Iridicycle-Catalysed Imine Reduction: An Experimental and Computational Study of the Mechanism

The mechanism of imine reduction by formic acid with a single‐site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover‐limited by the hydride formatio...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 21; no. 46; pp. 16564 - 16577
Main Authors Chen, Hsin-Yi Tiffany, Wang, Chao, Wu, Xiaofeng, Jiang, Xue, Catlow, C. Richard A., Xiao, Jianliang
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 09.11.2015
WILEY‐VCH Verlag
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mechanism of imine reduction by formic acid with a single‐site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover‐limited by the hydride formation step. The calculations reveal that, amongst a number of possibilities, hydride formation from the iridicycle and formate probably proceeds by an ion‐pair mechanism, whereas the hydride transfer to the imino bond occurs in an outer‐sphere manner. In the gas phase, in the most favourable pathway, the activation energies in the hydride formation and transfer steps are 26–28 and 7–8 kcal mol−1, respectively. Introducing one explicit methanol molecule into the modelling alters the energy barrier significantly, reducing the energies to around 18 and 2 kcal mol−1 for the two steps, respectively. The DFT investigation further shows that methanol participates in the transition state of the turnover‐limiting hydride formation step by hydrogen‐bonding to the formate anion and thereby stabilising the ion pair. Workin’ on an imine: Transfer hydrogenation of imines by formic acid with a single‐site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy and kinetic measurements. The mechanism is shown to be turnover‐limited by the hydride formation step, the barrier of which is significantly lowered by a protic solvent (see scheme; RDS=rate‐determining step).
AbstractList The mechanism of imine reduction by formic acid with a single‐site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover‐limited by the hydride formation step. The calculations reveal that, amongst a number of possibilities, hydride formation from the iridicycle and formate probably proceeds by an ion‐pair mechanism, whereas the hydride transfer to the imino bond occurs in an outer‐sphere manner. In the gas phase, in the most favourable pathway, the activation energies in the hydride formation and transfer steps are 26–28 and 7–8 kcal mol−1, respectively. Introducing one explicit methanol molecule into the modelling alters the energy barrier significantly, reducing the energies to around 18 and 2 kcal mol−1 for the two steps, respectively. The DFT investigation further shows that methanol participates in the transition state of the turnover‐limiting hydride formation step by hydrogen‐bonding to the formate anion and thereby stabilising the ion pair.
The mechanism of imine reduction by formic acid with a single-site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover-limited by the hydride formation step. The calculations reveal that, amongst a number of possibilities, hydride formation from the iridicycle and formate probably proceeds by an ion-pair mechanism, whereas the hydride transfer to the imino bond occurs in an outer-sphere manner. In the gas phase, in the most favourable pathway, the activation energies in the hydride formation and transfer steps are 26-28 and 7-8kcalmol super(-1), respectively. Introducing one explicit methanol molecule into the modelling alters the energy barrier significantly, reducing the energies to around 18 and 2kcalmol super(-1) for the two steps, respectively. The DFT investigation further shows that methanol participates in the transition state of the turnover-limiting hydride formation step by hydrogen-bonding to the formate anion and thereby stabilising the ion pair. Workin' on an imine: Transfer hydrogenation of imines by formic acid with a single-site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy and kinetic measurements. The mechanism is shown to be turnover-limited by the hydride formation step, the barrier of which is significantly lowered by a protic solvent (see scheme; RDS=rate-determining step).
The mechanism of imine reduction by formic acid with a single-site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover-limited by the hydride formation step. The calculations reveal that, amongst a number of possibilities, hydride formation from the iridicycle and formate probably proceeds by an ion-pair mechanism, whereas the hydride transfer to the imino bond occurs in an outer-sphere manner. In the gas phase, in the most favourable pathway, the activation energies in the hydride formation and transfer steps are 26-28 and 7-8kcalmol(-1), respectively. Introducing one explicit methanol molecule into the modelling alters the energy barrier significantly, reducing the energies to around 18 and 2kcalmol(-1) for the two steps, respectively. The DFT investigation further shows that methanol participates in the transition state of the turnover-limiting hydride formation step by hydrogen-bonding to the formate anion and thereby stabilising the ion pair.
The mechanism of imine reduction by formic acid with a single-site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover-limited by the hydride formation step. The calculations reveal that, amongst a number of possibilities, hydride formation from the iridicycle and formate probably proceeds by an ion-pair mechanism, whereas the hydride transfer to the imino bond occurs in an outer-sphere manner. In the gas phase, in the most favourable pathway, the activation energies in the hydride formation and transfer steps are 26-28 and 7-8 kcal mol(-1) , respectively. Introducing one explicit methanol molecule into the modelling alters the energy barrier significantly, reducing the energies to around 18 and 2 kcal mol(-1) for the two steps, respectively. The DFT investigation further shows that methanol participates in the transition state of the turnover-limiting hydride formation step by hydrogen-bonding to the formate anion and thereby stabilising the ion pair.The mechanism of imine reduction by formic acid with a single-site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover-limited by the hydride formation step. The calculations reveal that, amongst a number of possibilities, hydride formation from the iridicycle and formate probably proceeds by an ion-pair mechanism, whereas the hydride transfer to the imino bond occurs in an outer-sphere manner. In the gas phase, in the most favourable pathway, the activation energies in the hydride formation and transfer steps are 26-28 and 7-8 kcal mol(-1) , respectively. Introducing one explicit methanol molecule into the modelling alters the energy barrier significantly, reducing the energies to around 18 and 2 kcal mol(-1) for the two steps, respectively. The DFT investigation further shows that methanol participates in the transition state of the turnover-limiting hydride formation step by hydrogen-bonding to the formate anion and thereby stabilising the ion pair.
The mechanism of imine reduction by formic acid with a single‐site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover‐limited by the hydride formation step. The calculations reveal that, amongst a number of possibilities, hydride formation from the iridicycle and formate probably proceeds by an ion‐pair mechanism, whereas the hydride transfer to the imino bond occurs in an outer‐sphere manner. In the gas phase, in the most favourable pathway, the activation energies in the hydride formation and transfer steps are 26–28 and 7–8 kcal mol−1, respectively. Introducing one explicit methanol molecule into the modelling alters the energy barrier significantly, reducing the energies to around 18 and 2 kcal mol−1 for the two steps, respectively. The DFT investigation further shows that methanol participates in the transition state of the turnover‐limiting hydride formation step by hydrogen‐bonding to the formate anion and thereby stabilising the ion pair. Workin’ on an imine: Transfer hydrogenation of imines by formic acid with a single‐site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy and kinetic measurements. The mechanism is shown to be turnover‐limited by the hydride formation step, the barrier of which is significantly lowered by a protic solvent (see scheme; RDS=rate‐determining step).
The mechanism of imine reduction by formic acid with a single‐site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover‐limited by the hydride formation step. The calculations reveal that, amongst a number of possibilities, hydride formation from the iridicycle and formate probably proceeds by an ion‐pair mechanism, whereas the hydride transfer to the imino bond occurs in an outer‐sphere manner. In the gas phase, in the most favourable pathway, the activation energies in the hydride formation and transfer steps are 26–28 and 7–8 kcal mol −1 , respectively. Introducing one explicit methanol molecule into the modelling alters the energy barrier significantly, reducing the energies to around 18 and 2 kcal mol −1 for the two steps, respectively. The DFT investigation further shows that methanol participates in the transition state of the turnover‐limiting hydride formation step by hydrogen‐bonding to the formate anion and thereby stabilising the ion pair.
The mechanism of imine reduction by formic acid with a single-site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover-limited by the hydride formation step. The calculations reveal that, amongst a number of possibilities, hydride formation from the iridicycle and formate probably proceeds by an ion-pair mechanism, whereas the hydride transfer to the imino bond occurs in an outer-sphere manner. In the gas phase, in the most favourable pathway, the activation energies in the hydride formation and transfer steps are 26-28 and 7-8 kcal mol(-1) , respectively. Introducing one explicit methanol molecule into the modelling alters the energy barrier significantly, reducing the energies to around 18 and 2 kcal mol(-1) for the two steps, respectively. The DFT investigation further shows that methanol participates in the transition state of the turnover-limiting hydride formation step by hydrogen-bonding to the formate anion and thereby stabilising the ion pair.
Author Wu, Xiaofeng
Jiang, Xue
Catlow, C. Richard A.
Xiao, Jianliang
Wang, Chao
Chen, Hsin-Yi Tiffany
Author_xml – sequence: 1
  givenname: Hsin-Yi Tiffany
  surname: Chen
  fullname: Chen, Hsin-Yi Tiffany
  organization: Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ (UK)
– sequence: 2
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  organization: Liverpool Centre for Materials and Catalysis, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD (UK)
– sequence: 3
  givenname: Xiaofeng
  surname: Wu
  fullname: Wu, Xiaofeng
  organization: Liverpool Centre for Materials and Catalysis, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD (UK)
– sequence: 4
  givenname: Xue
  surname: Jiang
  fullname: Jiang, Xue
  organization: Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 ( P. R. China)
– sequence: 5
  givenname: C. Richard A.
  surname: Catlow
  fullname: Catlow, C. Richard A.
  email: c.r.a.catlow@ucl.ac.uk
  organization: Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ (UK)
– sequence: 6
  givenname: Jianliang
  surname: Xiao
  fullname: Xiao, Jianliang
  email: jxiao@liv.ac.uk
  organization: Liverpool Centre for Materials and Catalysis, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD (UK)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26406610$$D View this record in MEDLINE/PubMed
BookMark eNqNkltv0zAUgC00xLrBK48oEi9IKMV3J7xNodsqrYC4aG9YjnOieiROiRNt-fe4tFRoErAnW9b3HZ_bCTrynQeEnhM8JxjTN3YN7ZxiIjDBij9CMyIoSZmS4gjNcM5VKgXLj9FJCDcY41wy9gQdU8mxlATP0Ldl7ypnJ9tAWpjBNFOAKlm2zkPyCarRDq7zb5MznyzuNtC7FnyEEuOrpOjazTiYLRBfPg9jNSVdnQxrSFZg18a70D5Fj2vTBHi2P0_R1_PFl-IyvfpwsSzOrlIrYpIpLSvBreBZSWrIeF5xg0WNDSlrgTlThIs8t5iWGTGckVgRVDY-ZBmvS15Jdope7eJu-u7HCGHQrQsWmsZ46MagicokkUrmD0FpJqVSJI_oy3voTTf2sdqgqZAkUyKS_6K2sahgFG9jvdhTY9lCpTexl6af9O9RRCDbAbdQdnWwDryFAxZnx6QgjJJft8LtGl90ox-i-vrhaqTnO9r2XQg91AeSYL1dKr1dKn1Yqijwe4Ldfz_0xjV_1_J9Vq6B6T-f6OJysfrTTXeuCwPcHVzTf9dSMSX09fsLrd7h61WBP2rMfgIYI-qD
CODEN CEUJED
CitedBy_id crossref_primary_10_1002_cctc_201600238
crossref_primary_10_1021_acs_joc_8b00361
crossref_primary_10_1039_D1SC01692J
crossref_primary_10_1039_D3QO02019C
crossref_primary_10_1002_ajoc_202000241
crossref_primary_10_1002_ange_202303709
crossref_primary_10_1039_C9RA10651K
crossref_primary_10_1002_slct_201600548
crossref_primary_10_1039_C8CY02437E
crossref_primary_10_1002_ejic_201501061
crossref_primary_10_1002_chem_201702173
crossref_primary_10_1021_acs_organomet_6b00248
crossref_primary_10_1039_C7CC01103B
crossref_primary_10_1021_acs_organomet_8b00905
crossref_primary_10_1002_chem_201601648
crossref_primary_10_1002_aoc_6003
crossref_primary_10_1002_ejic_201800412
crossref_primary_10_1002_ejoc_202001097
crossref_primary_10_1002_anie_202103806
crossref_primary_10_1021_acs_joc_3c01294
crossref_primary_10_1021_acscatal_2c01816
crossref_primary_10_1002_ange_202103806
crossref_primary_10_1002_zaac_202000455
crossref_primary_10_1021_acs_inorgchem_7b01654
crossref_primary_10_1021_acscatal_4c00346
crossref_primary_10_1021_acscatal_8b02068
crossref_primary_10_1039_C8CC06612D
crossref_primary_10_1021_acs_joc_0c02680
crossref_primary_10_3390_molecules26134076
crossref_primary_10_1002_eem2_12050
crossref_primary_10_1016_j_molcata_2016_07_014
crossref_primary_10_1002_anie_202303709
crossref_primary_10_1002_cctc_201801343
crossref_primary_10_1002_asia_201600169
crossref_primary_10_1002_tcr_201600089
crossref_primary_10_1021_acs_inorgchem_1c00820
crossref_primary_10_1021_acs_organomet_6b00759
crossref_primary_10_1002_cctc_201800558
crossref_primary_10_1021_acs_organomet_0c00568
crossref_primary_10_1021_acs_inorgchem_8b00382
crossref_primary_10_1021_acscatal_7b02386
crossref_primary_10_1016_j_mcat_2021_112050
crossref_primary_10_1021_acscatal_4c07103
Cites_doi 10.1002/adsc.200303152
10.1021/ic000200b
10.1002/chem.201403701
10.1021/ja802415h
10.1021/om010120v
10.1021/cr00013a015
10.1021/ja043697n
10.1055/s-1994-25625
10.1021/ja991638h
10.1038/368231a0
10.1039/a805789c
10.1021/om7004832
10.1063/1.448799
10.1002/chem.200601339
10.1063/1.1323224
10.1021/ja9906610
10.1016/0009-2614(96)00349-1
10.1139/v00-201
10.1002/anie.201105481
10.1002/chem.201002604
10.3390/50100004
10.1002/anie.201004263
10.1002/cssc.201000017
10.1063/1.471950
10.1021/ja100925n
10.1039/b004234j
10.1007/s002149900065
10.1039/c3dt50908g
10.1021/ja053956o
10.1039/B605838H
10.1063/1.1329672
10.1063/1.2770708
10.1002/anie.200802237
10.1039/c2ee03315a
10.1021/ol802016w
10.1063/1.448975
10.1002/chem.201204194
10.1063/1.452288
10.1021/ar9001679
10.1021/ja910349w
10.1002/ange.200300599
10.1002/ange.201500346
10.1021/ja3097674
10.1002/chem.201500016
10.1002/ange.200705972
10.1021/jp020124t
10.1103/PhysRevB.58.3641
10.1595/147106709X481372
10.1002/anie.201104951
10.1002/chem.201301383
10.1002/cssc.201301414
10.1002/asia.200800196
10.1002/adsc.200390000
10.1039/C2DT31368E
10.1021/ja061494o
10.1103/PhysRevB.54.1703
10.1039/b100980j
10.1021/ja002177z
10.1002/ange.201300292
10.1039/b618340a
10.1007/BF01114537
10.1002/anie.200800320
10.1002/ange.201104951
10.1002/ange.200705875
10.1002/ange.200802237
10.1002/adsc.200900719
10.1063/1.1672392
10.1063/1.478522
10.1021/ja0167856
10.1021/ja073370x
10.1021/op060033k
10.1021/om070169m
10.1021/om800124f
10.1021/ja044450t
10.1002/chem.200902827
10.1002/anie.201500346
10.1002/anie.200300599
10.1002/(SICI)1099-0682(199804)1998:4<485::AID-EJIC485>3.0.CO;2-Y
10.1002/ange.201101995
10.1021/j100096a001
10.2174/138527208785740283
10.1021/ja0506861
10.1007/BF02060954
10.1002/anie.201300292
10.1021/om060307s
10.1063/1.464913
10.1007/s00214-005-0655-y
10.1002/adsc.200390030
10.1021/ja00395a087
10.1021/om9000742
10.1039/c2gc36619c
10.1021/om1009507
10.1016/0009-2614(96)00382-X
10.1002/1521-3765(20000804)6:15<2818::AID-CHEM2818>3.0.CO;2-Q
10.1063/1.1636455
10.1002/anie.200705875
10.1021/ar9502341
10.1021/om2010172
10.1021/om00078a022
10.1021/ja953097b
10.1021/ja505241x
10.1103/PhysRevLett.77.3865
10.1002/ange.201105481
10.1002/ange.200800320
10.1023/B:TOCA.0000003096.11191.25
10.1063/1.1316015
10.1002/ange.201004263
10.1002/anie.200705972
10.1039/c3cc41661e
10.1021/ja901270f
10.1002/ange.201002944
10.1063/1.475428
10.1021/acscatal.5b00645
10.1063/1.458452
10.1002/anie.201101995
10.1016/j.ccr.2004.04.007
10.1142/9789812839664_0016
10.1021/ja2035514
10.1021/om060899e
10.1002/1521-3765(20011203)7:23<5052::AID-CHEM5052>3.0.CO;2-Z
10.1002/chem.201303541
10.1039/c3sc50587a
10.1002/ijch.199300051
10.1039/a809236b
10.1021/ol802801p
10.1021/om800926p
10.1021/ol047353d
10.1103/PhysRevB.37.785
10.1139/p80-159
10.1063/1.472933
10.1016/j.cpc.2004.12.014
10.1103/PhysRevLett.72.1124
10.1039/c1cc12326b
10.1021/om101064v
10.1021/ja805128x
10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0
10.1021/ic010866l
10.1021/om700975k
10.1021/ja003630
10.1021/cr00031a013
10.1021/om900099u
10.1021/ar700113g
10.1039/b607993h
10.1002/asia.200700081
10.1002/chem.200800559
10.1002/ejic.201100800
10.1039/b914442k
10.1016/S0165-022X(98)00033-5
10.1039/B513396C
10.1039/c2sc21923a
10.1021/om0504147
10.1039/b515269k
10.1016/S0957-4166(99)00216-5
10.1021/ja00054a021
10.1002/anie.201002944
10.1002/chem.200902103
10.1021/om0303404
10.1021/om500356e
10.1126/science.1206613
10.1021/ja903574e
10.1016/S0020-1693(01)00615-6
10.1021/ja056402u
10.1021/om000944x
10.1021/ar700134q
10.1038/nchem.1295
10.1039/c3cc44567d
10.1021/jo010721w
10.1021/cr068357u
10.1039/C4SC02555E
10.1039/c4sc02555e
10.1039/b513396c
10.1039/b605838h
10.1038/NCHEM.1295
10.1039/c2dt31368e
10.1055/s-0033-1340086
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright Wiley Subscription Services, Inc. Nov 2015
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright Wiley Subscription Services, Inc. Nov 2015
DBID BSCLL
AAYXX
CITATION
17B
1KM
BLEPL
DTL
EGQ
GVOUP
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201501074
DatabaseName Istex
CrossRef
Web of Knowledge
Index Chemicus
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Web of Science - Science Citation Index Expanded - 2015
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
Materials Research Database
Web of Science
MEDLINE - Academic

Materials Research Database
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 16577
ExternalDocumentID 3851513721
26406610
000365132100036
10_1002_chem_201501074
CHEM201501074
ark_67375_WNG_7D0WMC0P_0
Genre article
Journal Article
GrantInformation_xml – fundername: Pfizer
– fundername: University of Liverpool
– fundername: University College, London
– fundername: EPSRC; UK Research & Innovation (UKRI); Engineering & Physical Sciences Research Council (EPSRC)
  grantid: EP/K039687/1
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAHQN
AAMNL
AAYCA
ACUHS
ACYXJ
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c5094-2bd54c548b1fe849d4a05f0a1bf5043714599c02b81a431539edc9c0884fb4d63
IEDL.DBID DR2
ISICitedReferencesCount 43
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000365132100036
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 10:06:29 EDT 2025
Fri Jul 11 08:57:39 EDT 2025
Fri Jul 25 10:36:44 EDT 2025
Fri Jul 25 10:36:00 EDT 2025
Mon Jul 21 05:50:03 EDT 2025
Fri Aug 29 15:55:58 EDT 2025
Wed Jul 09 18:15:22 EDT 2025
Tue Jul 01 02:47:13 EDT 2025
Thu Apr 24 22:54:58 EDT 2025
Wed Jan 22 17:05:02 EST 2025
Wed Oct 30 09:50:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 46
Keywords LIGAND BIFUNCTIONAL CATALYSIS
ASYMMETRIC TRANSFER HYDROGENATION
EFFECTIVE CORE POTENTIALS
imines
transfer hydrogenation
CARBON-DIOXIDE HYDROGENATION
ELASTIC BAND METHOD
DENSITY-FUNCTIONAL THERMOCHEMISTRY
AB-INITIO PSEUDOPOTENTIALS
iridium
density functional calculations
CYCLOMETALATED IRIDIUM COMPLEXES
homogeneous catalysis
HYDROXYCYCLOPENTADIENYL RUTHENIUM HYDRIDE
FORMIC-ACID DEHYDROGENATION
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c5094-2bd54c548b1fe849d4a05f0a1bf5043714599c02b81a431539edc9c0884fb4d63
Notes University College, London
University of Liverpool
istex:57B16605C7D9393820CECD6C46B72513C0403B7D
ArticleID:CHEM201501074
Pfizer
ark:/67375/WNG-7D0WMC0P-0
UKRI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5549-8836
0000-0002-1341-1541
0000-0003-4812-6000
PMID 26406610
PQID 1728253209
PQPubID 986340
PageCount 14
ParticipantIDs proquest_journals_2561875866
webofscience_primary_000365132100036CitationCount
istex_primary_ark_67375_WNG_7D0WMC0P_0
proquest_miscellaneous_1728667719
crossref_primary_10_1002_chem_201501074
proquest_journals_1728253209
pubmed_primary_26406610
webofscience_primary_000365132100036
wiley_primary_10_1002_chem_201501074_CHEM201501074
proquest_miscellaneous_1786167696
crossref_citationtrail_10_1002_chem_201501074
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 9, 2015
PublicationDateYYYYMMDD 2015-11-09
PublicationDate_xml – month: 11
  year: 2015
  text: November 9, 2015
  day: 09
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: WEINHEIM
– name: Germany
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAbbrev CHEM-EUR J
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2015
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley
– name: Wiley Subscription Services, Inc
References J. Wu, D. Talwar, S. Johnston, M. Yan, J. Xiao, Angew. Chem. Int. Ed. 2013, 52, 6983
N. Kanematsu, M. Ebihara, T. Kawamura, Inorg. Chim. Acta 2001, 323, 96.
M. P. Magee, J. R. Norton, J. Am. Chem. Soc. 2001, 123, 1778
Angew. Chem. 2015, 127, 5312.
P. G. Jessop, T. Ikariya, R. Noyori, Nature 1994, 368, 231
L. Li, W. W. Brennessel, W. D. Jones, J. Am. Chem. Soc. 2008, 130, 12414
A. Boddien, F. Gärtner, C. Federsel, P. Sponholz, D. Mellmann, R. Jackstell, H. Junge, M. Beller, Angew. Chem. Int. Ed. 2011, 50, 6411
Y. Himeda, Green Chem. 2009, 11, 2018
D. L. Davies, O. Al-Duaij, J. Fawcett, M. Giardiello, S. T. Hilton, D. R. Russell, Dalton Trans. 2003, 41, 32
C. P. Casey, G. A. Bikzhanova, Q. Cui, I. A. Guzei, J. Am. Chem. Soc. 2005, 127, 14062
J.-B. Sortais, V. Ritleng, A. Voelklin, A. Holuigue, H. Smail, L. Barloy, C. Sirlin, G. K. M. Verzijl, J. A. F. Boogers, A. H. M. de Vries, J. G. de Vries, M. Pfeffer, Org. Lett. 2005, 7, 1247.
B. Delley, J. Chem. Phys. 2000, 113, 7756.
C. Wang, A. Pettman, J. Bacsa, J. Xiao, Angew. Chem. Int. Ed. 2010, 49, 7548
S. A. Trygubenko, D. J. Wales, J. Chem. Phys. 2004, 120, 2082
T. C. Nugent, M. El-Shazly, Adv. Synth. Catal. 2010, 352, 753
D. G. Blackmond, M. Ropic, M. Stefinovic, Org. Process Res. Dev. 2006, 10, 457.
Angew. Chem. 2011, 123, 12759
W. Tang, C. Lau, X. Wu, J. Xiao, Synlett 2014, 25, 81
A. Nova, D. J. Taylor, A. J. Blacker, S. B. Duckett, R. N. Perutz, O. Eisenstein, Organometallics 2014, 33, 3433
C. Fellay, P. J. Dyson, G. Laurenczy, Angew. Chem. Int. Ed. 2008, 47, 3966
A. M. Lossack, E. Roduner, D. M. Bartels, Phys. Chem. Chem. Phys. 2001, 3, 2031.
G. Papp, J. Csorba, G. Laurenczy, F. Joó, Angew. Chem. Int. Ed. 2011, 50, 10433
T. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 2365
T. Privalov, J. S. M. Samec, J.-E. Bäckvall, Organometallics 2007, 26, 2840.
S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 1996, 54, 1703.
C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
K. Everaere, A. Mortreux, J. F. Carpentier, Adv Synth Catal 2003, 345, 67
Q. Lei, Y. Wei, D. Talwar, C. Wang, D. Xue, J. Xiao, Chem. Eur. J. 2013, 19, 4021
J. VandeVondele, J. Hutter, J. Chem. Phys. 2007, 127, 114105.
Angew. Chem. 2010, 122, 7710
Y. Boutadla, D. L. Davies, R. C. Jones, K. Singh, Chem. Eur. J. 2011, 17, 3438
S. Arita, T. Koike, Y. Kayaki, T. Ikariya, Angew. Chem. Int. Ed. 2008, 47, 2447
R. M. Haak, F. Berthiol, T. Jerphagnon, A. J. A. Gayet, C. Tarabiono, C. P. Postema, V. Ritleng, M. Pfeffer, D. B. Janssen, A. J. Minnaard, B. L. Feringa, J. G. de Vries, J. Am. Chem. Soc. 2008, 130, 13508.
J. F. Hull, D. Balcells, J. D. Blakemore, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree, J. Am. Chem. Soc. 2009, 131, 8730.
V. Guiral, F. Delbecq, P. Sautet, Organometallics 2001, 20, 2207
D. J. Darensbourg, M. B. Fischer, R. E. Schmidt, B. J. Baldwin, J. Am. Chem. Soc. 1981, 103, 1297.
G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901
A. Aranyos, G. Csjernyik, K. J. Szabo, J.-E. Backvall, Chem. Commun. 1999, 351
S. Ogo, H. Nishida, H. Hayashi, Y. Murata, S. Fukuzumi, Organometallics 2005, 24, 4816.
Angew. Chem. 2010, 122, 9971
D. Talwar, A. Gonzalez-de-Castro, H. Y. Li, J. Xiao, Angew. Chem. Int. Ed. 2015, 54, 5223
A. Urakawa, F. Jutz, G. Laurenczy, A. Baiker, Chem. Eur. J. 2007, 13, 3886
S.-y. Shirai, H. Nara, Y. Kayaki, T. Ikariya, Organometallics 2009, 28, 802.
Z. W. Li, T. L. Wang, Y. M. He, Z. J. Wang, Q. H. Fan, J. Pan, L. J. Xu, Org. Lett. 2008, 10, 5265.
J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Comput. Phys. Commun. 2005, 167, 103
R. Tanaka, M. Yamashita, K. Nozaki, J. Am. Chem. Soc. 2009, 131, 14168
A. D. Becke, J. Chem. Phys. 1993, 98, 5648
A. J. Morris, G. J. Meyer, E. Fujita, Acc. Chem. Res. 2009, 42, 1983
A. Boddien, B. Loges, F. Gärtner, C. Torborg, K. Fumino, H. Junge, R. Ludwig, M. Beller, J. Am. Chem. Soc. 2010, 132, 8924
W. Bauer, M. Prem, K. Polborn, K. Sünkel, W. Steglich, W. Beck, Eur J Inorg Chem. 1998, 1998, 485
Y.-y. Ohnishi, T. Matsunaga, Y. Nakao, H. Sato, S. Sakaki, J. Am. Chem. Soc. 2005, 127, 4021
C. F. de Graauw, J. A. Peters, H. van Bekkum, J. Huskens, Synthesis 1994, 1007
C. P. Casey, T. B. Clark, I. A. Guzei, J. Am. Chem. Soc. 2007, 129, 11821.
S. Fukuzumi, T. Kobayashi, T. Suenobu, J. Am. Chem. Soc. 2010, 132, 1496
T. Leininger, A. Nicklass, W. Kuchle, H. Stoll, M. Dolg, A. Bergner, Chem. Phys. Lett. 1996, 255, 274
M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, R. Stürmer, T. Zelinski, Angew. Chem. Int. Ed. 2004, 43, 788
T. Koike, T. Ikariya, Adv Synth Catal 2004, 346, 37
D. A. Alonso, P. Brandt, S. J. M. Nordin, P. G. Andersson, J. Am. Chem. Soc. 1999, 121, 9580
S. E. Clapham, A. Hadzovic, R. H. Morris, Coord. Chem. Rev. 2004, 248, 2201
Angew. Chem. 2011, 123, 6535
P. Kukula, R. Prins, Top. Catal. 2003, 25, 29
Y. Kashiwame, S. Kuwata, T. Ikariya, Chem. Eur. J. 2010, 16, 766.
C.-C. Tai, J. Pitts, J. C. Linehan, A. D. Main, P. Munshi, P. G. Jessop, Inorg. Chem. 2002, 41, 1606
O. Pàmies, J.-E. Bäckvall, Chem. Eur. J. 2001, 7, 5052
K. Raghavachari, Theor. Chem. Acc. 2000, 103, 361
C. Wang, H.-Y. T. Chen, J. Bacsa, C. R. A. Catlow, J. Xiao, Dalton Trans. 2013, 42, 935
J. P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 1996, 105, 9982
G. Zassinovich, G. Mestroni, S. Gladiali, Chem. Rev. 1992, 92, 1051
T. Ikariya, A. J. Blacker, Acc. Chem. Res. 2007, 40, 1300
D. Preti, C. Resta, S. Squarcialupi, G. Fachinetti, Angew. Chem. Int. Ed. 2011, 50, 12551
C. P. Casey, S. W. Singer, D. R. Powell, Can. J. Chem. 2001, 79, 1002.
G. Henkelman, H. Jonsson, J. Chem. Phys. 2000, 113, 9978
C. Peng, H. B. Schlegel, Isr. J. Chem. 1993, 33, 449.
D. Talwar, N. P. Salguero, C. M. Robertson, J. Xiao, Chem. Eur. J. 2014, 20, 245
T. Jerphagnon, A. J. A. Gayet, F. Berthiol, V. Ritleng, N. Mršić, A. Meetsma, M. Pfeffer, A. J. Minnaard, B. L. Feringa, J. G. de Vries, Chem. Eur. J. 2009, 15, 12780.
C. P. Casey, G. A. Bikzhanova, I. A. Guzei, J. Am. Chem. Soc. 2006, 128, 2286
G. Mills, H. Jónsson, Phys. Rev. Lett. 1994, 72, 1124.
A. Bartoszewicz, G. G. Miera, R. Marcos, P. O. Norrby, B. Martin-Matute, ACS Catal. 2015, 5, 3704.
Y. Schramm, F. Barrios-Landeros, A. Pfaltz, Chem. Sci. 2013, 4, 2760.
R. Noyori, S. Hashiguchi, Acc. Chem. Res. 1997, 30, 97
S. Gladiali, E. Alberico, Chem. Soc. Rev. 2006, 35, 226
J. S. M. Samec, A. H. Éll, J. B. Åberg, T. Privalov, L. Eriksson, J.-E. Bäckvall, J. Am. Chem. Soc. 2006, 128, 14293
S. H. Vosko, L. Wilk, M. Nusair, Can J Phys 1980, 58, 1200.
C. Wang, X. Wu, J. Xiao, Chem. Asian J. 2008, 3, 1750
C. P. Casey, S. W. Singer, D. R. Powell, R. K. Hayashi, M. Kavana, J. Am. Chem. Soc. 2001, 123, 1090
E. N. Yurtchenko, N. P. Anikeenko, React. Kinet. Catal. Lett. 1975, 2, 65.
P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623
X. F. Wu, C. Wang, J. L. Xiao, Platinum Met. Rev. 2010, 54, 3.
D. Andrae, U. Haussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 1990, 77, 123
J. H. Merrifield, J. A. Gladysz, Organometallics 1983, 2, 782.
H. R. Guan, M. Iimura, M. P. Magee, J. R. Norton, K. E. Janak, Organometallics 2003, 22, 4084
H. Jónsson, G. Mills, K. W. Jacobsen in Classical and Quantum Dynamics in Condensed Phase Simulations (Eds.: B. J. Berne, G. Ciccotti, D. F. Coker), World Scientific, Singapore, 1998, p. 385
Angew. Chem. 2004, 116, 806
M. J. Palmer, M. Wills, Tetrahedron: Asymmetry 1999, 10, 2045
A. Comas-Vives, G. Ujaque, A. Lledós, Organometallics 2008, 27, 4854
H. R. Guan, M. Iimura, M. P. Magee, J. R. Norton, G. Zhu, J. Am. Chem. Soc. 2005, 127, 7805.
Y. Wei, C. Wang, X. Jiang, D. Xue, J. Li, J. Xiao, Chem. Commun. 2013, 49, 5408
E. A. Bielinski, P. O. Lagaditis, Y. Y. Zhang, B. Q. Mercado, C. Wurtele, W. H. Bernskoetter, N. Hazari, S. Schneider, J. Am. Chem. Soc. 2014, 136, 10234
B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J. Frisch, F. J. Devlin, S. Gabriel, P. J. Stephens, J. Phys. Chem. A 2002, 106, 6102
Angew. Chem. 2008, 120, 8592
C. P. Casey, J. B. Johnson, J. Am. Chem. Soc. 2005, 127, 1883
Angew. Chem. 2008, 120, 4030
M. Dolg, U. Wedig, H. Stoll, H. Preuss, The Journal of Chemical Physics 1987, 86, 866
S.-L. You, Chem. Asian J. 2007, 2, 820
J. F. Hull, Y. Himeda, W.-H. Wang, B. Hashiguchi, R. Periana, D. J. Szalda, J. T. Muckerman, E. Fujita, Nat. Chem. 2012, 4, 383.
A. Boddien, D. Mellmann, F. Gärtner, R. Jackstell, H. Junge, P. J. Dyson, G. Laurenczy, R. Ludwig, M. Beller, Science 2011, 333, 1733
J. B. Aberg, J. S. M. Samec, J.-E. Backvall, Chem. Commun. 2006, 2771
C. Adamo, V. Barone, J. Chem. Phys. 1998, 108, 664.
D. Talwar, H. Y. Li, E. Durham, J. Xiao, Chem. Eur. J. 2015, 21, 5370
S. Oldenhof, M. Lutz, B. de Bruin, J. Ivar van der Vlugt, J. N. H. Reek, Chem. Sci. 2015, 6, 1027
R. P. Tripathi, S. S. Verma, J. Pandey, V. K. Tiwari, Current Organic Chemistry 2008, 12, 1093
X. Wu, J. Xiao, Chem. Commun. 2007, 2449
K. H. Hopmann, A. Bayer, Organometallics 2011, 30, 2483.
C. Federsel, A. Boddien, R. Jackstell, R. Jennerjahn, P. J. Dyson, R. Scopelliti, G. Laurenczy, M. Beller, Angew. Chem. Int. Ed. 2010, 49, 9777
Y. Maenaka, T. Suenobu, S. Fukuzumi, Energy Environ. Sci. 2012, 5, 7360.
Angew. Chem. 2008, 120, 4026
Y.-F. Han, H. Li, P. Hu, G.-X. Jin, Organometallics 2011, 30, 905
W. Leitner, J. M. Brown, H. Brunner, J. Am. Chem. Soc. 1993, 115, 152
S. Ogo, R. Kabe, H. Hayashi, R. Harada, S. Fukuzumi, Dalton Trans. 2006, 4657
S. Arita, T. Koike, Y. Kayaki, T. Ikariya, Organometallics 2008, 27, 2795
Angew. Chem. 2008, 120, 2481
X. Wu, J. Liu, D. Di Tommaso, J. A. Iggo, C. R. A. Catlow, J. Bacsa, J. Xiao, Chem. Eur. J. 2008, 14, 7699.
D. J. Morris, G. J. Clarkson, M. Wills, Organometallics 2009, 28, 4133
Y. Wei, D. Xue, Q. Lei, C. Wang, J. Xiao, Green Chem. 2013, 15, 629
J. Wu, J. H. Barnard, Y. Zhang, D. Talwar, C. M. Robertson, J. Xiao, Chem. Commun. 2013, 49, 7052
L. Li, W. W. Brennessel, W. D. Jones, Organometallics 2009, 28, 3492
M. Cossi, V. Barone, R. Cammi, J. Tomasi, Chem. Phys. Lett. 1996, 255, 327
X. Yang, Dalton Trans. 2013, 42, 11987.
M. Wills, M. Palmer, A. Smith, J. Kenny, T. Walsgrove, Molecules 2001, 5, 4
P. Munshi,
2007; 107
2010; 16
2013; 4
1983; 2
2006; 35
2014; 25
2008 2008; 47 120
2014; 136
2014; 20
1996; 77
2009; 11
1993; 33
2008; 27
2006; 25
2010; 352
2000; 122
2007; 2
2010; 3
1994; 72
2003; 41
1996; 255
2009; 15
1998; 1998
2004 2004; 43 116
1996; 17
2000; 113
2005; 114
1998
1994
2010 2010; 49 122
1985; 82
2007; 13
2011; 133
2001; 323
2001; 20
1999
1980; 58
2000; 103
1997; 30
2002; 124
1999; 38
2005; 127
2003; 25
1999; 110
2005; 7
2011 2011; 50 123
2003; 345
1994; 94
1993; 115
2008; 130
1996; 118
2014; 33
2003; 22
1994; 98
2010; 54
2004; 120
2004; 248
2012; 2012
2009; 42
2000; 6
1981; 103
1988; 37
1999; 121
2008; 3
2011; 17
2013 2013; 52 125
2005; 24
1996; 105
2013; 19
1992; 92
2013; 15
1987; 86
2002; 41
2000
2002; 106
1975; 2
2015 2015; 54 127
1999; 10
2014; 7
2006; 128
1990; 92
2007; 26
1998; 58
2001; 123
2011; 333
2007; 129
2015; 6
1990; 77
2015; 5
2004; 346
2007; 127
2013; 49
2006; 10
1969; 51
2013; 42
2008; 14
2011; 30
2008
2007
2008; 12
2006
2008; 10
2009; 131
2001; 66
1996; 54
2009; 28
1994; 368
2000; 39
2001; 7
2001; 5
2005; 167
1993; 98
2015; 21
2010; 132
1998; 108
2013; 135
2001; 3
2007; 40
2011; 47
2012; 4
2001; 79
2012; 5
e_1_2_6_114_2
e_1_2_6_53_2
e_1_2_6_137_2
e_1_2_6_30_2
e_1_2_6_91_2
e_1_2_6_152_2
e_1_2_6_175_2
e_1_2_6_38_2
e_1_2_6_76_2
e_1_2_6_15_2
e_1_2_6_99_2
e_1_2_6_102_2
e_1_2_6_148_2
e_1_2_6_64_2
e_1_2_6_41_2
e_1_2_6_140_2
e_1_2_6_163_2
e_1_2_6_186_2
e_1_2_6_5_2
e_1_2_6_49_2
e_1_2_6_64_3
e_1_2_6_87_2
e_1_2_6_26_2
e_1_2_6_113_2
e_1_2_6_136_2
e_1_2_6_159_2
e_1_2_6_31_2
e_1_2_6_92_2
e_1_2_6_92_3
e_1_2_6_151_2
e_1_2_6_174_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_77_2
e_1_2_6_124_2
e_1_2_6_42_2
e_1_2_6_147_2
e_1_2_6_80_2
e_1_2_6_109_2
e_1_2_6_162_2
e_1_2_6_101_2
e_1_2_6_185_2
e_1_2_6_6_2
e_1_2_6_65_2
e_1_2_6_88_2
e_1_2_6_27_2
e_1_2_6_65_3
e_1_2_6_51_2
e_1_2_6_97_2
e_1_2_6_135_2
e_1_2_6_74_2
e_1_2_6_158_2
e_1_2_6_173_2
e_1_2_6_150_2
Davies D. L. (e_1_2_6_112_2) 2003; 41
e_1_2_6_13_2
e_1_2_6_59_2
e_1_2_6_36_2
e_1_2_6_62_2
e_1_2_6_123_3
e_1_2_6_146_2
e_1_2_6_169_2
e_1_2_6_85_2
e_1_2_6_108_2
e_1_2_6_161_2
e_1_2_6_100_2
e_1_2_6_123_2
e_1_2_6_184_2
e_1_2_6_3_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_52_2
e_1_2_6_75_2
e_1_2_6_157_2
e_1_2_6_90_2
e_1_2_6_119_2
e_1_2_6_172_2
e_1_2_6_111_2
e_1_2_6_134_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_98_2
e_1_2_6_63_2
e_1_2_6_86_2
e_1_2_6_168_2
e_1_2_6_107_2
e_1_2_6_40_2
e_1_2_6_160_2
e_1_2_6_145_2
e_1_2_6_183_2
Tang W. (e_1_2_6_125_2) 2014; 25
e_1_2_6_122_2
e_1_2_6_4_2
e_1_2_6_48_2
e_1_2_6_25_2
e_1_2_6_72_2
e_1_2_6_95_2
e_1_2_6_179_2
e_1_2_6_118_2
e_1_2_6_171_2
e_1_2_6_110_2
e_1_2_6_156_2
e_1_2_6_133_2
e_1_2_6_19_2
e_1_2_6_57_3
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_57_2
e_1_2_6_83_2
e_1_2_6_129_2
e_1_2_6_60_2
e_1_2_6_121_2
e_1_2_6_144_2
e_1_2_6_167_2
e_1_2_6_182_2
e_1_2_6_9_2
(e_1_2_6_106_2) 2008
e_1_2_6_170_2
e_1_2_6_22_2
e_1_2_6_1_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_96_2
e_1_2_6_73_3
e_1_2_6_117_2
e_1_2_6_132_2
e_1_2_6_155_2
e_1_2_6_178_2
e_1_2_6_181_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_61_2
e_1_2_6_84_2
e_1_2_6_105_2
e_1_2_6_128_3
e_1_2_6_128_2
e_1_2_6_189_2
e_1_2_6_120_2
e_1_2_6_166_2
e_1_2_6_143_2
e_1_2_6_23_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_46_2
e_1_2_6_116_2
e_1_2_6_93_2
e_1_2_6_139_2
e_1_2_6_70_2
e_1_2_6_131_3
e_1_2_6_131_2
e_1_2_6_177_2
e_1_2_6_154_2
e_1_2_6_180_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_55_2
e_1_2_6_78_2
e_1_2_6_104_2
e_1_2_6_127_2
e_1_2_6_104_3
e_1_2_6_20_2
e_1_2_6_81_2
e_1_2_6_188_2
e_1_2_6_142_2
e_1_2_6_165_2
e_1_2_6_7_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_2
e_1_2_6_89_3
e_1_2_6_89_2
e_1_2_6_71_3
e_1_2_6_94_2
e_1_2_6_115_2
e_1_2_6_138_2
e_1_2_6_71_2
e_1_2_6_130_2
e_1_2_6_153_2
e_1_2_6_176_2
e_1_2_6_18_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_56_2
e_1_2_6_79_2
e_1_2_6_56_3
e_1_2_6_103_2
e_1_2_6_149_2
e_1_2_6_126_2
e_1_2_6_82_2
e_1_2_6_141_2
e_1_2_6_187_2
e_1_2_6_164_2
e_1_2_6_8_2
e_1_2_6_190_2
e_1_2_6_29_2
e_1_2_6_21_2
e_1_2_6_44_2
e_1_2_6_67_2
Wang, C (WOS:000312659200016) 2013; 42
Samec, JSM (WOS:000235989600004) 2006; 35
(000365132100036.172) 2008
Lossack, AM (WOS:000168859400017) 2001; 3
Yang, XZ (WOS:000322525100025) 2013; 42
Majewski, A (WOS:000277669700009) 2010; 3
Zell, T (WOS:000320134200008) 2013; 19
Wu, JJ (WOS:000320776900034) 2013; 52
Talwar, D (WOS:000328714700029) 2014; 20
Petra, DGI (WOS:000088778500015) 2000; 6
Dub, PA (WOS:000315373000039) 2013; 135
Bielinski, EA (WOS:000339471900014) 2014; 136
HEHRE, WJ (WOS:A1969E338200047) 1969; 51
JESSOP, PG (WOS:A1994NA87000051) 1994; 368
(000365132100036.89) 2008
Li, L (WOS:000267020700020) 2009; 28
Raghavachari, K (WOS:000085419900060) 2000; 103
Boddien, A (WOS:000279561200048) 2010; 132
Han, YF (WOS:000287546600028) 2011; 30
Comas-Vives, A (WOS:000259604200009) 2008; 27
VandeVondele, J (WOS:000249667400011) 2007; 127
Kashiwame, Y (WOS:000274615700005) 2010; 16
Gao, Y (WOS:000076848200041) 1998
HAY, PJ (WOS:A1985ABS5500035) 1985; 82
Boddien, A (WOS:000295121500038) 2011; 333
LEITNER, W (WOS:A1993KG95400021) 1993; 115
Privalov, T (WOS:000246414900008) 2007; 26
Wang, C (WOS:000259968700002) 2008; 3
Papp, G (WOS:000297049300035) 2011; 50
Zhou, HF (WOS:000260622700025) 2008; 47
Federsel, C (WOS:000285211000045) 2010; 49
Wills, M (WOS:000085090200002) 2000; 5
Sakakura, T (WOS:000247217000010) 2007; 107
Schmeier, TJ (WOS:000291915100037) 2011; 133
Casey, CP (WOS:000166873000009) 2001; 123
(000365132100036.134) 2015
Peng, CY (WOS:A1996TL10900005) 1996; 17
Perdew, JP (WOS:A1996VW94700028) 1996; 105
MERRIFIELD, JH (WOS:A1983QV03800022) 1983; 2
Tai, CC (WOS:000174492300037) 2002; 41
(000365132100036.17) 2008
Arita, S (WOS:000256643600018) 2008; 27
MILLS, G (WOS:A1994MW25600045) 1994; 72
Pàmies, O (WOS:000172599900007) 2001; 7
Magee, MP (WOS:000167162100036) 2001; 123
Jessop, PG (WOS:A1996TQ26900007) 1996; 118
Mennucci, B (WOS:000176356400019) 2002; 106
(000365132100036.47) 2008
Hopmann, KH (WOS:000290001900007) 2011; 30
Kanematsu, N (WOS:000172077100012) 2001; 323
Boddien, A (WOS:000292642600040) 2011; 50
Lei, Q (WOS:000316009800026) 2013; 19
Ogo, S (WOS:000241057600003) 2006
Koike, T (WOS:000189276900003) 2004; 346
(000365132100036.38) 1000
STEPHENS, PJ (WOS:A1994PQ94400001) 1994; 98
Talwar, D (WOS:000352504500016) 2015; 21
Loges, B (WOS:000255994700020) 2008; 47
Arita, S (WOS:000254379500021) 2008; 47
Tripathi, RP (WOS:000259447100003) 2008; 12
Everaere, K (WOS:000180842300006) 2003; 345
Tanaka, R (WOS:000271271500021) 2009; 131
Maenaka, Y (WOS:000304354900010) 2012; 5
Bauer, W (WOS:000072817900011) 1998
TOMASI, J (WOS:A1994PT13100014) 1994; 94
Himeda, Y (WOS:000272382200016) 2009; 11
Preti, D (WOS:000298332700023) 2011; 50
Boutadla, Y (WOS:000288099200020) 2011; 17
Morris, DJ (WOS:000268176700021) 2009; 28
Haak, RM (WOS:000259924000001) 2008; 130
(000365132100036.37) 1000
Oldenhof, S (WOS:000348147100020) 2015; 6
PENG, CY (WOS:A1993ND84100011) 1993; 33
(000365132100036.23) 2004
Urakawa, A (WOS:000246573200006) 2007; 13
Cossi, M (WOS:A1996UQ97600017) 1996; 255
Alonso, DA (WOS:000083280100013) 1999; 121
ANDRAE, D (WOS:A1990DB14000004) 1990; 77
Delley, B (WOS:000090151400006) 2000; 113
Guan, HR (WOS:000185506400017) 2003; 22
Jerphagnon, T (WOS:000272509500029) 2009; 15
Åberg, JB (WOS:000238616900009) 2006
Tanaka, R (WOS:000298074500026) 2011; 30
Wu, XF (WOS:000247187900008) 2007
Ikariya, T (WOS:000251787500009) 2007; 40
Munshi, P (WOS:000176612400027) 2002; 124
Gladiali, S (WOS:000235989600003) 2006; 35
You, SL (WOS:000247857700001) 2007; 2
Kukula, P (WOS:000186547700005) 2003; 25
Wu, XF (WOS:000259079400034) 2008; 14
DOLG, M (WOS:A1987F591600043) 1987; 86
Wu, JJ (WOS:000321758300010) 2013; 49
Casey, CP (WOS:000226951800059) 2005; 127
Goedecker, S (WOS:A1996UZ86100053) 1996; 54
Wang, C (WOS:000294122000003) 2011; 47
Henkelman, G (WOS:000165584900005) 2000; 113
Martins, JED (WOS:000263299000016) 2009; 11
Sortais, JB (WOS:000227921200013) 2005; 7
Leininger, T (WOS:A1996UQ97600009) 1996; 255
VandeVondele, J (WOS:000228421500005) 2005; 167
VOSKO, SH (WOS:A1980KE76300015) 1980; 58
Barnard, JH (WOS:000314474900047) 2013; 4
Trygubenko, SA (WOS:000188498400003) 2004; 120
(000365132100036.160) 2013
Samec, JSM (WOS:000241729100037) 2006; 128
Wang, C (WOS:000283391800032) 2010; 49
Casey, CP (WOS:000235562900047) 2006; 128
Wu, XF (WOS:000273653100002) 2010; 54
DARENSBOURG, DJ (WOS:A1981LF69400087) 1981; 103
Laurenczy, G (WOS:000165213200015) 2000; 39
Casey, CP (WOS:000232413300062) 2005; 127
Yamakawa, M (WOS:000085639200025) 2000; 122
(000365132100036.48) 2003
Clapham, SE (WOS:000225813700007) 2004; 248
Gao, Y (WOS:000089170200027) 2000
Roseblade, SJ (WOS:000251787500020) 2007; 40
(000365132100036.151) 2010
ZASSINOVICH, G (WOS:A1992JH78800016) 1992; 92
(000365132100036.9) 2008
Wei, YW (WOS:000319005400021) 2013; 49
Perdew, JP (WOS:A1997WH91700054) 1997; 78
Shirai, S (WOS:000262913600020) 2009; 28
(000365132100036.44) 2010
Aranyos, A (WOS:000078821600024) 1999
Talwar, D (WOS:000354190800046) 2015; 54
Ohnishi, YY (WOS:000227738700071) 2005; 127
Hull, JF (WOS:000267631000006) 2009; 131
Noyori, R (WOS:000172489500001) 2001; 66
Adamo, C (WOS:000071233400033) 1998; 108
Hartwigsen, C (WOS:000075616800043) 1998; 58
Hull, JF (WOS:000303109700013) 2012; 4
Nova, A (WOS:000339090700024) 2014; 33
Henkelman, G (WOS:000165584900014) 2000; 113
Adamo, C (WOS:000079419000010) 1999; 110
Yin, CQ (WOS:000167628900031) 2001; 20
Bartoszewicz, A (WOS:000355964300058) 2015; 5
Wang, WH (WOS:000340361500023) 2014; 7
Li, L (WOS:000259139900055) 2008; 130
Casey, CP (WOS:000170070900070) 2001; 79
LEE, CT (WOS:A1988L976200011) 1988; 37
Palmer, MJ (WOS:000081832200001) 1999; 10
Sarmini, K (WOS:000078690100004) 1999; 38
Leininger, T (WOS:A1996UW83600019) 1996; 105
Talwar, D (WOS:000342627300022) 2014; 20
YURTCHENKO, EN (WOS:A1975W268400009) 1975; 2
Blaser, HU (WOS:000180842300008) 2003; 345
(000365132100036.74) 1998
Tang, WJ (WOS:000328606500010) 2014; 25
Blackmond, DG (WOS:000237654500012) 2006; 10
Li, ZW (WOS:000260922500043) 2008; 10
Ohnishi, YY (WOS:000238534400012) 2006; 25
Fellay, C (WOS:000255994700021) 2008; 47
Wei, YW (WOS:000315356400010) 2013; 15
(000365132100036.112) 2011
Morris, AJ (WOS:000273082800014) 2009; 42
Himeda, Y (WOS:000243577000033) 2007; 26
(000365132100036.20) 2011
HAY, PJ (WOS:A1985ABS5500033) 1985; 82
DELLEY, B (WOS:A1990CH55200058) 1990; 92
Watanabe, M (WOS:000301489600019) 2012
Comas-Vives, A (WOS:000248729400012) 2007; 26
Guiral, V (WOS:000168917600015) 2001; 20
Krack, M (WOS:000232053800020) 2005; 114
Guan, HR (WOS:000229447700032) 2005; 127
Ogo, S (WOS:000232036000017) 2005; 24
Breuer, M (WOS:000189101500005) 2004; 43
Schramm, Y (WOS:000319940400006) 2013; 4
Nugent, TC (WOS:000276317800001) 2010; 352
Fukuzumi, S (WOS:000275084900026) 2010; 132
BECKE, AD (WOS:A1993KV99700048) 1993; 98
(000365132100036.31) 2012
Casey, CP (WOS:000249693800032) 2007; 129
References_xml – reference: S. Gladiali, E. Alberico, Chem. Soc. Rev. 2006, 35, 226;
– reference: H. F. Zhou, Z. W. Li, Z. J. Wang, T. L. Wang, L. J. Xu, Y. He, Q. H. Fan, J. Pan, L. Q. Gu, A. S. C. Chan, Angew. Chem. Int. Ed. 2008, 47, 8464;
– reference: J. S. M. Samec, A. H. Éll, J. B. Åberg, T. Privalov, L. Eriksson, J.-E. Bäckvall, J. Am. Chem. Soc. 2006, 128, 14293;
– reference: R. Tanaka, M. Yamashita, K. Nozaki, J. Am. Chem. Soc. 2009, 131, 14168;
– reference: K. H. Hopmann, A. Bayer, Organometallics 2011, 30, 2483.
– reference: Y.-F. Han, H. Li, P. Hu, G.-X. Jin, Organometallics 2011, 30, 905;
– reference: X. Wu, J. Xiao, Chem. Commun. 2007, 2449;
– reference: A. Comas-Vives, G. Ujaque, A. Lledós, Organometallics 2008, 27, 4854;
– reference: D. Preti, C. Resta, S. Squarcialupi, G. Fachinetti, Angew. Chem. Int. Ed. 2011, 50, 12551;
– reference: M. Wills, M. Palmer, A. Smith, J. Kenny, T. Walsgrove, Molecules 2001, 5, 4;
– reference: C. P. Casey, T. B. Clark, I. A. Guzei, J. Am. Chem. Soc. 2007, 129, 11821.
– reference: D. L. Davies, O. Al-Duaij, J. Fawcett, M. Giardiello, S. T. Hilton, D. R. Russell, Dalton Trans. 2003, 41, 32;
– reference: Y. Gao, J. Kuncheria, R. J. Puddephatt, G. P. A. Yap, Chem. Commun. 1998, 2365;
– reference: Angew. Chem. 2010, 122, 7710;
– reference: S. Ogo, H. Nishida, H. Hayashi, Y. Murata, S. Fukuzumi, Organometallics 2005, 24, 4816.
– reference: N. Kanematsu, M. Ebihara, T. Kawamura, Inorg. Chim. Acta 2001, 323, 96.
– reference: M. Yamakawa, H. Ito, R. Noyori, J. Am. Chem. Soc. 2000, 122, 1466;
– reference: D. A. Alonso, P. Brandt, S. J. M. Nordin, P. G. Andersson, J. Am. Chem. Soc. 1999, 121, 9580;
– reference: C. P. Casey, S. W. Singer, D. R. Powell, Can. J. Chem. 2001, 79, 1002.
– reference: W. Tang, C. Lau, X. Wu, J. Xiao, Synlett 2014, 25, 81;
– reference: W.-H. Wang, S. Xu, Y. Manaka, Y. Suna, H. Kambayashi, J. T. Muckerman, E. Fujita, Y. Himeda, Chemsuschem 2014, 7, 1976.
– reference: G. Henkelman, H. Jonsson, J. Chem. Phys. 2000, 113, 9978;
– reference: R. Noyori, S. Hashiguchi, Acc. Chem. Res. 1997, 30, 97;
– reference: W. J. Hehre, R. F. Stewart, J. A. Pople, The Journal of Chemical Physics 1969, 51, 2657.
– reference: P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299;
– reference: Y. Kashiwame, S. Kuwata, T. Ikariya, Chem. Eur. J. 2010, 16, 766.
– reference: G. Laurenczy, F. Joó, L. Nádasdi, Inorg. Chem. 2000, 39, 5083;
– reference: S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 1996, 54, 1703.
– reference: J. Wu, J. H. Barnard, Y. Zhang, D. Talwar, C. M. Robertson, J. Xiao, Chem. Commun. 2013, 49, 7052;
– reference: C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785;
– reference: C. Wang, A. Pettman, J. Bacsa, J. Xiao, Angew. Chem. Int. Ed. 2010, 49, 7548;
– reference: S. Arita, T. Koike, Y. Kayaki, T. Ikariya, Organometallics 2008, 27, 2795;
– reference: J. Tomasi, M. Persico, Chem. Rev. 1994, 94, 2027.
– reference: D. Talwar, H. Y. Li, E. Durham, J. Xiao, Chem. Eur. J. 2015, 21, 5370;
– reference: A. Boddien, D. Mellmann, F. Gärtner, R. Jackstell, H. Junge, P. J. Dyson, G. Laurenczy, R. Ludwig, M. Beller, Science 2011, 333, 1733;
– reference: D. G. I. Petra, J. N. H. Reek, J.-W. Handgraaf, E. J. Meijer, P. Dierkes, P. C. J. Kamer, J. Brussee, H. E. Schoemaker, P. W. N. M. van Leeuwen, Chem. Eur. J. 2000, 6, 2818;
– reference: Y. Himeda, N. Onozawa-Komatsuzaki, H. Sugihara, K. Kasuga, Organometallics 2007, 26, 702;
– reference: T. J. Schmeier, G. E. Dobereiner, R. H. Crabtree, N. Hazari, J. Am. Chem. Soc. 2011, 133, 9274;
– reference: P. G. Jessop, T. Ikariya, R. Noyori, Nature 1994, 368, 231;
– reference: T. Jerphagnon, A. J. A. Gayet, F. Berthiol, V. Ritleng, N. Mršić, A. Meetsma, M. Pfeffer, A. J. Minnaard, B. L. Feringa, J. G. de Vries, Chem. Eur. J. 2009, 15, 12780.
– reference: K. Raghavachari, Theor. Chem. Acc. 2000, 103, 361;
– reference: G. Mills, H. Jónsson, Phys. Rev. Lett. 1994, 72, 1124.
– reference: T. Leininger, A. Nicklass, H. Stoll, M. Dolg, P. Schwerdtfeger, J. Chem. Phys. 1996, 105, 1052;
– reference: X. F. Wu, C. Wang, J. L. Xiao, Platinum Met. Rev. 2010, 54, 3.
– reference: C. Fellay, P. J. Dyson, G. Laurenczy, Angew. Chem. Int. Ed. 2008, 47, 3966;
– reference: B. Loges, A. Boddien, H. Junge, M. Beller, Angew. Chem. Int. Ed. 2008, 47, 3962;
– reference: Y.-y. Ohnishi, T. Matsunaga, Y. Nakao, H. Sato, S. Sakaki, J. Am. Chem. Soc. 2005, 127, 4021;
– reference: A. D. Becke, J. Chem. Phys. 1993, 98, 5648;
– reference: L. Li, W. W. Brennessel, W. D. Jones, Organometallics 2009, 28, 3492;
– reference: A. Boddien, B. Loges, F. Gärtner, C. Torborg, K. Fumino, H. Junge, R. Ludwig, M. Beller, J. Am. Chem. Soc. 2010, 132, 8924;
– reference: Angew. Chem. 2008, 120, 2481;
– reference: K. Sarmini, E. Kenndler, J. Biochem. Biophys. Methods 1999, 38, 123.
– reference: Angew. Chem. 2010, 122, 9971;
– reference: C. Wang, B. Villa-Marcos, J. Xiao, Chem. Commun. 2011, 47, 9773.
– reference: M. P. Magee, J. R. Norton, J. Am. Chem. Soc. 2001, 123, 1778;
– reference: C. P. Casey, G. A. Bikzhanova, I. A. Guzei, J. Am. Chem. Soc. 2006, 128, 2286;
– reference: Angew. Chem. 2011, 123, 6535;
– reference: C. P. Casey, G. A. Bikzhanova, Q. Cui, I. A. Guzei, J. Am. Chem. Soc. 2005, 127, 14062;
– reference: P. Munshi, A. D. Main, J. C. Linehan, C.-C. Tai, P. G. Jessop, J. Am. Chem. Soc. 2002, 124, 7963;
– reference: B. Delley, J. Chem. Phys. 2000, 113, 7756.
– reference: J. H. Merrifield, J. A. Gladysz, Organometallics 1983, 2, 782.
– reference: Y. Wei, C. Wang, X. Jiang, D. Xue, J. Li, J. Xiao, Chem. Commun. 2013, 49, 5408;
– reference: J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Comput. Phys. Commun. 2005, 167, 103;
– reference: P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270.
– reference: T. C. Nugent, M. El-Shazly, Adv. Synth. Catal. 2010, 352, 753;
– reference: A. Majewski, D. J. Morris, K. Kendall, M. Wills, ChemSusChem 2010, 3, 431;
– reference: Z. W. Li, T. L. Wang, Y. M. He, Z. J. Wang, Q. H. Fan, J. Pan, L. J. Xu, Org. Lett. 2008, 10, 5265.
– reference: A. Boddien, F. Gärtner, C. Federsel, P. Sponholz, D. Mellmann, R. Jackstell, H. Junge, M. Beller, Angew. Chem. Int. Ed. 2011, 50, 6411;
– reference: G. Papp, J. Csorba, G. Laurenczy, F. Joó, Angew. Chem. Int. Ed. 2011, 50, 10433;
– reference: A. J. Morris, G. J. Meyer, E. Fujita, Acc. Chem. Res. 2009, 42, 1983;
– reference: R. Tanaka, M. Yamashita, L. W. Chung, K. Morokuma, K. Nozaki, Organometallics 2011, 30, 6742;
– reference: A. Nova, D. J. Taylor, A. J. Blacker, S. B. Duckett, R. N. Perutz, O. Eisenstein, Organometallics 2014, 33, 3433;
– reference: W. Leitner, J. M. Brown, H. Brunner, J. Am. Chem. Soc. 1993, 115, 152;
– reference: P. Kukula, R. Prins, Top. Catal. 2003, 25, 29;
– reference: J. Wu, D. Talwar, S. Johnston, M. Yan, J. Xiao, Angew. Chem. Int. Ed. 2013, 52, 6983;
– reference: K. Everaere, A. Mortreux, J. F. Carpentier, Adv Synth Catal 2003, 345, 67;
– reference: D. Talwar, A. Gonzalez-de-Castro, H. Y. Li, J. Xiao, Angew. Chem. Int. Ed. 2015, 54, 5223;
– reference: G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901;
– reference: M. Cossi, V. Barone, R. Cammi, J. Tomasi, Chem. Phys. Lett. 1996, 255, 327;
– reference: R. Noyori, M. Yamakawa, S. Hashiguchi, The Journal of Organic Chemistry 2001, 66, 7931.
– reference: S. J. Roseblade, A. Pfaltz, Acc. Chem. Res. 2007, 40, 1402. The catalyst has been shown to undergo cyclometalation, however:
– reference: Y. Gao, J. K. Kuncheria, H. A. Jenkins, R. J. Puddephatt, G. P. A. Yap, J. Chem. Soc. Dalton Trans. 2000, 3212;
– reference: D. Talwar, N. P. Salguero, C. M. Robertson, J. Xiao, Chem. Eur. J. 2014, 20, 245;
– reference: B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J. Frisch, F. J. Devlin, S. Gabriel, P. J. Stephens, J. Phys. Chem. A 2002, 106, 6102;
– reference: D. Talwar, X. F. Wu, O. Saidi, N. P. Salguero, J. Xiao, Chem. Eur. J. 2014, 20, 12835;
– reference: J. S. M. Samec, J. E. Backvall, P. G. Andersson, P. Brandt, Chem. Soc. Rev. 2006, 35, 237;
– reference: D. G. Blackmond, M. Ropic, M. Stefinovic, Org. Process Res. Dev. 2006, 10, 457.
– reference: R. M. Haak, F. Berthiol, T. Jerphagnon, A. J. A. Gayet, C. Tarabiono, C. P. Postema, V. Ritleng, M. Pfeffer, D. B. Janssen, A. J. Minnaard, B. L. Feringa, J. G. de Vries, J. Am. Chem. Soc. 2008, 130, 13508.
– reference: J.-B. Sortais, V. Ritleng, A. Voelklin, A. Holuigue, H. Smail, L. Barloy, C. Sirlin, G. K. M. Verzijl, J. A. F. Boogers, A. H. M. de Vries, J. G. de Vries, M. Pfeffer, Org. Lett. 2005, 7, 1247.
– reference: X. Wu, J. Liu, D. Di Tommaso, J. A. Iggo, C. R. A. Catlow, J. Bacsa, J. Xiao, Chem. Eur. J. 2008, 14, 7699.
– reference: J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
– reference: W. Bauer, M. Prem, K. Polborn, K. Sünkel, W. Steglich, W. Beck, Eur J Inorg Chem. 1998, 1998, 485;
– reference: Angew. Chem. 2011, 123, 12759;
– reference: Angew. Chem. 2015, 127, 5312.
– reference: H. Jónsson, G. Mills, K. W. Jacobsen in Classical and Quantum Dynamics in Condensed Phase Simulations (Eds.: B. J. Berne, G. Ciccotti, D. F. Coker), World Scientific, Singapore, 1998, p. 385;
– reference: T. Ikariya, A. J. Blacker, Acc. Chem. Res. 2007, 40, 1300;
– reference: Y. Wei, D. Xue, Q. Lei, C. Wang, J. Xiao, Green Chem. 2013, 15, 629;
– reference: M. Dolg, U. Wedig, H. Stoll, H. Preuss, The Journal of Chemical Physics 1987, 86, 866;
– reference: J. P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 1996, 105, 9982;
– reference: E. A. Bielinski, P. O. Lagaditis, Y. Y. Zhang, B. Q. Mercado, C. Wurtele, W. H. Bernskoetter, N. Hazari, S. Schneider, J. Am. Chem. Soc. 2014, 136, 10234;
– reference: E. N. Yurtchenko, N. P. Anikeenko, React. Kinet. Catal. Lett. 1975, 2, 65.
– reference: O. Pàmies, J.-E. Bäckvall, Chem. Eur. J. 2001, 7, 5052;
– reference: J. F. Hull, D. Balcells, J. D. Blakemore, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree, J. Am. Chem. Soc. 2009, 131, 8730.
– reference: Y. Himeda, Green Chem. 2009, 11, 2018;
– reference: S. Ogo, R. Kabe, H. Hayashi, R. Harada, S. Fukuzumi, Dalton Trans. 2006, 4657;
– reference: C.-C. Tai, J. Pitts, J. C. Linehan, A. D. Main, P. Munshi, P. G. Jessop, Inorg. Chem. 2002, 41, 1606;
– reference: Enantioselective Hydrogenation of CN Functions and Enamines (Eds.: H. U. Blaser, F. Spindler), Wiley-VCH, Weinheim, 2008;
– reference: D. J. Darensbourg, M. B. Fischer, R. E. Schmidt, B. J. Baldwin, J. Am. Chem. Soc. 1981, 103, 1297.
– reference: B. Delley, J. Chem. Phys. 1990, 92, 508;
– reference: H. R. Guan, M. Iimura, M. P. Magee, J. R. Norton, G. Zhu, J. Am. Chem. Soc. 2005, 127, 7805.
– reference: Y.-y. Ohnishi, Y. Nakao, H. Sato, S. Sakaki, Organometallics 2006, 25, 3352.
– reference: M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, R. Stürmer, T. Zelinski, Angew. Chem. Int. Ed. 2004, 43, 788;
– reference: T. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 2365;
– reference: C. Hartwigsen, S. Goedecker, J. Hutter, Phys. Rev. B 1998, 58, 3641;
– reference: A. Comas-Vives, G. Ujaque, A. Lledós, Organometallics 2007, 26, 4135;
– reference: C. F. de Graauw, J. A. Peters, H. van Bekkum, J. Huskens, Synthesis 1994, 1007;
– reference: S. E. Clapham, A. Hadzovic, R. H. Morris, Coord. Chem. Rev. 2004, 248, 2201;
– reference: S.-L. You, Chem. Asian J. 2007, 2, 820;
– reference: C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
– reference: P. G. Jessop, Y. Hsiao, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1996, 118, 344;
– reference: P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623;
– reference: C. P. Casey, J. B. Johnson, J. Am. Chem. Soc. 2005, 127, 1883;
– reference: A. Urakawa, F. Jutz, G. Laurenczy, A. Baiker, Chem. Eur. J. 2007, 13, 3886;
– reference: C. Wang, X. Wu, J. Xiao, Chem. Asian J. 2008, 3, 1750;
– reference: C. Peng, H. B. Schlegel, Isr. J. Chem. 1993, 33, 449.
– reference: T. Koike, T. Ikariya, Adv Synth Catal 2004, 346, 37;
– reference: C. Wang, H.-Y. T. Chen, J. Bacsa, C. R. A. Catlow, J. Xiao, Dalton Trans. 2013, 42, 935;
– reference: J. H. Barnard, C. Wang, N. G. Berry, J. Xiao, Chem. Sci. 2013, 4, 1234;
– reference: H. R. Guan, M. Iimura, M. P. Magee, J. R. Norton, K. E. Janak, Organometallics 2003, 22, 4084;
– reference: H.-U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner, M. Studer, Adv. Synth. Catal. 2003, 345, 103;
– reference: R. P. Tripathi, S. S. Verma, J. Pandey, V. K. Tiwari, Current Organic Chemistry 2008, 12, 1093;
– reference: X. Yang, Dalton Trans. 2013, 42, 11987.
– reference: Q. Lei, Y. Wei, D. Talwar, C. Wang, D. Xue, J. Xiao, Chem. Eur. J. 2013, 19, 4021;
– reference: A. Aranyos, G. Csjernyik, K. J. Szabo, J.-E. Backvall, Chem. Commun. 1999, 351;
– reference: Angew. Chem. 2008, 120, 4030;
– reference: A. Bartoszewicz, G. G. Miera, R. Marcos, P. O. Norrby, B. Martin-Matute, ACS Catal. 2015, 5, 3704.
– reference: Angew. Chem. 2008, 120, 4026;
– reference: V. Guiral, F. Delbecq, P. Sautet, Organometallics 2001, 20, 2207;
– reference: Angew. Chem. 2011, 123, 10617.
– reference: C. Adamo, V. Barone, J. Chem. Phys. 1998, 108, 664.
– reference: Angew. Chem. 2013, 125, 7121;
– reference: C. P. Casey, S. W. Singer, D. R. Powell, R. K. Hayashi, M. Kavana, J. Am. Chem. Soc. 2001, 123, 1090;
– reference: S. Fukuzumi, T. Kobayashi, T. Suenobu, J. Am. Chem. Soc. 2010, 132, 1496;
– reference: Y. Schramm, F. Barrios-Landeros, A. Pfaltz, Chem. Sci. 2013, 4, 2760.
– reference: Angew. Chem. 2008, 120, 8592;
– reference: A. M. Lossack, E. Roduner, D. M. Bartels, Phys. Chem. Chem. Phys. 2001, 3, 2031.
– reference: M. J. Palmer, M. Wills, Tetrahedron: Asymmetry 1999, 10, 2045;
– reference: M. Watanabe, Y. Kashiwame, S. Kuwata, T. Ikariya, Eur J Inorg Chem. 2012, 2012, 504.
– reference: J. B. Aberg, J. S. M. Samec, J.-E. Backvall, Chem. Commun. 2006, 2771;
– reference: M. Krack, Theor. Chem. Acc. 2005, 114, 145;
– reference: S. Arita, T. Koike, Y. Kayaki, T. Ikariya, Angew. Chem. Int. Ed. 2008, 47, 2447;
– reference: Y. Boutadla, D. L. Davies, R. C. Jones, K. Singh, Chem. Eur. J. 2011, 17, 3438;
– reference: G. Zassinovich, G. Mestroni, S. Gladiali, Chem. Rev. 1992, 92, 1051;
– reference: J. F. Hull, Y. Himeda, W.-H. Wang, B. Hashiguchi, R. Periana, D. J. Szalda, J. T. Muckerman, E. Fujita, Nat. Chem. 2012, 4, 383.
– reference: Angew. Chem. 2004, 116, 806;
– reference: J. E. D. Martins, G. J. Clarkson, M. Wills, Org. Lett. 2009, 11, 847.
– reference: L. Li, W. W. Brennessel, W. D. Jones, J. Am. Chem. Soc. 2008, 130, 12414;
– reference: T. Zell, B. Butschke, Y. Ben-David, D. Milstein, Chem. Eur. J. 2013, 19, 8068;
– reference: C. Federsel, A. Boddien, R. Jackstell, R. Jennerjahn, P. J. Dyson, R. Scopelliti, G. Laurenczy, M. Beller, Angew. Chem. Int. Ed. 2010, 49, 9777;
– reference: P. A. Dub, T. Ikariya, J. Am. Chem. Soc. 2013, 135, 2604.
– reference: T. Leininger, A. Nicklass, W. Kuchle, H. Stoll, M. Dolg, A. Bergner, Chem. Phys. Lett. 1996, 255, 274;
– reference: Y. Maenaka, T. Suenobu, S. Fukuzumi, Energy Environ. Sci. 2012, 5, 7360.
– reference: S. A. Trygubenko, D. J. Wales, J. Chem. Phys. 2004, 120, 2082;
– reference: S. Oldenhof, M. Lutz, B. de Bruin, J. Ivar van der Vlugt, J. N. H. Reek, Chem. Sci. 2015, 6, 1027;
– reference: C. Yin, Z. Xu, S.-Y. Yang, S. M. Ng, K. Y. Wong, Z. Lin, C. P. Lau, Organometallics 2001, 20, 1216;
– reference: J. VandeVondele, J. Hutter, J. Chem. Phys. 2007, 127, 114105.
– reference: T. Privalov, J. S. M. Samec, J.-E. Bäckvall, Organometallics 2007, 26, 2840.
– reference: D. J. Morris, G. J. Clarkson, M. Wills, Organometallics 2009, 28, 4133;
– reference: S.-y. Shirai, H. Nara, Y. Kayaki, T. Ikariya, Organometallics 2009, 28, 802.
– reference: C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, J. Comput. Chem. 1996, 17, 49;
– reference: S. H. Vosko, L. Wilk, M. Nusair, Can J Phys 1980, 58, 1200.
– reference: D. Andrae, U. Haussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 1990, 77, 123;
– volume: 128
  start-page: 14293
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 123
  year: 1999
  publication-title: J. Biochem. Biophys. Methods
– volume: 7
  start-page: 1976
  year: 2014
  publication-title: Chemsuschem
– volume: 98
  start-page: 11623
  year: 1994
  publication-title: J. Phys. Chem.
– volume: 98
  start-page: 5648
  year: 1993
  publication-title: J. Chem. Phys.
– volume: 22
  start-page: 4084
  year: 2003
  publication-title: Organometallics
– volume: 21
  start-page: 5370
  year: 2015
  publication-title: Chem. Eur. J.
– volume: 352
  start-page: 753
  year: 2010
  publication-title: Adv. Synth. Catal.
– volume: 110
  start-page: 6158
  year: 1999
  publication-title: J. Chem. Phys.
– volume: 16
  start-page: 766
  year: 2010
  publication-title: Chem. Eur. J.
– volume: 20
  start-page: 12835
  year: 2014
  publication-title: Chem. Eur. J.
– start-page: 1007
  year: 1994
  publication-title: Synthesis
– volume: 131
  start-page: 8730
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 4133
  year: 2009
  publication-title: Organometallics
– volume: 19
  start-page: 4021
  year: 2013
  publication-title: Chem. Eur. J.
– volume: 13
  start-page: 3886
  year: 2007
  publication-title: Chem. Eur. J.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 103
  start-page: 1297
  year: 1981
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 3438
  year: 2011
  publication-title: Chem. Eur. J.
– start-page: 385
  year: 1998
– volume: 107
  start-page: 2365
  year: 2007
  publication-title: Chem. Rev.
– volume: 103
  start-page: 361
  year: 2000
  publication-title: Theor. Chem. Acc.
– volume: 167
  start-page: 103
  year: 2005
  publication-title: Comput. Phys. Commun.
– volume: 54 127
  start-page: 5223 5312
  year: 2015 2015
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 25
  start-page: 3352
  year: 2006
  publication-title: Organometallics
– volume: 30
  start-page: 905
  year: 2011
  publication-title: Organometallics
– volume: 82
  start-page: 270
  year: 1985
  publication-title: J. Chem. Phys.
– volume: 133
  start-page: 9274
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 2031
  year: 2001
  publication-title: Phys. Chem. Chem. Phys.
– volume: 14
  start-page: 7699
  year: 2008
  publication-title: Chem. Eur. J.
– volume: 4
  start-page: 2760
  year: 2013
  publication-title: Chem. Sci.
– volume: 47
  start-page: 9773
  year: 2011
  publication-title: Chem. Commun.
– volume: 132
  start-page: 1496
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 113
  start-page: 9978
  year: 2000
  publication-title: J. Chem. Phys.
– year: 2008
– volume: 3
  start-page: 431
  year: 2010
  publication-title: ChemSusChem
– volume: 4
  start-page: 1234
  year: 2013
  publication-title: Chem. Sci.
– volume: 114
  start-page: 145
  year: 2005
  publication-title: Theor. Chem. Acc.
– volume: 113
  start-page: 9901
  year: 2000
  publication-title: J. Chem. Phys.
– volume: 127
  start-page: 114105
  year: 2007
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 847
  year: 2009
  publication-title: Org. Lett.
– volume: 11
  start-page: 2018
  year: 2009
  publication-title: Green Chem.
– volume: 15
  start-page: 629
  year: 2013
  publication-title: Green Chem.
– volume: 66
  start-page: 7931
  year: 2001
  publication-title: The Journal of Organic Chemistry
– volume: 26
  start-page: 4135
  year: 2007
  publication-title: Organometallics
– volume: 50 123
  start-page: 12551 12759
  year: 2011 2011
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 37
  start-page: 785
  year: 1988
  publication-title: Phys. Rev. B
– start-page: 2771
  year: 2006
  publication-title: Chem. Commun.
– volume: 2
  start-page: 65
  year: 1975
  publication-title: React. Kinet. Catal. Lett.
– volume: 33
  start-page: 3433
  year: 2014
  publication-title: Organometallics
– volume: 106
  start-page: 6102
  year: 2002
  publication-title: J. Phys. Chem. A
– volume: 129
  start-page: 11821
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 72
  start-page: 1124
  year: 1994
  publication-title: Phys. Rev. Lett.
– volume: 42
  start-page: 935
  year: 2013
  publication-title: Dalton Trans.
– volume: 24
  start-page: 4816
  year: 2005
  publication-title: Organometallics
– volume: 345
  start-page: 67
  year: 2003
  publication-title: Adv Synth Catal
– volume: 30
  start-page: 6742
  year: 2011
  publication-title: Organometallics
– volume: 5
  start-page: 7360
  year: 2012
  publication-title: Energy Environ. Sci.
– start-page: 2449
  year: 2007
  publication-title: Chem. Commun.
– volume: 30
  start-page: 2483
  year: 2011
  publication-title: Organometallics
– volume: 115
  start-page: 152
  year: 1993
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 97
  year: 1997
  publication-title: Acc. Chem. Res.
– volume: 118
  start-page: 344
  year: 1996
  publication-title: J. Am. Chem. Soc.
– volume: 79
  start-page: 1002
  year: 2001
  publication-title: Can. J. Chem.
– volume: 35
  start-page: 226
  year: 2006
  publication-title: Chem. Soc. Rev.
– volume: 25
  start-page: 29
  year: 2003
  publication-title: Top. Catal.
– volume: 127
  start-page: 1883
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 1402
  year: 2007
  publication-title: Acc. Chem. Res.
– volume: 28
  start-page: 3492
  year: 2009
  publication-title: Organometallics
– volume: 12
  start-page: 1093
  year: 2008
  publication-title: Current Organic Chemistry
– volume: 17
  start-page: 49
  year: 1996
  publication-title: J. Comput. Chem.
– volume: 49
  start-page: 5408
  year: 2013
  publication-title: Chem. Commun.
– volume: 255
  start-page: 327
  year: 1996
  publication-title: Chem. Phys. Lett.
– volume: 123
  start-page: 1090
  year: 2001
  publication-title: J. Am. Chem. Soc.
– volume: 50 123
  start-page: 6411 6535
  year: 2011 2011
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 383
  year: 2012
  publication-title: Nat. Chem.
– volume: 47 120
  start-page: 8464 8592
  year: 2008 2008
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2012
  start-page: 504
  year: 2012
  publication-title: Eur J Inorg Chem.
– volume: 35
  start-page: 237
  year: 2006
  publication-title: Chem. Soc. Rev.
– volume: 40
  start-page: 1300
  year: 2007
  publication-title: Acc. Chem. Res.
– volume: 54
  start-page: 1703
  year: 1996
  publication-title: Phys. Rev. B
– volume: 54
  start-page: 3
  year: 2010
  publication-title: Platinum Met. Rev.
– volume: 113
  start-page: 7756
  year: 2000
  publication-title: J. Chem. Phys.
– volume: 3
  start-page: 1750
  year: 2008
  publication-title: Chem. Asian J.
– volume: 94
  start-page: 2027
  year: 1994
  publication-title: Chem. Rev.
– volume: 323
  start-page: 96
  year: 2001
  publication-title: Inorg. Chim. Acta
– volume: 2
  start-page: 782
  year: 1983
  publication-title: Organometallics
– volume: 135
  start-page: 2604
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 47 120
  start-page: 3966 4030
  year: 2008 2008
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 5265
  year: 2008
  publication-title: Org. Lett.
– volume: 20
  start-page: 1216
  year: 2001
  publication-title: Organometallics
– volume: 10
  start-page: 2045
  year: 1999
  publication-title: Tetrahedron: Asymmetry
– volume: 41
  start-page: 1606
  year: 2002
  publication-title: Inorg. Chem.
– volume: 248
  start-page: 2201
  year: 2004
  publication-title: Coord. Chem. Rev.
– volume: 345
  start-page: 103
  year: 2003
  publication-title: Adv. Synth. Catal.
– volume: 2
  start-page: 820
  year: 2007
  publication-title: Chem. Asian J.
– volume: 6
  start-page: 1027
  year: 2015
  publication-title: Chem. Sci.
– volume: 1998
  start-page: 485
  year: 1998
  publication-title: Eur J Inorg Chem.
– volume: 7
  start-page: 5052
  year: 2001
  publication-title: Chem. Eur. J.
– start-page: 2365
  year: 1998
  publication-title: Chem. Commun.
– start-page: 3212
  year: 2000
  publication-title: J. Chem. Soc. Dalton Trans.
– volume: 58
  start-page: 1200
  year: 1980
  publication-title: Can J Phys
– volume: 123
  start-page: 1778
  year: 2001
  publication-title: J. Am. Chem. Soc.
– volume: 92
  start-page: 508
  year: 1990
  publication-title: J. Chem. Phys.
– volume: 27
  start-page: 4854
  year: 2008
  publication-title: Organometallics
– volume: 5
  start-page: 3704
  year: 2015
  publication-title: ACS Catal.
– volume: 255
  start-page: 274
  year: 1996
  publication-title: Chem. Phys. Lett.
– volume: 92
  start-page: 1051
  year: 1992
  publication-title: Chem. Rev.
– volume: 127
  start-page: 7805
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 124
  start-page: 7963
  year: 2002
  publication-title: J. Am. Chem. Soc.
– volume: 333
  start-page: 1733
  year: 2011
  publication-title: Science
– volume: 127
  start-page: 4021
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 4
  year: 2001
  publication-title: Molecules
– volume: 130
  start-page: 13508
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 3641
  year: 1998
  publication-title: Phys. Rev. B
– volume: 128
  start-page: 2286
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 47 120
  start-page: 3962 4026
  year: 2008 2008
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 12780
  year: 2009
  publication-title: Chem. Eur. J.
– volume: 82
  start-page: 299
  year: 1985
  publication-title: J. Chem. Phys.
– start-page: 351
  year: 1999
  publication-title: Chem. Commun.
– start-page: 4657
  year: 2006
  publication-title: Dalton Trans.
– volume: 132
  start-page: 8924
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 2207
  year: 2001
  publication-title: Organometallics
– volume: 136
  start-page: 10234
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 245
  year: 2014
  publication-title: Chem. Eur. J.
– volume: 19
  start-page: 8068
  year: 2013
  publication-title: Chem. Eur. J.
– volume: 127
  start-page: 14062
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 105
  start-page: 9982
  year: 1996
  publication-title: J. Chem. Phys.
– volume: 42
  start-page: 1983
  year: 2009
  publication-title: Acc. Chem. Res.
– volume: 41
  start-page: 32
  year: 2003
  publication-title: Dalton Trans.
– volume: 43 116
  start-page: 788 806
  year: 2004 2004
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 27
  start-page: 2795
  year: 2008
  publication-title: Organometallics
– volume: 42
  start-page: 11987
  year: 2013
  publication-title: Dalton Trans.
– volume: 120
  start-page: 2082
  year: 2004
  publication-title: J. Chem. Phys.
– volume: 346
  start-page: 37
  year: 2004
  publication-title: Adv Synth Catal
– volume: 86
  start-page: 866
  year: 1987
  publication-title: The Journal of Chemical Physics
– volume: 130
  start-page: 12414
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 105
  start-page: 1052
  year: 1996
  publication-title: J. Chem. Phys.
– volume: 368
  start-page: 231
  year: 1994
  publication-title: Nature
– volume: 49 122
  start-page: 7548 7710
  year: 2010 2010
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 39
  start-page: 5083
  year: 2000
  publication-title: Inorg. Chem.
– volume: 26
  start-page: 702
  year: 2007
  publication-title: Organometallics
– volume: 49 122
  start-page: 9777 9971
  year: 2010 2010
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 457
  year: 2006
  publication-title: Org. Process Res. Dev.
– volume: 25
  start-page: 81
  year: 2014
  publication-title: Synlett
– volume: 77
  start-page: 123
  year: 1990
  publication-title: Theor. Chim. Acta
– volume: 26
  start-page: 2840
  year: 2007
  publication-title: Organometallics
– volume: 51
  start-page: 2657
  year: 1969
  publication-title: The Journal of Chemical Physics
– volume: 7
  start-page: 1247
  year: 2005
  publication-title: Org. Lett.
– volume: 6
  start-page: 2818
  year: 2000
  publication-title: Chem. Eur. J.
– volume: 33
  start-page: 449
  year: 1993
  publication-title: Isr. J. Chem.
– volume: 50 123
  start-page: 10433 10617
  year: 2011 2011
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 28
  start-page: 802
  year: 2009
  publication-title: Organometallics
– volume: 47 120
  start-page: 2447 2481
  year: 2008 2008
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 108
  start-page: 664
  year: 1998
  publication-title: J. Chem. Phys.
– volume: 121
  start-page: 9580
  year: 1999
  publication-title: J. Am. Chem. Soc.
– volume: 122
  start-page: 1466
  year: 2000
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 7052
  year: 2013
  publication-title: Chem. Commun.
– volume: 131
  start-page: 14168
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 52 125
  start-page: 6983 7121
  year: 2013 2013
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_6_83_2
– ident: e_1_2_6_97_2
– ident: e_1_2_6_40_2
  doi: 10.1002/adsc.200303152
– ident: e_1_2_6_45_2
  doi: 10.1021/ic000200b
– ident: e_1_2_6_126_2
  doi: 10.1002/chem.201403701
– ident: e_1_2_6_113_2
  doi: 10.1021/ja802415h
– ident: e_1_2_6_34_2
  doi: 10.1021/om010120v
– ident: e_1_2_6_2_2
  doi: 10.1021/cr00013a015
– ident: e_1_2_6_49_2
  doi: 10.1021/ja043697n
– ident: e_1_2_6_3_2
  doi: 10.1055/s-1994-25625
– ident: e_1_2_6_110_2
– ident: e_1_2_6_165_2
– ident: e_1_2_6_16_2
  doi: 10.1021/ja991638h
– ident: e_1_2_6_151_2
– ident: e_1_2_6_43_2
  doi: 10.1038/368231a0
– ident: e_1_2_6_62_2
  doi: 10.1039/a805789c
– ident: e_1_2_6_35_2
  doi: 10.1021/om7004832
– ident: e_1_2_6_173_2
  doi: 10.1063/1.448799
– ident: e_1_2_6_53_2
  doi: 10.1002/chem.200601339
– ident: e_1_2_6_184_2
  doi: 10.1063/1.1323224
– ident: e_1_2_6_32_2
  doi: 10.1021/ja9906610
– ident: e_1_2_6_189_2
  doi: 10.1016/0009-2614(96)00349-1
– ident: e_1_2_6_78_2
  doi: 10.1139/v00-201
– ident: e_1_2_6_57_2
  doi: 10.1002/anie.201105481
– ident: e_1_2_6_115_2
  doi: 10.1002/chem.201002604
– ident: e_1_2_6_6_2
  doi: 10.3390/50100004
– ident: e_1_2_6_56_2
  doi: 10.1002/anie.201004263
– ident: e_1_2_6_70_2
  doi: 10.1002/cssc.201000017
– ident: e_1_2_6_166_2
  doi: 10.1063/1.471950
– ident: e_1_2_6_68_2
  doi: 10.1021/ja100925n
– ident: e_1_2_6_63_2
  doi: 10.1039/b004234j
– ident: e_1_2_6_159_2
  doi: 10.1007/s002149900065
– ident: e_1_2_6_76_2
  doi: 10.1039/c3dt50908g
– ident: e_1_2_6_27_2
  doi: 10.1021/ja053956o
– ident: e_1_2_6_23_2
  doi: 10.1039/B605838H
– ident: e_1_2_6_183_2
  doi: 10.1063/1.1329672
– ident: e_1_2_6_42_2
– ident: e_1_2_6_153_2
  doi: 10.1063/1.2770708
– ident: e_1_2_6_89_2
  doi: 10.1002/anie.200802237
– ident: e_1_2_6_137_2
  doi: 10.1039/c2ee03315a
– ident: e_1_2_6_1_2
– ident: e_1_2_6_90_2
  doi: 10.1021/ol802016w
– ident: e_1_2_6_172_2
  doi: 10.1063/1.448975
– ident: e_1_2_6_120_2
  doi: 10.1002/chem.201204194
– ident: e_1_2_6_169_2
  doi: 10.1063/1.452288
– ident: e_1_2_6_54_2
  doi: 10.1021/ar9001679
– ident: e_1_2_6_69_2
  doi: 10.1021/ja910349w
– ident: e_1_2_6_104_3
  doi: 10.1002/ange.200300599
– ident: e_1_2_6_128_3
  doi: 10.1002/ange.201500346
– ident: e_1_2_6_18_2
  doi: 10.1021/ja3097674
– ident: e_1_2_6_127_2
  doi: 10.1002/chem.201500016
– ident: e_1_2_6_65_3
  doi: 10.1002/ange.200705972
– ident: e_1_2_6_188_2
  doi: 10.1021/jp020124t
– ident: e_1_2_6_176_2
  doi: 10.1103/PhysRevB.58.3641
– ident: e_1_2_6_14_2
  doi: 10.1595/147106709X481372
– ident: e_1_2_6_73_2
  doi: 10.1002/anie.201104951
– ident: e_1_2_6_144_2
  doi: 10.1002/chem.201301383
– ident: e_1_2_6_138_2
  doi: 10.1002/cssc.201301414
– ident: e_1_2_6_13_2
  doi: 10.1002/asia.200800196
– ident: e_1_2_6_102_2
  doi: 10.1002/adsc.200390000
– ident: e_1_2_6_93_2
  doi: 10.1039/C2DT31368E
– ident: e_1_2_6_22_2
  doi: 10.1021/ja061494o
– ident: e_1_2_6_177_2
  doi: 10.1103/PhysRevB.54.1703
– ident: e_1_2_6_142_2
  doi: 10.1039/b100980j
– volume: 41
  start-page: 32
  year: 2003
  ident: e_1_2_6_112_2
  publication-title: Dalton Trans.
– ident: e_1_2_6_26_2
  doi: 10.1021/ja002177z
– ident: e_1_2_6_123_3
  doi: 10.1002/ange.201300292
– ident: e_1_2_6_12_2
  doi: 10.1039/b618340a
– ident: e_1_2_6_168_2
  doi: 10.1007/BF01114537
– ident: e_1_2_6_64_2
  doi: 10.1002/anie.200800320
– ident: e_1_2_6_73_3
  doi: 10.1002/ange.201104951
– ident: e_1_2_6_131_3
  doi: 10.1002/ange.200705875
– ident: e_1_2_6_85_2
– ident: e_1_2_6_89_3
  doi: 10.1002/ange.200802237
– ident: e_1_2_6_108_2
  doi: 10.1002/adsc.200900719
– ident: e_1_2_6_170_2
  doi: 10.1063/1.1672392
– ident: e_1_2_6_157_2
  doi: 10.1063/1.478522
– ident: e_1_2_6_31_2
– ident: e_1_2_6_47_2
  doi: 10.1021/ja0167856
– ident: e_1_2_6_101_2
– ident: e_1_2_6_30_2
  doi: 10.1021/ja073370x
– ident: e_1_2_6_174_2
– ident: e_1_2_6_41_2
  doi: 10.1021/op060033k
– ident: e_1_2_6_24_2
  doi: 10.1021/om070169m
– ident: e_1_2_6_130_2
  doi: 10.1021/om800124f
– ident: e_1_2_6_28_2
  doi: 10.1021/ja044450t
– ident: e_1_2_6_132_2
  doi: 10.1002/chem.200902827
– ident: e_1_2_6_155_2
– ident: e_1_2_6_128_2
  doi: 10.1002/anie.201500346
– ident: e_1_2_6_104_2
  doi: 10.1002/anie.200300599
– ident: e_1_2_6_111_2
  doi: 10.1002/(SICI)1099-0682(199804)1998:4<485::AID-EJIC485>3.0.CO;2-Y
– ident: e_1_2_6_71_3
  doi: 10.1002/ange.201101995
– ident: e_1_2_6_19_2
– ident: e_1_2_6_160_2
  doi: 10.1021/j100096a001
– ident: e_1_2_6_107_2
  doi: 10.2174/138527208785740283
– volume: 25
  start-page: 81
  year: 2014
  ident: e_1_2_6_125_2
  publication-title: Synlett
– ident: e_1_2_6_100_2
  doi: 10.1021/ja0506861
– ident: e_1_2_6_75_2
  doi: 10.1007/BF02060954
– ident: e_1_2_6_123_2
  doi: 10.1002/anie.201300292
– ident: e_1_2_6_146_2
  doi: 10.1021/om060307s
– ident: e_1_2_6_161_2
  doi: 10.1063/1.464913
– ident: e_1_2_6_175_2
  doi: 10.1007/s00214-005-0655-y
– ident: e_1_2_6_7_2
  doi: 10.1002/adsc.200390030
– ident: e_1_2_6_79_2
– ident: e_1_2_6_74_2
  doi: 10.1021/ja00395a087
– ident: e_1_2_6_114_2
  doi: 10.1021/om9000742
– ident: e_1_2_6_122_2
  doi: 10.1039/c2gc36619c
– ident: e_1_2_6_84_2
  doi: 10.1021/om1009507
– ident: e_1_2_6_167_2
  doi: 10.1016/0009-2614(96)00382-X
– ident: e_1_2_6_33_2
  doi: 10.1002/1521-3765(20000804)6:15<2818::AID-CHEM2818>3.0.CO;2-Q
– ident: e_1_2_6_182_2
  doi: 10.1063/1.1636455
– ident: e_1_2_6_131_2
  doi: 10.1002/anie.200705875
– ident: e_1_2_6_4_2
  doi: 10.1021/ar9502341
– ident: e_1_2_6_59_2
  doi: 10.1021/om2010172
– ident: e_1_2_6_77_2
  doi: 10.1021/om00078a022
– ident: e_1_2_6_44_2
  doi: 10.1021/ja953097b
– ident: e_1_2_6_80_2
  doi: 10.1021/ja505241x
– ident: e_1_2_6_154_2
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_6_57_3
  doi: 10.1002/ange.201105481
– ident: e_1_2_6_64_3
  doi: 10.1002/ange.200800320
– ident: e_1_2_6_103_2
  doi: 10.1023/B:TOCA.0000003096.11191.25
– ident: e_1_2_6_149_2
  doi: 10.1063/1.1316015
– ident: e_1_2_6_56_3
  doi: 10.1002/ange.201004263
– ident: e_1_2_6_65_2
  doi: 10.1002/anie.200705972
– ident: e_1_2_6_121_2
  doi: 10.1039/c3cc41661e
– ident: e_1_2_6_133_2
  doi: 10.1021/ja901270f
– ident: e_1_2_6_150_2
– ident: e_1_2_6_92_3
  doi: 10.1002/ange.201002944
– ident: e_1_2_6_164_2
  doi: 10.1063/1.475428
– ident: e_1_2_6_178_2
– ident: e_1_2_6_147_2
– ident: e_1_2_6_37_2
  doi: 10.1021/acscatal.5b00645
– ident: e_1_2_6_148_2
  doi: 10.1063/1.458452
– ident: e_1_2_6_71_2
  doi: 10.1002/anie.201101995
– ident: e_1_2_6_8_2
  doi: 10.1016/j.ccr.2004.04.007
– ident: e_1_2_6_38_2
– ident: e_1_2_6_185_2
  doi: 10.1142/9789812839664_0016
– ident: e_1_2_6_58_2
  doi: 10.1021/ja2035514
– ident: e_1_2_6_51_2
  doi: 10.1021/om060899e
– ident: e_1_2_6_21_2
  doi: 10.1002/1521-3765(20011203)7:23<5052::AID-CHEM5052>3.0.CO;2-Z
– ident: e_1_2_6_124_2
  doi: 10.1002/chem.201303541
– ident: e_1_2_6_87_2
  doi: 10.1039/c3sc50587a
– ident: e_1_2_6_118_2
– ident: e_1_2_6_180_2
  doi: 10.1002/ijch.199300051
– ident: e_1_2_6_20_2
  doi: 10.1039/a809236b
– ident: e_1_2_6_95_2
  doi: 10.1021/ol802801p
– ident: e_1_2_6_96_2
  doi: 10.1021/om800926p
– ident: e_1_2_6_134_2
  doi: 10.1021/ol047353d
– ident: e_1_2_6_162_2
  doi: 10.1103/PhysRevB.37.785
– ident: e_1_2_6_163_2
  doi: 10.1139/p80-159
– ident: e_1_2_6_156_2
  doi: 10.1063/1.472933
– ident: e_1_2_6_152_2
  doi: 10.1016/j.cpc.2004.12.014
– ident: e_1_2_6_186_2
  doi: 10.1103/PhysRevLett.72.1124
– ident: e_1_2_6_109_2
  doi: 10.1039/c1cc12326b
– ident: e_1_2_6_116_2
  doi: 10.1021/om101064v
– ident: e_1_2_6_136_2
  doi: 10.1021/ja805128x
– ident: e_1_2_6_61_2
– ident: e_1_2_6_179_2
  doi: 10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0
– ident: e_1_2_6_48_2
  doi: 10.1021/ic010866l
– ident: e_1_2_6_36_2
  doi: 10.1021/om700975k
– ident: e_1_2_6_129_2
– ident: e_1_2_6_88_2
– ident: e_1_2_6_98_2
  doi: 10.1021/ja003630
– ident: e_1_2_6_190_2
  doi: 10.1021/cr00031a013
– ident: e_1_2_6_67_2
  doi: 10.1021/om900099u
– ident: e_1_2_6_86_2
  doi: 10.1021/ar700113g
– ident: e_1_2_6_50_2
  doi: 10.1039/b607993h
– ident: e_1_2_6_105_2
  doi: 10.1002/asia.200700081
– ident: e_1_2_6_145_2
  doi: 10.1002/chem.200800559
– ident: e_1_2_6_117_2
  doi: 10.1002/ejic.201100800
– volume-title: Enantioselective Hydrogenation of CN Functions and Enamines
  year: 2008
  ident: e_1_2_6_106_2
– ident: e_1_2_6_143_2
– ident: e_1_2_6_25_2
– ident: e_1_2_6_66_2
  doi: 10.1039/b914442k
– ident: e_1_2_6_139_2
  doi: 10.1016/S0165-022X(98)00033-5
– ident: e_1_2_6_9_2
  doi: 10.1039/B513396C
– ident: e_1_2_6_119_2
  doi: 10.1039/c2sc21923a
– ident: e_1_2_6_141_2
  doi: 10.1021/om0504147
– ident: e_1_2_6_10_2
  doi: 10.1039/b515269k
– ident: e_1_2_6_187_2
– ident: e_1_2_6_181_2
– ident: e_1_2_6_5_2
  doi: 10.1016/S0957-4166(99)00216-5
– ident: e_1_2_6_15_2
– ident: e_1_2_6_39_2
  doi: 10.1021/ja00054a021
– ident: e_1_2_6_92_2
  doi: 10.1002/anie.201002944
– ident: e_1_2_6_171_2
– ident: e_1_2_6_135_2
  doi: 10.1002/chem.200902103
– ident: e_1_2_6_99_2
  doi: 10.1021/om0303404
– ident: e_1_2_6_82_2
  doi: 10.1021/om500356e
– ident: e_1_2_6_72_2
  doi: 10.1126/science.1206613
– ident: e_1_2_6_55_2
  doi: 10.1021/ja903574e
– ident: e_1_2_6_140_2
  doi: 10.1016/S0020-1693(01)00615-6
– ident: e_1_2_6_29_2
  doi: 10.1021/ja056402u
– ident: e_1_2_6_46_2
  doi: 10.1021/om000944x
– ident: e_1_2_6_158_2
– ident: e_1_2_6_11_2
  doi: 10.1021/ar700134q
– ident: e_1_2_6_60_2
  doi: 10.1038/nchem.1295
– ident: e_1_2_6_94_2
  doi: 10.1039/c3cc44567d
– ident: e_1_2_6_91_2
– ident: e_1_2_6_17_2
  doi: 10.1021/jo010721w
– ident: e_1_2_6_52_2
  doi: 10.1021/cr068357u
– ident: e_1_2_6_81_2
  doi: 10.1039/C4SC02555E
– volume: 103
  start-page: 361
  year: 2000
  ident: WOS:000085419900060
  article-title: Perspective on "Density functional thermochemistry. III. The role of exact exchange" - Becke AD (1993) J Chem Phys 98:5648-52
  publication-title: THEORETICAL CHEMISTRY ACCOUNTS
– volume: 135
  start-page: 2604
  year: 2013
  ident: WOS:000315373000039
  article-title: Quantum Chemical Calculations with the Inclusion of Nonspecific and Specific Solvation: Asymmetric Transfer Hydrogenation with Bifunctional Ruthenium Catalysts
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja3097674
– volume: 6
  start-page: 1027
  year: 2015
  ident: WOS:000348147100020
  article-title: Dehydrogenation of formic acid by Ir-bisMETAMORPhos complexes: experimental and computational insight into the role of a cooperative ligand
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/c4sc02555e
– volume: 27
  start-page: 2795
  year: 2008
  ident: WOS:000256643600018
  article-title: Synthesis and reactivities of Cp*Ir amide and hydride complexes bearing C-N chelate ligands
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om800124f
– volume: 105
  start-page: 9982
  year: 1996
  ident: WOS:A1996VW94700028
  article-title: Rationale for mixing exact exchange with density functional approximations
  publication-title: JOURNAL OF CHEMICAL PHYSICS
– volume: 7
  start-page: 1976
  year: 2014
  ident: WOS:000340361500023
  article-title: Formic Acid Dehydrogenation with Bioinspired Iridium Complexes: A Kinetic Isotope Effect Study and Mechanistic Insight
  publication-title: CHEMSUSCHEM
  doi: 10.1002/cssc.201301414
– year: 2013
  ident: 000365132100036.160
  publication-title: Angew. Chem
– volume: 19
  start-page: 8068
  year: 2013
  ident: WOS:000320134200008
  article-title: Efficient Hydrogen Liberation from Formic Acid Catalyzed by a Well-Defined Iron Pincer Complex under Mild Conditions
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201301383
– volume: 92
  start-page: 1051
  year: 1992
  ident: WOS:A1992JH78800016
  article-title: ASYMMETRIC HYDROGEN TRANSFER-REACTIONS PROMOTED BY HOMOGENEOUS TRANSITION-METAL CATALYSTS
  publication-title: CHEMICAL REVIEWS
– volume: 42
  start-page: 1983
  year: 2009
  ident: WOS:000273082800014
  article-title: Molecular Approaches to the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar9001679
– volume: 77
  start-page: 123
  year: 1990
  ident: WOS:A1990DB14000004
  article-title: ENERGY-ADJUSTED ABINITIO PSEUDOPOTENTIALS FOR THE 2ND AND 3RD ROW TRANSITION-ELEMENTS
  publication-title: THEORETICA CHIMICA ACTA
– volume: 2
  start-page: 65
  year: 1975
  ident: WOS:A1975W268400009
  article-title: MECHANISM OF DEHYDROGENATION OF FORMIC-ACID BY IRIDIUM AND RHODIUM COMPLEXES
  publication-title: REACTION KINETICS AND CATALYSIS LETTERS
– volume: 121
  start-page: 9580
  year: 1999
  ident: WOS:000083280100013
  article-title: Ru(arene)(amino alcohol)-catalyzed transfer hydrogenation of ketones: Mechanism and origin of enantioselectivity
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– year: 2004
  ident: 000365132100036.23
  publication-title: Angew. Chem
– volume: 5
  start-page: 3704
  year: 2015
  ident: WOS:000355964300058
  article-title: Mechanistic Studies on the Alkylation of Amines with Alcohols Catalyzed by a Bifunctional Iridium Complex
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.5b00645
– volume: 13
  start-page: 3886
  year: 2007
  ident: WOS:000246573200006
  article-title: Carbon dioxide hydrogenation catalyzed by a ruthenium dihydride: A DFT and high-pressure spectroscopic investigation
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.200601339
– volume: 37
  start-page: 785
  year: 1988
  ident: WOS:A1988L976200011
  article-title: DEVELOPMENT OF THE COLLE-SALVETTI CORRELATION-ENERGY FORMULA INTO A FUNCTIONAL OF THE ELECTRON-DENSITY
  publication-title: PHYSICAL REVIEW B
– volume: 19
  start-page: 4021
  year: 2013
  ident: WOS:000316009800026
  article-title: Fast Reductive Amination by Transfer Hydrogenation "on Water"
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201204194
– volume: 22
  start-page: 4084
  year: 2003
  ident: WOS:000185506400017
  article-title: Effect of chelate ring size on the rate of hydride transfer from CpRu(P-P)H (P-P = chelating diphosphine) to an iminium cation
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om0303404
– year: 1000
  ident: 000365132100036.37
  publication-title: DALTON T
– volume: 128
  start-page: 14293
  year: 2006
  ident: WOS:000241729100037
  article-title: Mechanistic study of hydrogen transfer to imines from a hydroxycyclopentadienyl ruthenium hydride.: Experimental support for a mechanism involving coordination of imine to ruthenium prior to hydrogen transfer
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja061494o
– volume: 130
  start-page: 12414
  year: 2008
  ident: WOS:000259139900055
  article-title: An efficient low-temperature route to polycyclic isoquinoline salt synthesis via C-H activation with [Cp☆MCl2]2 (M = Rh, Ir)
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja802415h
– start-page: 2365
  year: 1998
  ident: WOS:000076848200041
  article-title: An efficient binuclear catalyst for decomposition of formic acid
  publication-title: CHEMICAL COMMUNICATIONS
– volume: 11
  start-page: 847
  year: 2009
  ident: WOS:000263299000016
  article-title: Ru(II) Complexes of N-Alkylated TsDPEN Ligands in Asymmetric Transfer Hydrogenation of Ketones and Imines
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol802801p
– volume: 98
  start-page: 5648
  year: 1993
  ident: WOS:A1993KV99700048
  article-title: Density-functional thermochemistry. III. The role of exact exchange
  publication-title: JOURNAL OF CHEMICAL PHYSICS
  doi: 10.1063/1.464913
– volume: 124
  start-page: 7963
  year: 2002
  ident: WOS:000176612400027
  article-title: Hydrogenation of carbon dioxide catalyzed by ruthenium trimethylphosphine complexes: The accelerating effect of certain alcohols and amines
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja0167856
– volume: 35
  start-page: 226
  year: 2006
  ident: WOS:000235989600003
  article-title: Asymmetric transfer hydrogenation: chiral ligands and applications
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/b513396c
– volume: 39
  start-page: 5083
  year: 2000
  ident: WOS:000165213200015
  article-title: Formation and characterization of water-soluble hydrido-ruthenium(II) complexes of 1,3,5-triaza-7-phosphaadamantane and their catalytic activity in hydrogenation of CO2 and HCO3- in aqueous solution
  publication-title: INORGANIC CHEMISTRY
  doi: 10.1021/ic000200b
– volume: 131
  start-page: 8730
  year: 2009
  ident: WOS:000267631000006
  article-title: Highly Active and Robust Cp* Iridium Complexes for Catalytic Water Oxidation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja901270f
– volume: 255
  start-page: 327
  year: 1996
  ident: WOS:A1996UQ97600017
  article-title: Ab initio study of solvated molecules: A new implementation of the polarizable continuum model
  publication-title: CHEMICAL PHYSICS LETTERS
– volume: 20
  start-page: 2207
  year: 2001
  ident: WOS:000168917600015
  article-title: Origin of the enantioselectivity in the hydrogen transfer reduction of carbonyls by a rhodium(I) complex: A theoretical study
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om010120v
– volume: 2
  start-page: 820
  year: 2007
  ident: WOS:000247857700001
  article-title: Recent developments in asymmetric transfer hydrogenation with Hantzsch esters: A biomimetic approach
  publication-title: CHEMISTRY-AN ASIAN JOURNAL
  doi: 10.1002/asia.200700081
– volume: 54
  start-page: 3
  year: 2010
  ident: WOS:000273653100002
  article-title: Asymmetric Transfer Hydrogenation in Water with Platinum Group Metal Catalysts
  publication-title: PLATINUM METALS REVIEW
  doi: 10.1595/147106709X481372
– start-page: 3212
  year: 2000
  ident: WOS:000089170200027
  article-title: The interconversion of formic acid and hydrogen/carbon dioxide using a binuclear ruthenium complex catalyst
  publication-title: JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS
– volume: 118
  start-page: 344
  year: 1996
  ident: WOS:A1996TQ26900007
  article-title: Homogeneous catalysis in supercritical fluids: Hydrogenation of supercritical carbon dioxide to formic acid, alkyl formates, and formamides
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 26
  start-page: 4135
  year: 2007
  ident: WOS:000248729400012
  article-title: Hydrogen transfer to ketones catalyzed by Shvo's ruthenium hydride complex:: A mechanistic insight
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om7004832
– volume: 51
  start-page: 2657
  year: 1969
  ident: WOS:A1969E338200047
  article-title: SELF-CONSISTENT MOLECULAR-ORBITAL METHODS .I. USE OF GAUSSIAN EXPANSIONS OF SLATER-TYPE ATOMIC ORBITALS
  publication-title: JOURNAL OF CHEMICAL PHYSICS
– volume: 50
  start-page: 6411
  year: 2011
  ident: WOS:000292642600040
  article-title: CO2-"Neutral" Hydrogen Storage Based on Bicarbonates and Formates
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201101995
– volume: 122
  start-page: 1466
  year: 2000
  ident: WOS:000085639200025
  article-title: The metal-ligand bifunctional catalysis: A theoretical study on the ruthenium(II)-catalyzed hydrogen transfer between alcohols and carbonyl compounds
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– year: 2015
  ident: 000365132100036.134
  publication-title: ANGEW CHE
– volume: 24
  start-page: 4816
  year: 2005
  ident: WOS:000232036000017
  article-title: Aqueous transformation of a metal diformate to a metal dihydride carbonyl complex accompanied by H2 evolution from the formato ligands
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om0504147
– year: 2008
  ident: 000365132100036.172
  publication-title: ANGEW CHEM-GER EDIT
– volume: 110
  start-page: 6158
  year: 1999
  ident: WOS:000079419000010
  article-title: Toward reliable density functional methods without adjustable parameters: The PBE0 model
  publication-title: JOURNAL OF CHEMICAL PHYSICS
– year: 2012
  ident: 000365132100036.31
  publication-title: THESIS
– volume: 113
  start-page: 7756
  year: 2000
  ident: WOS:000090151400006
  article-title: From molecules to solids with the DMol3 approach
  publication-title: JOURNAL OF CHEMICAL PHYSICS
– volume: 98
  start-page: 11623
  year: 1994
  ident: WOS:A1994PQ94400001
  article-title: AB-INITIO CALCULATION OF VIBRATIONAL ABSORPTION AND CIRCULAR-DICHROISM SPECTRA USING DENSITY-FUNCTIONAL FORCE-FIELDS
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY
– year: 2010
  ident: 000365132100036.151
  publication-title: Angew. Chem
– volume: 114
  start-page: 145
  year: 2005
  ident: WOS:000232053800020
  article-title: Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals
  publication-title: THEORETICAL CHEMISTRY ACCOUNTS
  doi: 10.1007/s00214-005-0655-y
– year: 1998
  ident: 000365132100036.74
  publication-title: Classical and Quantum Dynamics in Condensed Phase Simulations
– volume: 25
  start-page: 29
  year: 2003
  ident: WOS:000186547700005
  article-title: Diastereoselective hydrogenation in the preparation of fine chemicals
  publication-title: TOPICS IN CATALYSIS
– volume: 38
  start-page: 123
  year: 1999
  ident: WOS:000078690100004
  article-title: Ionization constants of weak acids and bases in organic solvents
  publication-title: JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS
– volume: 2
  start-page: 782
  year: 1983
  ident: WOS:A1983QV03800022
  article-title: SYNTHESIS AND DECARBOXYLATION MECHANISM OF THE CHIRAL RHENIUM FORMATE (ETA-C5H5)RE(NO)(PPH3)(OCHO)
  publication-title: ORGANOMETALLICS
– volume: 49
  start-page: 9777
  year: 2010
  ident: WOS:000285211000045
  article-title: A Well-Defined Iron Catalyst for the Reduction of Bicarbonates and Carbon Dioxide to Formates, Alkyl Formates, and Formamides
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201004263
– volume: 131
  start-page: 14168
  year: 2009
  ident: WOS:000271271500021
  article-title: Catalytic Hydrogenation of Carbon Dioxide Using Ir(III)-Pincer Complexes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja903574e
– volume: 323
  start-page: 96
  year: 2001
  ident: WOS:000172077100012
  article-title: Preparation and structure of bis(μ-acetato)dichlorodicarbonyldiiridium(II) complexes with Group 15 ligands and ESR and density functional theory studies of electronic structure of their cationic radicals
  publication-title: INORGANICA CHIMICA ACTA
– year: 2008
  ident: 000365132100036.9
  publication-title: ANGEW CHEM
– volume: 4
  start-page: 1234
  year: 2013
  ident: WOS:000314474900047
  article-title: Long-range metal-ligand bifunctional catalysis: cyclometallated iridium catalysts for the mild and rapid dehydrogenation of formic acid
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/c2sc21923a
– volume: 106
  start-page: 6102
  year: 2002
  ident: WOS:000176356400019
  article-title: Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY A
  doi: 10.1021/jp020124t
– year: 2011
  ident: 000365132100036.20
  publication-title: Angewandte Chemie
– volume: 33
  start-page: 449
  year: 1993
  ident: WOS:A1993ND84100011
  article-title: COMBINING SYNCHRONOUS TRANSIT AND QUASI-NEWTON METHODS TO FIND TRANSITION-STATES
  publication-title: ISRAEL JOURNAL OF CHEMISTRY
– volume: 17
  start-page: 3438
  year: 2011
  ident: WOS:000288099200020
  article-title: The Scope of Ambiphilic Acetate-Assisted Cyclometallation with Half-Sandwich Complexes of Iridium, Rhodium and Ruthenium
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201002604
– year: 2008
  ident: 000365132100036.47
  publication-title: Angew. Chem.
– volume: 72
  start-page: 1124
  year: 1994
  ident: WOS:A1994MW25600045
  article-title: QUANTUM AND THERMAL EFFECTS IN H-2 DISSOCIATIVE ADSORPTION - EVALUATION OF FREE-ENERGY BARRIERS IN MULTIDIMENSIONAL QUANTUM-SYSTEMS
  publication-title: PHYSICAL REVIEW LETTERS
– start-page: 4657
  year: 2006
  ident: WOS:000241057600003
  article-title: Mechanistic investigation of CO2 hydrogenation by Ru(II) and Ir(III) aqua complexes under acidic conditions:: two catalytic systems differing in the nature of the rate determining step
  publication-title: DALTON TRANSACTIONS
  doi: 10.1039/b607993h
– year: 2010
  ident: 000365132100036.44
  publication-title: ANGEW CHE
– volume: 82
  start-page: 299
  year: 1985
  ident: WOS:A1985ABS5500035
  article-title: ABINITIO EFFECTIVE CORE POTENTIALS FOR MOLECULAR CALCULATIONS - POTENTIALS FOR K TO AU INCLUDING THE OUTERMOST CORE ORBITALS
  publication-title: JOURNAL OF CHEMICAL PHYSICS
– volume: 132
  start-page: 1496
  year: 2010
  ident: WOS:000275084900026
  article-title: Unusually Large Tunneling Effect on Highly Efficient Generation of Hydrogen and Hydrogen Isotopes in pH-Selective Decomposition of Formic Acid Catalyzed by a Heterodinuclear Iridium-Ruthenium Complex in Water
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja910349w
– volume: 5
  start-page: 4
  year: 2000
  ident: WOS:000085090200002
  article-title: Recent developments in the area of asymmetric transfer hydrogenation
  publication-title: MOLECULES
– volume: 28
  start-page: 3492
  year: 2009
  ident: WOS:000267020700020
  article-title: C-H Activation of Phenyl Imines and 2-Phenylpyridines with [Cp*MCl2]2 (M = Ir, Rh): Regioselectivity, Kinetics, and Mechanism
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om9000742
– volume: 47
  start-page: 3966
  year: 2008
  ident: WOS:000255994700021
  article-title: A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200800320
– volume: 47
  start-page: 3962
  year: 2008
  ident: WOS:000255994700020
  article-title: Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200705972
– year: 2003
  ident: 000365132100036.48
  publication-title: GAUSSIAN 03
– volume: 368
  start-page: 231
  year: 1994
  ident: WOS:A1994NA87000051
  article-title: HOMOGENEOUS CATALYTIC-HYDROGENATION OF SUPERCRITICAL CARBON-DIOXIDE
  publication-title: NATURE
– start-page: 485
  year: 1998
  ident: WOS:000072817900011
  article-title: Metal complexes of biologically important ligands. CII - Organometallic complexes of iridium, palladium, chromium and iron from 2-phenyl-5(4H)-oxazolones - Organometallic labelled dipeptides
  publication-title: EUROPEAN JOURNAL OF INORGANIC CHEMISTRY
– volume: 12
  start-page: 1093
  year: 2008
  ident: WOS:000259447100003
  article-title: Recent development on catalytic reductive amination and applications
  publication-title: CURRENT ORGANIC CHEMISTRY
– year: 2008
  ident: 000365132100036.17
  publication-title: ENANTIOSELECTIVE HYD
– volume: 16
  start-page: 766
  year: 2010
  ident: WOS:000274615700005
  article-title: Metal-Pyrazole Bifunction in Half-Sandwich C-N Chelate Iridium Complexes: Pyrazole-Pyrazolato Interconversion and Application to Catalytic Intramolecular Hydroamination of Aminoalkene
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.200902827
– start-page: 2449
  year: 2007
  ident: WOS:000247187900008
  article-title: Aqueous-phase asymmetric transfer hydrogenation of ketones - a greener approach to chiral alcohols
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/b618340a
– volume: 346
  start-page: 37
  year: 2004
  ident: WOS:000189276900003
  article-title: Mechanistic aspects of formation of chiral ruthenium hydride complexes from 16-electron ruthenium amide complexes and formic acid: Facile reversible decarboxylation and carboxylation
  publication-title: ADVANCED SYNTHESIS & CATALYSIS
  doi: 10.1002/adsc.200303152
– volume: 43
  start-page: 788
  year: 2004
  ident: WOS:000189101500005
  article-title: Industrial methods for the production of optically active intermediates
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200300599
– volume: 49
  start-page: 5408
  year: 2013
  ident: WOS:000319005400021
  article-title: Highly efficient transformation of levulinic acid into pyrrolidinones by iridium catalysed transfer hydrogenation
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c3cc41661e
– volume: 4
  start-page: 2760
  year: 2013
  ident: WOS:000319940400006
  article-title: Discovery of an iridacycle catalyst with improved reactivity and enantioselectivity in the hydrogenation of dialkyl ketimines
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/c3sc50587a
– volume: 30
  start-page: 6742
  year: 2011
  ident: WOS:000298074500026
  article-title: Mechanistic Studies on the Reversible Hydrogenation of Carbon Dioxide Catalyzed by an Ir-PNP Complex
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om2010172
– volume: 167
  start-page: 103
  year: 2005
  ident: WOS:000228421500005
  article-title: QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
  publication-title: COMPUTER PHYSICS COMMUNICATIONS
  doi: 10.1016/j.cpc.2004.12.014
– volume: 127
  start-page: ARTN 114105
  year: 2007
  ident: WOS:000249667400011
  article-title: Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
  publication-title: JOURNAL OF CHEMICAL PHYSICS
  doi: 10.1063/1.2770708
– volume: 132
  start-page: 8924
  year: 2010
  ident: WOS:000279561200048
  article-title: Iron-Catalyzed Hydrogen Production from Formic Acid
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja100925n
– volume: 127
  start-page: 7805
  year: 2005
  ident: WOS:000229447700032
  article-title: Ruthenium-catalyzed ionic hydrogenation of iminium cations. Scope and mechanism
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja0506861
– volume: 255
  start-page: 274
  year: 1996
  ident: WOS:A1996UQ97600009
  article-title: The accuracy of the pseudopotential approximation: Non-frozen-core effects for spectroscopic constants of alkali fluorides XF (X=K, Rb, Ca)
  publication-title: CHEMICAL PHYSICS LETTERS
– volume: 47
  start-page: 9773
  year: 2011
  ident: WOS:000294122000003
  article-title: Hydrogenation of imino bonds with half-sandwich metal catalysts
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c1cc12326b
– volume: 20
  start-page: 1216
  year: 2001
  ident: WOS:000167628900031
  article-title: Promoting effect of water in ruthenium-catalyzed hydrogenation of carbon dioxide to formic acid
  publication-title: ORGANOMETALLICS
– volume: 130
  start-page: 13508
  year: 2008
  ident: WOS:000259924000001
  article-title: Dynamic kinetic resolution of racemic β-haloalcohols:: Direct access to enantioenriched epoxides
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja805128x
– volume: 20
  start-page: 12835
  year: 2014
  ident: WOS:000342627300022
  article-title: Versatile Iridicycle Catalysts for Highly Efficient and Chemoselective Transfer Hydrogenation of Carbonyl Compounds in Water
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201403701
– start-page: 2771
  year: 2006
  ident: WOS:000238616900009
  article-title: Mechanistic investigation on the hydrogenation of imines by [p-(Me2CH)C6H4Me]RuH(NH2CHPhCHPhNSO2C6H4-p-CH3).: Experimental support for an ionic pathway
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/b605838h
– volume: 3
  start-page: 2031
  year: 2001
  ident: WOS:000168859400017
  article-title: Solvation and kinetic isotope effects in H and D abstraction reactions from formate ions by D, H and Mu atoms in aqueous solution
  publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
– volume: 21
  start-page: 5370
  year: 2015
  ident: WOS:000352504500016
  article-title: A Simple Iridicycle Catalyst for Efficient Transfer Hydrogenation of N-Heterocycles in Water
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201500016
– volume: 47
  start-page: 2447
  year: 2008
  ident: WOS:000254379500021
  article-title: Aerobic oxidative kinetic resolution of racemic secondary alcohols with chiral bifunctional amido complexes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200705875
– volume: 107
  start-page: 2365
  year: 2007
  ident: WOS:000247217000010
  article-title: Transformation of carbon dioxide
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr068357u
– volume: 52
  start-page: 6983
  year: 2013
  ident: WOS:000320776900034
  article-title: Acceptorless Dehydrogenation of Nitrogen Heterocycles with a Versatile Iridium Catalyst
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201300292
– volume: 28
  start-page: 802
  year: 2009
  ident: WOS:000262913600020
  article-title: Remarkable Positive Effect of Silver Salts on Asymmetric Hydrogenation of Acyclic Imines with Cp*Ir Complexes Bearing Chiral N-Sulfonylated Diamine Ligands
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om800926p
– volume: 79
  start-page: 1002
  year: 2001
  ident: WOS:000170070900070
  article-title: The role of a hydroxycyclopentadienyl ruthenium dicarbonyl formate in formic acid reductions of carbonyl compounds catalyzed by Shvo's diruthenium catalyst
  publication-title: CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE
– volume: 123
  start-page: 1778
  year: 2001
  ident: WOS:000167162100036
  article-title: Stoichiometric, catalytic, and enantioface-selective hydrogenation of C=N bonds by an ionic mechanism
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 40
  start-page: 1300
  year: 2007
  ident: WOS:000251787500009
  article-title: Asymmetric transfer hydrogenation of ketones with bifunctional transition metal-based molecular
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar700134q
– volume: 352
  start-page: 753
  year: 2010
  ident: WOS:000276317800001
  article-title: Chiral Amine Synthesis - Recent Developments and Trends for Enamide Reduction, Reductive Amination, and Imine Reduction
  publication-title: ADVANCED SYNTHESIS & CATALYSIS
  doi: 10.1002/adsc.200900719
– volume: 345
  start-page: 103
  year: 2003
  ident: WOS:000180842300008
  article-title: Selective hydrogenation for fine chemicals: Recent trends and new developments
  publication-title: ADVANCED SYNTHESIS & CATALYSIS
– volume: 14
  start-page: 7699
  year: 2008
  ident: WOS:000259079400034
  article-title: A multilateral mechanistic study into asymmetric transfer hydrogenation in water
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.200800559
– volume: 115
  start-page: 152
  year: 1993
  ident: WOS:A1993KG95400021
  article-title: MECHANISTIC ASPECTS OF THE RHODIUM-CATALYZED ENANTIOSELECTIVE TRANSFER HYDROGENATION OF ALPHA,BETA-UNSATURATED CARBOXYLIC-ACIDS USING FORMIC-ACID TRIETHYLAMINE (5-2) AS THE HYDROGEN SOURCE
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 25
  start-page: 3352
  year: 2006
  ident: WOS:000238534400012
  article-title: Ruthenium(II)-catalyzed hydrogenation of carbon dioxide to formic acid. Theoretical study of significant acceleration by water molecules
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om060307s
– volume: 108
  start-page: 664
  year: 1998
  ident: WOS:000071233400033
  article-title: Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters:: The mPW and mPW1PW models
  publication-title: JOURNAL OF CHEMICAL PHYSICS
– volume: 5
  start-page: 7360
  year: 2012
  ident: WOS:000304354900010
  article-title: Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure
  publication-title: ENERGY & ENVIRONMENTAL SCIENCE
  doi: 10.1039/c2ee03315a
– volume: 333
  start-page: 1733
  year: 2011
  ident: WOS:000295121500038
  article-title: Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst
  publication-title: SCIENCE
  doi: 10.1126/science.1206613
– year: 2011
  ident: 000365132100036.112
  publication-title: Angew. Chem
– volume: 33
  start-page: 3433
  year: 2014
  ident: WOS:000339090700024
  article-title: Computational Studies Explain the Importance of Two Different Substituents on the Chelating Bis(amido) Ligand for Transfer Hydrogenation by Bifunctional Cp*Rh(III) Catalysts
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om500356e
– volume: 7
  start-page: 1247
  year: 2005
  ident: WOS:000227921200013
  article-title: Cycloruthenated primary and secondary amines as efficient catalyst precursors for asymmetric transfer hydrogenation
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol047353d
– volume: 4
  start-page: 383
  year: 2012
  ident: WOS:000303109700013
  article-title: Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/NCHEM.1295
– volume: 50
  start-page: 12551
  year: 2011
  ident: WOS:000298332700023
  article-title: Carbon Dioxide Hydrogenation to Formic Acid by Using a Heterogeneous Gold Catalyst
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201105481
– volume: 127
  start-page: 4021
  year: 2005
  ident: WOS:000227738700071
  article-title: Ruthenium(II)-catalyzed hydrogenation of carbon dioxide to formic acid. theoretical study of real catalyst, ligand effects, and solvation effects
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja043697n
– volume: 41
  start-page: 1606
  year: 2002
  ident: WOS:000174492300037
  article-title: In situ formation of ruthenium catalysts for the homogeneous hydrogenation of carbon dioxide
  publication-title: INORGANIC CHEMISTRY
  doi: 10.1021/ic010866l
– start-page: 504
  year: 2012
  ident: WOS:000301489600019
  article-title: Synthesis, Structures, and Transfer Hydrogenation Catalysis of Bifunctional Iridium Complexes Bearing a C-N Chelate Oxime Ligand
  publication-title: EUROPEAN JOURNAL OF INORGANIC CHEMISTRY
  doi: 10.1002/ejic.201100800
– volume: 11
  start-page: 2018
  year: 2009
  ident: WOS:000272382200016
  article-title: Highly efficient hydrogen evolution by decomposition of formic acid using an iridium catalyst with 4,4′-dihydroxy-2,2′-bipyridine
  publication-title: GREEN CHEMISTRY
  doi: 10.1039/b914442k
– volume: 30
  start-page: 2483
  year: 2011
  ident: WOS:000290001900007
  article-title: On the Mechanism of Iridium-Catalyzed Asymmetric Hydrogenation of Imines and Alkenes: A Theoretical Study
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om1009507
– volume: 58
  start-page: 1200
  year: 1980
  ident: WOS:A1980KE76300015
  article-title: ACCURATE SPIN-DEPENDENT ELECTRON LIQUID CORRELATION ENERGIES FOR LOCAL SPIN-DENSITY CALCULATIONS - A CRITICAL ANALYSIS
  publication-title: CANADIAN JOURNAL OF PHYSICS
– start-page: 351
  year: 1999
  ident: WOS:000078821600024
  article-title: Evidence for a ruthenium dihydride species as the active catalyst in the RuCl2(PPh3)-catalyzed hydrogen transfer reaction in the presence of base
  publication-title: CHEMICAL COMMUNICATIONS
– volume: 50
  start-page: 10433
  year: 2011
  ident: WOS:000297049300035
  article-title: A Charge/Discharge Device for Chemical Hydrogen Storage and Generation
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201104951
– volume: 54
  start-page: 1703
  year: 1996
  ident: WOS:A1996UZ86100053
  article-title: Separable dual-space Gaussian pseudopotentials
  publication-title: PHYSICAL REVIEW B
– volume: 28
  start-page: 4133
  year: 2009
  ident: WOS:000268176700021
  article-title: Insights into Hydrogen Generation from Formic Acid Using Ruthenium Complexes
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om900099u
– volume: 15
  start-page: 629
  year: 2013
  ident: WOS:000315356400010
  article-title: Cyclometalated iridium complexes for transfer hydrogenation of carbonyl groups in water
  publication-title: GREEN CHEMISTRY
  doi: 10.1039/c2gc36619c
– year: 1000
  ident: 000365132100036.38
  publication-title: ACC CHEM RES
– volume: 7
  start-page: 5052
  year: 2001
  ident: WOS:000172599900007
  article-title: Studies on the mechanism of metal-catalyzed hydrogen transfer from alcohols to ketones
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
– volume: 47
  start-page: 8464
  year: 2008
  ident: WOS:000260622700025
  article-title: Hydrogenation of Quinolines Using a Recyclable Phosphine-Free Chiral Cationic Ruthenium Catalyst: Enhancement of Catalyst Stability and Selectivity in an Ionic Liquid
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200802237
– volume: 248
  start-page: 2201
  year: 2004
  ident: WOS:000225813700007
  article-title: Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes
  publication-title: COORDINATION CHEMISTRY REVIEWS
  doi: 10.1016/j.ccr.2004.04.007
– volume: 127
  start-page: 1883
  year: 2005
  ident: WOS:000226951800059
  article-title: Isomerization and deuterium scrambling evidence for a change in the rate-limiting step during imine hydrogenation by Shvo's hydroxycyclopentadienyl ruthenium hydride
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja044450t
– volume: 120
  start-page: 2082
  year: 2004
  ident: WOS:000188498400003
  article-title: A doubly nudged elastic band method for finding transition states
  publication-title: JOURNAL OF CHEMICAL PHYSICS
  doi: 10.1063/1.1636455
– volume: 42
  start-page: 935
  year: 2013
  ident: WOS:000312659200016
  article-title: Synthesis and X-ray structures of cyclometalated iridium complexes including the hydrides
  publication-title: DALTON TRANSACTIONS
  doi: 10.1039/c2dt31368e
– volume: 3
  start-page: 431
  year: 2010
  ident: WOS:000277669700009
  article-title: A Continuous-Flow Method for the Generation of Hydrogen from Formic Acid
  publication-title: CHEMSUSCHEM
  doi: 10.1002/cssc.201000017
– volume: 42
  start-page: 11987
  year: 2013
  ident: WOS:000322525100025
  article-title: Mechanistic insights into iron catalyzed dehydrogenation of formic acid: β-hydride elimination vs. direct hydride transfer
  publication-title: DALTON TRANSACTIONS
  doi: 10.1039/c3dt50908g
– volume: 113
  start-page: 9978
  year: 2000
  ident: WOS:000165584900014
  article-title: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
  publication-title: JOURNAL OF CHEMICAL PHYSICS
– volume: 86
  start-page: 866
  year: 1987
  ident: WOS:A1987F591600043
  article-title: ENERGY-ADJUSTED ABINITIO PSEUDOPOTENTIALS FOR THE 1ST-ROW TRANSITION-ELEMENTS
  publication-title: JOURNAL OF CHEMICAL PHYSICS
– volume: 136
  start-page: 10234
  year: 2014
  ident: WOS:000339471900014
  article-title: Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja505241x
– volume: 40
  start-page: 1402
  year: 2007
  ident: WOS:000251787500020
  article-title: Iridium-catalyzed asymmetric hydrogenation of olefins
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar700113g
– volume: 94
  start-page: 2027
  year: 1994
  ident: WOS:A1994PT13100014
  article-title: MOLECULAR-INTERACTIONS IN SOLUTION - AN OVERVIEW OF METHODS BASED ON CONTINUOUS DISTRIBUTIONS OF THE SOLVENT
  publication-title: CHEMICAL REVIEWS
– volume: 129
  start-page: 11821
  year: 2007
  ident: WOS:000249693800032
  article-title: Intramolecular trapping of an intermediate in the reduction of Imines by a hydroxycyclopentadienyl ruthenium hydride: Support for a concerted outer sphere mechanism
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja073370x
– volume: 92
  start-page: 508
  year: 1990
  ident: WOS:A1990CH55200058
  article-title: AN ALL-ELECTRON NUMERICAL-METHOD FOR SOLVING THE LOCAL DENSITY FUNCTIONAL FOR POLYATOMIC-MOLECULES
  publication-title: JOURNAL OF CHEMICAL PHYSICS
– volume: 3
  start-page: 1750
  year: 2008
  ident: WOS:000259968700002
  article-title: Broader, Greener, and More Efficient: Recent Advances in Asymmetric Transfer Hydrogenation
  publication-title: CHEMISTRY-AN ASIAN JOURNAL
  doi: 10.1002/asia.200800196
– volume: 35
  start-page: 237
  year: 2006
  ident: WOS:000235989600004
  article-title: Mechanistic aspects of transition metal-catalyzed hydrogen transfer reactions
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/b515269k
– year: 2008
  ident: 000365132100036.89
  publication-title: ANGEW CHEM-GER EDIT
– volume: 103
  start-page: 1297
  year: 1981
  ident: WOS:A1981LF69400087
  article-title: FORMATE ION AS A MONODENTATE LIGAND - SYNTHESIS, STRUCTURE, AND DECARBOXYLATION OF (ETA-5-C5H5)FE(CO)2O2CH
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 54
  start-page: 5223
  year: 2015
  ident: WOS:000354190800046
  article-title: Regioselective Acceptorless Dehydrogenative Coupling of N-Heterocycles toward Functionalized Quinolines, Phenanthrolines, and Indoles
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201500346
– volume: 49
  start-page: 7052
  year: 2013
  ident: WOS:000321758300010
  article-title: Robust cyclometallated Ir(III) catalysts for the homogeneous hydrogenation of N-heterocycles under mild conditions
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c3cc44567d
– volume: 17
  start-page: 49
  year: 1996
  ident: WOS:A1996TL10900005
  article-title: Using redundant internal coordinates to optimize equilibrium geometries and transition states
  publication-title: JOURNAL OF COMPUTATIONAL CHEMISTRY
– volume: 15
  start-page: 12780
  year: 2009
  ident: WOS:000272509500029
  article-title: Fast Racemisation of Chiral Amines and Alcohols by Using Cationic Half-Sandwich Ruthena- and Iridacycle Catalysts
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.200902103
– volume: 26
  start-page: 702
  year: 2007
  ident: WOS:000243577000033
  article-title: Simultaneous tuning of activity and water solubility of complex catalysts by acid-base equilibrium of ligands for conversion of carbon dioxide
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om060899e
– volume: 25
  start-page: 81
  year: 2014
  ident: WOS:000328606500010
  article-title: Cyclometalated Iridium Complexes as Highly Active Catalysts for the Hydrogenation of Imines
  publication-title: SYNLETT
  doi: 10.1055/s-0033-1340086
– volume: 10
  start-page: 457
  year: 2006
  ident: WOS:000237654500012
  article-title: Kinetic studies of the asymmetric transfer hydrogenation of imines with formic acid catalyzed by Rh-diamine catalysts
  publication-title: ORGANIC PROCESS RESEARCH & DEVELOPMENT
  doi: 10.1021/op060033k
– volume: 113
  start-page: 9901
  year: 2000
  ident: WOS:000165584900005
  article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: JOURNAL OF CHEMICAL PHYSICS
– volume: 26
  start-page: 2840
  year: 2007
  ident: WOS:000246414900008
  article-title: DFT study of an inner-sphere mechanism in the hydrogen transfer from a hydroxycyclopentadienyl ruthenium hydride to imines
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om070169m
– volume: 10
  start-page: 2045
  year: 1999
  ident: WOS:000081832200001
  article-title: Asymmetric transfer hydrogenation of C=O and C=N bonds
  publication-title: TETRAHEDRON-ASYMMETRY
– volume: 345
  start-page: 67
  year: 2003
  ident: WOS:000180842300006
  article-title: Rutheuium(II)-catalyzed asymmetric transfer hydrogenation of carbonyl compounds with 2-propanol and ephedrine-type ligands
  publication-title: ADVANCED SYNTHESIS & CATALYSIS
– volume: 133
  start-page: 9274
  year: 2011
  ident: WOS:000291915100037
  article-title: Secondary Coordination Sphere Interactions Facilitate the Insertion Step in an Iridium(III) CO2 Reduction Catalyst
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja2035514
– volume: 30
  start-page: 905
  year: 2011
  ident: WOS:000287546600028
  article-title: Alkyne Insertion Induced Regiospecific C-H Activation with [Cp*MCl2]2 (M = Ir, Rh)
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om101064v
– volume: 66
  start-page: 7931
  year: 2001
  ident: WOS:000172489500001
  article-title: Metal-ligand bifunctional catalysis: A nonclassical mechanism for asymmetric hydrogen transfer between alcohols and carbonyl compounds
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/jo010721w
– volume: 105
  start-page: 1052
  year: 1996
  ident: WOS:A1996UW83600019
  article-title: The accuracy of the pseudopotential approximation .2. A comparison of various core sizes for indium pseudopotentials in calculations for spectroscopic constants of InH, InF, and InCl
  publication-title: JOURNAL OF CHEMICAL PHYSICS
– volume: 128
  start-page: 2286
  year: 2006
  ident: WOS:000235562900047
  article-title: Stereochemistry of imine reduction by a hydroxycyclopentadienyl ruthenium hydride
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja056402u
– volume: 6
  start-page: 2818
  year: 2000
  ident: WOS:000088778500015
  article-title: Chiral induction effects in ruthenium(II) amino alcohol catalysed asymmetric transfer hydrogenation of ketones: An experimental and theoretical approach
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
– volume: 49
  start-page: 7548
  year: 2010
  ident: WOS:000283391800032
  article-title: A Versatile Catalyst for Reductive Amination by Transfer Hydrogenation
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201002944
– volume: 20
  start-page: 245
  year: 2014
  ident: WOS:000328714700029
  article-title: Primary Amines by Transfer Hydrogenative Reductive Amination of Ketones by Using Cyclometalated IrIII Catalysts
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201303541
– volume: 78
  start-page: 1396
  year: 1997
  ident: WOS:A1997WH91700054
  article-title: Generalized gradient approximation made simple (vol 77, pg 3865, 1996)
  publication-title: PHYSICAL REVIEW LETTERS
– volume: 123
  start-page: 1090
  year: 2001
  ident: WOS:000166873000009
  article-title: Hydrogen transfer to carbonyls and imines from a hydroxycyclopentadienyl ruthenium hydride: Evidence for concerted hydride and proton transfer
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 10
  start-page: 5265
  year: 2008
  ident: WOS:000260922500043
  article-title: Air-Stable and Phosphine-Free Iridium Catalysts for Highly Enantioselective Hydrogenation of Quinoline Derivatives
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol802016w
– volume: 82
  start-page: 270
  year: 1985
  ident: WOS:A1985ABS5500033
  article-title: ABINITIO EFFECTIVE CORE POTENTIALS FOR MOLECULAR CALCULATIONS - POTENTIALS FOR THE TRANSITION-METAL ATOMS SC TO HG
  publication-title: JOURNAL OF CHEMICAL PHYSICS
– volume: 58
  start-page: 3641
  year: 1998
  ident: WOS:000075616800043
  article-title: Relativistic separable dual-space Gaussian pseudopotentials from H to Rn
  publication-title: PHYSICAL REVIEW B
– volume: 127
  start-page: 14062
  year: 2005
  ident: WOS:000232413300062
  article-title: Reduction of Imines by hydroxycyclopentadienyl ruthenium hydride: Intramolecular trapping evidence for hydride and proton transfer outside the coordination sphere of the metal
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja053956o
– volume: 27
  start-page: 4854
  year: 2008
  ident: WOS:000259604200009
  article-title: Theoretical analysis of the hydrogen-transfer reaction to C=N, C=C, and CC bonds catalyzed by Shvo's ruthenium complex
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om700975k
SSID ssj0009633
Score 2.3891413
Snippet The mechanism of imine reduction by formic acid with a single‐site iridicycle catalyst has been investigated by density functional theory (DFT), NMR...
The mechanism of imine reduction by formic acid with a single-site iridicycle catalyst has been investigated by density functional theory (DFT), NMR...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16564
SubjectTerms Catalysts
Chemistry
Chemistry, Multidisciplinary
Computer applications
density functional calculations
Density functional theory
Formates
Formations
Formic acid
homogeneous catalysis
Hydrides
Imines
Ion pairs
iridium
Kinetics
Magnetic resonance spectroscopy
Methanol
Methyl alcohol
NMR
NMR spectroscopy
Nuclear magnetic resonance
Physical Sciences
Reaction kinetics
Reduction
Science & Technology
transfer hydrogenation
Vapor phases
Title Iridicycle-Catalysed Imine Reduction: An Experimental and Computational Study of the Mechanism
URI https://api.istex.fr/ark:/67375/WNG-7D0WMC0P-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201501074
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000365132100036
https://www.ncbi.nlm.nih.gov/pubmed/26406610
https://www.proquest.com/docview/1728253209
https://www.proquest.com/docview/2561875866
https://www.proquest.com/docview/1728667719
https://www.proquest.com/docview/1786167696
Volume 21
WOS 000365132100036
WOSCitedRecordID wos000365132100036
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqemgvLX0HaOVKqD0F7OC8ekMpFCqBKlQEN9dPaUXJVvuQ2J74CfzG_pLOxEnYRfSh9pbE4yQej-0vzsw3hKxj4pOccRN75nQsuPCx8qmN-ZbiwuRJ4oKX72G2dyw-nqanc1H8gR-i33DDkdHM1zjAlR5vXpOGQpswkhwADfoUwiSMDluIio6u-aPAukIueZHHyMHasTayZHOx-sKqdBcVfHEb5LyxOi0C2mZF2n1IVNeW4IhytjGd6A3z_QbN4_80dpk8aOEq3Q729YjccfVjcq_qssQ9IV_2RwM7MDMo_XF5VeFm0GzsLN0_h2fSIySGxa5_R7drujOXTYCq2tKQUqLdjqTo0jijQ08Bk9IDhyHJg_H5U3K8u_O52ovbrA2xQTK-ONE2FQY-hDT3rhClFYqlnimuPbKl5VykZWlYoguuAL1Arzhr4EJRCK-FzbaekaV6WLsXhCaZMl5kTliRC2thrjEwG6eeG6YFVIxI3PWaNC2lOWbW-CoDGXMiUW-y11tE3vby3wKZxy8l3zRG0Iup0Rm6wOWpPDn8IPP37OSgYp8ki8haZyWyHf1jiTm_Esy4Ud5aDCiTw2dikWURed0XQ7_hvxpVu-E03CLL8pyXv5MpMo4uynCf58FA-_cFnAtgksP7rc9bbF_eEBGlHCO48Cgi_G_EqlbJyJcwiUjSmOwfVCmR26M_W_mXSqvkPh43IaDlGlmajKbuJWDBiX7VjPefmkNSgQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgXZQN70eggJEqWKW1U-fFrkpbZqAzQlWrsjPxSxqVZtA8JIYVn8A38iXcGydppyoPwW4mvs7E19f2ief6HEI2UPgkZVyHjlkVCi5cWLrYhHy75EKnUWR9lu8w6R2Ltx_iNpsQz8J4fohuww1HRj1f4wDHDemtc9ZQaBQeJQdEg0mF18kqynojff7u4TmDFMSXV5MXaYgsrC1vI4u2lusvrUur6OIvV4HOS-vTMqSt16T9W0S1rfGpKKeb85na1F8vET3-V3Nvk5sNYqU7PsTukGu2ukvWilYo7h752J-MzEgvoPTHt-8F7gctptbQ_hn8KD1Ebljs_dd0p6J7FwQFaFkZ6lUlmh1JilmNCzp2FGApHVg8lTyant0nx_t7R0UvbIQbQo18fGGkTCw0vAsp7mwmciNKFjtWcuWQMC3lIs5zzSKV8RIADHSLNRouZJlwSphk-wFZqcaVfURolJTaicQKI1JhDEw3Gibk2HHNlICKAQnbbpO6YTVHcY1P0vMxRxL9Jju_BeRVZ__Z83n80vJlHQWdWTk5xSy4NJYnwzcy3WUng4K9lywg622YyGYCmEqU_YpQdCO_shiAJoc3xSxJAvKiK4Z-w79rysqO5_4WSZKmPP-dTZZwzFKG-zz0Edo9L0BdwJMcnm_jYsh25TUXUczxEBd-Cgj_G7OicTJSJswCEtUx-wdXSqT36L49_pdKz8la72hwIA_6w3dPyA28Xp8IzdfJymwyt08BGs7Us3rw_wSr71ad
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgk4AX7pfAACNN8JTNzhwn4W1qV1Zg1TQxbW-e44tUjaVTLxLliZ_Ab-SXcE5ua6dxEby18XEaHx_bX9zj7yNkHYVPEsZN6JnLQ8GFD7WPbci3NBcmiSJXZfkO5O6heH8cHy-c4q_4IdoNNxwZ5XyNA_zc-s0L0lBoE54kB0CDOYXXyaqQLEPxhu7BBYEUhFclJi-SEElYG9pGFm0u119allbRw1-uwpyXlqdlRFsuSb07RDeNqTJRTjdm03zDfL3E8_g_rb1Lbtd4lW5XAXaPXHPFfXKz08jEPSAn_fHQDs0cSn98-97B3aD5xFnaP4PfpAfIDIt9_5ZuF3RnQU6A6sLSSlOi3o-kmNM4pyNPAZTSPYdnkoeTs4fksLfzqbMb1rINoUE2vjDKbSwMvAnl3LtUZFZoFnumee6RLi3hIs4yw6I85RrgC_SKswYupKnwubBy6xFZKUaFe0JoJLXxQjphRSKshcnGwHQce25YLqBiQMKm15SpOc1RWuOzqtiYI4V-U63fAvKmtT-v2Dx-afm6DILWTI9PMQcuidXR4J1Kuuxor8P2FQvIWhMlqh7-E4WiXxFKbmRXFgPM5PCemEoZkFdtMfQb_lmjCzeaVbeQMkl49jubVHLMUYb7PK4CtH1eALqAJjk83_pixLblJRNRzPEIF34KCP8bs07tZCRMmAYkKkP2D65USO7Rfnv6L5Vekhv73Z762B98eEZu4eXyOGi2Rlam45l7Drhwmr8oh_5PUyZVTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iridicycle-Catalysed+Imine+Reduction%3A+An+Experimental+and+Computational+Study+of+the+Mechanism&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Chen%2C+Hsin-Yi+Tiffany&rft.au=Wang%2C+Chao&rft.au=Wu%2C+Xiaofeng&rft.au=Jiang%2C+Xue&rft.date=2015-11-09&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=21&rft.issue=46&rft.spage=16564&rft_id=info:doi/10.1002%2Fchem.201501074&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3851513721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon