Circular linkages between soil biodiversity, fertility and plant productivity are limited to topsoil at the continental scale

The current theoretical framework suggests that tripartite positive feedback relationships between soil biodiversity, fertility and plant productivity are universal. However, empirical evidence for these relationships at the continental scale and across different soil depths is lacking. We investiga...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 215; no. 3; pp. 1186 - 1196
Main Authors Delgado‐Baquerizo, Manuel, Powell, Jeff R., Hamonts, Kelly, Reith, Frank, Mele, Pauline, Brown, Mark V., Dennis, Paul G., Ferrari, Belinda C., Fitzgerald, Anna, Young, Andrew, Singh, Brajesh K., Bissett, Andrew
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.08.2017
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The current theoretical framework suggests that tripartite positive feedback relationships between soil biodiversity, fertility and plant productivity are universal. However, empirical evidence for these relationships at the continental scale and across different soil depths is lacking. We investigate the continental-scale relationships between the diversity of microbial and invertebrate-based soil food webs, fertility and above-ground plant productivity at 289 sites and two soil depths, that is 0–10 and 20–30 cm, across Australia. Soil biodiversity, fertility and plant productivity are strongly positively related in surface soils. Conversely, in the deeper soil layer, the relationships between soil biodiversity, fertility and plant productivity weaken considerably, probably as a result of a reduction in biodiversity and fertility with depth. Further modeling suggested that strong positive associations among soil biodiversity–fertility and fertility–plant productivity are limited to the upper soil layer (0–10 cm), after accounting for key factors, such as distance from the equator, altitude, climate and physicochemical soil properties. These findings highlight the importance of surface soil biodiversity for soil fertility, and suggest that any loss of surface soil could potentially break the links between soil biodiversity–fertility and/or fertility–plant productivity, which can negatively impact nutrient cycling and food production, upon which future generations depend.
AbstractList The current theoretical framework suggests that tripartite positive feedback relationships between soil biodiversity, fertility and plant productivity are universal. However, empirical evidence for these relationships at the continental scale and across different soil depths is lacking. We investigate the continental‐scale relationships between the diversity of microbial and invertebrate‐based soil food webs, fertility and above‐ground plant productivity at 289 sites and two soil depths, that is 0–10 and 20–30 cm, across Australia. Soil biodiversity, fertility and plant productivity are strongly positively related in surface soils. Conversely, in the deeper soil layer, the relationships between soil biodiversity, fertility and plant productivity weaken considerably, probably as a result of a reduction in biodiversity and fertility with depth. Further modeling suggested that strong positive associations among soil biodiversity–fertility and fertility–plant productivity are limited to the upper soil layer (0–10 cm), after accounting for key factors, such as distance from the equator, altitude, climate and physicochemical soil properties. These findings highlight the importance of surface soil biodiversity for soil fertility, and suggest that any loss of surface soil could potentially break the links between soil biodiversity–fertility and/or fertility–plant productivity, which can negatively impact nutrient cycling and food production, upon which future generations depend.
Summary The current theoretical framework suggests that tripartite positive feedback relationships between soil biodiversity, fertility and plant productivity are universal. However, empirical evidence for these relationships at the continental scale and across different soil depths is lacking. We investigate the continental‐scale relationships between the diversity of microbial and invertebrate‐based soil food webs, fertility and above‐ground plant productivity at 289 sites and two soil depths, that is 0–10 and 20–30 cm, across Australia. Soil biodiversity, fertility and plant productivity are strongly positively related in surface soils. Conversely, in the deeper soil layer, the relationships between soil biodiversity, fertility and plant productivity weaken considerably, probably as a result of a reduction in biodiversity and fertility with depth. Further modeling suggested that strong positive associations among soil biodiversity–fertility and fertility–plant productivity are limited to the upper soil layer (0–10 cm), after accounting for key factors, such as distance from the equator, altitude, climate and physicochemical soil properties. These findings highlight the importance of surface soil biodiversity for soil fertility, and suggest that any loss of surface soil could potentially break the links between soil biodiversity–fertility and/or fertility–plant productivity, which can negatively impact nutrient cycling and food production, upon which future generations depend.
The current theoretical framework suggests that tripartite positive feedback relationships between soil biodiversity, fertility and plant productivity are universal. However, empirical evidence for these relationships at the continental scale and across different soil depths is lacking. We investigate the continental‐scale relationships between the diversity of microbial and invertebrate‐based soil food webs, fertility and above‐ground plant productivity at 289 sites and two soil depths, that is 0–10 and 20–30 cm, across Australia. Soil biodiversity, fertility and plant productivity are strongly positively related in surface soils. Conversely, in the deeper soil layer, the relationships between soil biodiversity, fertility and plant productivity weaken considerably, probably as a result of a reduction in biodiversity and fertility with depth. Further modeling suggested that strong positive associations among soil biodiversity–fertility and fertility–plant productivity are limited to the upper soil layer (0–10 cm), after accounting for key factors, such as distance from the equator, altitude, climate and physicochemical soil properties. These findings highlight the importance of surface soil biodiversity for soil fertility, and suggest that any loss of surface soil could potentially break the links between soil biodiversity–fertility and/or fertility–plant productivity, which can negatively impact nutrient cycling and food production, upon which future generations depend.
The current theoretical framework suggests that tripartite positive feedback relationships between soil biodiversity, fertility and plant productivity are universal. However, empirical evidence for these relationships at the continental scale and across different soil depths is lacking. We investigate the continental-scale relationships between the diversity of microbial and invertebrate-based soil food webs, fertility and above-ground plant productivity at 289 sites and two soil depths, that is 0-10 and 20-30 cm, across Australia. Soil biodiversity, fertility and plant productivity are strongly positively related in surface soils. Conversely, in the deeper soil layer, the relationships between soil biodiversity, fertility and plant productivity weaken considerably, probably as a result of a reduction in biodiversity and fertility with depth. Further modeling suggested that strong positive associations among soil biodiversity-fertility and fertility-plant productivity are limited to the upper soil layer (0-10 cm), after accounting for key factors, such as distance from the equator, altitude, climate and physicochemical soil properties. These findings highlight the importance of surface soil biodiversity for soil fertility, and suggest that any loss of surface soil could potentially break the links between soil biodiversity-fertility and/or fertility-plant productivity, which can negatively impact nutrient cycling and food production, upon which future generations depend.The current theoretical framework suggests that tripartite positive feedback relationships between soil biodiversity, fertility and plant productivity are universal. However, empirical evidence for these relationships at the continental scale and across different soil depths is lacking. We investigate the continental-scale relationships between the diversity of microbial and invertebrate-based soil food webs, fertility and above-ground plant productivity at 289 sites and two soil depths, that is 0-10 and 20-30 cm, across Australia. Soil biodiversity, fertility and plant productivity are strongly positively related in surface soils. Conversely, in the deeper soil layer, the relationships between soil biodiversity, fertility and plant productivity weaken considerably, probably as a result of a reduction in biodiversity and fertility with depth. Further modeling suggested that strong positive associations among soil biodiversity-fertility and fertility-plant productivity are limited to the upper soil layer (0-10 cm), after accounting for key factors, such as distance from the equator, altitude, climate and physicochemical soil properties. These findings highlight the importance of surface soil biodiversity for soil fertility, and suggest that any loss of surface soil could potentially break the links between soil biodiversity-fertility and/or fertility-plant productivity, which can negatively impact nutrient cycling and food production, upon which future generations depend.
The current theoretical framework suggests that tripartite positive feedback relationships between soil biodiversity, fertility and plant productivity are universal. However, empirical evidence for these relationships at the continental scale and across different soil depths is lacking. We investigate the continental-scale relationships between the diversity of microbial and invertebrate-based soil food webs, fertility and above-ground plant productivity at 289 sites and two soil depths, that is 0-10 and 20-30 cm, across Australia. Soil biodiversity, fertility and plant productivity are strongly positively related in surface soils. Conversely, in the deeper soil layer, the relationships between soil biodiversity, fertility and plant productivity weaken considerably, probably as a result of a reduction in biodiversity and fertility with depth. Further modeling suggested that strong positive associations among soil biodiversity-fertility and fertility-plant productivity are limited to the upper soil layer (0-10 cm), after accounting for key factors, such as distance from the equator, altitude, climate and physicochemical soil properties. These findings highlight the importance of surface soil biodiversity for soil fertility, and suggest that any loss of surface soil could potentially break the links between soil biodiversity-fertility and/or fertility-plant productivity, which can negatively impact nutrient cycling and food production, upon which future generations depend.
Summary The current theoretical framework suggests that tripartite positive feedback relationships between soil biodiversity, fertility and plant productivity are universal. However, empirical evidence for these relationships at the continental scale and across different soil depths is lacking. We investigate the continental-scale relationships between the diversity of microbial and invertebrate-based soil food webs, fertility and above-ground plant productivity at 289 sites and two soil depths, that is 0-10 and 20-30 cm, across Australia. Soil biodiversity, fertility and plant productivity are strongly positively related in surface soils. Conversely, in the deeper soil layer, the relationships between soil biodiversity, fertility and plant productivity weaken considerably, probably as a result of a reduction in biodiversity and fertility with depth. Further modeling suggested that strong positive associations among soil biodiversity-fertility and fertility-plant productivity are limited to the upper soil layer (0-10 cm), after accounting for key factors, such as distance from the equator, altitude, climate and physicochemical soil properties. These findings highlight the importance of surface soil biodiversity for soil fertility, and suggest that any loss of surface soil could potentially break the links between soil biodiversity-fertility and/or fertility-plant productivity, which can negatively impact nutrient cycling and food production, upon which future generations depend.
The current theoretical framework suggests that tripartite positive feedback relationships between soil biodiversity, fertility and plant productivity are universal. However, empirical evidence for these relationships at the continental scale and across different soil depths is lacking. We investigate the continental-scale relationships between the diversity of microbial and invertebrate-based soil food webs, fertility and above-ground plant productivity at 289 sites and two soil depths, that is 0–10 and 20–30 cm, across Australia. Soil biodiversity, fertility and plant productivity are strongly positively related in surface soils. Conversely, in the deeper soil layer, the relationships between soil biodiversity, fertility and plant productivity weaken considerably, probably as a result of a reduction in biodiversity and fertility with depth. Further modeling suggested that strong positive associations among soil biodiversity–fertility and fertility–plant productivity are limited to the upper soil layer (0–10 cm), after accounting for key factors, such as distance from the equator, altitude, climate and physicochemical soil properties. These findings highlight the importance of surface soil biodiversity for soil fertility, and suggest that any loss of surface soil could potentially break the links between soil biodiversity–fertility and/or fertility–plant productivity, which can negatively impact nutrient cycling and food production, upon which future generations depend.
Author Andrew Bissett
Belinda C. Ferrari
Mark V. Brown
Kelly Hamonts
Frank Reith
Anna Fitzgerald
Manuel Delgado-Baquerizo
Pauline Mele
Andrew Young
Brajesh K. Singh
Jeff R. Powell
Paul G. Dennis
Author_xml – sequence: 1
  givenname: Manuel
  surname: Delgado‐Baquerizo
  fullname: Delgado‐Baquerizo, Manuel
  email: M.DelgadoBaquerizo@gmail.com
  organization: University of Colorado
– sequence: 2
  givenname: Jeff R.
  surname: Powell
  fullname: Powell, Jeff R.
  organization: Western Sydney University
– sequence: 3
  givenname: Kelly
  surname: Hamonts
  fullname: Hamonts, Kelly
  organization: Western Sydney University
– sequence: 4
  givenname: Frank
  surname: Reith
  fullname: Reith, Frank
  organization: Land and Water, Environmental Contaminant Mitigation and Technologies
– sequence: 5
  givenname: Pauline
  surname: Mele
  fullname: Mele, Pauline
  organization: La Trobe University
– sequence: 6
  givenname: Mark V.
  surname: Brown
  fullname: Brown, Mark V.
  organization: UNSW
– sequence: 7
  givenname: Paul G.
  surname: Dennis
  fullname: Dennis, Paul G.
  organization: The University of Queensland
– sequence: 8
  givenname: Belinda C.
  surname: Ferrari
  fullname: Ferrari, Belinda C.
  organization: UNSW
– sequence: 9
  givenname: Anna
  surname: Fitzgerald
  fullname: Fitzgerald, Anna
  organization: Bioplatforms Australia Ltd
– sequence: 10
  givenname: Andrew
  surname: Young
  fullname: Young, Andrew
  organization: CSIRO
– sequence: 11
  givenname: Brajesh K.
  surname: Singh
  fullname: Singh, Brajesh K.
  organization: Western Sydney University
– sequence: 12
  givenname: Andrew
  surname: Bissett
  fullname: Bissett, Andrew
  organization: CSIRO
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28608615$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEYhYNU7G114Q9QAm4UnDYfM5nJUi5qhaIuFNyFTOYdm2tuMk0yLXfR_954P1wUxRBICM855D3nBB354AGh55Sc0bLO_XR1RmvB60doUU5ZdZS3R2hBCOsqUYsfx-gkpRUhRDaCPUHHrBOkE7RZoLuljWZ2OmJn_S_9ExLuId8CeJyCdbi3YbA3EJPNm7d4hJitK1es_YAnp33GUwzDbLK92T5HKEZrm2HAOZQ9bV10xvkKsAk-Ww8-a4eT0Q6eosejdgme7c9T9P3D-2_Li-ryy8dPy3eXlWmIrKuBQN2NQyN7btgo-r6hNW9aolnb81aTjnOugehGciqb2khCDGO6FwPQwZQwTtHrnW_57PUMKau1TQZcGQDCnBQjrOQhJG_-i1JJJOM14V1BXz1AV2GOvgxSKNoKJmtRF-rlnpr7NQxqinat40YdOijA-Q4wMaQUYVTGZp1tCStq6xQl6nfLqrSsti0XxZsHioPp39i9-611sPk3qD5_vTgoXuwUq5RD_KMooRYBl_wefGTAgQ
CitedBy_id crossref_primary_10_1016_j_jece_2025_115884
crossref_primary_10_1093_femsec_fiab156
crossref_primary_10_1007_s11258_019_00979_0
crossref_primary_10_3389_fmicb_2024_1488121
crossref_primary_10_1016_j_apsoil_2018_10_020
crossref_primary_10_3389_fmicb_2023_1097909
crossref_primary_10_1016_j_apsoil_2023_105003
crossref_primary_10_1016_j_soilbio_2020_107763
crossref_primary_10_1016_j_scitotenv_2018_01_077
crossref_primary_10_1111_mec_17178
crossref_primary_10_1111_1365_2745_13788
crossref_primary_10_1111_1751_7915_14325
crossref_primary_10_1016_j_envint_2019_05_011
crossref_primary_10_1016_j_soilbio_2024_109623
crossref_primary_10_1016_j_jia_2023_11_019
crossref_primary_10_1016_j_agee_2020_107206
crossref_primary_10_1111_mec_16242
crossref_primary_10_1093_hr_uhae018
crossref_primary_10_1128_spectrum_04075_23
crossref_primary_10_1111_1365_2435_13761
crossref_primary_10_1111_geb_13156
crossref_primary_10_4005_jjfs_105_136
crossref_primary_10_1016_j_catena_2022_106202
crossref_primary_10_3389_fenvs_2022_872898
crossref_primary_10_1111_1365_2435_13215
crossref_primary_10_3389_fmicb_2018_00707
crossref_primary_10_1111_ecog_04039
crossref_primary_10_1016_j_ejsobi_2023_103479
crossref_primary_10_1088_1748_9326_ab9f7e
crossref_primary_10_33002_nr2581_6853_040201
crossref_primary_10_1016_j_agee_2019_03_019
crossref_primary_10_1007_s11104_018_3824_1
crossref_primary_10_1007_s11356_021_13667_2
crossref_primary_10_1016_j_scitotenv_2022_157556
crossref_primary_10_1029_2021EF002588
crossref_primary_10_1002_sae2_12119
crossref_primary_10_1016_j_gecco_2024_e02827
crossref_primary_10_1080_0035919X_2019_1603126
crossref_primary_10_1111_nph_15119
crossref_primary_10_1016_j_apsoil_2021_104271
crossref_primary_10_1038_s41598_019_45368_9
crossref_primary_10_3390_agriculture14030370
crossref_primary_10_1016_j_scitotenv_2024_173128
crossref_primary_10_1007_s10457_024_00961_4
crossref_primary_10_1007_s11104_022_05777_8
crossref_primary_10_1016_j_envadv_2023_100370
crossref_primary_10_1016_j_scitotenv_2018_12_024
crossref_primary_10_1016_j_soilbio_2022_108833
crossref_primary_10_1111_mec_15299
crossref_primary_10_1002_ece3_11590
crossref_primary_10_1093_femsec_fiz025
crossref_primary_10_1111_geb_12928
crossref_primary_10_3390_jof10010027
crossref_primary_10_1007_s00374_018_1269_6
crossref_primary_10_5194_essd_14_4339_2022
crossref_primary_10_3390_agronomy12030618
crossref_primary_10_5194_bg_17_2009_2020
crossref_primary_10_3389_fmicb_2023_1129042
crossref_primary_10_1016_j_catena_2021_105251
crossref_primary_10_1007_s11104_021_04848_6
crossref_primary_10_1016_j_catena_2022_106029
crossref_primary_10_1111_nph_15742
crossref_primary_10_1016_j_agwat_2020_106566
crossref_primary_10_1016_j_jes_2023_12_028
crossref_primary_10_1038_s41559_017_0344_y
crossref_primary_10_3389_fmicb_2023_1237409
crossref_primary_10_3389_fevo_2021_630560
crossref_primary_10_1016_j_apsoil_2024_105750
crossref_primary_10_1007_s42729_024_01897_5
crossref_primary_10_1016_j_scitotenv_2022_153389
crossref_primary_10_3390_d15020191
crossref_primary_10_1002_pan3_10421
crossref_primary_10_1016_j_apsoil_2024_105356
crossref_primary_10_1111_1462_2920_16176
crossref_primary_10_1111_nph_16345
crossref_primary_10_3390_agriculture14081399
crossref_primary_10_1016_j_apsoil_2023_105216
crossref_primary_10_1016_j_apsoil_2025_105933
crossref_primary_10_1016_j_ecolind_2022_108624
crossref_primary_10_1128_spectrum_02097_24
crossref_primary_10_1111_nph_19493
crossref_primary_10_1007_s11368_021_02891_5
crossref_primary_10_1016_j_soilbio_2019_107536
crossref_primary_10_1016_j_tree_2019_07_011
crossref_primary_10_1126_sciadv_aat1296
crossref_primary_10_1180_mgm_2020_41
crossref_primary_10_1016_j_apsoil_2020_103780
crossref_primary_10_1016_j_apsoil_2021_104254
crossref_primary_10_1016_j_ecolind_2020_106491
crossref_primary_10_1007_s10021_021_00715_8
crossref_primary_10_1111_gcb_17565
crossref_primary_10_1007_s12038_019_9928_9
crossref_primary_10_1007_s11104_023_06269_z
crossref_primary_10_1007_s41207_025_00764_8
crossref_primary_10_1098_rstb_2019_0244
Cites_doi 10.1038/ncomms10541
10.1128/AEM.01856-15
10.1038/nrmicro2831
10.1017/CBO9780511617799
10.1002/joc.1276
10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2
10.1038/ngeo860
10.1097/00010694-193401000-00003
10.1128/AEM.01541-09
10.1017/CBO9780511541926.011
10.1111/2041-210X.12073
10.1038/ncomms9444
10.1038/nature12670
10.1038/nature19092
10.1007/BF02143533
10.1073/pnas.1109326109
10.1073/pnas.1320054111
10.1038/nclimate2837
10.1126/science.1215442
10.1111/j.1461-0248.2007.01139.x
10.1126/science.1112665
10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
10.1146/annurev-environ-102014-021257
10.1093/bioinformatics/btr507
10.1038/ismej.2013.10
10.1038/474151a
10.1186/s13742-016-0126-5
10.1073/pnas.1516684112
10.1038/nmeth.2604
10.1016/j.agee.2008.01.014
10.1073/pnas.1312213111
10.1126/science.1094875
10.3389/fpls.2015.00485
10.1023/A:1010760720215
10.1038/nature13855
10.1111/j.1469-185X.2007.00017.x
10.1016/j.tree.2005.05.011
ContentType Journal Article
Copyright 2017 New Phytologist Trust
2017 The Authors. New Phytologist © 2017 New Phytologist Trust
2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Copyright © 2017 New Phytologist Trust
Copyright_xml – notice: 2017 New Phytologist Trust
– notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust
– notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
– notice: Copyright © 2017 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.14634
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef
MEDLINE - Academic
MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1196
ExternalDocumentID 28608615
10_1111_nph_14634
NPH14634
90011139
Genre article
Journal Article
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP13010484; DP170104634
– fundername: Marie Sklodowska‐Curie Actions of the Horizon 2020 Framework Programme
  funderid: H2020‐MSCA‐IF‐2016
– fundername: Australian Commonwealth Government
– fundername: REA
  funderid: 702057
– fundername: National Collaborative Research Infrastructure Strategy
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c5094-d0e48fd59b3c2f6bb5143570a27b37a08333ae0a5931954c900c22ab6de1dc813
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:26:25 EDT 2025
Fri Jul 11 15:18:26 EDT 2025
Fri Jul 25 10:37:16 EDT 2025
Wed Feb 19 02:40:55 EST 2025
Tue Jul 01 03:09:26 EDT 2025
Thu Apr 24 23:05:29 EDT 2025
Wed Jan 22 16:22:37 EST 2025
Thu Jul 03 22:31:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords eukaryotes
ecosystem functionality
soil biodiversity
terrestrial ecosystems
bacteria
plant productivity
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5094-d0e48fd59b3c2f6bb5143570a27b37a08333ae0a5931954c900c22ab6de1dc813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://nph.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.14634
PMID 28608615
PQID 1917629464
PQPubID 2026848
PageCount 11
ParticipantIDs proquest_miscellaneous_2020866935
proquest_miscellaneous_1909234038
proquest_journals_1917629464
pubmed_primary_28608615
crossref_citationtrail_10_1111_nph_14634
crossref_primary_10_1111_nph_14634
wiley_primary_10_1111_nph_14634_NPH14634
jstor_primary_90011139
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2017
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: August 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2017
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 2016; 20165
2014; 515
2015; 6
2013; 4
2010
2013; 502
2000; 50
2005; 20
2007
2006
2005
2008; 11
2008; 126
1992
2002
1991
2005; 26
2013; 7
2014; 111
2004; 304
2012; 10
2011; 474
2012; 109
2005; 25
2016; 6
2016; 7
2009; 75
1990
2013; 10
2015; 81
2015; 40
2016; 536
2000; 10
2015; 112
2003; 8
1934; 37
1988; 110
2007; 82
2015
2010; 3
2012; 335
2011; 27
2014; 8
2001; 53
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
Robertson GP (e_1_2_7_36_1) 2007
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Brady NC (e_1_2_7_8_1) 2002
Lane DJ (e_1_2_7_25_1) 1991
Schermelleh‐Engel K (e_1_2_7_37_1) 2003; 8
White TJ (e_1_2_7_45_1) 1990
e_1_2_7_30_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_38_1
Clarke KR (e_1_2_7_9_1) 2015
e_1_2_7_39_1
Rayment GE (e_1_2_7_34_1) 1992
References_xml – volume: 53
  start-page: 51
  year: 2001
  end-page: 77
  article-title: The distribution of soil nutrients with depth: global patterns and the imprint of plants
  publication-title: Biogeochemistry
– start-page: 315
  year: 1990
  end-page: 322
– volume: 126
  start-page: 67
  year: 2008
  end-page: 80
  article-title: Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation
  publication-title: Agriculture, Ecosystems & Environment
– volume: 81
  start-page: 7822
  year: 2015
  end-page: 7832
  article-title: Geogenic factors as drivers of microbial community diversity in soils overlying polymetallic deposits
  publication-title: Applied and Environment Microbiology
– volume: 20
  start-page: 503
  year: 2005
  end-page: 510
  article-title: Using the satellite‐derived NDVI to assess ecological responses to environmental change
  publication-title: Trends in Ecology & Evolution
– volume: 304
  start-page: 1629
  year: 2004
  article-title: Ecological linkages between aboveground and belowground biota
  publication-title: Science
– year: 2005
– volume: 515
  start-page: 505
  year: 2014
  end-page: 511
  article-title: Belowground biodiversity and ecosystem functioning
  publication-title: Nature
– volume: 26
  start-page: 1387
  year: 2005
  end-page: 1390
  article-title: Computational improvements reveal great bacterial diversity and high metal toxicity in soil
  publication-title: Science
– year: 2007
– volume: 50
  start-page: 1049
  year: 2000
  end-page: 1061
  article-title: Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks
  publication-title: BioScience
– volume: 8
  start-page: 23
  year: 2003
  article-title: Evaluating the fit of structural equation models: tests of significance and descriptive goodness‐of‐fit measures
  publication-title: Methods of Psychological Research Online
– volume: 6
  start-page: 8444
  year: 2015
  article-title: Deterministic processes vary during community assembly for ecologically dissimilar taxa
  publication-title: Nature Communications
– volume: 111
  start-page: 308
  year: 2014
  end-page: 313
  article-title: Interannual variation in land‐use intensity enhances grassland multidiversity
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 4
  start-page: 914
  year: 2013
  end-page: 919
  article-title: Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data
  publication-title: Methods in Ecology and Evolution
– volume: 75
  start-page: 7537
  year: 2009
  end-page: 7541
  article-title: Introducing MOTHUR: open‐source, platform‐independent, community‐supported software for describing and comparing microbial communities
  publication-title: Applied and Environmental Microbiology
– volume: 3
  start-page: 297
  year: 2010
  end-page: 298
  article-title: Biodiversity in the dark
  publication-title: Nature Geoscience
– volume: 8
  start-page: 5266
  year: 2014
  end-page: 5270
  article-title: Soil biodiversity and soil community composition determine ecosystem multifunctionality
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 6
  start-page: 485
  year: 2015
  article-title: Context dependency and saturating effects of loss of rare soil microbes on plant productivity
  publication-title: Frontiers in Plant Science
– year: 1992
– volume: 112
  start-page: 15684
  year: 2015
  end-page: 15689
  article-title: Increasing aridity reduces soil microbial diversity and abundance in global drylands
  publication-title: Proceedings of the National Academy of Sciences, USA
– year: 2010
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 335
  start-page: 214
  year: 2012
  end-page: 218
  article-title: Plant species richness and ecosystem multifunctionality in global drylands
  publication-title: Science
– volume: 7
  start-page: 1092
  year: 2013
  end-page: 1101
  article-title: Robust estimation of microbial diversity in theory and in practice
  publication-title: ISME Journal
– volume: 27
  start-page: 2957
  year: 2011
  end-page: 2963
  article-title: FLASH: fast length adjustment of short reads to improve genome assemblies
  publication-title: Bioinformatics
– volume: 40
  start-page: 63
  year: 2015
  end-page: 90
  article-title: Soil biodiversity and the environment
  publication-title: Annual Review of Environment and Resources
– volume: 109
  start-page: 1159
  year: 2012
  end-page: 1164
  article-title: Microbial diversity determines the invasion of soil by a bacterial pathogen
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 502
  start-page: 672
  year: 2013
  end-page: 676
  article-title: Decoupling of soil nutrient cycles as a function of aridity in global drylands
  publication-title: Nature
– volume: 536
  start-page: 456
  year: 2016
  end-page: 459
  article-title: Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality
  publication-title: Nature
– year: 2002
– volume: 37
  start-page: 29
  year: 1934
  end-page: 37
  article-title: An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method
  publication-title: Soil Science
– year: 2006
– volume: 110
  start-page: 9
  year: 1988
  end-page: 17
  article-title: Plant and soil nitrogen dynamics in California annual grassland
  publication-title: Plant and Soil
– volume: 7
  start-page: 10541
  year: 2016
  article-title: Microbial diversity drives multifunctionality in terrestrial ecosystems
  publication-title: Nature Communications
– volume: 11
  start-page: 296
  year: 2008
  end-page: 310
  article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems
  publication-title: Ecology Letters
– volume: 6
  start-page: 166
  year: 2016
  end-page: 171
  article-title: Accelerated dryland expansion under climate change
  publication-title: Nature Climate Change
– volume: 10
  start-page: 423
  year: 2000
  end-page: 436
  article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation
  publication-title: Ecological Applications
– volume: 474
  start-page: 151
  year: 2011
  end-page: 152
  article-title: Save our soils
  publication-title: Nature
– volume: 82
  start-page: 393
  year: 2007
  end-page: 423
  article-title: Ecology of Australia: the effects of nutrient‐poor soils and intense fires
  publication-title: Biological Reviews of the Cambridge Philosophical Society
– year: 1991
– volume: 10
  start-page: 551
  year: 2012
  end-page: 562
  article-title: Microbial colonization and controls in dryland systems
  publication-title: Nature Reviews Microbiology
– volume: 20165
  start-page: 21
  year: 2016
  article-title: Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database
  publication-title: GigaScience
– year: 2015
– volume: 10
  start-page: 996
  year: 2013
  end-page: 998
  article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads
  publication-title: Nature Methods
– ident: e_1_2_7_11_1
  doi: 10.1038/ncomms10541
– volume-title: Nucleic acid techniques in bacterial systematics
  year: 1991
  ident: e_1_2_7_25_1
– ident: e_1_2_7_35_1
  doi: 10.1128/AEM.01856-15
– ident: e_1_2_7_32_1
  doi: 10.1038/nrmicro2831
– volume-title: PRIMER v7: user manual/tutorial
  year: 2015
  ident: e_1_2_7_9_1
– ident: e_1_2_7_15_1
  doi: 10.1017/CBO9780511617799
– ident: e_1_2_7_18_1
  doi: 10.1002/joc.1276
– ident: e_1_2_7_20_1
  doi: 10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2
– ident: e_1_2_7_43_1
  doi: 10.1038/ngeo860
– ident: e_1_2_7_42_1
  doi: 10.1097/00010694-193401000-00003
– ident: e_1_2_7_39_1
  doi: 10.1128/AEM.01541-09
– ident: e_1_2_7_3_1
– ident: e_1_2_7_38_1
  doi: 10.1017/CBO9780511541926.011
– ident: e_1_2_7_6_1
  doi: 10.1111/2041-210X.12073
– ident: e_1_2_7_33_1
  doi: 10.1038/ncomms9444
– volume: 8
  start-page: 23
  year: 2003
  ident: e_1_2_7_37_1
  article-title: Evaluating the fit of structural equation models: tests of significance and descriptive goodness‐of‐fit measures
  publication-title: Methods of Psychological Research Online
– ident: e_1_2_7_10_1
  doi: 10.1038/nature12670
– ident: e_1_2_7_40_1
  doi: 10.1038/nature19092
– ident: e_1_2_7_22_1
  doi: 10.1007/BF02143533
– ident: e_1_2_7_13_1
  doi: 10.1073/pnas.1109326109
– ident: e_1_2_7_41_1
  doi: 10.1073/pnas.1320054111
– volume-title: The nature and properties of soils
  year: 2002
  ident: e_1_2_7_8_1
– ident: e_1_2_7_21_1
  doi: 10.1038/nclimate2837
– ident: e_1_2_7_27_1
  doi: 10.1126/science.1215442
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1461-0248.2007.01139.x
– ident: e_1_2_7_14_1
  doi: 10.1126/science.1112665
– ident: e_1_2_7_23_1
  doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
– ident: e_1_2_7_29_1
  doi: 10.1146/annurev-environ-102014-021257
– ident: e_1_2_7_28_1
  doi: 10.1093/bioinformatics/btr507
– ident: e_1_2_7_16_1
  doi: 10.1038/ismej.2013.10
– ident: e_1_2_7_4_1
  doi: 10.1038/474151a
– ident: e_1_2_7_7_1
  doi: 10.1186/s13742-016-0126-5
– ident: e_1_2_7_26_1
  doi: 10.1073/pnas.1516684112
– ident: e_1_2_7_12_1
  doi: 10.1038/nmeth.2604
– volume-title: Australian laboratory handbook of soil and water chemical methods
  year: 1992
  ident: e_1_2_7_34_1
– ident: e_1_2_7_46_1
  doi: 10.1016/j.agee.2008.01.014
– ident: e_1_2_7_2_1
  doi: 10.1073/pnas.1312213111
– volume-title: Soil microbiology and biochemistry
  year: 2007
  ident: e_1_2_7_36_1
– ident: e_1_2_7_44_1
  doi: 10.1126/science.1094875
– ident: e_1_2_7_19_1
  doi: 10.3389/fpls.2015.00485
– ident: e_1_2_7_24_1
  doi: 10.1023/A:1010760720215
– start-page: 315
  volume-title: PCR protocols: a guide to methods and applications
  year: 1990
  ident: e_1_2_7_45_1
– ident: e_1_2_7_5_1
  doi: 10.1038/nature13855
– ident: e_1_2_7_30_1
  doi: 10.1111/j.1469-185X.2007.00017.x
– ident: e_1_2_7_31_1
  doi: 10.1016/j.tree.2005.05.011
SSID ssj0009562
Score 2.5386357
Snippet The current theoretical framework suggests that tripartite positive feedback relationships between soil biodiversity, fertility and plant productivity are...
Summary The current theoretical framework suggests that tripartite positive feedback relationships between soil biodiversity, fertility and plant productivity...
Summary The current theoretical framework suggests that tripartite positive feedback relationships between soil biodiversity, fertility and plant productivity...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1186
SubjectTerms Altitude
Australia
bacteria
Biodiversity
biogeochemical cycles
Climate
ecosystem functionality
Equator
eukaryotes
Feedback
Fertility
Food chains
Food plants
Food production
Food webs
Frameworks
Linkages
Microorganisms
Mineral nutrients
Modelling
Nutrient cycles
Plant Development
plant productivity
Positive feedback
Productivity
Soil
soil biodiversity
soil chemical properties
Soil depth
Soil erosion
Soil fertility
soil food webs
Soil investigations
Soil layers
Soil Microbiology
soil physical properties
Soil properties
Soil surfaces
Soils
terrestrial ecosystems
Topsoil
Vegetation
Title Circular linkages between soil biodiversity, fertility and plant productivity are limited to topsoil at the continental scale
URI https://www.jstor.org/stable/90011139
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14634
https://www.ncbi.nlm.nih.gov/pubmed/28608615
https://www.proquest.com/docview/1917629464
https://www.proquest.com/docview/1909234038
https://www.proquest.com/docview/2020866935
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9UwFA7D4MKN79Gro0Rx4cIOmSRNU1zp4HARHEQcuAuhnDQpXubSltvehYL_3XPSBzMyAyJ0UehJyOOc9Evy5Qtjr7WtQshVlYRQ2UQ7HRJwKSTaOlIPU6JytKD_-cwsz_WnVbraY--mszCDPsS84EaREcdrCnBw3aUgr9sfFOaKtECJq0WA6Ku8JLhr5KTAbLRZjapCxOKZU175Fw10xOuA5lXcGn88p3fZ96nIA9_k4mjXu6Py119qjv9Zp3vszghI-fvBg-6zvVA_YLc-NAgafz5kv0_W28hU5bTTi2NPx0dmF--a9Ya7deMnZsdbXhFJm3A9h9rzdoO9xttBUjbeUcFhGzCjeKSK9w0-bcwFeo44lBNtHqtA5zN5h74THrHz04_fTpbJeGNDUpIQX-JFwM73ae5UKSvjXIRjmQCZOZUBwj2lIAhIc0VKc2UuRCklOOPDsS_tsTpg-3VThyeM4zQK8rLSFjKpjbBgvUsz5ZVywnuABXsz9V1RjnLmdKvGppimNdiYRWzMBXs1m7aDhsd1RgfRAWaLnNAy4uMFO5w8ohjjuytolmtkrg2mezl_xsik7RaoQ7MjG4HoWQtlb7aRdEeqMblKF-zx4G1zAaTFaiPgxJpGn7m57MXZl2V8efrvps_YbUkIJXIZD9l-v92F54ivevciBtIf4aQh9A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYIL78JCAYNA4kAq13ac5MABWqotbVcItdLegh076qqrJNpkhYrEP-Kv8J-YcR5qUStx6QFpDyvtrOXHjPON8_kbQl7LOHcuEXngXB4H0kgXaBPqQMYG1cMEyw0e6B9M1PhIfp6G0xXyq78L0-pDDAduGBl-v8YAxwPpM1FeVMcY50J2lMo9d_odErb6_e42rO4bznc-HW6Ng66mQJChVFxgmYPu2TAxIuO5MsYDhohpHhkRaQAkQmjHdJgI1ELLEsYyzrVR1m3aLN4U0O41ch0riKNS__ZXfkbiV_Fe81lJNe10jJA3NHT13NOvJUBeBG3PI2X_qNu5Q373k9QyXE42lo3ZyH78pR_5v8ziXXK7w9z0Qxsk98iKK-6TGx9LwMWnD8jPrdnCk3EpvsyG7bWmHXmN1uVsTs2stD155R3NkYeOqQvVhaXVHByTVq1qri_DQfXCQUP-1hhtSvhUvhXdUIDaFG8GwJzhFVRaQ3i4h-ToSoa-RlaLsnCPCYVMUSdZLmMdcalYrGNrwkhYIQyzVusReds7S5p1iu1YOGSe9pkbLF7qF29EXg2mVStTcpHRmve4wSLBhABSgBFZ710w7bawOsVEXvFEKvjfy-Fn2HzwjZIuXLlEGwYJgmQivtyGYxlYpRIRjsij1r2HDvAYhg2YGkbqnfTyvqeTL2P_5cm_m74gN8eHB_vp_u5k7ym5xRGQeermOlltFkv3DOBkY577KKbk21U7_B-Zq35T
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYgL78JCAYNA4kAq13ac5MABuqy2FFYVotLegh07YsUqiTZZoSLxi_gr_ChmnIda1EpcekDKYaXMWn7MON8kn78h5LmMc-cSkQfO5XEgjXSBNqEOZGxQPUyw3OAL_Y8zNT2S7-fhfIP86s_CtPoQwws3jAy_X2OAVzY_EeRF9RXDXMiOUXngjr9Dvla_3h_D4r7gfPLu89406EoKBBkqxQWWOeidDRMjMp4rYzxeiJjmkRGRBjwihHZMh4lAKbQsYSzjXBtl3a7N4l0B7V4il6ViCdaJGH_iJxR-Fe8ln5VU807GCGlDQ1dPPfxa_uNZyPY0UPZPuskN8rufo5bg8m1n3Zid7Mdf8pH_ySTeJNc7xE3ftCFyi2y44ja58rYEVHx8h_zcW6w8FZfip2zYXGvaUddoXS6W1CxK21NXXtEcWeiYuFBdWFotwS1p1Wrm-iIcVK8cNOTPjNGmhKvyreiGAtCmeC4ApgwPoNIagsPdJUcXMvQtslmUhbtPKOSJOslyGeuIgz_FOrYmjIQVwjBrtR6Rl72vpFmn145lQ5Zpn7fB4qV-8Ubk2WBatSIlZxlteYcbLBJMByABGJHt3gPTbgOrU0zjFU-kgv89HW7D1oPfk3ThyjXaMEgPJBPx-TYci8AqlYhwRO613j10gMcwbEDUMFLvo-f3PZ0dTv2PB_9u-oRcPRxP0g_7s4OH5BpHNOZ5m9tks1mt3SPAko157GOYki8X7e9_AI0ufQI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circular+linkages+between+soil+biodiversity%2C+fertility+and+plant+productivity+are+limited+to+topsoil+at+the+continental+scale&rft.jtitle=The+New+phytologist&rft.au=Delgado-Baquerizo%2C+Manuel&rft.au=Powell%2C+Jeff+R&rft.au=Hamonts%2C+Kelly&rft.au=Reith%2C+Frank&rft.date=2017-08-01&rft.eissn=1469-8137&rft.volume=215&rft.issue=3&rft.spage=1186&rft_id=info:doi/10.1111%2Fnph.14634&rft_id=info%3Apmid%2F28608615&rft.externalDocID=28608615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon