Two-Part Joint Model for the Analysis of Survival and Longitudinal Binary Data with Excess Zeros

Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the tim...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 64; no. 2; pp. 611 - 619
Main Authors Rizopoulos, Dimitris, Verbeke, Geert, Lesaffre, Emmanuel, Vanrenterghem, Yves
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.06.2008
Blackwell Publishing
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/j.1541-0420.2007.00894.x

Cover

Loading…
Abstract Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the time to renal graft failure. An interesting feature of the sample at hand is that nearly half of the patients were never tested positive for proteinuria (>=1g/day) during follow-up, which introduces a degenerate part in the random-effects density for the longitudinal process. In this article we propose a two-part shared parameter model framework that effectively takes this feature into account, and we investigate sensitivity to the various dependence structures used to describe the association between the longitudinal measurements of proteinuria and the time to renal graft failure.
AbstractList Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the time to renal graft failure. An interesting feature of the sample at hand is that nearly half of the patients were never tested positive for proteinuria (>/=1g/day) during follow-up, which introduces a degenerate part in the random-effects density for the longitudinal process. In this article we propose a two-part shared parameter model framework that effectively takes this feature into account, and we investigate sensitivity to the various dependence structures used to describe the association between the longitudinal measurements of proteinuria and the time to renal graft failure.
Summary Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the time to renal graft failure. An interesting feature of the sample at hand is that nearly half of the patients were never tested positive for proteinuria (≥1g/day) during follow‐up, which introduces a degenerate part in the random‐effects density for the longitudinal process. In this article we propose a two‐part shared parameter model framework that effectively takes this feature into account, and we investigate sensitivity to the various dependence structures used to describe the association between the longitudinal measurements of proteinuria and the time to renal graft failure.
Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the time to renal graft failure. An interesting feature of the sample at hand is that nearly half of the patients were never tested positive for proteinuria ([greater than or equal to] 1g/day) during follow-up, which introduces a degenerate part in the random-effects density for the longitudinal process. In this article we propose a two-part shared parameter model framework that effectively takes this feature into account, and we investigate sensitivity to the various dependence structures used to describe the association between the longitudinal measurements of proteinuria and the time to renal graft failure. [PUBLICATION ABSTRACT]
Summary; Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the time to renal graft failure. An interesting feature of the sample at hand is that nearly half of the patients were never tested positive for proteinuria ( greater than or equal to 1g-day) during follow-up, which introduces a degenerate part in the random-effects density for the longitudinal process. In this article we propose a two-part shared parameter model framework that effectively takes this feature into account, and we investigate sensitivity to the various dependence structures used to describe the association between the longitudinal measurements of proteinuria and the time to renal graft failure.
Summary Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the time to renal graft failure. An interesting feature of the sample at hand is that nearly half of the patients were never tested positive for proteinuria (≥1g/day) during follow‐up, which introduces a degenerate part in the random‐effects density for the longitudinal process. In this article we propose a two‐part shared parameter model framework that effectively takes this feature into account, and we investigate sensitivity to the various dependence structures used to describe the association between the longitudinal measurements of proteinuria and the time to renal graft failure.
Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the time to renal graft failure. An interesting feature of the sample at hand is that nearly half of the patients were never tested positive for proteinuria (>/=1g/day) during follow-up, which introduces a degenerate part in the random-effects density for the longitudinal process. In this article we propose a two-part shared parameter model framework that effectively takes this feature into account, and we investigate sensitivity to the various dependence structures used to describe the association between the longitudinal measurements of proteinuria and the time to renal graft failure.Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the time to renal graft failure. An interesting feature of the sample at hand is that nearly half of the patients were never tested positive for proteinuria (>/=1g/day) during follow-up, which introduces a degenerate part in the random-effects density for the longitudinal process. In this article we propose a two-part shared parameter model framework that effectively takes this feature into account, and we investigate sensitivity to the various dependence structures used to describe the association between the longitudinal measurements of proteinuria and the time to renal graft failure.
Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a renal allograft, in which interest lies in the association between longitudinal proteinuria (a dichotomous variable) measurements and the time to renal graft failure. An interesting feature of the sample at hand is that nearly half of the patients were never tested positive for proteinuria (≥1g/day) during follow-up, which introduces a degenerate part in the random-effects density for the longitudinal process. In this article we propose a two-part shared parameter model framework that effectively takes this feature into account, and we investigate sensitivity to the various dependence structures used to describe the association between the longitudinal measurements of proteinuria and the time to renal graft failure. /// Beaucoup d'études longitudinales aboutissent à la fois à un délai jusqu'à un événement d'intérêt et à des données en mesures répétées. Ce papier est motivé par l'étude de patients ayant une allogreffe rénale, dans laquelle on s'intéresse à l'association entre les mesures longitudinales de protéinurie (une variable dichotomique) et le délai jusqu'au rejet de greffe rénale. Une caractéristique intéressante de l'échantillon est que presque la moitié des patients n'ont jamais été testés positifs pour la protéinurie (≥1gr/jour) durant le suivi, ce qui introduit une partie dégénérée dans la densité de l'effet aléatoire du processus longitudinal. Dans ce papier nous proposons un cadre de modèle à paramètre partagé en deux parties, et nous étudions la sensibilité à diverses structures de dépendance utilisées pour décrire l'association entre les mesures longitudinales de protéinurie et le délai jusqu'au rejet de greffe rénale.
Author Rizopoulos, Dimitris
Vanrenterghem, Yves
Verbeke, Geert
Lesaffre, Emmanuel
Author_xml – sequence: 1
  givenname: Dimitris
  surname: Rizopoulos
  fullname: Rizopoulos, Dimitris
– sequence: 2
  givenname: Geert
  surname: Verbeke
  fullname: Verbeke, Geert
– sequence: 3
  givenname: Emmanuel
  surname: Lesaffre
  fullname: Lesaffre, Emmanuel
– sequence: 4
  givenname: Yves
  surname: Vanrenterghem
  fullname: Vanrenterghem, Yves
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17725808$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1vEzEQhleoiH7ATwAsDtw2jL127D2A1JZSilJaKalAXIyza7cOm3WxvU3y7_GyJYdeig_-0DzvjD2v97Od1rU6yxCGEU7j3WKEGcU5UAIjAsBHAKKko_WTbG8b2Mn2AGCcFxR_3832Q1ikY8mAPMt2MeeECRB72c_ZyuWXykf0xdk2onNX6wYZ51G80eiwVc0m2ICcQdPO39k71SDV1mji2msbu9omAB2l2W_QRxUVWtl4g07WlQ4B_dDehefZU6OaoF_crwfZ1aeT2fHnfHJxenZ8OMkrBiXNmTBjLgjQuQIjODYa6oLNC8F0pSjRZm7AMEiXpkaIQhioAAtBeClMPTesOMjeDnlvvfvd6RDl0oZKN41qteuC5MCLMQX8KEigJJiUfcY3D8CF63x6cGJwIQpaEp6gV_dQN1_qWt56u0zNkP86nIAPA1ClZgSvjaxsVNG6NnplG4lB9pbKheydk71zsrdU_rVUrlMC8SDBtsbj0veDdGUbvflvnTw6uzhPu6R_OegXITq_1ROWfhGU_ePzIW5D1OttXPlfcswLzuS3r6eSz-i0wPRSQuJfD7xRTqprb4O8mpLkSV-YccqLP9bb17w
CODEN BIOMA5
CitedBy_id crossref_primary_10_1002_sim_10210
crossref_primary_10_1002_sim_3604
crossref_primary_10_1111_jcpe_13888
crossref_primary_10_1093_biostatistics_kxae009
crossref_primary_10_1080_02664763_2022_2081965
crossref_primary_10_1002_sim_9704
crossref_primary_10_1080_01621459_2012_664517
crossref_primary_10_1007_s13571_017_0132_3
crossref_primary_10_1080_10543406_2017_1321006
crossref_primary_10_1111_rssc_12377
crossref_primary_10_1007_s11336_015_9442_4
crossref_primary_10_1002_bimj_201600224
crossref_primary_10_1177_1471082X211059233
crossref_primary_10_1080_02664763_2019_1617253
crossref_primary_10_1177_0962280216659312
crossref_primary_10_1080_10543406_2014_903657
crossref_primary_10_1177_1471082X13504716
crossref_primary_10_1002_bimj_201000190
crossref_primary_10_1007_s10985_017_9405_4
crossref_primary_10_1002_sim_7698
crossref_primary_10_1177_0962280219826403
crossref_primary_10_1177_0962280213519594
crossref_primary_10_15406_bbij_2017_05_00153
crossref_primary_10_1002_gepi_22560
crossref_primary_10_1080_02664763_2014_898132
crossref_primary_10_1080_10543406_2018_1489407
crossref_primary_10_1146_annurev_statistics_030718_105048
crossref_primary_10_1177_0962280217710679
crossref_primary_10_1080_10543406_2011_590922
crossref_primary_10_1002_sim_7429
crossref_primary_10_1080_00273171_2020_1865864
crossref_primary_10_1093_biostatistics_kxz049
crossref_primary_10_1186_1471_2288_13_27
crossref_primary_10_1214_24_AOAS1902
crossref_primary_10_1007_s11222_023_10293_5
crossref_primary_10_1093_biostatistics_kxy063
crossref_primary_10_1080_02664763_2019_1590540
crossref_primary_10_1214_22_BJPS537
crossref_primary_10_1007_s10985_020_09511_3
crossref_primary_10_1007_s12561_013_9091_z
crossref_primary_10_1080_03610926_2019_1635701
crossref_primary_10_1007_s12561_019_09254_2
crossref_primary_10_1002_sim_4205
crossref_primary_10_1002_sim_7838
crossref_primary_10_1080_10543406_2014_971584
crossref_primary_10_1002_sim_6948
crossref_primary_10_1080_0361073X_2015_1021640
crossref_primary_10_1177_0962280210395742
crossref_primary_10_1016_j_csda_2022_107685
crossref_primary_10_1177_09622802241268466
Cites_doi 10.1007/978-1-4757-3076-0
10.1111/j.0006-341X.2001.00219.x
10.1016/j.csda.2004.10.009
10.1198/016214501753168389
10.1080/01621459.1998.10473692
10.1093/biomet/92.3.587
10.1093/biostatistics/1.4.465
10.1002/9781118032985
10.2307/2986113
10.1002/(SICI)1097-0258(19970130)16:2<215::AID-SIM481>3.0.CO;2-J
10.1023/B:JOPA.0000008157.26321.3c
10.1080/01621459.1998.10473693
10.1002/9781119013563
10.1111/j.0006-341X.2002.00742.x
10.1111/1467-9868.00055
10.1111/j.0006-341X.2004.00141.x
10.1080/01621459.1993.10476372
10.1111/j.0006-341X.2000.00602.x
ContentType Journal Article
Copyright Copyright 2008 The International Biometric Society
2008, The International Biometric Society
2008, International Biometric Society
Copyright_xml – notice: Copyright 2008 The International Biometric Society
– notice: 2008, The International Biometric Society
– notice: 2008, International Biometric Society
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7QO
8FD
FR3
P64
7X8
DOI 10.1111/j.1541-0420.2007.00894.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
ProQuest Computer Science Collection
Engineering Research Database

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 619
ExternalDocumentID 1478853331
17725808
10_1111_j_1541_0420_2007_00894_x
BIOM894
25502097
ark_67375_WNG_7T4S314P_0
US201300895747
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAWIL
AAXRX
AAYCA
AAZKR
AAZSN
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABTAH
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEQDE
AEUPB
AEUYR
AFBPY
AFDVO
AFEBI
AFGKR
AFKRA
AFVYC
AFWVQ
AFZJQ
AGLNM
AGTJU
AHMBA
AIAGR
AIHAF
AIURR
AIWBW
AJAOE
AJBDE
AJNCP
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FBQ
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PHGZT
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
3V.
AAPXW
ADACV
AELPN
AEUQT
AFFTP
AFPWT
AIBGX
BSCLL
ESTFP
JSODD
VQA
WRC
AAMMB
AEFGJ
AGORE
AGQPQ
AGXDD
AIDQK
AIDYY
AAYXX
AHGBF
AJBYB
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
H13
NPM
PJZUB
PPXIY
PQGLB
JQ2
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c5094-58f678204ba0f871fe0d35b385eca42efbf0f505804f8838f0c01882798fdbf53
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Fri Sep 05 08:51:50 EDT 2025
Fri Sep 05 11:33:32 EDT 2025
Fri Jul 25 19:35:01 EDT 2025
Mon Jul 21 05:48:32 EDT 2025
Tue Jul 01 00:57:58 EDT 2025
Thu Apr 24 22:54:45 EDT 2025
Wed Jan 22 17:09:10 EST 2025
Thu Jul 03 21:22:36 EDT 2025
Wed Oct 30 09:50:40 EDT 2024
Thu Apr 03 09:43:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5094-58f678204ba0f871fe0d35b385eca42efbf0f505804f8838f0c01882798fdbf53
Notes http://dx.doi.org/10.1111/j.1541-0420.2007.00894.x
istex:173AC22AB03E19D1446B03958C12F442E52A0C76
ark:/67375/WNG-7T4S314P-0
ArticleID:BIOM894
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 17725808
PQID 213834927
PQPubID 35366
PageCount 9
ParticipantIDs proquest_miscellaneous_70736401
proquest_miscellaneous_20921295
proquest_journals_213834927
pubmed_primary_17725808
crossref_citationtrail_10_1111_j_1541_0420_2007_00894_x
crossref_primary_10_1111_j_1541_0420_2007_00894_x
wiley_primary_10_1111_j_1541_0420_2007_00894_x_BIOM894
jstor_primary_25502097
istex_primary_ark_67375_WNG_7T4S314P_0
fao_agris_US201300895747
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2008
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: June 2008
PublicationDecade 2000
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2008
Publisher Blackwell Publishing Inc
Blackwell Publishing
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Inc
– name: Blackwell Publishing
– name: Blackwell Publishing Ltd
References Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1, 465-480.
Genest, C. and Rivest, L.-P. (1993). Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association 88, 1034-1043.
Pulkstenis, E., Ten Have, T., and Landis, R. (1998). Model for the analysis of binary longitudinal pain data subject to informative dropout through remedication. Journal of the American Statistical Association 93, 438-450.
Kalbfleisch, J. and Prentice, R. (2002). The Statistical Analysis of Failure Time Data, 2nd Edition. New York : Wiley.
Faucett, C., Schenker, N., and Elashoff, R. (1998). Analysis of censored survival data with intermittently observed time-dependent binary covariates. Journal of the American Statistical Association 93, 427-437.
Little, R. and Rubin, D. (2002). Statistical Analysis with Missing Data, 2nd Edition. New York : Wiley.
Yu, M., Law, N., Taylor, J., and Sandler, H. (2004). Joint longitudinal-survival-cure models and their application to prostate cancer. Statistica Sinica 14, 819-846.
Keiding, N., Andersen, P. K., and Klein, J. (1997). The role of frailty models and accelerated failure time models in describing heterogeneity due to omitted covariates. Statistics in Medicine 16, 215-224.
Fitzmaurice, G., Laird, N., and Ware, J. (2004). Applied Longitudinal Data. Hoboken , New Jersey : Wiley.
Diggle, P. and Kenward, M. (1994). Informative dropout in longitudinal data analysis (with discussion). Applied Statistics 43, 49-93.
Jansen, I., Hens, N., Molenberghs, G., Aerts, M., Verbeke, G., and Kenward, M. (2006). The nature of sensitivity in monotone missing not at random models. Computational Statistics and Data Analysis 50, 830-858.
Tseng, Y.-K., Hsieh, F., and Wang, J.-L. (2005). Joint modelling of accelerated failure time and longitudinal data. Biometrika 92, 587-603.
Tsiatis, A. and Davidian, M. (2004). An overview of joint modeling of longitudinal and time-to-event data. Statistica Sinica 14, 793-818.
Kowalski, K., McFadyen, L., Hutmacher, M., Frame, B., and Miller, R. (2003). A two-part mixture model for longitudinal adverse event severity data. Journal of Pharmacokinetics and Pharmacodynamics 30, 315-335.
Larsen, K. (2004). Joint analysis of time-to-event and multiple binary indicators of latent classes. Biometrics 60, 85-92.
Song, X., Davidian, M., and Tsiatis, A. (2002). A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 58, 742-753.
Albert, P. (2000). A transitional model for longitudinal binary data subject to nonignorable missing data. Biometrics 56, 602-608.
Copas, J. and Li, H. (1997). Inference for non-random samples (with discussion). Journal of the Royal Statistical Society, Series B 59, 55-95.
R Development Core Team (2006). R: A Language and Environment for Statistical Computing. Vienna , Austria : R Foundation for Statistical Computing.
Nelsen, R. (1999). An Introduction to Copulas. New York : Springer-Verlag.
Ridout, M., Hinde, J., and Demetrio, C. (2001). A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives. Biometrics 57, 219-223.
Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York : Springer-Verlag.
Olsen, M. and Schafer, J. (2001). A two-part random-effects model for semicontinuous longitudinal data. Journal of the American Statistical Association 96, 730-745.
2002; 58
2006; 50
2004; 60
2000
2000; 56
1997; 59
1993; 88
2004; 14
1997; 16
2006
2004
2000; 1
2005; 92
1998; 93
2002
2001; 57
2003; 30
2001; 96
1994; 43
1999
e_1_2_9_20_1
e_1_2_9_11_1
e_1_2_9_10_1
R Development Core Team (e_1_2_9_18_1) 2006
e_1_2_9_21_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Fitzmaurice G. (e_1_2_9_6_1) 2004
Yu M. (e_1_2_9_24_1) 2004; 14
e_1_2_9_9_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
Verbeke G. (e_1_2_9_23_1) 2000
e_1_2_9_16_1
Tsiatis A. (e_1_2_9_22_1) 2004; 14
e_1_2_9_19_1
References_xml – reference: Olsen, M. and Schafer, J. (2001). A two-part random-effects model for semicontinuous longitudinal data. Journal of the American Statistical Association 96, 730-745.
– reference: Jansen, I., Hens, N., Molenberghs, G., Aerts, M., Verbeke, G., and Kenward, M. (2006). The nature of sensitivity in monotone missing not at random models. Computational Statistics and Data Analysis 50, 830-858.
– reference: Yu, M., Law, N., Taylor, J., and Sandler, H. (2004). Joint longitudinal-survival-cure models and their application to prostate cancer. Statistica Sinica 14, 819-846.
– reference: Fitzmaurice, G., Laird, N., and Ware, J. (2004). Applied Longitudinal Data. Hoboken , New Jersey : Wiley.
– reference: Kowalski, K., McFadyen, L., Hutmacher, M., Frame, B., and Miller, R. (2003). A two-part mixture model for longitudinal adverse event severity data. Journal of Pharmacokinetics and Pharmacodynamics 30, 315-335.
– reference: Tseng, Y.-K., Hsieh, F., and Wang, J.-L. (2005). Joint modelling of accelerated failure time and longitudinal data. Biometrika 92, 587-603.
– reference: Nelsen, R. (1999). An Introduction to Copulas. New York : Springer-Verlag.
– reference: Genest, C. and Rivest, L.-P. (1993). Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association 88, 1034-1043.
– reference: Diggle, P. and Kenward, M. (1994). Informative dropout in longitudinal data analysis (with discussion). Applied Statistics 43, 49-93.
– reference: Faucett, C., Schenker, N., and Elashoff, R. (1998). Analysis of censored survival data with intermittently observed time-dependent binary covariates. Journal of the American Statistical Association 93, 427-437.
– reference: Keiding, N., Andersen, P. K., and Klein, J. (1997). The role of frailty models and accelerated failure time models in describing heterogeneity due to omitted covariates. Statistics in Medicine 16, 215-224.
– reference: Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1, 465-480.
– reference: Copas, J. and Li, H. (1997). Inference for non-random samples (with discussion). Journal of the Royal Statistical Society, Series B 59, 55-95.
– reference: Larsen, K. (2004). Joint analysis of time-to-event and multiple binary indicators of latent classes. Biometrics 60, 85-92.
– reference: Pulkstenis, E., Ten Have, T., and Landis, R. (1998). Model for the analysis of binary longitudinal pain data subject to informative dropout through remedication. Journal of the American Statistical Association 93, 438-450.
– reference: Little, R. and Rubin, D. (2002). Statistical Analysis with Missing Data, 2nd Edition. New York : Wiley.
– reference: Song, X., Davidian, M., and Tsiatis, A. (2002). A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 58, 742-753.
– reference: R Development Core Team (2006). R: A Language and Environment for Statistical Computing. Vienna , Austria : R Foundation for Statistical Computing.
– reference: Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York : Springer-Verlag.
– reference: Ridout, M., Hinde, J., and Demetrio, C. (2001). A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives. Biometrics 57, 219-223.
– reference: Albert, P. (2000). A transitional model for longitudinal binary data subject to nonignorable missing data. Biometrics 56, 602-608.
– reference: Kalbfleisch, J. and Prentice, R. (2002). The Statistical Analysis of Failure Time Data, 2nd Edition. New York : Wiley.
– reference: Tsiatis, A. and Davidian, M. (2004). An overview of joint modeling of longitudinal and time-to-event data. Statistica Sinica 14, 793-818.
– volume: 57
  start-page: 219
  year: 2001
  end-page: 223
  article-title: A score test for testing a zero‐inflated Poisson regression model against zero‐inflated negative binomial alternatives
  publication-title: Biometrics
– volume: 1
  start-page: 465
  year: 2000
  end-page: 480
  article-title: Joint modelling of longitudinal measurements and event time data
  publication-title: Biostatistics
– volume: 30
  start-page: 315
  year: 2003
  end-page: 335
  article-title: A two‐part mixture model for longitudinal adverse event severity data
  publication-title: Journal of Pharmacokinetics and Pharmacodynamics
– volume: 93
  start-page: 438
  year: 1998
  end-page: 450
  article-title: Model for the analysis of binary longitudinal pain data subject to informative dropout through remedication
  publication-title: Journal of the American Statistical Association
– volume: 50
  start-page: 830
  year: 2006
  end-page: 858
  article-title: The nature of sensitivity in monotone missing not at random models
  publication-title: Computational Statistics and Data Analysis
– volume: 14
  start-page: 793
  year: 2004
  end-page: 818
  article-title: An overview of joint modeling of longitudinal and time‐to‐event data
  publication-title: Statistica Sinica
– volume: 88
  start-page: 1034
  year: 1993
  end-page: 1043
  article-title: Statistical inference procedures for bivariate Archimedean copulas
  publication-title: Journal of the American Statistical Association
– volume: 58
  start-page: 742
  year: 2002
  end-page: 753
  article-title: A semiparametric likelihood approach to joint modeling of longitudinal and time‐to‐event data
  publication-title: Biometrics
– volume: 96
  start-page: 730
  year: 2001
  end-page: 745
  article-title: A two‐part random‐effects model for semicontinuous longitudinal data
  publication-title: Journal of the American Statistical Association
– year: 2002
– volume: 59
  start-page: 55
  year: 1997
  end-page: 95
  article-title: Inference for non‐random samples (with discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 93
  start-page: 427
  year: 1998
  end-page: 437
  article-title: Analysis of censored survival data with intermittently observed time‐dependent binary covariates
  publication-title: Journal of the American Statistical Association
– year: 2006
– volume: 92
  start-page: 587
  year: 2005
  end-page: 603
  article-title: Joint modelling of accelerated failure time and longitudinal data
  publication-title: Biometrika
– year: 2004
– volume: 14
  start-page: 819
  year: 2004
  end-page: 846
  article-title: Joint longitudinal‐survival‐cure models and their application to prostate cancer
  publication-title: Statistica Sinica
– year: 2000
– volume: 56
  start-page: 602
  year: 2000
  end-page: 608
  article-title: A transitional model for longitudinal binary data subject to nonignorable missing data
  publication-title: Biometrics
– volume: 60
  start-page: 85
  year: 2004
  end-page: 92
  article-title: Joint analysis of time‐to‐event and multiple binary indicators of latent classes
  publication-title: Biometrics
– volume: 16
  start-page: 215
  year: 1997
  end-page: 224
  article-title: The role of frailty models and accelerated failure time models in describing heterogeneity due to omitted covariates
  publication-title: Statistics in Medicine
– volume: 43
  start-page: 49
  year: 1994
  end-page: 93
  article-title: Informative dropout in longitudinal data analysis (with discussion)
  publication-title: Applied Statistics
– year: 1999
– ident: e_1_2_9_15_1
  doi: 10.1007/978-1-4757-3076-0
– volume-title: Linear Mixed Models for Longitudinal Data
  year: 2000
  ident: e_1_2_9_23_1
– volume-title: Applied Longitudinal Data
  year: 2004
  ident: e_1_2_9_6_1
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2006
  ident: e_1_2_9_18_1
– ident: e_1_2_9_19_1
  doi: 10.1111/j.0006-341X.2001.00219.x
– ident: e_1_2_9_9_1
  doi: 10.1016/j.csda.2004.10.009
– ident: e_1_2_9_16_1
  doi: 10.1198/016214501753168389
– ident: e_1_2_9_5_1
  doi: 10.1080/01621459.1998.10473692
– ident: e_1_2_9_21_1
  doi: 10.1093/biomet/92.3.587
– ident: e_1_2_9_8_1
  doi: 10.1093/biostatistics/1.4.465
– ident: e_1_2_9_10_1
  doi: 10.1002/9781118032985
– volume: 14
  start-page: 819
  year: 2004
  ident: e_1_2_9_24_1
  article-title: Joint longitudinal‐survival‐cure models and their application to prostate cancer
  publication-title: Statistica Sinica
– ident: e_1_2_9_4_1
  doi: 10.2307/2986113
– ident: e_1_2_9_11_1
  doi: 10.1002/(SICI)1097-0258(19970130)16:2<215::AID-SIM481>3.0.CO;2-J
– ident: e_1_2_9_12_1
  doi: 10.1023/B:JOPA.0000008157.26321.3c
– ident: e_1_2_9_17_1
  doi: 10.1080/01621459.1998.10473693
– ident: e_1_2_9_14_1
  doi: 10.1002/9781119013563
– ident: e_1_2_9_20_1
  doi: 10.1111/j.0006-341X.2002.00742.x
– ident: e_1_2_9_3_1
  doi: 10.1111/1467-9868.00055
– ident: e_1_2_9_13_1
  doi: 10.1111/j.0006-341X.2004.00141.x
– ident: e_1_2_9_7_1
  doi: 10.1080/01621459.1993.10476372
– volume: 14
  start-page: 793
  year: 2004
  ident: e_1_2_9_22_1
  article-title: An overview of joint modeling of longitudinal and time‐to‐event data
  publication-title: Statistica Sinica
– ident: e_1_2_9_2_1
  doi: 10.1111/j.0006-341X.2000.00602.x
SSID ssj0009502
Score 2.1049643
Snippet Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients with a...
Summary Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients...
Summary Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on patients...
Summary; Many longitudinal studies generate both the time to some event of interest and repeated measures data. This article is motivated by a study on...
SourceID proquest
pubmed
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 611
SubjectTerms Biometric Practice
Biometrics
Biometry - methods
Computer Simulation
Copula functions
Copulas
Data Interpretation, Statistical
Joint modeling
Kidney diseases
Logistic regression
Longitudinal Studies
Missing data
Modeling
Models, Statistical
Parametric models
Proportional Hazards Models
Proteinuria
Research Design
Sensitivity analysis
Shared parameter model
Survival Analysis
Survival Rate
Tissue grafting
Transplants & implants
Urinalysis
Title Two-Part Joint Model for the Analysis of Survival and Longitudinal Binary Data with Excess Zeros
URI https://api.istex.fr/ark:/67375/WNG-7T4S314P-0/fulltext.pdf
https://www.jstor.org/stable/25502097
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2007.00894.x
https://www.ncbi.nlm.nih.gov/pubmed/17725808
https://www.proquest.com/docview/213834927
https://www.proquest.com/docview/20921295
https://www.proquest.com/docview/70736401
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagElI58FgoTcvDB8QtqyS2E-fYQkup2FKxu2LFxbITG6GtkqqbiIUTP4HfyC9hJtmELipShbhF8kPyZGb8jT3-hpDnxjEWs0z7Fp-4cxY738BG7Zs4STQPTeY0nneMTuKjKT-eidkq_wnfwrT8EP2BG1pG46_RwLVZrBu54BAK8yjomAhlyoeIJzF1C_HR--gS_27QEodjqhcPZ-tJPVdOtLZT3XS6BPyKol92qYtXgdJ1jNtsUod3ybxbXpubMh_WlRlm3_5gfvw_679H7qywLN1rle8-uWGLAbnVVrf8OiC3Rz0l7GJANhHWtqzQD0i-Rydfyp_ff5yC5tLj8nNRUazKdkYBQ1MYRTuyFFo6Oq7Bn4FFUF3k9G2JFZbqHKt50f3mNTF9pStN8USZHizx2QP9aEGkD8n08GDy8shf1XvwM6Tx84V0MdL3caMDB4Gcs0HOhGFS2EzzyDrjAgeITQbcScmkC7IghAghSaXLjRNsi2wUZWG3CYVAVlgZsdSZlIdaS8s0Mu_LFALINHIeSbp_q7IVGTrW5DhTl4IiEK9C8WKpTrylB_GqpUfCfuR5SwhyjTHboD5KfwK_rabjCG-LoUVAKOeRF41O9XPpiznm2iVCfTh5rZIJH7OQn6rAI1uN0vUdIRYEqJ_CDLudFqqV_1moKGQSeSeh9VnfCo4Db4N0YcsaugQpwJZU_L1HAu4_hvjbI49a5f69YIjJ4DdIj8SNil5bEmr_zbsRfO3868Bdstlm7OA52GOyUV3U9gnAwso8bQz-F0pITEI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdgCDEe-FPYFgbMD4i3VEnsJM7jxja60ZaJtqLai2WnNppWJWhLROGJj8Bn5JNwlzRhRUOaEG-R_EfK-e78O_v8O0JeactYxFLlGnzizllkXQ0btaujOFbc16lVeN4xGEa9CT-ehtNlOSB8C1PzQ7QHbmgZlb9GA8cD6VUrDznEwjzwGipCkfAuAMo7WOAbrXT_Q3CFgderqcMx2Yv709W0nmtnWtmrbluVA4JF4S-a5MXrYOkqyq22qcOHZN78YJ2dct4tC91Nv_3B_fifJPCIPFjCWbpb699jcstkHXK3LnD5tUPuD1pW2MsOWUdkWxNDPyGzXTr-kv_8_uMElJce52dZQbEw25wCjKYwijZ8KTS3dFSCSwOjoCqb0X6ORZbKGRb0onvVg2K6rwpF8VCZHizw5QM9NSDTp2RyeDB-03OXJR_cFJn83FDYCBn8uFaehVjOGm_GQs1EaFLFA2O19SyANuFxKwQT1ks9H4KEOBF2pm3INshalmdmi1CIZUMjApZYnXBfKWGYQvJ9kUAMmQTWIXGzuDJd8qFjWY65vBIXgXgliherdeJFPYhXLhzityM_15wgNxizBfoj1Sdw3XIyCvDCGFpCiOYc8rpSqnYudXGO6XZxKD8O38p4zEfM5yfSc8hGpXVtRwgHAe0nMMN2o4Zy6YIuZeAzgdST0LrTtoLvwAshlZm8hC5eAsglCf_eI4YdIIIQ3CGbtXb__mEIy2AZhEOiSkdvLAm5d_R-AF_P_nXgDrnXGw_6sn80fLdN1usEHjwWe07WiovSvACUWOiXlfX_AgvTUFs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLVgCDQe-CiMhQHzA-ItVRI7ifO40ZVtrKWirah4sezERqhTMm2tKDzxE_iN_BLuzRcrGtKEeIvk2FJurq_Psa_PJeSltoxFLFWuwSvunEXW1bBQuzqKY8V9nVqF-x2DYXQ45cezcFbnP-FdmEofot1ww5lRxmuc4GeZXZ_kIQcqzAOvUSIUCe8CnrzFI08gEeu9Dy4J8HqVcjjmenF_tp7Vc-VIa0vVTasKALBo-1WTu3gVKl0HueUq1b9P5s33Vckp8-5yobvptz-kH_-PAR6QezWYpXuV9z0kN0zeIber8pZfO-TuoNWEveiQTcS1lSz0I5Lt0cmX4uf3HyNwXXpcfM4XFMuynVIA0RR60UYthRaWjpcQ0GBKUJVn9KTAEkvLDMt50f3yOjHtqYWiuKVMD1Z474F-NGDSx2TaP5i8PnTrgg9uijp-bihshPp9XCvPApOzxstYqJkITap4YKy2ngXIJjxuhWDCeqnnA0WIE2EzbUO2RTbyIjfbhAKTDY0IWGJ1wn2lhGEKpfdFAgwyCaxD4ubfyrRWQ8eiHKfyEisC80o0L9bqxGN6MK9cOcRve55ViiDX6LMN7iPVJwjccjoO8LgYWkLgcg55VfpUO5Y6n2OyXRzKD8M3Mp7wMfP5SHoO2Sqdrn0RyCBg_QRG2Gm8UNYB6EIGPhMoPAmtu20rRA48DlK5KZbwipcAbknCv78RQ_yPgIA75Enl3L8_GEgZ_AbhkKh00WtbQu4fvRvA09N_7bhL7ox6fXlyNHy7Qzar7B3cE3tGNhbnS_McIOJCvyjn_i_Y-U8T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-part+joint+model+for+the+analysis+of+survival+and+longitudinal+binary+data+with+excess+zeros&rft.jtitle=Biometrics&rft.au=Rizopoulos%2C+Dimitris&rft.au=Verbeke%2C+Geert&rft.au=Lesaffre%2C+Emmanuel&rft.au=Vanrenterghem%2C+Yves&rft.date=2008-06-01&rft.eissn=1541-0420&rft.volume=64&rft.issue=2&rft.spage=611&rft_id=info:doi/10.1111%2Fj.1541-0420.2007.00894.x&rft_id=info%3Apmid%2F17725808&rft.externalDocID=17725808
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon