Two-Part Joint Model for the Analysis of Survival and Longitudinal Binary Data with Excess Zeros
Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the tim...
Saved in:
Published in | Biometrics Vol. 64; no. 2; pp. 611 - 619 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Malden, USA
Blackwell Publishing Inc
01.06.2008
Blackwell Publishing Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0006-341X 1541-0420 1541-0420 |
DOI | 10.1111/j.1541-0420.2007.00894.x |
Cover
Loading…
Abstract | Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the time to renal graft failure. An interesting feature of the sample at hand is that nearly half of the patients were never tested positive for proteinuria (>=1g/day) during follow-up, which introduces a degenerate part in the random-effects density for the longitudinal process. In this article we propose a two-part shared parameter model framework that effectively takes this feature into account, and we investigate sensitivity to the various dependence structures used to describe the association between the longitudinal measurements of proteinuria and the time to renal graft failure. |
---|---|
AbstractList | Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the time to renal graft failure. An interesting feature of the sample at hand is that nearly half of the patients were never tested positive for proteinuria (>/=1g/day) during follow-up, which introduces a degenerate part in the random-effects density for the longitudinal process. In this article we propose a two-part shared parameter model framework that effectively takes this feature into account, and we investigate sensitivity to the various dependence structures used to describe the association between the longitudinal measurements of proteinuria and the time to renal graft failure. Summary Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the time to renal graft failure. An interesting feature of the sample at hand is that nearly half of the patients were never tested positive for proteinuria (≥1g/day) during follow‐up, which introduces a degenerate part in the random‐effects density for the longitudinal process. In this article we propose a two‐part shared parameter model framework that effectively takes this feature into account, and we investigate sensitivity to the various dependence structures used to describe the association between the longitudinal measurements of proteinuria and the time to renal graft failure. Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the time to renal graft failure. An interesting feature of the sample at hand is that nearly half of the patients were never tested positive for proteinuria ([greater than or equal to] 1g/day) during follow-up, which introduces a degenerate part in the random-effects density for the longitudinal process. In this article we propose a two-part shared parameter model framework that effectively takes this feature into account, and we investigate sensitivity to the various dependence structures used to describe the association between the longitudinal measurements of proteinuria and the time to renal graft failure. [PUBLICATION ABSTRACT] Summary; Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the time to renal graft failure. An interesting feature of the sample at hand is that nearly half of the patients were never tested positive for proteinuria ( greater than or equal to 1g-day) during follow-up, which introduces a degenerate part in the random-effects density for the longitudinal process. In this article we propose a two-part shared parameter model framework that effectively takes this feature into account, and we investigate sensitivity to the various dependence structures used to describe the association between the longitudinal measurements of proteinuria and the time to renal graft failure. Summary Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the time to renal graft failure. An interesting feature of the sample at hand is that nearly half of the patients were never tested positive for proteinuria (≥1g/day) during follow‐up, which introduces a degenerate part in the random‐effects density for the longitudinal process. In this article we propose a two‐part shared parameter model framework that effectively takes this feature into account, and we investigate sensitivity to the various dependence structures used to describe the association between the longitudinal measurements of proteinuria and the time to renal graft failure. Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the time to renal graft failure. An interesting feature of the sample at hand is that nearly half of the patients were never tested positive for proteinuria (>/=1g/day) during follow-up, which introduces a degenerate part in the random-effects density for the longitudinal process. In this article we propose a two-part shared parameter model framework that effectively takes this feature into account, and we investigate sensitivity to the various dependence structures used to describe the association between the longitudinal measurements of proteinuria and the time to renal graft failure.Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the time to renal graft failure. An interesting feature of the sample at hand is that nearly half of the patients were never tested positive for proteinuria (>/=1g/day) during follow-up, which introduces a degenerate part in the random-effects density for the longitudinal process. In this article we propose a two-part shared parameter model framework that effectively takes this feature into account, and we investigate sensitivity to the various dependence structures used to describe the association between the longitudinal measurements of proteinuria and the time to renal graft failure. Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the time to renal graft failure. An interesting feature of the sample at hand is that nearly half of the patients were never tested positive for proteinuria (≥1g/day) during follow-up, which introduces a degenerate part in the random-effects density for the longitudinal process. In this article we propose a two-part shared parameter model framework that effectively takes this feature into account, and we investigate sensitivity to the various dependence structures used to describe the association between the longitudinal measurements of proteinuria and the time to renal graft failure. /// Beaucoup d'études longitudinales aboutissent à la fois à un délai jusqu'à un événement d'intérêt et à des données en mesures répétées. Ce papier est motivé par l'étude de patients ayant une allogreffe rénale, dans laquelle on s'intéresse à l'association entre les mesures longitudinales de protéinurie (une variable dichotomique) et le délai jusqu'au rejet de greffe rénale. Une caractéristique intéressante de l'échantillon est que presque la moitié des patients n'ont jamais été testés positifs pour la protéinurie (≥1gr/jour) durant le suivi, ce qui introduit une partie dégénérée dans la densité de l'effet aléatoire du processus longitudinal. Dans ce papier nous proposons un cadre de modèle à paramètre partagé en deux parties, et nous étudions la sensibilité à diverses structures de dépendance utilisées pour décrire l'association entre les mesures longitudinales de protéinurie et le délai jusqu'au rejet de greffe rénale. |
Author | Rizopoulos, Dimitris Vanrenterghem, Yves Verbeke, Geert Lesaffre, Emmanuel |
Author_xml | – sequence: 1 givenname: Dimitris surname: Rizopoulos fullname: Rizopoulos, Dimitris – sequence: 2 givenname: Geert surname: Verbeke fullname: Verbeke, Geert – sequence: 3 givenname: Emmanuel surname: Lesaffre fullname: Lesaffre, Emmanuel – sequence: 4 givenname: Yves surname: Vanrenterghem fullname: Vanrenterghem, Yves |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17725808$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1vEzEQhleoiH7ATwAsDtw2jL127D2A1JZSilJaKalAXIyza7cOm3WxvU3y7_GyJYdeig_-0DzvjD2v97Od1rU6yxCGEU7j3WKEGcU5UAIjAsBHAKKko_WTbG8b2Mn2AGCcFxR_3832Q1ikY8mAPMt2MeeECRB72c_ZyuWXykf0xdk2onNX6wYZ51G80eiwVc0m2ICcQdPO39k71SDV1mji2msbu9omAB2l2W_QRxUVWtl4g07WlQ4B_dDehefZU6OaoF_crwfZ1aeT2fHnfHJxenZ8OMkrBiXNmTBjLgjQuQIjODYa6oLNC8F0pSjRZm7AMEiXpkaIQhioAAtBeClMPTesOMjeDnlvvfvd6RDl0oZKN41qteuC5MCLMQX8KEigJJiUfcY3D8CF63x6cGJwIQpaEp6gV_dQN1_qWt56u0zNkP86nIAPA1ClZgSvjaxsVNG6NnplG4lB9pbKheydk71zsrdU_rVUrlMC8SDBtsbj0veDdGUbvflvnTw6uzhPu6R_OegXITq_1ROWfhGU_ePzIW5D1OttXPlfcswLzuS3r6eSz-i0wPRSQuJfD7xRTqprb4O8mpLkSV-YccqLP9bb17w |
CODEN | BIOMA5 |
CitedBy_id | crossref_primary_10_1002_sim_10210 crossref_primary_10_1002_sim_3604 crossref_primary_10_1111_jcpe_13888 crossref_primary_10_1093_biostatistics_kxae009 crossref_primary_10_1080_02664763_2022_2081965 crossref_primary_10_1002_sim_9704 crossref_primary_10_1080_01621459_2012_664517 crossref_primary_10_1007_s13571_017_0132_3 crossref_primary_10_1080_10543406_2017_1321006 crossref_primary_10_1111_rssc_12377 crossref_primary_10_1007_s11336_015_9442_4 crossref_primary_10_1002_bimj_201600224 crossref_primary_10_1177_1471082X211059233 crossref_primary_10_1080_02664763_2019_1617253 crossref_primary_10_1177_0962280216659312 crossref_primary_10_1080_10543406_2014_903657 crossref_primary_10_1177_1471082X13504716 crossref_primary_10_1002_bimj_201000190 crossref_primary_10_1007_s10985_017_9405_4 crossref_primary_10_1002_sim_7698 crossref_primary_10_1177_0962280219826403 crossref_primary_10_1177_0962280213519594 crossref_primary_10_15406_bbij_2017_05_00153 crossref_primary_10_1002_gepi_22560 crossref_primary_10_1080_02664763_2014_898132 crossref_primary_10_1080_10543406_2018_1489407 crossref_primary_10_1146_annurev_statistics_030718_105048 crossref_primary_10_1177_0962280217710679 crossref_primary_10_1080_10543406_2011_590922 crossref_primary_10_1002_sim_7429 crossref_primary_10_1080_00273171_2020_1865864 crossref_primary_10_1093_biostatistics_kxz049 crossref_primary_10_1186_1471_2288_13_27 crossref_primary_10_1214_24_AOAS1902 crossref_primary_10_1007_s11222_023_10293_5 crossref_primary_10_1093_biostatistics_kxy063 crossref_primary_10_1080_02664763_2019_1590540 crossref_primary_10_1214_22_BJPS537 crossref_primary_10_1007_s10985_020_09511_3 crossref_primary_10_1007_s12561_013_9091_z crossref_primary_10_1080_03610926_2019_1635701 crossref_primary_10_1007_s12561_019_09254_2 crossref_primary_10_1002_sim_4205 crossref_primary_10_1002_sim_7838 crossref_primary_10_1080_10543406_2014_971584 crossref_primary_10_1002_sim_6948 crossref_primary_10_1080_0361073X_2015_1021640 crossref_primary_10_1177_0962280210395742 crossref_primary_10_1016_j_csda_2022_107685 crossref_primary_10_1177_09622802241268466 |
Cites_doi | 10.1007/978-1-4757-3076-0 10.1111/j.0006-341X.2001.00219.x 10.1016/j.csda.2004.10.009 10.1198/016214501753168389 10.1080/01621459.1998.10473692 10.1093/biomet/92.3.587 10.1093/biostatistics/1.4.465 10.1002/9781118032985 10.2307/2986113 10.1002/(SICI)1097-0258(19970130)16:2<215::AID-SIM481>3.0.CO;2-J 10.1023/B:JOPA.0000008157.26321.3c 10.1080/01621459.1998.10473693 10.1002/9781119013563 10.1111/j.0006-341X.2002.00742.x 10.1111/1467-9868.00055 10.1111/j.0006-341X.2004.00141.x 10.1080/01621459.1993.10476372 10.1111/j.0006-341X.2000.00602.x |
ContentType | Journal Article |
Copyright | Copyright 2008 The International Biometric Society 2008, The International Biometric Society 2008, International Biometric Society |
Copyright_xml | – notice: Copyright 2008 The International Biometric Society – notice: 2008, The International Biometric Society – notice: 2008, International Biometric Society |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7QO 8FD FR3 P64 7X8 |
DOI | 10.1111/j.1541-0420.2007.00894.x |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef ProQuest Computer Science Collection Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 619 |
ExternalDocumentID | 1478853331 17725808 10_1111_j_1541_0420_2007_00894_x BIOM894 25502097 ark_67375_WNG_7T4S314P_0 US201300895747 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANHP AANLZ AAONW AASGY AAUAY AAWIL AAXRX AAYCA AAZKR AAZSN ABAWQ ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABGNP ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABTAH ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACHJO ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNBA ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEOTA AEQDE AEUPB AEUYR AFBPY AFDVO AFEBI AFGKR AFKRA AFVYC AFWVQ AFZJQ AGLNM AGTJU AHMBA AIAGR AIHAF AIURR AIWBW AJAOE AJBDE AJNCP AJXKR ALAGY ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FBQ FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PHGZT PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT 3V. AAPXW ADACV AELPN AEUQT AFFTP AFPWT AIBGX BSCLL ESTFP JSODD VQA WRC AAMMB AEFGJ AGORE AGQPQ AGXDD AIDQK AIDYY AAYXX AHGBF AJBYB CITATION PHGZM CGR CUY CVF ECM EIF H13 NPM PJZUB PPXIY PQGLB JQ2 7QO 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c5094-58f678204ba0f871fe0d35b385eca42efbf0f505804f8838f0c01882798fdbf53 |
IEDL.DBID | DR2 |
ISSN | 0006-341X 1541-0420 |
IngestDate | Fri Sep 05 08:51:50 EDT 2025 Fri Sep 05 11:33:32 EDT 2025 Fri Jul 25 19:35:01 EDT 2025 Mon Jul 21 05:48:32 EDT 2025 Tue Jul 01 00:57:58 EDT 2025 Thu Apr 24 22:54:45 EDT 2025 Wed Jan 22 17:09:10 EST 2025 Thu Jul 03 21:22:36 EDT 2025 Wed Oct 30 09:50:40 EDT 2024 Thu Apr 03 09:43:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5094-58f678204ba0f871fe0d35b385eca42efbf0f505804f8838f0c01882798fdbf53 |
Notes | http://dx.doi.org/10.1111/j.1541-0420.2007.00894.x istex:173AC22AB03E19D1446B03958C12F442E52A0C76 ark:/67375/WNG-7T4S314P-0 ArticleID:BIOM894 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 17725808 |
PQID | 213834927 |
PQPubID | 35366 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_70736401 proquest_miscellaneous_20921295 proquest_journals_213834927 pubmed_primary_17725808 crossref_citationtrail_10_1111_j_1541_0420_2007_00894_x crossref_primary_10_1111_j_1541_0420_2007_00894_x wiley_primary_10_1111_j_1541_0420_2007_00894_x_BIOM894 jstor_primary_25502097 istex_primary_ark_67375_WNG_7T4S314P_0 fao_agris_US201300895747 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2008 |
PublicationDateYYYYMMDD | 2008-06-01 |
PublicationDate_xml | – month: 06 year: 2008 text: June 2008 |
PublicationDecade | 2000 |
PublicationPlace | Malden, USA |
PublicationPlace_xml | – name: Malden, USA – name: United States – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2008 |
Publisher | Blackwell Publishing Inc Blackwell Publishing Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Inc – name: Blackwell Publishing – name: Blackwell Publishing Ltd |
References | Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1, 465-480. Genest, C. and Rivest, L.-P. (1993). Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association 88, 1034-1043. Pulkstenis, E., Ten Have, T., and Landis, R. (1998). Model for the analysis of binary longitudinal pain data subject to informative dropout through remedication. Journal of the American Statistical Association 93, 438-450. Kalbfleisch, J. and Prentice, R. (2002). The Statistical Analysis of Failure Time Data, 2nd Edition. New York : Wiley. Faucett, C., Schenker, N., and Elashoff, R. (1998). Analysis of censored survival data with intermittently observed time-dependent binary covariates. Journal of the American Statistical Association 93, 427-437. Little, R. and Rubin, D. (2002). Statistical Analysis with Missing Data, 2nd Edition. New York : Wiley. Yu, M., Law, N., Taylor, J., and Sandler, H. (2004). Joint longitudinal-survival-cure models and their application to prostate cancer. Statistica Sinica 14, 819-846. Keiding, N., Andersen, P. K., and Klein, J. (1997). The role of frailty models and accelerated failure time models in describing heterogeneity due to omitted covariates. Statistics in Medicine 16, 215-224. Fitzmaurice, G., Laird, N., and Ware, J. (2004). Applied Longitudinal Data. Hoboken , New Jersey : Wiley. Diggle, P. and Kenward, M. (1994). Informative dropout in longitudinal data analysis (with discussion). Applied Statistics 43, 49-93. Jansen, I., Hens, N., Molenberghs, G., Aerts, M., Verbeke, G., and Kenward, M. (2006). The nature of sensitivity in monotone missing not at random models. Computational Statistics and Data Analysis 50, 830-858. Tseng, Y.-K., Hsieh, F., and Wang, J.-L. (2005). Joint modelling of accelerated failure time and longitudinal data. Biometrika 92, 587-603. Tsiatis, A. and Davidian, M. (2004). An overview of joint modeling of longitudinal and time-to-event data. Statistica Sinica 14, 793-818. Kowalski, K., McFadyen, L., Hutmacher, M., Frame, B., and Miller, R. (2003). A two-part mixture model for longitudinal adverse event severity data. Journal of Pharmacokinetics and Pharmacodynamics 30, 315-335. Larsen, K. (2004). Joint analysis of time-to-event and multiple binary indicators of latent classes. Biometrics 60, 85-92. Song, X., Davidian, M., and Tsiatis, A. (2002). A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 58, 742-753. Albert, P. (2000). A transitional model for longitudinal binary data subject to nonignorable missing data. Biometrics 56, 602-608. Copas, J. and Li, H. (1997). Inference for non-random samples (with discussion). Journal of the Royal Statistical Society, Series B 59, 55-95. R Development Core Team (2006). R: A Language and Environment for Statistical Computing. Vienna , Austria : R Foundation for Statistical Computing. Nelsen, R. (1999). An Introduction to Copulas. New York : Springer-Verlag. Ridout, M., Hinde, J., and Demetrio, C. (2001). A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives. Biometrics 57, 219-223. Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York : Springer-Verlag. Olsen, M. and Schafer, J. (2001). A two-part random-effects model for semicontinuous longitudinal data. Journal of the American Statistical Association 96, 730-745. 2002; 58 2006; 50 2004; 60 2000 2000; 56 1997; 59 1993; 88 2004; 14 1997; 16 2006 2004 2000; 1 2005; 92 1998; 93 2002 2001; 57 2003; 30 2001; 96 1994; 43 1999 e_1_2_9_20_1 e_1_2_9_11_1 e_1_2_9_10_1 R Development Core Team (e_1_2_9_18_1) 2006 e_1_2_9_21_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Fitzmaurice G. (e_1_2_9_6_1) 2004 Yu M. (e_1_2_9_24_1) 2004; 14 e_1_2_9_9_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 Verbeke G. (e_1_2_9_23_1) 2000 e_1_2_9_16_1 Tsiatis A. (e_1_2_9_22_1) 2004; 14 e_1_2_9_19_1 |
References_xml | – reference: Olsen, M. and Schafer, J. (2001). A two-part random-effects model for semicontinuous longitudinal data. Journal of the American Statistical Association 96, 730-745. – reference: Jansen, I., Hens, N., Molenberghs, G., Aerts, M., Verbeke, G., and Kenward, M. (2006). The nature of sensitivity in monotone missing not at random models. Computational Statistics and Data Analysis 50, 830-858. – reference: Yu, M., Law, N., Taylor, J., and Sandler, H. (2004). Joint longitudinal-survival-cure models and their application to prostate cancer. Statistica Sinica 14, 819-846. – reference: Fitzmaurice, G., Laird, N., and Ware, J. (2004). Applied Longitudinal Data. Hoboken , New Jersey : Wiley. – reference: Kowalski, K., McFadyen, L., Hutmacher, M., Frame, B., and Miller, R. (2003). A two-part mixture model for longitudinal adverse event severity data. Journal of Pharmacokinetics and Pharmacodynamics 30, 315-335. – reference: Tseng, Y.-K., Hsieh, F., and Wang, J.-L. (2005). Joint modelling of accelerated failure time and longitudinal data. Biometrika 92, 587-603. – reference: Nelsen, R. (1999). An Introduction to Copulas. New York : Springer-Verlag. – reference: Genest, C. and Rivest, L.-P. (1993). Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association 88, 1034-1043. – reference: Diggle, P. and Kenward, M. (1994). Informative dropout in longitudinal data analysis (with discussion). Applied Statistics 43, 49-93. – reference: Faucett, C., Schenker, N., and Elashoff, R. (1998). Analysis of censored survival data with intermittently observed time-dependent binary covariates. Journal of the American Statistical Association 93, 427-437. – reference: Keiding, N., Andersen, P. K., and Klein, J. (1997). The role of frailty models and accelerated failure time models in describing heterogeneity due to omitted covariates. Statistics in Medicine 16, 215-224. – reference: Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1, 465-480. – reference: Copas, J. and Li, H. (1997). Inference for non-random samples (with discussion). Journal of the Royal Statistical Society, Series B 59, 55-95. – reference: Larsen, K. (2004). Joint analysis of time-to-event and multiple binary indicators of latent classes. Biometrics 60, 85-92. – reference: Pulkstenis, E., Ten Have, T., and Landis, R. (1998). Model for the analysis of binary longitudinal pain data subject to informative dropout through remedication. Journal of the American Statistical Association 93, 438-450. – reference: Little, R. and Rubin, D. (2002). Statistical Analysis with Missing Data, 2nd Edition. New York : Wiley. – reference: Song, X., Davidian, M., and Tsiatis, A. (2002). A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 58, 742-753. – reference: R Development Core Team (2006). R: A Language and Environment for Statistical Computing. Vienna , Austria : R Foundation for Statistical Computing. – reference: Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York : Springer-Verlag. – reference: Ridout, M., Hinde, J., and Demetrio, C. (2001). A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives. Biometrics 57, 219-223. – reference: Albert, P. (2000). A transitional model for longitudinal binary data subject to nonignorable missing data. Biometrics 56, 602-608. – reference: Kalbfleisch, J. and Prentice, R. (2002). The Statistical Analysis of Failure Time Data, 2nd Edition. New York : Wiley. – reference: Tsiatis, A. and Davidian, M. (2004). An overview of joint modeling of longitudinal and time-to-event data. Statistica Sinica 14, 793-818. – volume: 57 start-page: 219 year: 2001 end-page: 223 article-title: A score test for testing a zero‐inflated Poisson regression model against zero‐inflated negative binomial alternatives publication-title: Biometrics – volume: 1 start-page: 465 year: 2000 end-page: 480 article-title: Joint modelling of longitudinal measurements and event time data publication-title: Biostatistics – volume: 30 start-page: 315 year: 2003 end-page: 335 article-title: A two‐part mixture model for longitudinal adverse event severity data publication-title: Journal of Pharmacokinetics and Pharmacodynamics – volume: 93 start-page: 438 year: 1998 end-page: 450 article-title: Model for the analysis of binary longitudinal pain data subject to informative dropout through remedication publication-title: Journal of the American Statistical Association – volume: 50 start-page: 830 year: 2006 end-page: 858 article-title: The nature of sensitivity in monotone missing not at random models publication-title: Computational Statistics and Data Analysis – volume: 14 start-page: 793 year: 2004 end-page: 818 article-title: An overview of joint modeling of longitudinal and time‐to‐event data publication-title: Statistica Sinica – volume: 88 start-page: 1034 year: 1993 end-page: 1043 article-title: Statistical inference procedures for bivariate Archimedean copulas publication-title: Journal of the American Statistical Association – volume: 58 start-page: 742 year: 2002 end-page: 753 article-title: A semiparametric likelihood approach to joint modeling of longitudinal and time‐to‐event data publication-title: Biometrics – volume: 96 start-page: 730 year: 2001 end-page: 745 article-title: A two‐part random‐effects model for semicontinuous longitudinal data publication-title: Journal of the American Statistical Association – year: 2002 – volume: 59 start-page: 55 year: 1997 end-page: 95 article-title: Inference for non‐random samples (with discussion) publication-title: Journal of the Royal Statistical Society, Series B – volume: 93 start-page: 427 year: 1998 end-page: 437 article-title: Analysis of censored survival data with intermittently observed time‐dependent binary covariates publication-title: Journal of the American Statistical Association – year: 2006 – volume: 92 start-page: 587 year: 2005 end-page: 603 article-title: Joint modelling of accelerated failure time and longitudinal data publication-title: Biometrika – year: 2004 – volume: 14 start-page: 819 year: 2004 end-page: 846 article-title: Joint longitudinal‐survival‐cure models and their application to prostate cancer publication-title: Statistica Sinica – year: 2000 – volume: 56 start-page: 602 year: 2000 end-page: 608 article-title: A transitional model for longitudinal binary data subject to nonignorable missing data publication-title: Biometrics – volume: 60 start-page: 85 year: 2004 end-page: 92 article-title: Joint analysis of time‐to‐event and multiple binary indicators of latent classes publication-title: Biometrics – volume: 16 start-page: 215 year: 1997 end-page: 224 article-title: The role of frailty models and accelerated failure time models in describing heterogeneity due to omitted covariates publication-title: Statistics in Medicine – volume: 43 start-page: 49 year: 1994 end-page: 93 article-title: Informative dropout in longitudinal data analysis (with discussion) publication-title: Applied Statistics – year: 1999 – ident: e_1_2_9_15_1 doi: 10.1007/978-1-4757-3076-0 – volume-title: Linear Mixed Models for Longitudinal Data year: 2000 ident: e_1_2_9_23_1 – volume-title: Applied Longitudinal Data year: 2004 ident: e_1_2_9_6_1 – volume-title: R: A Language and Environment for Statistical Computing year: 2006 ident: e_1_2_9_18_1 – ident: e_1_2_9_19_1 doi: 10.1111/j.0006-341X.2001.00219.x – ident: e_1_2_9_9_1 doi: 10.1016/j.csda.2004.10.009 – ident: e_1_2_9_16_1 doi: 10.1198/016214501753168389 – ident: e_1_2_9_5_1 doi: 10.1080/01621459.1998.10473692 – ident: e_1_2_9_21_1 doi: 10.1093/biomet/92.3.587 – ident: e_1_2_9_8_1 doi: 10.1093/biostatistics/1.4.465 – ident: e_1_2_9_10_1 doi: 10.1002/9781118032985 – volume: 14 start-page: 819 year: 2004 ident: e_1_2_9_24_1 article-title: Joint longitudinal‐survival‐cure models and their application to prostate cancer publication-title: Statistica Sinica – ident: e_1_2_9_4_1 doi: 10.2307/2986113 – ident: e_1_2_9_11_1 doi: 10.1002/(SICI)1097-0258(19970130)16:2<215::AID-SIM481>3.0.CO;2-J – ident: e_1_2_9_12_1 doi: 10.1023/B:JOPA.0000008157.26321.3c – ident: e_1_2_9_17_1 doi: 10.1080/01621459.1998.10473693 – ident: e_1_2_9_14_1 doi: 10.1002/9781119013563 – ident: e_1_2_9_20_1 doi: 10.1111/j.0006-341X.2002.00742.x – ident: e_1_2_9_3_1 doi: 10.1111/1467-9868.00055 – ident: e_1_2_9_13_1 doi: 10.1111/j.0006-341X.2004.00141.x – ident: e_1_2_9_7_1 doi: 10.1080/01621459.1993.10476372 – volume: 14 start-page: 793 year: 2004 ident: e_1_2_9_22_1 article-title: An overview of joint modeling of longitudinal and time‐to‐event data publication-title: Statistica Sinica – ident: e_1_2_9_2_1 doi: 10.1111/j.0006-341X.2000.00602.x |
SSID | ssj0009502 |
Score | 2.1049643 |
Snippet | Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a... Summary Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients... Summary Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients... Summary; Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on... |
SourceID | proquest pubmed crossref wiley jstor istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 611 |
SubjectTerms | Biometric Practice Biometrics Biometry - methods Computer Simulation Copula functions Copulas Data Interpretation, Statistical Joint modeling Kidney diseases Logistic regression Longitudinal Studies Missing data Modeling Models, Statistical Parametric models Proportional Hazards Models Proteinuria Research Design Sensitivity analysis Shared parameter model Survival Analysis Survival Rate Tissue grafting Transplants & implants Urinalysis |
Title | Two-Part Joint Model for the Analysis of Survival and Longitudinal Binary Data with Excess Zeros |
URI | https://api.istex.fr/ark:/67375/WNG-7T4S314P-0/fulltext.pdf https://www.jstor.org/stable/25502097 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2007.00894.x https://www.ncbi.nlm.nih.gov/pubmed/17725808 https://www.proquest.com/docview/213834927 https://www.proquest.com/docview/20921295 https://www.proquest.com/docview/70736401 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagElI58FgoTcvDB8QtqyS2E-fYQkup2FKxu2LFxbITG6GtkqqbiIUTP4HfyC9hJtmELipShbhF8kPyZGb8jT3-hpDnxjEWs0z7Fp-4cxY738BG7Zs4STQPTeY0nneMTuKjKT-eidkq_wnfwrT8EP2BG1pG46_RwLVZrBu54BAK8yjomAhlyoeIJzF1C_HR--gS_27QEodjqhcPZ-tJPVdOtLZT3XS6BPyKol92qYtXgdJ1jNtsUod3ybxbXpubMh_WlRlm3_5gfvw_679H7qywLN1rle8-uWGLAbnVVrf8OiC3Rz0l7GJANhHWtqzQD0i-Rydfyp_ff5yC5tLj8nNRUazKdkYBQ1MYRTuyFFo6Oq7Bn4FFUF3k9G2JFZbqHKt50f3mNTF9pStN8USZHizx2QP9aEGkD8n08GDy8shf1XvwM6Tx84V0MdL3caMDB4Gcs0HOhGFS2EzzyDrjAgeITQbcScmkC7IghAghSaXLjRNsi2wUZWG3CYVAVlgZsdSZlIdaS8s0Mu_LFALINHIeSbp_q7IVGTrW5DhTl4IiEK9C8WKpTrylB_GqpUfCfuR5SwhyjTHboD5KfwK_rabjCG-LoUVAKOeRF41O9XPpiznm2iVCfTh5rZIJH7OQn6rAI1uN0vUdIRYEqJ_CDLudFqqV_1moKGQSeSeh9VnfCo4Db4N0YcsaugQpwJZU_L1HAu4_hvjbI49a5f69YIjJ4DdIj8SNil5bEmr_zbsRfO3868Bdstlm7OA52GOyUV3U9gnAwso8bQz-F0pITEI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdgCDEe-FPYFgbMD4i3VEnsJM7jxja60ZaJtqLai2WnNppWJWhLROGJj8Bn5JNwlzRhRUOaEG-R_EfK-e78O_v8O0JeactYxFLlGnzizllkXQ0btaujOFbc16lVeN4xGEa9CT-ehtNlOSB8C1PzQ7QHbmgZlb9GA8cD6VUrDznEwjzwGipCkfAuAMo7WOAbrXT_Q3CFgderqcMx2Yv709W0nmtnWtmrbluVA4JF4S-a5MXrYOkqyq22qcOHZN78YJ2dct4tC91Nv_3B_fifJPCIPFjCWbpb699jcstkHXK3LnD5tUPuD1pW2MsOWUdkWxNDPyGzXTr-kv_8_uMElJce52dZQbEw25wCjKYwijZ8KTS3dFSCSwOjoCqb0X6ORZbKGRb0onvVg2K6rwpF8VCZHizw5QM9NSDTp2RyeDB-03OXJR_cFJn83FDYCBn8uFaehVjOGm_GQs1EaFLFA2O19SyANuFxKwQT1ks9H4KEOBF2pm3INshalmdmi1CIZUMjApZYnXBfKWGYQvJ9kUAMmQTWIXGzuDJd8qFjWY65vBIXgXgliherdeJFPYhXLhzityM_15wgNxizBfoj1Sdw3XIyCvDCGFpCiOYc8rpSqnYudXGO6XZxKD8O38p4zEfM5yfSc8hGpXVtRwgHAe0nMMN2o4Zy6YIuZeAzgdST0LrTtoLvwAshlZm8hC5eAsglCf_eI4YdIIIQ3CGbtXb__mEIy2AZhEOiSkdvLAm5d_R-AF_P_nXgDrnXGw_6sn80fLdN1usEHjwWe07WiovSvACUWOiXlfX_AgvTUFs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLVgCDQe-CiMhQHzA-ItVRI7ifO40ZVtrKWirah4sezERqhTMm2tKDzxE_iN_BLuzRcrGtKEeIvk2FJurq_Psa_PJeSltoxFLFWuwSvunEXW1bBQuzqKY8V9nVqF-x2DYXQ45cezcFbnP-FdmEofot1ww5lRxmuc4GeZXZ_kIQcqzAOvUSIUCe8CnrzFI08gEeu9Dy4J8HqVcjjmenF_tp7Vc-VIa0vVTasKALBo-1WTu3gVKl0HueUq1b9P5s33Vckp8-5yobvptz-kH_-PAR6QezWYpXuV9z0kN0zeIber8pZfO-TuoNWEveiQTcS1lSz0I5Lt0cmX4uf3HyNwXXpcfM4XFMuynVIA0RR60UYthRaWjpcQ0GBKUJVn9KTAEkvLDMt50f3yOjHtqYWiuKVMD1Z474F-NGDSx2TaP5i8PnTrgg9uijp-bihshPp9XCvPApOzxstYqJkITap4YKy2ngXIJjxuhWDCeqnnA0WIE2EzbUO2RTbyIjfbhAKTDY0IWGJ1wn2lhGEKpfdFAgwyCaxD4ubfyrRWQ8eiHKfyEisC80o0L9bqxGN6MK9cOcRve55ViiDX6LMN7iPVJwjccjoO8LgYWkLgcg55VfpUO5Y6n2OyXRzKD8M3Mp7wMfP5SHoO2Sqdrn0RyCBg_QRG2Gm8UNYB6EIGPhMoPAmtu20rRA48DlK5KZbwipcAbknCv78RQ_yPgIA75Enl3L8_GEgZ_AbhkKh00WtbQu4fvRvA09N_7bhL7ox6fXlyNHy7Qzar7B3cE3tGNhbnS_McIOJCvyjn_i_Y-U8T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-part+joint+model+for+the+analysis+of+survival+and+longitudinal+binary+data+with+excess+zeros&rft.jtitle=Biometrics&rft.au=Rizopoulos%2C+Dimitris&rft.au=Verbeke%2C+Geert&rft.au=Lesaffre%2C+Emmanuel&rft.au=Vanrenterghem%2C+Yves&rft.date=2008-06-01&rft.eissn=1541-0420&rft.volume=64&rft.issue=2&rft.spage=611&rft_id=info:doi/10.1111%2Fj.1541-0420.2007.00894.x&rft_id=info%3Apmid%2F17725808&rft.externalDocID=17725808 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |