for early‐stage hepatocellular carcinoma in patients with cirrhosis
  publication-title: Aliment Pharmacol Ther
– volume: 6
  start-page: 224ra224
  year: 2014
  article-title: Detection of circulating tumor DNA in early‐ and late‐stage human malignancies
  publication-title: Sci Transl Med
– volume: 65
  start-page: 87
  year: 2015
  end-page: 108
  article-title: Global cancer statistics, 2012
  publication-title: CA Cancer J Clin
– volume: 77
  start-page: A712
  year: 2017
  article-title: Detection of lung cancer by assay of novel methylated DNA markers in plasma
  publication-title: Cancer Res
– volume: 5
  start-page: 9425
  year: 2014
  end-page: 9443
  article-title: Epigenetic signatures of alcohol abuse and hepatitis infection during human hepatocarcinogenesis
  publication-title: Oncotarget
– volume: 11
  start-page: 1313
  year: 2013
  end-page: 1318
  article-title: Clinical performance of an automated stool DNA assay for detection of colorectal neoplasia
  publication-title: Clin Gastroenterol Hepatol
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
– volume: 368
  start-page: 1199
  year: 2013
  end-page: 1209
  article-title: Analysis of circulating tumor DNA to monitor metastatic breast cancer
  publication-title: N Engl J Med
– volume: 359
  start-page: 926
  year: 2018
  end-page: 930
  article-title: Detection and localization of surgically resectable cancers with a multi‐analyte blood test
  publication-title: Science
– volume: 303
  start-page: 157
  year: 1992
  end-page: 159
  article-title: Alpha‐fetoprotein levels in normal adults
  publication-title: Am J Med Sci
– volume: 34
  start-page: 1787
  year: 2016
  end-page: 1794
  article-title: Future of hepatocellular carcinoma incidence in the United States forecast through 2030
  publication-title: J Clin Oncol
– volume: 130
  start-page: 417
  year: 2004
  end-page: 422
  article-title: Randomized controlled trial of screening for hepatocellular carcinoma
  publication-title: J Cancer Res Clin Oncol
– volume: 27
  start-page: 861
  year: 2012
  end-page: 867
  article-title: Utilization of hepatocellular carcinoma surveillance among American patients: a systematic review
  publication-title: J Gen Intern Med
– volume: 14
  start-page: 875
  year: 2016
  end-page: 886.e6
  article-title: Role of the GALAD and BALAD‐2 serologic models in diagnosis of hepatocellular carcinoma and prediction of survival in patients
  publication-title: Clin Gastroenterol Hepatol
– volume: 19
  start-page: 329
  year: 1999
  end-page: 338
  article-title: Prognosis of hepatocellular carcinoma: the BCLC staging classification
  publication-title: Semin Liver Dis
– volume: 19
  start-page: 263
  year: 2015
  end-page: 273
  article-title: Liquit biopsy in liver cancer
  publication-title: Discov Med
– volume: 122
  start-page: 1757
  year: 2016
  end-page: 1765
  article-title: Population attributable fractions of risk factors for hepatocellular carcinoma in the United States
  publication-title: Cancer
– volume: 11
  start-page: e1001624
  year: 2014
  article-title: Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta‐analysis
  publication-title: PLoS Med
– volume: 58
  start-page: 375
  year: 2012
  end-page: 383
  article-title: Quantification of methylated markers with a multiplex methylation‐specific technology
  publication-title: Clin Chem
– volume: 112
  start-page: E5503
  year: 2015
  end-page: E5512
  article-title: Plasma DNA tissue mapping by genome‐wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments
  publication-title: Proc Natl Acad Sci U S A
– year: 2002
– volume: 10
  start-page: 428
  year: 2012
  end-page: 433
  article-title: Determinants of serum alpha‐fetoprotein levels in hepatitis C‐infected patients
  publication-title: Clin Gastroenterol Hepatol
– volume: 16
  start-page: 1155
  year: 2017
  end-page: 1161
  article-title: Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma
  publication-title: Nat Mater
– volume: 152
  start-page: S1041
  issue: Suppl 1
  year: 2017
  end-page: S1042
  article-title: Detection of cholangiocarcinoma by assay of methylated DNA markers in plasma
  publication-title: Gastroenterology
– volume: 370
  start-page: 1287
  year: 2014
  end-page: 1297
  article-title: Multitarget stool DNA testing for colorectal‐cancer screening
  publication-title: N Engl J Med
– volume: 15
  start-page: 550
  year: 2014
  article-title: Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2
  publication-title: Genome Biol
– volume: 67
  start-page: 358
  year: 2018
  end-page: 380
  article-title: AASLD guidelines for the treatment of hepatocellular carcinoma
  publication-title: Hepatology
– volume: 21
  start-page: 4473
  year: 2015
  end-page: 4481
  article-title: New DNA methylation markers for pancreatic cancer: discovery, tissue validation, and pilot testing in pancreatic juice
  publication-title: Clin Cancer Res
– volume: 137
  start-page: 110
  year: 2009
  end-page: 118
  article-title: Alpha‐fetoprotein, des‐gamma carboxyprothrombin, and lectin‐bound alpha‐fetoprotein in early hepatocellular carcinoma
  publication-title: Gastroenterology
– volume: 19
  start-page: 329
  year: 1999
  ident: hep30244-bib-0023-20241017
  article-title: Prognosis of hepatocellular carcinoma: the BCLC staging classification
  publication-title: Semin Liver Dis
  doi: 10.1055/s-2007-1007122
– volume: 359
  start-page: 926
  year: 2018
  ident: hep30244-bib-0038-20241017
  article-title: Detection and localization of surgically resectable cancers with a multi‐analyte blood test
  publication-title: Science
  doi: 10.1126/science.aar3247
– volume: 7
  start-page: 952
  year: 1987
  ident: hep30244-bib-0037-20241017
  article-title: Conceptual review of the hepatic vascular bed
  publication-title: Hepatology
  doi: 10.1002/hep.1840070527
– volume: 368
  start-page: 1199
  year: 2013
  ident: hep30244-bib-0034-20241017
  article-title: Analysis of circulating tumor DNA to monitor metastatic breast cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1213261
– volume: 14
  start-page: 875
  year: 2016
  ident: hep30244-bib-0014-20241017
  article-title: Role of the GALAD and BALAD‐2 serologic models in diagnosis of hepatocellular carcinoma and prediction of survival in patients
  publication-title: Clin Gastroenterol Hepatol
  doi: 10.1016/j.cgh.2015.12.042
– volume: 10
  start-page: 428
  year: 2012
  ident: hep30244-bib-0013-20241017
  article-title: Determinants of serum alpha‐fetoprotein levels in hepatitis C‐infected patients
  publication-title: Clin Gastroenterol Hepatol
  doi: 10.1016/j.cgh.2011.11.025
– volume: 28
  start-page: 2180
  year: 2012
  ident: hep30244-bib-0024-20241017
  article-title: SAAP‐RRBS: streamlined analysis and annotation pipeline for reduced representation bisulfite sequencing
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts337
– volume: 122
  start-page: 1757
  year: 2016
  ident: hep30244-bib-0004-20241017
  article-title: Population attributable fractions of risk factors for hepatocellular carcinoma in the United States
  publication-title: Cancer
  doi: 10.1002/cncr.29971
– volume: 365
  start-page: 1118
  year: 2011
  ident: hep30244-bib-0006-20241017
  article-title: Hepatocellular carcinoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1001683
– volume: 65
  start-page: 87
  year: 2015
  ident: hep30244-bib-0001-20241017
  article-title: Global cancer statistics, 2012
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21262
– volume: 67
  start-page: 358
  year: 2018
  ident: hep30244-bib-0009-20241017
  article-title: AASLD guidelines for the treatment of hepatocellular carcinoma
  publication-title: Hepatology
  doi: 10.1002/hep.29086
– volume: 27
  start-page: 861
  year: 2012
  ident: hep30244-bib-0011-20241017
  article-title: Utilization of hepatocellular carcinoma surveillance among American patients: a systematic review
  publication-title: J Gen Intern Med
  doi: 10.1007/s11606-011-1952-x
– volume: 11
  start-page: e1001624
  year: 2014
  ident: hep30244-bib-0008-20241017
  article-title: Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta‐analysis
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001624
– volume: 7
  start-page: 1907
  year: 2016
  ident: hep30244-bib-0035-20241017
  article-title: Detecting circulating tumor DNA in hepatocellular carcinoma patients using droplet digital PCR is feasible and reflects intratumoral heterogeneity
  publication-title: J Cancer
  doi: 10.7150/jca.15823
– volume: 34
  start-page: 1787
  year: 2016
  ident: hep30244-bib-0005-20241017
  article-title: Future of hepatocellular carcinoma incidence in the United States forecast through 2030
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2015.64.7412
– volume: 137
  start-page: 110
  year: 2009
  ident: hep30244-bib-0012-20241017
  article-title: Alpha‐fetoprotein, des‐gamma carboxyprothrombin, and lectin‐bound alpha‐fetoprotein in early hepatocellular carcinoma
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2009.04.005
– volume: 58
  start-page: 375
  year: 2012
  ident: hep30244-bib-0018-20241017
  article-title: Quantification of methylated markers with a multiplex methylation‐specific technology
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2011.171264
– volume: 30
  start-page: 37
  year: 2009
  ident: hep30244-bib-0010-20241017
  article-title: Meta‐analysis: surveillance with ultrasound for early‐stage hepatocellular carcinoma in patients with cirrhosis
  publication-title: Aliment Pharmacol Ther
  doi: 10.1111/j.1365-2036.2009.04014.x
– volume: 67
  start-page: 7
  year: 2017
  ident: hep30244-bib-0002-20241017
  article-title: Cancer statistics, 2017
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21387
– volume: 16
  start-page: 1155
  year: 2017
  ident: hep30244-bib-0017-20241017
  article-title: Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma
  publication-title: Nat Mater
  doi: 10.1038/nmat4997
– volume: 6
  start-page: 224ra224
  year: 2014
  ident: hep30244-bib-0033-20241017
  article-title: Detection of circulating tumor DNA in early‐ and late‐stage human malignancies
  publication-title: Sci Transl Med
– volume: 15
  start-page: 550
  year: 2014
  ident: hep30244-bib-0031-20241017
  article-title: Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 11
  start-page: 1313
  year: 2013
  ident: hep30244-bib-0026-20241017
  article-title: Clinical performance of an automated stool DNA assay for detection of colorectal neoplasia
  publication-title: Clin Gastroenterol Hepatol
  doi: 10.1016/j.cgh.2013.04.023
– volume: 303
  start-page: 157
  year: 1992
  ident: hep30244-bib-0028-20241017
  article-title: Alpha‐fetoprotein levels in normal adults
  publication-title: Am J Med Sci
  doi: 10.1097/00000441-199203000-00004
– volume: 19
  start-page: 263
  year: 2015
  ident: hep30244-bib-0015-20241017
  article-title: Liquit biopsy in liver cancer
  publication-title: Discov Med
– volume: 77
  start-page: A712
  year: 2017
  ident: hep30244-bib-0022-20241017
  article-title: Detection of lung cancer by assay of novel methylated DNA markers in plasma
  publication-title: Cancer Res
  doi: 10.1158/1538-7445.AM2017-712
– volume: 44
  start-page: 837
  year: 1988
  ident: hep30244-bib-0029-20241017
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 130
  start-page: 417
  year: 2004
  ident: hep30244-bib-0007-20241017
  article-title: Randomized controlled trial of screening for hepatocellular carcinoma
  publication-title: J Cancer Res Clin Oncol
– volume: 152
  start-page: S1041
  issue: Suppl 1
  year: 2017
  ident: hep30244-bib-0021-20241017
  article-title: Detection of cholangiocarcinoma by assay of methylated DNA markers in plasma
  publication-title: Gastroenterology
– volume: 112
  start-page: E5503
  year: 2015
  ident: hep30244-bib-0016-20241017
  article-title: Plasma DNA tissue mapping by genome‐wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments
  publication-title: Proc Natl Acad Sci U S A
– volume: 21
  start-page: 4473
  year: 2015
  ident: hep30244-bib-0020-20241017
  article-title: New DNA methylation markers for pancreatic cancer: discovery, tissue validation, and pilot testing in pancreatic juice
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-14-2469
– volume: 139
  start-page: 1534
  year: 2016
  ident: hep30244-bib-0003-20241017
  article-title: International trends in liver cancer incidence, overall and by histologic subtype, 1978‐2007
  publication-title: Int J Cancer
  doi: 10.1002/ijc.30211
– volume: 370
  start-page: 1287
  year: 2014
  ident: hep30244-bib-0019-20241017
  article-title: Multitarget stool DNA testing for colorectal‐cancer screening
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1311194
– volume: 118
  start-page: 2623
  year: 2012
  ident: hep30244-bib-0025-20241017
  article-title: Stool DNA testing for the detection of pancreatic cancer: assessment of methylation marker candidates
  publication-title: Cancer
  doi: 10.1002/cncr.26558
– volume: 5
  start-page: 9425
  year: 2014
  ident: hep30244-bib-0036-20241017
  article-title: Epigenetic signatures of alcohol abuse and hepatitis infection during human hepatocarcinogenesis
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.2444
SSID ssj0009428
Score 2.6467254
Snippet Early detection improves hepatocellular carcinoma (HCC) outcomes, but better noninvasive surveillance tools are needed. We aimed to identify and validate...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1180
SubjectTerms Bisulfite
Carcinoma, Hepatocellular
Cirrhosis
Deoxyribonucleic acid
DNA
DNA Methylation
DNA sequencing
DNA, Neoplasm - blood
DNA, Neoplasm - metabolism
Early Detection of Cancer - methods
Endothelins
Female
Hepatocellular carcinoma
Hepatology
Homeobox
HOXA1 protein
Humans
Liver cancer
Liver cirrhosis
Liver Neoplasms - blood
Male
Middle Aged
Phosphofructokinase
Pilot Projects
Plasma
Regression analysis
Single-Blind Method
Spiracles
Title Hepatocellular Carcinoma Detection by Plasma Methylated DNA: Discovery, Phase I Pilot, and Phase II Clinical Validation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhep.30244
https://www.ncbi.nlm.nih.gov/pubmed/30168613
https://www.proquest.com/docview/2186241356
https://www.proquest.com/docview/2179211780
https://pubmed.ncbi.nlm.nih.gov/PMC6429916
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPSAuQHmGFmQQBw5Nm4fzcDlV3VZbpK1WiKIekCI_JtpVlwR1s6rKr-_YeZSlQkLcItuRE3vG8409_gbgQ1yiFBigj_aGDMcy80WgyWtN8oBqIt2SVU_O0vE5_3yRXGzAp_4uTMsPMWy4Wc1w67VVcKmW-3ekoTMkh50sjOUCDePMhvONvtxRRwnu8qqS1xXY02XRswoF0f7w5rotugcw78dJ_o5fnQE6eQzf-09v404u91aN2tO__mB1_M9_ewKPOmDKDltJ2oINrJ7Cg0l39P4MrsdkuJrabvTbyFV2ZJMQVfUPyUbYuHiuiqkbNiU0TmUTJAFYEI41bHR2eMBG86W2waI3u2w6I8PJTtl0vqibXSYr0xedso6ldMG-kXvQZnt6Ducnx1-Pxn6XtcHXlozPR1p6BYEkbmSYYGJSiZpmPw1zFaKSNmsemihTQqehVuSvSBXziKMxJdkNIeMXsFnVFb4CRsuR5sakkTY0FoormYeZiXlSap2VIvHgfT9_xc-WnKNoaZijgoawcEPowU4_s0Wnn8vCZuKyJ4pJ6sG7oZo0y46irLBe2TaZIPc4ywMPXraCMPRCy2KaExLyIFsTkaGBZe1er6nmM8fenVoEEFK_H50E_P3Di_Hx1D28_vem2_CQEJ1og-R2YLO5WuEbQk2NeuvU4xZlZxPI
link.rule.ids 230,314,780,784,885,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgGXljehBQziwKFpk6zzMOJSdVtlobtaoRb1UkV-RbtiSSqaFSq_nrGdpCwVEuIW2Y6c2DOeb-zxNwBvB6XmTAfa1-aGDNVl6rNAotcaZwHWRNKRVY8nSX5KP57FZ2vwobsL4_gh-g03oxl2vTYKbjak965ZQ2caPXY0MfQW3EZ1D01A1_DzNXkUozazKvpdgTlfZh2vUBDt9a-uWqMbEPNmpOTvCNaaoKNNOO8-3kWefN1dNmJX_vyD1_F__-4-bLTYlOw7YXoAa7p6CHfG7en7I_iRo-1qarPXb4JXyYHJQ1TV3zgZ6saGdFVEXJEpAnIsG2uUgQVCWUWGk_33ZDi_lCZe9GqHTGdoO8mITOeLutkhvFJd0Yi0RKUL8gU9BJfw6TGcHh2eHOR-m7jBl4aPz9c4HQxxElU8jHWsEq4lCkASZiLUgpvEeVpFqWAyCaVAl4WLAY2oVqpE08H44AmsV3WlnwHBFUlSpZJIKhwLQQXPwlQNaFxKmZYs9uBNN4HFhePnKBwTc1TgEBZ2CD3Y7qa2aFX0sjDJuMyhYpx48LqvRuUyo8grXS9Nm5Shh5xmgQdPnST0veDKmGQIhjxIV2Skb2CIu1drqvnMEngnBgSE2O87KwJ___AiP5zah-f_3vQV3M1PxsfF8WjyaQvuIcBjLmZuG9ab70v9AkFUI15aXfkFm5YX6Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlVceD8CBQziwKFpk6zjxHCqmq52gV1FiKIekCK_ol2xJBXNCpVfzzhOUpYKCXGLbEdO7BnPN_b4G4BXo9IIbgLjG3tDhpoy8Xmg0GuN0wBrIuXIqmdzNjmh707j0y1429-FcfwQw4ab1Yx2vbYKfqbLg0vS0IVBhx0tDL0G1ymLuCXOzz5eckdx2iZWRbcrsMfLvKcVCqKD4dVNY3QFYV4NlPwdwLYWaHwLvvTf7gJPvu6vG7mvfv5B6_ifP3cbbnbIlBw6UboDW6a6Czuz7uz9HvyYoOVqarvTb0NXyZHNQlTV3wTJTNMGdFVEXpAc4TiWzQxKwAqBrCbZ_PANyZbnykaLXuyRfIGWk0xJvlzVzR4Rle6LpqSjKV2Rz-gfuHRP9-FkfPzpaOJ3aRt8Zdn4fINrL0eURLUIYxNrJozC6WdhKkMjhU2bZ3SUSK5YqCQ6LEKOaESN1iUaDi5GD2C7qivzCAiuR4pqzSKlcSwklSINEz2icalUUvLYg5f9_BVnjp2jcDzMUYFDWLRD6MFuP7NFp6DnhU3FZY8UY-bBi6EaVcuOoqhMvbZtEo7-cZIGHjx0gjD0gusiSxEKeZBsiMjQwNJ2b9ZUy0VL380sBAix39etBPz9w4vJcd4-PP73ps9hJ8_GxYfp_P0TuIHojruAuV3Ybr6vzVNEUI181mrKL0m7Fpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hepatocellular+Carcinoma+Detection+by+Plasma+Methylated+DNA%3A+Discovery%2C+Phase+I+Pilot%2C+and+Phase+II+Clinical+Validation&rft.jtitle=Hepatology+%28Baltimore%2C+Md.%29&rft.au=Kisiel%2C+John+B.&rft.au=Dukek%2C+Brian+A.&rft.au=V.S.R.+Kanipakam%2C+Reddappa&rft.au=Ghoz%2C+Hassan+M.&rft.date=2019-03-01&rft.issn=0270-9139&rft.eissn=1527-3350&rft.volume=69&rft.issue=3&rft.spage=1180&rft.epage=1192&rft_id=info:doi/10.1002%2Fhep.30244&rft.externalDBID=10.1002%252Fhep.30244&rft.externalDocID=HEP30244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-9139&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-9139&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-9139&client=summon