Iridicycle-Catalysed Imine Reduction: An Experimental and Computational Study of the Mechanism
The mechanism of imine reduction by formic acid with a single‐site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover‐limited by the hydride formatio...
Saved in:
Published in | Chemistry : a European journal Vol. 21; no. 46; pp. 16564 - 16577 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
09.11.2015
WILEY‐VCH Verlag Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mechanism of imine reduction by formic acid with a single‐site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover‐limited by the hydride formation step. The calculations reveal that, amongst a number of possibilities, hydride formation from the iridicycle and formate probably proceeds by an ion‐pair mechanism, whereas the hydride transfer to the imino bond occurs in an outer‐sphere manner. In the gas phase, in the most favourable pathway, the activation energies in the hydride formation and transfer steps are 26–28 and 7–8 kcal mol−1, respectively. Introducing one explicit methanol molecule into the modelling alters the energy barrier significantly, reducing the energies to around 18 and 2 kcal mol−1 for the two steps, respectively. The DFT investigation further shows that methanol participates in the transition state of the turnover‐limiting hydride formation step by hydrogen‐bonding to the formate anion and thereby stabilising the ion pair.
Workin’ on an imine: Transfer hydrogenation of imines by formic acid with a single‐site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy and kinetic measurements. The mechanism is shown to be turnover‐limited by the hydride formation step, the barrier of which is significantly lowered by a protic solvent (see scheme; RDS=rate‐determining step). |
---|---|
AbstractList | The mechanism of imine reduction by formic acid with a single‐site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover‐limited by the hydride formation step. The calculations reveal that, amongst a number of possibilities, hydride formation from the iridicycle and formate probably proceeds by an ion‐pair mechanism, whereas the hydride transfer to the imino bond occurs in an outer‐sphere manner. In the gas phase, in the most favourable pathway, the activation energies in the hydride formation and transfer steps are 26–28 and 7–8 kcal mol−1, respectively. Introducing one explicit methanol molecule into the modelling alters the energy barrier significantly, reducing the energies to around 18 and 2 kcal mol−1 for the two steps, respectively. The DFT investigation further shows that methanol participates in the transition state of the turnover‐limiting hydride formation step by hydrogen‐bonding to the formate anion and thereby stabilising the ion pair. The mechanism of imine reduction by formic acid with a single-site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover-limited by the hydride formation step. The calculations reveal that, amongst a number of possibilities, hydride formation from the iridicycle and formate probably proceeds by an ion-pair mechanism, whereas the hydride transfer to the imino bond occurs in an outer-sphere manner. In the gas phase, in the most favourable pathway, the activation energies in the hydride formation and transfer steps are 26-28 and 7-8kcalmol super(-1), respectively. Introducing one explicit methanol molecule into the modelling alters the energy barrier significantly, reducing the energies to around 18 and 2kcalmol super(-1) for the two steps, respectively. The DFT investigation further shows that methanol participates in the transition state of the turnover-limiting hydride formation step by hydrogen-bonding to the formate anion and thereby stabilising the ion pair. Workin' on an imine: Transfer hydrogenation of imines by formic acid with a single-site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy and kinetic measurements. The mechanism is shown to be turnover-limited by the hydride formation step, the barrier of which is significantly lowered by a protic solvent (see scheme; RDS=rate-determining step). The mechanism of imine reduction by formic acid with a single-site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover-limited by the hydride formation step. The calculations reveal that, amongst a number of possibilities, hydride formation from the iridicycle and formate probably proceeds by an ion-pair mechanism, whereas the hydride transfer to the imino bond occurs in an outer-sphere manner. In the gas phase, in the most favourable pathway, the activation energies in the hydride formation and transfer steps are 26-28 and 7-8kcalmol(-1), respectively. Introducing one explicit methanol molecule into the modelling alters the energy barrier significantly, reducing the energies to around 18 and 2kcalmol(-1) for the two steps, respectively. The DFT investigation further shows that methanol participates in the transition state of the turnover-limiting hydride formation step by hydrogen-bonding to the formate anion and thereby stabilising the ion pair. The mechanism of imine reduction by formic acid with a single-site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover-limited by the hydride formation step. The calculations reveal that, amongst a number of possibilities, hydride formation from the iridicycle and formate probably proceeds by an ion-pair mechanism, whereas the hydride transfer to the imino bond occurs in an outer-sphere manner. In the gas phase, in the most favourable pathway, the activation energies in the hydride formation and transfer steps are 26-28 and 7-8 kcal mol(-1) , respectively. Introducing one explicit methanol molecule into the modelling alters the energy barrier significantly, reducing the energies to around 18 and 2 kcal mol(-1) for the two steps, respectively. The DFT investigation further shows that methanol participates in the transition state of the turnover-limiting hydride formation step by hydrogen-bonding to the formate anion and thereby stabilising the ion pair.The mechanism of imine reduction by formic acid with a single-site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover-limited by the hydride formation step. The calculations reveal that, amongst a number of possibilities, hydride formation from the iridicycle and formate probably proceeds by an ion-pair mechanism, whereas the hydride transfer to the imino bond occurs in an outer-sphere manner. In the gas phase, in the most favourable pathway, the activation energies in the hydride formation and transfer steps are 26-28 and 7-8 kcal mol(-1) , respectively. Introducing one explicit methanol molecule into the modelling alters the energy barrier significantly, reducing the energies to around 18 and 2 kcal mol(-1) for the two steps, respectively. The DFT investigation further shows that methanol participates in the transition state of the turnover-limiting hydride formation step by hydrogen-bonding to the formate anion and thereby stabilising the ion pair. The mechanism of imine reduction by formic acid with a single‐site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover‐limited by the hydride formation step. The calculations reveal that, amongst a number of possibilities, hydride formation from the iridicycle and formate probably proceeds by an ion‐pair mechanism, whereas the hydride transfer to the imino bond occurs in an outer‐sphere manner. In the gas phase, in the most favourable pathway, the activation energies in the hydride formation and transfer steps are 26–28 and 7–8 kcal mol−1, respectively. Introducing one explicit methanol molecule into the modelling alters the energy barrier significantly, reducing the energies to around 18 and 2 kcal mol−1 for the two steps, respectively. The DFT investigation further shows that methanol participates in the transition state of the turnover‐limiting hydride formation step by hydrogen‐bonding to the formate anion and thereby stabilising the ion pair. Workin’ on an imine: Transfer hydrogenation of imines by formic acid with a single‐site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy and kinetic measurements. The mechanism is shown to be turnover‐limited by the hydride formation step, the barrier of which is significantly lowered by a protic solvent (see scheme; RDS=rate‐determining step). The mechanism of imine reduction by formic acid with a single‐site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover‐limited by the hydride formation step. The calculations reveal that, amongst a number of possibilities, hydride formation from the iridicycle and formate probably proceeds by an ion‐pair mechanism, whereas the hydride transfer to the imino bond occurs in an outer‐sphere manner. In the gas phase, in the most favourable pathway, the activation energies in the hydride formation and transfer steps are 26–28 and 7–8 kcal mol −1 , respectively. Introducing one explicit methanol molecule into the modelling alters the energy barrier significantly, reducing the energies to around 18 and 2 kcal mol −1 for the two steps, respectively. The DFT investigation further shows that methanol participates in the transition state of the turnover‐limiting hydride formation step by hydrogen‐bonding to the formate anion and thereby stabilising the ion pair. The mechanism of imine reduction by formic acid with a single-site iridicycle catalyst has been investigated by density functional theory (DFT), NMR spectroscopy, and kinetic measurements. The NMR and kinetic studies suggest that the transfer hydrogenation is turnover-limited by the hydride formation step. The calculations reveal that, amongst a number of possibilities, hydride formation from the iridicycle and formate probably proceeds by an ion-pair mechanism, whereas the hydride transfer to the imino bond occurs in an outer-sphere manner. In the gas phase, in the most favourable pathway, the activation energies in the hydride formation and transfer steps are 26-28 and 7-8 kcal mol(-1) , respectively. Introducing one explicit methanol molecule into the modelling alters the energy barrier significantly, reducing the energies to around 18 and 2 kcal mol(-1) for the two steps, respectively. The DFT investigation further shows that methanol participates in the transition state of the turnover-limiting hydride formation step by hydrogen-bonding to the formate anion and thereby stabilising the ion pair. |
Author | Wu, Xiaofeng Jiang, Xue Catlow, C. Richard A. Xiao, Jianliang Wang, Chao Chen, Hsin-Yi Tiffany |
Author_xml | – sequence: 1 givenname: Hsin-Yi Tiffany surname: Chen fullname: Chen, Hsin-Yi Tiffany organization: Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ (UK) – sequence: 2 givenname: Chao surname: Wang fullname: Wang, Chao organization: Liverpool Centre for Materials and Catalysis, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD (UK) – sequence: 3 givenname: Xiaofeng surname: Wu fullname: Wu, Xiaofeng organization: Liverpool Centre for Materials and Catalysis, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD (UK) – sequence: 4 givenname: Xue surname: Jiang fullname: Jiang, Xue organization: Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 ( P. R. China) – sequence: 5 givenname: C. Richard A. surname: Catlow fullname: Catlow, C. Richard A. email: c.r.a.catlow@ucl.ac.uk organization: Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ (UK) – sequence: 6 givenname: Jianliang surname: Xiao fullname: Xiao, Jianliang email: jxiao@liv.ac.uk organization: Liverpool Centre for Materials and Catalysis, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD (UK) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26406610$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkltv0zAUgC00xLrBK48oEi9IKMV3J7xNodsqrYC4aG9YjnOieiROiRNt-fe4tFRoErAnW9b3HZ_bCTrynQeEnhM8JxjTN3YN7ZxiIjDBij9CMyIoSZmS4gjNcM5VKgXLj9FJCDcY41wy9gQdU8mxlATP0Ldl7ypnJ9tAWpjBNFOAKlm2zkPyCarRDq7zb5MznyzuNtC7FnyEEuOrpOjazTiYLRBfPg9jNSVdnQxrSFZg18a70D5Fj2vTBHi2P0_R1_PFl-IyvfpwsSzOrlIrYpIpLSvBreBZSWrIeF5xg0WNDSlrgTlThIs8t5iWGTGckVgRVDY-ZBmvS15Jdope7eJu-u7HCGHQrQsWmsZ46MagicokkUrmD0FpJqVSJI_oy3voTTf2sdqgqZAkUyKS_6K2sahgFG9jvdhTY9lCpTexl6af9O9RRCDbAbdQdnWwDryFAxZnx6QgjJJft8LtGl90ox-i-vrhaqTnO9r2XQg91AeSYL1dKr1dKn1Yqijwe4Ldfz_0xjV_1_J9Vq6B6T-f6OJysfrTTXeuCwPcHVzTf9dSMSX09fsLrd7h61WBP2rMfgIYI-qD |
CODEN | CEUJED |
CitedBy_id | crossref_primary_10_1002_cctc_201600238 crossref_primary_10_1021_acs_joc_8b00361 crossref_primary_10_1039_D1SC01692J crossref_primary_10_1039_D3QO02019C crossref_primary_10_1002_ajoc_202000241 crossref_primary_10_1002_ange_202303709 crossref_primary_10_1039_C9RA10651K crossref_primary_10_1002_slct_201600548 crossref_primary_10_1039_C8CY02437E crossref_primary_10_1002_ejic_201501061 crossref_primary_10_1002_chem_201702173 crossref_primary_10_1021_acs_organomet_6b00248 crossref_primary_10_1039_C7CC01103B crossref_primary_10_1021_acs_organomet_8b00905 crossref_primary_10_1002_chem_201601648 crossref_primary_10_1002_aoc_6003 crossref_primary_10_1002_ejic_201800412 crossref_primary_10_1002_ejoc_202001097 crossref_primary_10_1002_anie_202103806 crossref_primary_10_1021_acs_joc_3c01294 crossref_primary_10_1021_acscatal_2c01816 crossref_primary_10_1002_ange_202103806 crossref_primary_10_1002_zaac_202000455 crossref_primary_10_1021_acs_inorgchem_7b01654 crossref_primary_10_1021_acscatal_4c00346 crossref_primary_10_1021_acscatal_8b02068 crossref_primary_10_1039_C8CC06612D crossref_primary_10_1021_acs_joc_0c02680 crossref_primary_10_3390_molecules26134076 crossref_primary_10_1002_eem2_12050 crossref_primary_10_1016_j_molcata_2016_07_014 crossref_primary_10_1002_anie_202303709 crossref_primary_10_1002_cctc_201801343 crossref_primary_10_1002_asia_201600169 crossref_primary_10_1002_tcr_201600089 crossref_primary_10_1021_acs_inorgchem_1c00820 crossref_primary_10_1021_acs_organomet_6b00759 crossref_primary_10_1002_cctc_201800558 crossref_primary_10_1021_acs_organomet_0c00568 crossref_primary_10_1021_acs_inorgchem_8b00382 crossref_primary_10_1021_acscatal_7b02386 crossref_primary_10_1016_j_mcat_2021_112050 crossref_primary_10_1021_acscatal_4c07103 |
Cites_doi | 10.1002/adsc.200303152 10.1021/ic000200b 10.1002/chem.201403701 10.1021/ja802415h 10.1021/om010120v 10.1021/cr00013a015 10.1021/ja043697n 10.1055/s-1994-25625 10.1021/ja991638h 10.1038/368231a0 10.1039/a805789c 10.1021/om7004832 10.1063/1.448799 10.1002/chem.200601339 10.1063/1.1323224 10.1021/ja9906610 10.1016/0009-2614(96)00349-1 10.1139/v00-201 10.1002/anie.201105481 10.1002/chem.201002604 10.3390/50100004 10.1002/anie.201004263 10.1002/cssc.201000017 10.1063/1.471950 10.1021/ja100925n 10.1039/b004234j 10.1007/s002149900065 10.1039/c3dt50908g 10.1021/ja053956o 10.1039/B605838H 10.1063/1.1329672 10.1063/1.2770708 10.1002/anie.200802237 10.1039/c2ee03315a 10.1021/ol802016w 10.1063/1.448975 10.1002/chem.201204194 10.1063/1.452288 10.1021/ar9001679 10.1021/ja910349w 10.1002/ange.200300599 10.1002/ange.201500346 10.1021/ja3097674 10.1002/chem.201500016 10.1002/ange.200705972 10.1021/jp020124t 10.1103/PhysRevB.58.3641 10.1595/147106709X481372 10.1002/anie.201104951 10.1002/chem.201301383 10.1002/cssc.201301414 10.1002/asia.200800196 10.1002/adsc.200390000 10.1039/C2DT31368E 10.1021/ja061494o 10.1103/PhysRevB.54.1703 10.1039/b100980j 10.1021/ja002177z 10.1002/ange.201300292 10.1039/b618340a 10.1007/BF01114537 10.1002/anie.200800320 10.1002/ange.201104951 10.1002/ange.200705875 10.1002/ange.200802237 10.1002/adsc.200900719 10.1063/1.1672392 10.1063/1.478522 10.1021/ja0167856 10.1021/ja073370x 10.1021/op060033k 10.1021/om070169m 10.1021/om800124f 10.1021/ja044450t 10.1002/chem.200902827 10.1002/anie.201500346 10.1002/anie.200300599 10.1002/(SICI)1099-0682(199804)1998:4<485::AID-EJIC485>3.0.CO;2-Y 10.1002/ange.201101995 10.1021/j100096a001 10.2174/138527208785740283 10.1021/ja0506861 10.1007/BF02060954 10.1002/anie.201300292 10.1021/om060307s 10.1063/1.464913 10.1007/s00214-005-0655-y 10.1002/adsc.200390030 10.1021/ja00395a087 10.1021/om9000742 10.1039/c2gc36619c 10.1021/om1009507 10.1016/0009-2614(96)00382-X 10.1002/1521-3765(20000804)6:15<2818::AID-CHEM2818>3.0.CO;2-Q 10.1063/1.1636455 10.1002/anie.200705875 10.1021/ar9502341 10.1021/om2010172 10.1021/om00078a022 10.1021/ja953097b 10.1021/ja505241x 10.1103/PhysRevLett.77.3865 10.1002/ange.201105481 10.1002/ange.200800320 10.1023/B:TOCA.0000003096.11191.25 10.1063/1.1316015 10.1002/ange.201004263 10.1002/anie.200705972 10.1039/c3cc41661e 10.1021/ja901270f 10.1002/ange.201002944 10.1063/1.475428 10.1021/acscatal.5b00645 10.1063/1.458452 10.1002/anie.201101995 10.1016/j.ccr.2004.04.007 10.1142/9789812839664_0016 10.1021/ja2035514 10.1021/om060899e 10.1002/1521-3765(20011203)7:23<5052::AID-CHEM5052>3.0.CO;2-Z 10.1002/chem.201303541 10.1039/c3sc50587a 10.1002/ijch.199300051 10.1039/a809236b 10.1021/ol802801p 10.1021/om800926p 10.1021/ol047353d 10.1103/PhysRevB.37.785 10.1139/p80-159 10.1063/1.472933 10.1016/j.cpc.2004.12.014 10.1103/PhysRevLett.72.1124 10.1039/c1cc12326b 10.1021/om101064v 10.1021/ja805128x 10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0 10.1021/ic010866l 10.1021/om700975k 10.1021/ja003630 10.1021/cr00031a013 10.1021/om900099u 10.1021/ar700113g 10.1039/b607993h 10.1002/asia.200700081 10.1002/chem.200800559 10.1002/ejic.201100800 10.1039/b914442k 10.1016/S0165-022X(98)00033-5 10.1039/B513396C 10.1039/c2sc21923a 10.1021/om0504147 10.1039/b515269k 10.1016/S0957-4166(99)00216-5 10.1021/ja00054a021 10.1002/anie.201002944 10.1002/chem.200902103 10.1021/om0303404 10.1021/om500356e 10.1126/science.1206613 10.1021/ja903574e 10.1016/S0020-1693(01)00615-6 10.1021/ja056402u 10.1021/om000944x 10.1021/ar700134q 10.1038/nchem.1295 10.1039/c3cc44567d 10.1021/jo010721w 10.1021/cr068357u 10.1039/C4SC02555E 10.1039/c4sc02555e 10.1039/b513396c 10.1039/b605838h 10.1038/NCHEM.1295 10.1039/c2dt31368e 10.1055/s-0033-1340086 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Copyright Wiley Subscription Services, Inc. Nov 2015 |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright Wiley Subscription Services, Inc. Nov 2015 |
DBID | BSCLL AAYXX CITATION 17B 1KM BLEPL DTL EGQ GVOUP NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201501074 |
DatabaseName | Istex CrossRef Web of Knowledge Index Chemicus Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Web of Science - Science Citation Index Expanded - 2015 PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database Materials Research Database Web of Science MEDLINE - Academic Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 16577 |
ExternalDocumentID | 3851513721 26406610 000365132100036 10_1002_chem_201501074 CHEM201501074 ark_67375_WNG_7D0WMC0P_0 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Pfizer – fundername: University of Liverpool – fundername: University College, London – fundername: EPSRC; UK Research & Innovation (UKRI); Engineering & Physical Sciences Research Council (EPSRC) grantid: EP/K039687/1 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAHQN AAMNL AAYCA ACUHS ACYXJ AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c5094-2bd54c548b1fe849d4a05f0a1bf5043714599c02b81a431539edc9c0884fb4d63 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 43 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000365132100036 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 10:06:29 EDT 2025 Fri Jul 11 08:57:39 EDT 2025 Fri Jul 25 10:36:44 EDT 2025 Fri Jul 25 10:36:00 EDT 2025 Mon Jul 21 05:50:03 EDT 2025 Fri Aug 29 15:55:58 EDT 2025 Wed Jul 09 18:15:22 EDT 2025 Tue Jul 01 02:47:13 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 Wed Jan 22 17:05:02 EST 2025 Wed Oct 30 09:50:57 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Keywords | LIGAND BIFUNCTIONAL CATALYSIS ASYMMETRIC TRANSFER HYDROGENATION EFFECTIVE CORE POTENTIALS imines transfer hydrogenation CARBON-DIOXIDE HYDROGENATION ELASTIC BAND METHOD DENSITY-FUNCTIONAL THERMOCHEMISTRY AB-INITIO PSEUDOPOTENTIALS iridium density functional calculations CYCLOMETALATED IRIDIUM COMPLEXES homogeneous catalysis HYDROXYCYCLOPENTADIENYL RUTHENIUM HYDRIDE FORMIC-ACID DEHYDROGENATION |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c5094-2bd54c548b1fe849d4a05f0a1bf5043714599c02b81a431539edc9c0884fb4d63 |
Notes | University College, London University of Liverpool istex:57B16605C7D9393820CECD6C46B72513C0403B7D ArticleID:CHEM201501074 Pfizer ark:/67375/WNG-7D0WMC0P-0 UKRI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5549-8836 0000-0002-1341-1541 0000-0003-4812-6000 |
PMID | 26406610 |
PQID | 1728253209 |
PQPubID | 986340 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2561875866 webofscience_primary_000365132100036CitationCount istex_primary_ark_67375_WNG_7D0WMC0P_0 proquest_miscellaneous_1728667719 crossref_primary_10_1002_chem_201501074 proquest_journals_1728253209 pubmed_primary_26406610 webofscience_primary_000365132100036 wiley_primary_10_1002_chem_201501074_CHEM201501074 proquest_miscellaneous_1786167696 crossref_citationtrail_10_1002_chem_201501074 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 9, 2015 |
PublicationDateYYYYMMDD | 2015-11-09 |
PublicationDate_xml | – month: 11 year: 2015 text: November 9, 2015 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: WEINHEIM – name: Germany |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAbbrev | CHEM-EUR J |
PublicationTitleAlternate | Chem. Eur. J |
PublicationYear | 2015 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley – name: Wiley Subscription Services, Inc |
References | J. Wu, D. Talwar, S. Johnston, M. Yan, J. Xiao, Angew. Chem. Int. Ed. 2013, 52, 6983 N. Kanematsu, M. Ebihara, T. Kawamura, Inorg. Chim. Acta 2001, 323, 96. M. P. Magee, J. R. Norton, J. Am. Chem. Soc. 2001, 123, 1778 Angew. Chem. 2015, 127, 5312. P. G. Jessop, T. Ikariya, R. Noyori, Nature 1994, 368, 231 L. Li, W. W. Brennessel, W. D. Jones, J. Am. Chem. Soc. 2008, 130, 12414 A. Boddien, F. Gärtner, C. Federsel, P. Sponholz, D. Mellmann, R. Jackstell, H. Junge, M. Beller, Angew. Chem. Int. Ed. 2011, 50, 6411 Y. Himeda, Green Chem. 2009, 11, 2018 D. L. Davies, O. Al-Duaij, J. Fawcett, M. Giardiello, S. T. Hilton, D. R. Russell, Dalton Trans. 2003, 41, 32 C. P. Casey, G. A. Bikzhanova, Q. Cui, I. A. Guzei, J. Am. Chem. Soc. 2005, 127, 14062 J.-B. Sortais, V. Ritleng, A. Voelklin, A. Holuigue, H. Smail, L. Barloy, C. Sirlin, G. K. M. Verzijl, J. A. F. Boogers, A. H. M. de Vries, J. G. de Vries, M. Pfeffer, Org. Lett. 2005, 7, 1247. B. Delley, J. Chem. Phys. 2000, 113, 7756. C. Wang, A. Pettman, J. Bacsa, J. Xiao, Angew. Chem. Int. Ed. 2010, 49, 7548 S. A. Trygubenko, D. J. Wales, J. Chem. Phys. 2004, 120, 2082 T. C. Nugent, M. El-Shazly, Adv. Synth. Catal. 2010, 352, 753 D. G. Blackmond, M. Ropic, M. Stefinovic, Org. Process Res. Dev. 2006, 10, 457. Angew. Chem. 2011, 123, 12759 W. Tang, C. Lau, X. Wu, J. Xiao, Synlett 2014, 25, 81 A. Nova, D. J. Taylor, A. J. Blacker, S. B. Duckett, R. N. Perutz, O. Eisenstein, Organometallics 2014, 33, 3433 C. Fellay, P. J. Dyson, G. Laurenczy, Angew. Chem. Int. Ed. 2008, 47, 3966 A. M. Lossack, E. Roduner, D. M. Bartels, Phys. Chem. Chem. Phys. 2001, 3, 2031. G. Papp, J. Csorba, G. Laurenczy, F. Joó, Angew. Chem. Int. Ed. 2011, 50, 10433 T. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 2365 T. Privalov, J. S. M. Samec, J.-E. Bäckvall, Organometallics 2007, 26, 2840. S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 1996, 54, 1703. C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158. K. Everaere, A. Mortreux, J. F. Carpentier, Adv Synth Catal 2003, 345, 67 Q. Lei, Y. Wei, D. Talwar, C. Wang, D. Xue, J. Xiao, Chem. Eur. J. 2013, 19, 4021 J. VandeVondele, J. Hutter, J. Chem. Phys. 2007, 127, 114105. Angew. Chem. 2010, 122, 7710 Y. Boutadla, D. L. Davies, R. C. Jones, K. Singh, Chem. Eur. J. 2011, 17, 3438 S. Arita, T. Koike, Y. Kayaki, T. Ikariya, Angew. Chem. Int. Ed. 2008, 47, 2447 R. M. Haak, F. Berthiol, T. Jerphagnon, A. J. A. Gayet, C. Tarabiono, C. P. Postema, V. Ritleng, M. Pfeffer, D. B. Janssen, A. J. Minnaard, B. L. Feringa, J. G. de Vries, J. Am. Chem. Soc. 2008, 130, 13508. J. F. Hull, D. Balcells, J. D. Blakemore, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree, J. Am. Chem. Soc. 2009, 131, 8730. V. Guiral, F. Delbecq, P. Sautet, Organometallics 2001, 20, 2207 D. J. Darensbourg, M. B. Fischer, R. E. Schmidt, B. J. Baldwin, J. Am. Chem. Soc. 1981, 103, 1297. G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901 A. Aranyos, G. Csjernyik, K. J. Szabo, J.-E. Backvall, Chem. Commun. 1999, 351 S. Ogo, H. Nishida, H. Hayashi, Y. Murata, S. Fukuzumi, Organometallics 2005, 24, 4816. Angew. Chem. 2010, 122, 9971 D. Talwar, A. Gonzalez-de-Castro, H. Y. Li, J. Xiao, Angew. Chem. Int. Ed. 2015, 54, 5223 A. Urakawa, F. Jutz, G. Laurenczy, A. Baiker, Chem. Eur. J. 2007, 13, 3886 S.-y. Shirai, H. Nara, Y. Kayaki, T. Ikariya, Organometallics 2009, 28, 802. Z. W. Li, T. L. Wang, Y. M. He, Z. J. Wang, Q. H. Fan, J. Pan, L. J. Xu, Org. Lett. 2008, 10, 5265. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Comput. Phys. Commun. 2005, 167, 103 R. Tanaka, M. Yamashita, K. Nozaki, J. Am. Chem. Soc. 2009, 131, 14168 A. D. Becke, J. Chem. Phys. 1993, 98, 5648 A. J. Morris, G. J. Meyer, E. Fujita, Acc. Chem. Res. 2009, 42, 1983 A. Boddien, B. Loges, F. Gärtner, C. Torborg, K. Fumino, H. Junge, R. Ludwig, M. Beller, J. Am. Chem. Soc. 2010, 132, 8924 W. Bauer, M. Prem, K. Polborn, K. Sünkel, W. Steglich, W. Beck, Eur J Inorg Chem. 1998, 1998, 485 Y.-y. Ohnishi, T. Matsunaga, Y. Nakao, H. Sato, S. Sakaki, J. Am. Chem. Soc. 2005, 127, 4021 C. F. de Graauw, J. A. Peters, H. van Bekkum, J. Huskens, Synthesis 1994, 1007 C. P. Casey, T. B. Clark, I. A. Guzei, J. Am. Chem. Soc. 2007, 129, 11821. S. Fukuzumi, T. Kobayashi, T. Suenobu, J. Am. Chem. Soc. 2010, 132, 1496 T. Leininger, A. Nicklass, W. Kuchle, H. Stoll, M. Dolg, A. Bergner, Chem. Phys. Lett. 1996, 255, 274 M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, R. Stürmer, T. Zelinski, Angew. Chem. Int. Ed. 2004, 43, 788 T. Koike, T. Ikariya, Adv Synth Catal 2004, 346, 37 D. A. Alonso, P. Brandt, S. J. M. Nordin, P. G. Andersson, J. Am. Chem. Soc. 1999, 121, 9580 S. E. Clapham, A. Hadzovic, R. H. Morris, Coord. Chem. Rev. 2004, 248, 2201 Angew. Chem. 2011, 123, 6535 P. Kukula, R. Prins, Top. Catal. 2003, 25, 29 Y. Kashiwame, S. Kuwata, T. Ikariya, Chem. Eur. J. 2010, 16, 766. C.-C. Tai, J. Pitts, J. C. Linehan, A. D. Main, P. Munshi, P. G. Jessop, Inorg. Chem. 2002, 41, 1606 O. Pàmies, J.-E. Bäckvall, Chem. Eur. J. 2001, 7, 5052 K. Raghavachari, Theor. Chem. Acc. 2000, 103, 361 C. Wang, H.-Y. T. Chen, J. Bacsa, C. R. A. Catlow, J. Xiao, Dalton Trans. 2013, 42, 935 J. P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 1996, 105, 9982 G. Zassinovich, G. Mestroni, S. Gladiali, Chem. Rev. 1992, 92, 1051 T. Ikariya, A. J. Blacker, Acc. Chem. Res. 2007, 40, 1300 D. Preti, C. Resta, S. Squarcialupi, G. Fachinetti, Angew. Chem. Int. Ed. 2011, 50, 12551 C. P. Casey, S. W. Singer, D. R. Powell, Can. J. Chem. 2001, 79, 1002. G. Henkelman, H. Jonsson, J. Chem. Phys. 2000, 113, 9978 C. Peng, H. B. Schlegel, Isr. J. Chem. 1993, 33, 449. D. Talwar, N. P. Salguero, C. M. Robertson, J. Xiao, Chem. Eur. J. 2014, 20, 245 T. Jerphagnon, A. J. A. Gayet, F. Berthiol, V. Ritleng, N. Mršić, A. Meetsma, M. Pfeffer, A. J. Minnaard, B. L. Feringa, J. G. de Vries, Chem. Eur. J. 2009, 15, 12780. C. P. Casey, G. A. Bikzhanova, I. A. Guzei, J. Am. Chem. Soc. 2006, 128, 2286 G. Mills, H. Jónsson, Phys. Rev. Lett. 1994, 72, 1124. A. Bartoszewicz, G. G. Miera, R. Marcos, P. O. Norrby, B. Martin-Matute, ACS Catal. 2015, 5, 3704. Y. Schramm, F. Barrios-Landeros, A. Pfaltz, Chem. Sci. 2013, 4, 2760. R. Noyori, S. Hashiguchi, Acc. Chem. Res. 1997, 30, 97 S. Gladiali, E. Alberico, Chem. Soc. Rev. 2006, 35, 226 J. S. M. Samec, A. H. Éll, J. B. Åberg, T. Privalov, L. Eriksson, J.-E. Bäckvall, J. Am. Chem. Soc. 2006, 128, 14293 S. H. Vosko, L. Wilk, M. Nusair, Can J Phys 1980, 58, 1200. C. Wang, X. Wu, J. Xiao, Chem. Asian J. 2008, 3, 1750 C. P. Casey, S. W. Singer, D. R. Powell, R. K. Hayashi, M. Kavana, J. Am. Chem. Soc. 2001, 123, 1090 E. N. Yurtchenko, N. P. Anikeenko, React. Kinet. Catal. Lett. 1975, 2, 65. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623 X. F. Wu, C. Wang, J. L. Xiao, Platinum Met. Rev. 2010, 54, 3. D. Andrae, U. Haussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 1990, 77, 123 J. H. Merrifield, J. A. Gladysz, Organometallics 1983, 2, 782. H. R. Guan, M. Iimura, M. P. Magee, J. R. Norton, K. E. Janak, Organometallics 2003, 22, 4084 H. Jónsson, G. Mills, K. W. Jacobsen in Classical and Quantum Dynamics in Condensed Phase Simulations (Eds.: B. J. Berne, G. Ciccotti, D. F. Coker), World Scientific, Singapore, 1998, p. 385 Angew. Chem. 2004, 116, 806 M. J. Palmer, M. Wills, Tetrahedron: Asymmetry 1999, 10, 2045 A. Comas-Vives, G. Ujaque, A. Lledós, Organometallics 2008, 27, 4854 H. R. Guan, M. Iimura, M. P. Magee, J. R. Norton, G. Zhu, J. Am. Chem. Soc. 2005, 127, 7805. Y. Wei, C. Wang, X. Jiang, D. Xue, J. Li, J. Xiao, Chem. Commun. 2013, 49, 5408 E. A. Bielinski, P. O. Lagaditis, Y. Y. Zhang, B. Q. Mercado, C. Wurtele, W. H. Bernskoetter, N. Hazari, S. Schneider, J. Am. Chem. Soc. 2014, 136, 10234 B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J. Frisch, F. J. Devlin, S. Gabriel, P. J. Stephens, J. Phys. Chem. A 2002, 106, 6102 Angew. Chem. 2008, 120, 8592 C. P. Casey, J. B. Johnson, J. Am. Chem. Soc. 2005, 127, 1883 Angew. Chem. 2008, 120, 4030 M. Dolg, U. Wedig, H. Stoll, H. Preuss, The Journal of Chemical Physics 1987, 86, 866 S.-L. You, Chem. Asian J. 2007, 2, 820 J. F. Hull, Y. Himeda, W.-H. Wang, B. Hashiguchi, R. Periana, D. J. Szalda, J. T. Muckerman, E. Fujita, Nat. Chem. 2012, 4, 383. A. Boddien, D. Mellmann, F. Gärtner, R. Jackstell, H. Junge, P. J. Dyson, G. Laurenczy, R. Ludwig, M. Beller, Science 2011, 333, 1733 J. B. Aberg, J. S. M. Samec, J.-E. Backvall, Chem. Commun. 2006, 2771 C. Adamo, V. Barone, J. Chem. Phys. 1998, 108, 664. D. Talwar, H. Y. Li, E. Durham, J. Xiao, Chem. Eur. J. 2015, 21, 5370 S. Oldenhof, M. Lutz, B. de Bruin, J. Ivar van der Vlugt, J. N. H. Reek, Chem. Sci. 2015, 6, 1027 R. P. Tripathi, S. S. Verma, J. Pandey, V. K. Tiwari, Current Organic Chemistry 2008, 12, 1093 X. Wu, J. Xiao, Chem. Commun. 2007, 2449 K. H. Hopmann, A. Bayer, Organometallics 2011, 30, 2483. C. Federsel, A. Boddien, R. Jackstell, R. Jennerjahn, P. J. Dyson, R. Scopelliti, G. Laurenczy, M. Beller, Angew. Chem. Int. Ed. 2010, 49, 9777 Y. Maenaka, T. Suenobu, S. Fukuzumi, Energy Environ. Sci. 2012, 5, 7360. Angew. Chem. 2008, 120, 4026 Y.-F. Han, H. Li, P. Hu, G.-X. Jin, Organometallics 2011, 30, 905 W. Leitner, J. M. Brown, H. Brunner, J. Am. Chem. Soc. 1993, 115, 152 S. Ogo, R. Kabe, H. Hayashi, R. Harada, S. Fukuzumi, Dalton Trans. 2006, 4657 S. Arita, T. Koike, Y. Kayaki, T. Ikariya, Organometallics 2008, 27, 2795 Angew. Chem. 2008, 120, 2481 X. Wu, J. Liu, D. Di Tommaso, J. A. Iggo, C. R. A. Catlow, J. Bacsa, J. Xiao, Chem. Eur. J. 2008, 14, 7699. D. J. Morris, G. J. Clarkson, M. Wills, Organometallics 2009, 28, 4133 Y. Wei, D. Xue, Q. Lei, C. Wang, J. Xiao, Green Chem. 2013, 15, 629 J. Wu, J. H. Barnard, Y. Zhang, D. Talwar, C. M. Robertson, J. Xiao, Chem. Commun. 2013, 49, 7052 L. Li, W. W. Brennessel, W. D. Jones, Organometallics 2009, 28, 3492 M. Cossi, V. Barone, R. Cammi, J. Tomasi, Chem. Phys. Lett. 1996, 255, 327 X. Yang, Dalton Trans. 2013, 42, 11987. M. Wills, M. Palmer, A. Smith, J. Kenny, T. Walsgrove, Molecules 2001, 5, 4 P. Munshi, 2007; 107 2010; 16 2013; 4 1983; 2 2006; 35 2014; 25 2008 2008; 47 120 2014; 136 2014; 20 1996; 77 2009; 11 1993; 33 2008; 27 2006; 25 2010; 352 2000; 122 2007; 2 2010; 3 1994; 72 2003; 41 1996; 255 2009; 15 1998; 1998 2004 2004; 43 116 1996; 17 2000; 113 2005; 114 1998 1994 2010 2010; 49 122 1985; 82 2007; 13 2011; 133 2001; 323 2001; 20 1999 1980; 58 2000; 103 1997; 30 2002; 124 1999; 38 2005; 127 2003; 25 1999; 110 2005; 7 2011 2011; 50 123 2003; 345 1994; 94 1993; 115 2008; 130 1996; 118 2014; 33 2003; 22 1994; 98 2010; 54 2004; 120 2004; 248 2012; 2012 2009; 42 2000; 6 1981; 103 1988; 37 1999; 121 2008; 3 2011; 17 2013 2013; 52 125 2005; 24 1996; 105 2013; 19 1992; 92 2013; 15 1987; 86 2002; 41 2000 2002; 106 1975; 2 2015 2015; 54 127 1999; 10 2014; 7 2006; 128 1990; 92 2007; 26 1998; 58 2001; 123 2011; 333 2007; 129 2015; 6 1990; 77 2015; 5 2004; 346 2007; 127 2013; 49 2006; 10 1969; 51 2013; 42 2008; 14 2011; 30 2008 2007 2008; 12 2006 2008; 10 2009; 131 2001; 66 1996; 54 2009; 28 1994; 368 2000; 39 2001; 7 2001; 5 2005; 167 1993; 98 2015; 21 2010; 132 1998; 108 2013; 135 2001; 3 2007; 40 2011; 47 2012; 4 2001; 79 2012; 5 e_1_2_6_114_2 e_1_2_6_53_2 e_1_2_6_137_2 e_1_2_6_30_2 e_1_2_6_91_2 e_1_2_6_152_2 e_1_2_6_175_2 e_1_2_6_38_2 e_1_2_6_76_2 e_1_2_6_15_2 e_1_2_6_99_2 e_1_2_6_102_2 e_1_2_6_148_2 e_1_2_6_64_2 e_1_2_6_41_2 e_1_2_6_140_2 e_1_2_6_163_2 e_1_2_6_186_2 e_1_2_6_5_2 e_1_2_6_49_2 e_1_2_6_64_3 e_1_2_6_87_2 e_1_2_6_26_2 e_1_2_6_113_2 e_1_2_6_136_2 e_1_2_6_159_2 e_1_2_6_31_2 e_1_2_6_92_2 e_1_2_6_92_3 e_1_2_6_151_2 e_1_2_6_174_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_77_2 e_1_2_6_124_2 e_1_2_6_42_2 e_1_2_6_147_2 e_1_2_6_80_2 e_1_2_6_109_2 e_1_2_6_162_2 e_1_2_6_101_2 e_1_2_6_185_2 e_1_2_6_6_2 e_1_2_6_65_2 e_1_2_6_88_2 e_1_2_6_27_2 e_1_2_6_65_3 e_1_2_6_51_2 e_1_2_6_97_2 e_1_2_6_135_2 e_1_2_6_74_2 e_1_2_6_158_2 e_1_2_6_173_2 e_1_2_6_150_2 Davies D. L. (e_1_2_6_112_2) 2003; 41 e_1_2_6_13_2 e_1_2_6_59_2 e_1_2_6_36_2 e_1_2_6_62_2 e_1_2_6_123_3 e_1_2_6_146_2 e_1_2_6_169_2 e_1_2_6_85_2 e_1_2_6_108_2 e_1_2_6_161_2 e_1_2_6_100_2 e_1_2_6_123_2 e_1_2_6_184_2 e_1_2_6_3_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_52_2 e_1_2_6_75_2 e_1_2_6_157_2 e_1_2_6_90_2 e_1_2_6_119_2 e_1_2_6_172_2 e_1_2_6_111_2 e_1_2_6_134_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_98_2 e_1_2_6_63_2 e_1_2_6_86_2 e_1_2_6_168_2 e_1_2_6_107_2 e_1_2_6_40_2 e_1_2_6_160_2 e_1_2_6_145_2 e_1_2_6_183_2 Tang W. (e_1_2_6_125_2) 2014; 25 e_1_2_6_122_2 e_1_2_6_4_2 e_1_2_6_48_2 e_1_2_6_25_2 e_1_2_6_72_2 e_1_2_6_95_2 e_1_2_6_179_2 e_1_2_6_118_2 e_1_2_6_171_2 e_1_2_6_110_2 e_1_2_6_156_2 e_1_2_6_133_2 e_1_2_6_19_2 e_1_2_6_57_3 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_57_2 e_1_2_6_83_2 e_1_2_6_129_2 e_1_2_6_60_2 e_1_2_6_121_2 e_1_2_6_144_2 e_1_2_6_167_2 e_1_2_6_182_2 e_1_2_6_9_2 (e_1_2_6_106_2) 2008 e_1_2_6_170_2 e_1_2_6_22_2 e_1_2_6_1_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_50_2 e_1_2_6_73_2 e_1_2_6_96_2 e_1_2_6_73_3 e_1_2_6_117_2 e_1_2_6_132_2 e_1_2_6_155_2 e_1_2_6_178_2 e_1_2_6_181_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_61_2 e_1_2_6_84_2 e_1_2_6_105_2 e_1_2_6_128_3 e_1_2_6_128_2 e_1_2_6_189_2 e_1_2_6_120_2 e_1_2_6_166_2 e_1_2_6_143_2 e_1_2_6_23_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_46_2 e_1_2_6_116_2 e_1_2_6_93_2 e_1_2_6_139_2 e_1_2_6_70_2 e_1_2_6_131_3 e_1_2_6_131_2 e_1_2_6_177_2 e_1_2_6_154_2 e_1_2_6_180_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_55_2 e_1_2_6_78_2 e_1_2_6_104_2 e_1_2_6_127_2 e_1_2_6_104_3 e_1_2_6_20_2 e_1_2_6_81_2 e_1_2_6_188_2 e_1_2_6_142_2 e_1_2_6_165_2 e_1_2_6_7_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_66_2 e_1_2_6_89_3 e_1_2_6_89_2 e_1_2_6_71_3 e_1_2_6_94_2 e_1_2_6_115_2 e_1_2_6_138_2 e_1_2_6_71_2 e_1_2_6_130_2 e_1_2_6_153_2 e_1_2_6_176_2 e_1_2_6_18_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_56_2 e_1_2_6_79_2 e_1_2_6_56_3 e_1_2_6_103_2 e_1_2_6_149_2 e_1_2_6_126_2 e_1_2_6_82_2 e_1_2_6_141_2 e_1_2_6_187_2 e_1_2_6_164_2 e_1_2_6_8_2 e_1_2_6_190_2 e_1_2_6_29_2 e_1_2_6_21_2 e_1_2_6_44_2 e_1_2_6_67_2 Wang, C (WOS:000312659200016) 2013; 42 Samec, JSM (WOS:000235989600004) 2006; 35 (000365132100036.172) 2008 Lossack, AM (WOS:000168859400017) 2001; 3 Yang, XZ (WOS:000322525100025) 2013; 42 Majewski, A (WOS:000277669700009) 2010; 3 Zell, T (WOS:000320134200008) 2013; 19 Wu, JJ (WOS:000320776900034) 2013; 52 Talwar, D (WOS:000328714700029) 2014; 20 Petra, DGI (WOS:000088778500015) 2000; 6 Dub, PA (WOS:000315373000039) 2013; 135 Bielinski, EA (WOS:000339471900014) 2014; 136 HEHRE, WJ (WOS:A1969E338200047) 1969; 51 JESSOP, PG (WOS:A1994NA87000051) 1994; 368 (000365132100036.89) 2008 Li, L (WOS:000267020700020) 2009; 28 Raghavachari, K (WOS:000085419900060) 2000; 103 Boddien, A (WOS:000279561200048) 2010; 132 Han, YF (WOS:000287546600028) 2011; 30 Comas-Vives, A (WOS:000259604200009) 2008; 27 VandeVondele, J (WOS:000249667400011) 2007; 127 Kashiwame, Y (WOS:000274615700005) 2010; 16 Gao, Y (WOS:000076848200041) 1998 HAY, PJ (WOS:A1985ABS5500035) 1985; 82 Boddien, A (WOS:000295121500038) 2011; 333 LEITNER, W (WOS:A1993KG95400021) 1993; 115 Privalov, T (WOS:000246414900008) 2007; 26 Wang, C (WOS:000259968700002) 2008; 3 Papp, G (WOS:000297049300035) 2011; 50 Zhou, HF (WOS:000260622700025) 2008; 47 Federsel, C (WOS:000285211000045) 2010; 49 Wills, M (WOS:000085090200002) 2000; 5 Sakakura, T (WOS:000247217000010) 2007; 107 Schmeier, TJ (WOS:000291915100037) 2011; 133 Casey, CP (WOS:000166873000009) 2001; 123 (000365132100036.134) 2015 Peng, CY (WOS:A1996TL10900005) 1996; 17 Perdew, JP (WOS:A1996VW94700028) 1996; 105 MERRIFIELD, JH (WOS:A1983QV03800022) 1983; 2 Tai, CC (WOS:000174492300037) 2002; 41 (000365132100036.17) 2008 Arita, S (WOS:000256643600018) 2008; 27 MILLS, G (WOS:A1994MW25600045) 1994; 72 Pàmies, O (WOS:000172599900007) 2001; 7 Magee, MP (WOS:000167162100036) 2001; 123 Jessop, PG (WOS:A1996TQ26900007) 1996; 118 Mennucci, B (WOS:000176356400019) 2002; 106 (000365132100036.47) 2008 Hopmann, KH (WOS:000290001900007) 2011; 30 Kanematsu, N (WOS:000172077100012) 2001; 323 Boddien, A (WOS:000292642600040) 2011; 50 Lei, Q (WOS:000316009800026) 2013; 19 Ogo, S (WOS:000241057600003) 2006 Koike, T (WOS:000189276900003) 2004; 346 (000365132100036.38) 1000 STEPHENS, PJ (WOS:A1994PQ94400001) 1994; 98 Talwar, D (WOS:000352504500016) 2015; 21 Loges, B (WOS:000255994700020) 2008; 47 Arita, S (WOS:000254379500021) 2008; 47 Tripathi, RP (WOS:000259447100003) 2008; 12 Everaere, K (WOS:000180842300006) 2003; 345 Tanaka, R (WOS:000271271500021) 2009; 131 Maenaka, Y (WOS:000304354900010) 2012; 5 Bauer, W (WOS:000072817900011) 1998 TOMASI, J (WOS:A1994PT13100014) 1994; 94 Himeda, Y (WOS:000272382200016) 2009; 11 Preti, D (WOS:000298332700023) 2011; 50 Boutadla, Y (WOS:000288099200020) 2011; 17 Morris, DJ (WOS:000268176700021) 2009; 28 Haak, RM (WOS:000259924000001) 2008; 130 (000365132100036.37) 1000 Oldenhof, S (WOS:000348147100020) 2015; 6 PENG, CY (WOS:A1993ND84100011) 1993; 33 (000365132100036.23) 2004 Urakawa, A (WOS:000246573200006) 2007; 13 Cossi, M (WOS:A1996UQ97600017) 1996; 255 Alonso, DA (WOS:000083280100013) 1999; 121 ANDRAE, D (WOS:A1990DB14000004) 1990; 77 Delley, B (WOS:000090151400006) 2000; 113 Guan, HR (WOS:000185506400017) 2003; 22 Jerphagnon, T (WOS:000272509500029) 2009; 15 Åberg, JB (WOS:000238616900009) 2006 Tanaka, R (WOS:000298074500026) 2011; 30 Wu, XF (WOS:000247187900008) 2007 Ikariya, T (WOS:000251787500009) 2007; 40 Munshi, P (WOS:000176612400027) 2002; 124 Gladiali, S (WOS:000235989600003) 2006; 35 You, SL (WOS:000247857700001) 2007; 2 Kukula, P (WOS:000186547700005) 2003; 25 Wu, XF (WOS:000259079400034) 2008; 14 DOLG, M (WOS:A1987F591600043) 1987; 86 Wu, JJ (WOS:000321758300010) 2013; 49 Casey, CP (WOS:000226951800059) 2005; 127 Goedecker, S (WOS:A1996UZ86100053) 1996; 54 Wang, C (WOS:000294122000003) 2011; 47 Henkelman, G (WOS:000165584900005) 2000; 113 Martins, JED (WOS:000263299000016) 2009; 11 Sortais, JB (WOS:000227921200013) 2005; 7 Leininger, T (WOS:A1996UQ97600009) 1996; 255 VandeVondele, J (WOS:000228421500005) 2005; 167 VOSKO, SH (WOS:A1980KE76300015) 1980; 58 Barnard, JH (WOS:000314474900047) 2013; 4 Trygubenko, SA (WOS:000188498400003) 2004; 120 (000365132100036.160) 2013 Samec, JSM (WOS:000241729100037) 2006; 128 Wang, C (WOS:000283391800032) 2010; 49 Casey, CP (WOS:000235562900047) 2006; 128 Wu, XF (WOS:000273653100002) 2010; 54 DARENSBOURG, DJ (WOS:A1981LF69400087) 1981; 103 Laurenczy, G (WOS:000165213200015) 2000; 39 Casey, CP (WOS:000232413300062) 2005; 127 Yamakawa, M (WOS:000085639200025) 2000; 122 (000365132100036.48) 2003 Clapham, SE (WOS:000225813700007) 2004; 248 Gao, Y (WOS:000089170200027) 2000 Roseblade, SJ (WOS:000251787500020) 2007; 40 (000365132100036.151) 2010 ZASSINOVICH, G (WOS:A1992JH78800016) 1992; 92 (000365132100036.9) 2008 Wei, YW (WOS:000319005400021) 2013; 49 Perdew, JP (WOS:A1997WH91700054) 1997; 78 Shirai, S (WOS:000262913600020) 2009; 28 (000365132100036.44) 2010 Aranyos, A (WOS:000078821600024) 1999 Talwar, D (WOS:000354190800046) 2015; 54 Ohnishi, YY (WOS:000227738700071) 2005; 127 Hull, JF (WOS:000267631000006) 2009; 131 Noyori, R (WOS:000172489500001) 2001; 66 Adamo, C (WOS:000071233400033) 1998; 108 Hartwigsen, C (WOS:000075616800043) 1998; 58 Hull, JF (WOS:000303109700013) 2012; 4 Nova, A (WOS:000339090700024) 2014; 33 Henkelman, G (WOS:000165584900014) 2000; 113 Adamo, C (WOS:000079419000010) 1999; 110 Yin, CQ (WOS:000167628900031) 2001; 20 Bartoszewicz, A (WOS:000355964300058) 2015; 5 Wang, WH (WOS:000340361500023) 2014; 7 Li, L (WOS:000259139900055) 2008; 130 Casey, CP (WOS:000170070900070) 2001; 79 LEE, CT (WOS:A1988L976200011) 1988; 37 Palmer, MJ (WOS:000081832200001) 1999; 10 Sarmini, K (WOS:000078690100004) 1999; 38 Leininger, T (WOS:A1996UW83600019) 1996; 105 Talwar, D (WOS:000342627300022) 2014; 20 YURTCHENKO, EN (WOS:A1975W268400009) 1975; 2 Blaser, HU (WOS:000180842300008) 2003; 345 (000365132100036.74) 1998 Tang, WJ (WOS:000328606500010) 2014; 25 Blackmond, DG (WOS:000237654500012) 2006; 10 Li, ZW (WOS:000260922500043) 2008; 10 Ohnishi, YY (WOS:000238534400012) 2006; 25 Fellay, C (WOS:000255994700021) 2008; 47 Wei, YW (WOS:000315356400010) 2013; 15 (000365132100036.112) 2011 Morris, AJ (WOS:000273082800014) 2009; 42 Himeda, Y (WOS:000243577000033) 2007; 26 (000365132100036.20) 2011 HAY, PJ (WOS:A1985ABS5500033) 1985; 82 DELLEY, B (WOS:A1990CH55200058) 1990; 92 Watanabe, M (WOS:000301489600019) 2012 Comas-Vives, A (WOS:000248729400012) 2007; 26 Guiral, V (WOS:000168917600015) 2001; 20 Krack, M (WOS:000232053800020) 2005; 114 Guan, HR (WOS:000229447700032) 2005; 127 Ogo, S (WOS:000232036000017) 2005; 24 Breuer, M (WOS:000189101500005) 2004; 43 Schramm, Y (WOS:000319940400006) 2013; 4 Nugent, TC (WOS:000276317800001) 2010; 352 Fukuzumi, S (WOS:000275084900026) 2010; 132 BECKE, AD (WOS:A1993KV99700048) 1993; 98 (000365132100036.31) 2012 Casey, CP (WOS:000249693800032) 2007; 129 |
References_xml | – reference: S. Gladiali, E. Alberico, Chem. Soc. Rev. 2006, 35, 226; – reference: H. F. Zhou, Z. W. Li, Z. J. Wang, T. L. Wang, L. J. Xu, Y. He, Q. H. Fan, J. Pan, L. Q. Gu, A. S. C. Chan, Angew. Chem. Int. Ed. 2008, 47, 8464; – reference: J. S. M. Samec, A. H. Éll, J. B. Åberg, T. Privalov, L. Eriksson, J.-E. Bäckvall, J. Am. Chem. Soc. 2006, 128, 14293; – reference: R. Tanaka, M. Yamashita, K. Nozaki, J. Am. Chem. Soc. 2009, 131, 14168; – reference: K. H. Hopmann, A. Bayer, Organometallics 2011, 30, 2483. – reference: Y.-F. Han, H. Li, P. Hu, G.-X. Jin, Organometallics 2011, 30, 905; – reference: X. Wu, J. Xiao, Chem. Commun. 2007, 2449; – reference: A. Comas-Vives, G. Ujaque, A. Lledós, Organometallics 2008, 27, 4854; – reference: D. Preti, C. Resta, S. Squarcialupi, G. Fachinetti, Angew. Chem. Int. Ed. 2011, 50, 12551; – reference: M. Wills, M. Palmer, A. Smith, J. Kenny, T. Walsgrove, Molecules 2001, 5, 4; – reference: C. P. Casey, T. B. Clark, I. A. Guzei, J. Am. Chem. Soc. 2007, 129, 11821. – reference: D. L. Davies, O. Al-Duaij, J. Fawcett, M. Giardiello, S. T. Hilton, D. R. Russell, Dalton Trans. 2003, 41, 32; – reference: Y. Gao, J. Kuncheria, R. J. Puddephatt, G. P. A. Yap, Chem. Commun. 1998, 2365; – reference: Angew. Chem. 2010, 122, 7710; – reference: S. Ogo, H. Nishida, H. Hayashi, Y. Murata, S. Fukuzumi, Organometallics 2005, 24, 4816. – reference: N. Kanematsu, M. Ebihara, T. Kawamura, Inorg. Chim. Acta 2001, 323, 96. – reference: M. Yamakawa, H. Ito, R. Noyori, J. Am. Chem. Soc. 2000, 122, 1466; – reference: D. A. Alonso, P. Brandt, S. J. M. Nordin, P. G. Andersson, J. Am. Chem. Soc. 1999, 121, 9580; – reference: C. P. Casey, S. W. Singer, D. R. Powell, Can. J. Chem. 2001, 79, 1002. – reference: W. Tang, C. Lau, X. Wu, J. Xiao, Synlett 2014, 25, 81; – reference: W.-H. Wang, S. Xu, Y. Manaka, Y. Suna, H. Kambayashi, J. T. Muckerman, E. Fujita, Y. Himeda, Chemsuschem 2014, 7, 1976. – reference: G. Henkelman, H. Jonsson, J. Chem. Phys. 2000, 113, 9978; – reference: R. Noyori, S. Hashiguchi, Acc. Chem. Res. 1997, 30, 97; – reference: W. J. Hehre, R. F. Stewart, J. A. Pople, The Journal of Chemical Physics 1969, 51, 2657. – reference: P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299; – reference: Y. Kashiwame, S. Kuwata, T. Ikariya, Chem. Eur. J. 2010, 16, 766. – reference: G. Laurenczy, F. Joó, L. Nádasdi, Inorg. Chem. 2000, 39, 5083; – reference: S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 1996, 54, 1703. – reference: J. Wu, J. H. Barnard, Y. Zhang, D. Talwar, C. M. Robertson, J. Xiao, Chem. Commun. 2013, 49, 7052; – reference: C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785; – reference: C. Wang, A. Pettman, J. Bacsa, J. Xiao, Angew. Chem. Int. Ed. 2010, 49, 7548; – reference: S. Arita, T. Koike, Y. Kayaki, T. Ikariya, Organometallics 2008, 27, 2795; – reference: J. Tomasi, M. Persico, Chem. Rev. 1994, 94, 2027. – reference: D. Talwar, H. Y. Li, E. Durham, J. Xiao, Chem. Eur. J. 2015, 21, 5370; – reference: A. Boddien, D. Mellmann, F. Gärtner, R. Jackstell, H. Junge, P. J. Dyson, G. Laurenczy, R. Ludwig, M. Beller, Science 2011, 333, 1733; – reference: D. G. I. Petra, J. N. H. Reek, J.-W. Handgraaf, E. J. Meijer, P. Dierkes, P. C. J. Kamer, J. Brussee, H. E. Schoemaker, P. W. N. M. van Leeuwen, Chem. Eur. J. 2000, 6, 2818; – reference: Y. Himeda, N. Onozawa-Komatsuzaki, H. Sugihara, K. Kasuga, Organometallics 2007, 26, 702; – reference: T. J. Schmeier, G. E. Dobereiner, R. H. Crabtree, N. Hazari, J. Am. Chem. Soc. 2011, 133, 9274; – reference: P. G. Jessop, T. Ikariya, R. Noyori, Nature 1994, 368, 231; – reference: T. Jerphagnon, A. J. A. Gayet, F. Berthiol, V. Ritleng, N. Mršić, A. Meetsma, M. Pfeffer, A. J. Minnaard, B. L. Feringa, J. G. de Vries, Chem. Eur. J. 2009, 15, 12780. – reference: K. Raghavachari, Theor. Chem. Acc. 2000, 103, 361; – reference: G. Mills, H. Jónsson, Phys. Rev. Lett. 1994, 72, 1124. – reference: T. Leininger, A. Nicklass, H. Stoll, M. Dolg, P. Schwerdtfeger, J. Chem. Phys. 1996, 105, 1052; – reference: X. F. Wu, C. Wang, J. L. Xiao, Platinum Met. Rev. 2010, 54, 3. – reference: C. Fellay, P. J. Dyson, G. Laurenczy, Angew. Chem. Int. Ed. 2008, 47, 3966; – reference: B. Loges, A. Boddien, H. Junge, M. Beller, Angew. Chem. Int. Ed. 2008, 47, 3962; – reference: Y.-y. Ohnishi, T. Matsunaga, Y. Nakao, H. Sato, S. Sakaki, J. Am. Chem. Soc. 2005, 127, 4021; – reference: A. D. Becke, J. Chem. Phys. 1993, 98, 5648; – reference: L. Li, W. W. Brennessel, W. D. Jones, Organometallics 2009, 28, 3492; – reference: A. Boddien, B. Loges, F. Gärtner, C. Torborg, K. Fumino, H. Junge, R. Ludwig, M. Beller, J. Am. Chem. Soc. 2010, 132, 8924; – reference: Angew. Chem. 2008, 120, 2481; – reference: K. Sarmini, E. Kenndler, J. Biochem. Biophys. Methods 1999, 38, 123. – reference: Angew. Chem. 2010, 122, 9971; – reference: C. Wang, B. Villa-Marcos, J. Xiao, Chem. Commun. 2011, 47, 9773. – reference: M. P. Magee, J. R. Norton, J. Am. Chem. Soc. 2001, 123, 1778; – reference: C. P. Casey, G. A. Bikzhanova, I. A. Guzei, J. Am. Chem. Soc. 2006, 128, 2286; – reference: Angew. Chem. 2011, 123, 6535; – reference: C. P. Casey, G. A. Bikzhanova, Q. Cui, I. A. Guzei, J. Am. Chem. Soc. 2005, 127, 14062; – reference: P. Munshi, A. D. Main, J. C. Linehan, C.-C. Tai, P. G. Jessop, J. Am. Chem. Soc. 2002, 124, 7963; – reference: B. Delley, J. Chem. Phys. 2000, 113, 7756. – reference: J. H. Merrifield, J. A. Gladysz, Organometallics 1983, 2, 782. – reference: Y. Wei, C. Wang, X. Jiang, D. Xue, J. Li, J. Xiao, Chem. Commun. 2013, 49, 5408; – reference: J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Comput. Phys. Commun. 2005, 167, 103; – reference: P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270. – reference: T. C. Nugent, M. El-Shazly, Adv. Synth. Catal. 2010, 352, 753; – reference: A. Majewski, D. J. Morris, K. Kendall, M. Wills, ChemSusChem 2010, 3, 431; – reference: Z. W. Li, T. L. Wang, Y. M. He, Z. J. Wang, Q. H. Fan, J. Pan, L. J. Xu, Org. Lett. 2008, 10, 5265. – reference: A. Boddien, F. Gärtner, C. Federsel, P. Sponholz, D. Mellmann, R. Jackstell, H. Junge, M. Beller, Angew. Chem. Int. Ed. 2011, 50, 6411; – reference: G. Papp, J. Csorba, G. Laurenczy, F. Joó, Angew. Chem. Int. Ed. 2011, 50, 10433; – reference: A. J. Morris, G. J. Meyer, E. Fujita, Acc. Chem. Res. 2009, 42, 1983; – reference: R. Tanaka, M. Yamashita, L. W. Chung, K. Morokuma, K. Nozaki, Organometallics 2011, 30, 6742; – reference: A. Nova, D. J. Taylor, A. J. Blacker, S. B. Duckett, R. N. Perutz, O. Eisenstein, Organometallics 2014, 33, 3433; – reference: W. Leitner, J. M. Brown, H. Brunner, J. Am. Chem. Soc. 1993, 115, 152; – reference: P. Kukula, R. Prins, Top. Catal. 2003, 25, 29; – reference: J. Wu, D. Talwar, S. Johnston, M. Yan, J. Xiao, Angew. Chem. Int. Ed. 2013, 52, 6983; – reference: K. Everaere, A. Mortreux, J. F. Carpentier, Adv Synth Catal 2003, 345, 67; – reference: D. Talwar, A. Gonzalez-de-Castro, H. Y. Li, J. Xiao, Angew. Chem. Int. Ed. 2015, 54, 5223; – reference: G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901; – reference: M. Cossi, V. Barone, R. Cammi, J. Tomasi, Chem. Phys. Lett. 1996, 255, 327; – reference: R. Noyori, M. Yamakawa, S. Hashiguchi, The Journal of Organic Chemistry 2001, 66, 7931. – reference: S. J. Roseblade, A. Pfaltz, Acc. Chem. Res. 2007, 40, 1402. The catalyst has been shown to undergo cyclometalation, however: – reference: Y. Gao, J. K. Kuncheria, H. A. Jenkins, R. J. Puddephatt, G. P. A. Yap, J. Chem. Soc. Dalton Trans. 2000, 3212; – reference: D. Talwar, N. P. Salguero, C. M. Robertson, J. Xiao, Chem. Eur. J. 2014, 20, 245; – reference: B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J. Frisch, F. J. Devlin, S. Gabriel, P. J. Stephens, J. Phys. Chem. A 2002, 106, 6102; – reference: D. Talwar, X. F. Wu, O. Saidi, N. P. Salguero, J. Xiao, Chem. Eur. J. 2014, 20, 12835; – reference: J. S. M. Samec, J. E. Backvall, P. G. Andersson, P. Brandt, Chem. Soc. Rev. 2006, 35, 237; – reference: D. G. Blackmond, M. Ropic, M. Stefinovic, Org. Process Res. Dev. 2006, 10, 457. – reference: R. M. Haak, F. Berthiol, T. Jerphagnon, A. J. A. Gayet, C. Tarabiono, C. P. Postema, V. Ritleng, M. Pfeffer, D. B. Janssen, A. J. Minnaard, B. L. Feringa, J. G. de Vries, J. Am. Chem. Soc. 2008, 130, 13508. – reference: J.-B. Sortais, V. Ritleng, A. Voelklin, A. Holuigue, H. Smail, L. Barloy, C. Sirlin, G. K. M. Verzijl, J. A. F. Boogers, A. H. M. de Vries, J. G. de Vries, M. Pfeffer, Org. Lett. 2005, 7, 1247. – reference: X. Wu, J. Liu, D. Di Tommaso, J. A. Iggo, C. R. A. Catlow, J. Bacsa, J. Xiao, Chem. Eur. J. 2008, 14, 7699. – reference: J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865. – reference: W. Bauer, M. Prem, K. Polborn, K. Sünkel, W. Steglich, W. Beck, Eur J Inorg Chem. 1998, 1998, 485; – reference: Angew. Chem. 2011, 123, 12759; – reference: Angew. Chem. 2015, 127, 5312. – reference: H. Jónsson, G. Mills, K. W. Jacobsen in Classical and Quantum Dynamics in Condensed Phase Simulations (Eds.: B. J. Berne, G. Ciccotti, D. F. Coker), World Scientific, Singapore, 1998, p. 385; – reference: T. Ikariya, A. J. Blacker, Acc. Chem. Res. 2007, 40, 1300; – reference: Y. Wei, D. Xue, Q. Lei, C. Wang, J. Xiao, Green Chem. 2013, 15, 629; – reference: M. Dolg, U. Wedig, H. Stoll, H. Preuss, The Journal of Chemical Physics 1987, 86, 866; – reference: J. P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 1996, 105, 9982; – reference: E. A. Bielinski, P. O. Lagaditis, Y. Y. Zhang, B. Q. Mercado, C. Wurtele, W. H. Bernskoetter, N. Hazari, S. Schneider, J. Am. Chem. Soc. 2014, 136, 10234; – reference: E. N. Yurtchenko, N. P. Anikeenko, React. Kinet. Catal. Lett. 1975, 2, 65. – reference: O. Pàmies, J.-E. Bäckvall, Chem. Eur. J. 2001, 7, 5052; – reference: J. F. Hull, D. Balcells, J. D. Blakemore, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree, J. Am. Chem. Soc. 2009, 131, 8730. – reference: Y. Himeda, Green Chem. 2009, 11, 2018; – reference: S. Ogo, R. Kabe, H. Hayashi, R. Harada, S. Fukuzumi, Dalton Trans. 2006, 4657; – reference: C.-C. Tai, J. Pitts, J. C. Linehan, A. D. Main, P. Munshi, P. G. Jessop, Inorg. Chem. 2002, 41, 1606; – reference: Enantioselective Hydrogenation of CN Functions and Enamines (Eds.: H. U. Blaser, F. Spindler), Wiley-VCH, Weinheim, 2008; – reference: D. J. Darensbourg, M. B. Fischer, R. E. Schmidt, B. J. Baldwin, J. Am. Chem. Soc. 1981, 103, 1297. – reference: B. Delley, J. Chem. Phys. 1990, 92, 508; – reference: H. R. Guan, M. Iimura, M. P. Magee, J. R. Norton, G. Zhu, J. Am. Chem. Soc. 2005, 127, 7805. – reference: Y.-y. Ohnishi, Y. Nakao, H. Sato, S. Sakaki, Organometallics 2006, 25, 3352. – reference: M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, R. Stürmer, T. Zelinski, Angew. Chem. Int. Ed. 2004, 43, 788; – reference: T. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 2365; – reference: C. Hartwigsen, S. Goedecker, J. Hutter, Phys. Rev. B 1998, 58, 3641; – reference: A. Comas-Vives, G. Ujaque, A. Lledós, Organometallics 2007, 26, 4135; – reference: C. F. de Graauw, J. A. Peters, H. van Bekkum, J. Huskens, Synthesis 1994, 1007; – reference: S. E. Clapham, A. Hadzovic, R. H. Morris, Coord. Chem. Rev. 2004, 248, 2201; – reference: S.-L. You, Chem. Asian J. 2007, 2, 820; – reference: C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158. – reference: P. G. Jessop, Y. Hsiao, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1996, 118, 344; – reference: P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623; – reference: C. P. Casey, J. B. Johnson, J. Am. Chem. Soc. 2005, 127, 1883; – reference: A. Urakawa, F. Jutz, G. Laurenczy, A. Baiker, Chem. Eur. J. 2007, 13, 3886; – reference: C. Wang, X. Wu, J. Xiao, Chem. Asian J. 2008, 3, 1750; – reference: C. Peng, H. B. Schlegel, Isr. J. Chem. 1993, 33, 449. – reference: T. Koike, T. Ikariya, Adv Synth Catal 2004, 346, 37; – reference: C. Wang, H.-Y. T. Chen, J. Bacsa, C. R. A. Catlow, J. Xiao, Dalton Trans. 2013, 42, 935; – reference: J. H. Barnard, C. Wang, N. G. Berry, J. Xiao, Chem. Sci. 2013, 4, 1234; – reference: H. R. Guan, M. Iimura, M. P. Magee, J. R. Norton, K. E. Janak, Organometallics 2003, 22, 4084; – reference: H.-U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner, M. Studer, Adv. Synth. Catal. 2003, 345, 103; – reference: R. P. Tripathi, S. S. Verma, J. Pandey, V. K. Tiwari, Current Organic Chemistry 2008, 12, 1093; – reference: X. Yang, Dalton Trans. 2013, 42, 11987. – reference: Q. Lei, Y. Wei, D. Talwar, C. Wang, D. Xue, J. Xiao, Chem. Eur. J. 2013, 19, 4021; – reference: A. Aranyos, G. Csjernyik, K. J. Szabo, J.-E. Backvall, Chem. Commun. 1999, 351; – reference: Angew. Chem. 2008, 120, 4030; – reference: A. Bartoszewicz, G. G. Miera, R. Marcos, P. O. Norrby, B. Martin-Matute, ACS Catal. 2015, 5, 3704. – reference: Angew. Chem. 2008, 120, 4026; – reference: V. Guiral, F. Delbecq, P. Sautet, Organometallics 2001, 20, 2207; – reference: Angew. Chem. 2011, 123, 10617. – reference: C. Adamo, V. Barone, J. Chem. Phys. 1998, 108, 664. – reference: Angew. Chem. 2013, 125, 7121; – reference: C. P. Casey, S. W. Singer, D. R. Powell, R. K. Hayashi, M. Kavana, J. Am. Chem. Soc. 2001, 123, 1090; – reference: S. Fukuzumi, T. Kobayashi, T. Suenobu, J. Am. Chem. Soc. 2010, 132, 1496; – reference: Y. Schramm, F. Barrios-Landeros, A. Pfaltz, Chem. Sci. 2013, 4, 2760. – reference: Angew. Chem. 2008, 120, 8592; – reference: A. M. Lossack, E. Roduner, D. M. Bartels, Phys. Chem. Chem. Phys. 2001, 3, 2031. – reference: M. J. Palmer, M. Wills, Tetrahedron: Asymmetry 1999, 10, 2045; – reference: M. Watanabe, Y. Kashiwame, S. Kuwata, T. Ikariya, Eur J Inorg Chem. 2012, 2012, 504. – reference: J. B. Aberg, J. S. M. Samec, J.-E. Backvall, Chem. Commun. 2006, 2771; – reference: M. Krack, Theor. Chem. Acc. 2005, 114, 145; – reference: S. Arita, T. Koike, Y. Kayaki, T. Ikariya, Angew. Chem. Int. Ed. 2008, 47, 2447; – reference: Y. Boutadla, D. L. Davies, R. C. Jones, K. Singh, Chem. Eur. J. 2011, 17, 3438; – reference: G. Zassinovich, G. Mestroni, S. Gladiali, Chem. Rev. 1992, 92, 1051; – reference: J. F. Hull, Y. Himeda, W.-H. Wang, B. Hashiguchi, R. Periana, D. J. Szalda, J. T. Muckerman, E. Fujita, Nat. Chem. 2012, 4, 383. – reference: Angew. Chem. 2004, 116, 806; – reference: J. E. D. Martins, G. J. Clarkson, M. Wills, Org. Lett. 2009, 11, 847. – reference: L. Li, W. W. Brennessel, W. D. Jones, J. Am. Chem. Soc. 2008, 130, 12414; – reference: T. Zell, B. Butschke, Y. Ben-David, D. Milstein, Chem. Eur. J. 2013, 19, 8068; – reference: C. Federsel, A. Boddien, R. Jackstell, R. Jennerjahn, P. J. Dyson, R. Scopelliti, G. Laurenczy, M. Beller, Angew. Chem. Int. Ed. 2010, 49, 9777; – reference: P. A. Dub, T. Ikariya, J. Am. Chem. Soc. 2013, 135, 2604. – reference: T. Leininger, A. Nicklass, W. Kuchle, H. Stoll, M. Dolg, A. Bergner, Chem. Phys. Lett. 1996, 255, 274; – reference: Y. Maenaka, T. Suenobu, S. Fukuzumi, Energy Environ. Sci. 2012, 5, 7360. – reference: S. A. Trygubenko, D. J. Wales, J. Chem. Phys. 2004, 120, 2082; – reference: S. Oldenhof, M. Lutz, B. de Bruin, J. Ivar van der Vlugt, J. N. H. Reek, Chem. Sci. 2015, 6, 1027; – reference: C. Yin, Z. Xu, S.-Y. Yang, S. M. Ng, K. Y. Wong, Z. Lin, C. P. Lau, Organometallics 2001, 20, 1216; – reference: J. VandeVondele, J. Hutter, J. Chem. Phys. 2007, 127, 114105. – reference: T. Privalov, J. S. M. Samec, J.-E. Bäckvall, Organometallics 2007, 26, 2840. – reference: D. J. Morris, G. J. Clarkson, M. Wills, Organometallics 2009, 28, 4133; – reference: S.-y. Shirai, H. Nara, Y. Kayaki, T. Ikariya, Organometallics 2009, 28, 802. – reference: C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, J. Comput. Chem. 1996, 17, 49; – reference: S. H. Vosko, L. Wilk, M. Nusair, Can J Phys 1980, 58, 1200. – reference: D. Andrae, U. Haussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 1990, 77, 123; – volume: 128 start-page: 14293 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 123 year: 1999 publication-title: J. Biochem. Biophys. Methods – volume: 7 start-page: 1976 year: 2014 publication-title: Chemsuschem – volume: 98 start-page: 11623 year: 1994 publication-title: J. Phys. Chem. – volume: 98 start-page: 5648 year: 1993 publication-title: J. Chem. Phys. – volume: 22 start-page: 4084 year: 2003 publication-title: Organometallics – volume: 21 start-page: 5370 year: 2015 publication-title: Chem. Eur. J. – volume: 352 start-page: 753 year: 2010 publication-title: Adv. Synth. Catal. – volume: 110 start-page: 6158 year: 1999 publication-title: J. Chem. Phys. – volume: 16 start-page: 766 year: 2010 publication-title: Chem. Eur. J. – volume: 20 start-page: 12835 year: 2014 publication-title: Chem. Eur. J. – start-page: 1007 year: 1994 publication-title: Synthesis – volume: 131 start-page: 8730 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 4133 year: 2009 publication-title: Organometallics – volume: 19 start-page: 4021 year: 2013 publication-title: Chem. Eur. J. – volume: 13 start-page: 3886 year: 2007 publication-title: Chem. Eur. J. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 103 start-page: 1297 year: 1981 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 3438 year: 2011 publication-title: Chem. Eur. J. – start-page: 385 year: 1998 – volume: 107 start-page: 2365 year: 2007 publication-title: Chem. Rev. – volume: 103 start-page: 361 year: 2000 publication-title: Theor. Chem. Acc. – volume: 167 start-page: 103 year: 2005 publication-title: Comput. Phys. Commun. – volume: 54 127 start-page: 5223 5312 year: 2015 2015 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 25 start-page: 3352 year: 2006 publication-title: Organometallics – volume: 30 start-page: 905 year: 2011 publication-title: Organometallics – volume: 82 start-page: 270 year: 1985 publication-title: J. Chem. Phys. – volume: 133 start-page: 9274 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 2031 year: 2001 publication-title: Phys. Chem. Chem. Phys. – volume: 14 start-page: 7699 year: 2008 publication-title: Chem. Eur. J. – volume: 4 start-page: 2760 year: 2013 publication-title: Chem. Sci. – volume: 47 start-page: 9773 year: 2011 publication-title: Chem. Commun. – volume: 132 start-page: 1496 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 113 start-page: 9978 year: 2000 publication-title: J. Chem. Phys. – year: 2008 – volume: 3 start-page: 431 year: 2010 publication-title: ChemSusChem – volume: 4 start-page: 1234 year: 2013 publication-title: Chem. Sci. – volume: 114 start-page: 145 year: 2005 publication-title: Theor. Chem. Acc. – volume: 113 start-page: 9901 year: 2000 publication-title: J. Chem. Phys. – volume: 127 start-page: 114105 year: 2007 publication-title: J. Chem. Phys. – volume: 11 start-page: 847 year: 2009 publication-title: Org. Lett. – volume: 11 start-page: 2018 year: 2009 publication-title: Green Chem. – volume: 15 start-page: 629 year: 2013 publication-title: Green Chem. – volume: 66 start-page: 7931 year: 2001 publication-title: The Journal of Organic Chemistry – volume: 26 start-page: 4135 year: 2007 publication-title: Organometallics – volume: 50 123 start-page: 12551 12759 year: 2011 2011 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 37 start-page: 785 year: 1988 publication-title: Phys. Rev. B – start-page: 2771 year: 2006 publication-title: Chem. Commun. – volume: 2 start-page: 65 year: 1975 publication-title: React. Kinet. Catal. Lett. – volume: 33 start-page: 3433 year: 2014 publication-title: Organometallics – volume: 106 start-page: 6102 year: 2002 publication-title: J. Phys. Chem. A – volume: 129 start-page: 11821 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 72 start-page: 1124 year: 1994 publication-title: Phys. Rev. Lett. – volume: 42 start-page: 935 year: 2013 publication-title: Dalton Trans. – volume: 24 start-page: 4816 year: 2005 publication-title: Organometallics – volume: 345 start-page: 67 year: 2003 publication-title: Adv Synth Catal – volume: 30 start-page: 6742 year: 2011 publication-title: Organometallics – volume: 5 start-page: 7360 year: 2012 publication-title: Energy Environ. Sci. – start-page: 2449 year: 2007 publication-title: Chem. Commun. – volume: 30 start-page: 2483 year: 2011 publication-title: Organometallics – volume: 115 start-page: 152 year: 1993 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 97 year: 1997 publication-title: Acc. Chem. Res. – volume: 118 start-page: 344 year: 1996 publication-title: J. Am. Chem. Soc. – volume: 79 start-page: 1002 year: 2001 publication-title: Can. J. Chem. – volume: 35 start-page: 226 year: 2006 publication-title: Chem. Soc. Rev. – volume: 25 start-page: 29 year: 2003 publication-title: Top. Catal. – volume: 127 start-page: 1883 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 1402 year: 2007 publication-title: Acc. Chem. Res. – volume: 28 start-page: 3492 year: 2009 publication-title: Organometallics – volume: 12 start-page: 1093 year: 2008 publication-title: Current Organic Chemistry – volume: 17 start-page: 49 year: 1996 publication-title: J. Comput. Chem. – volume: 49 start-page: 5408 year: 2013 publication-title: Chem. Commun. – volume: 255 start-page: 327 year: 1996 publication-title: Chem. Phys. Lett. – volume: 123 start-page: 1090 year: 2001 publication-title: J. Am. Chem. Soc. – volume: 50 123 start-page: 6411 6535 year: 2011 2011 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 383 year: 2012 publication-title: Nat. Chem. – volume: 47 120 start-page: 8464 8592 year: 2008 2008 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2012 start-page: 504 year: 2012 publication-title: Eur J Inorg Chem. – volume: 35 start-page: 237 year: 2006 publication-title: Chem. Soc. Rev. – volume: 40 start-page: 1300 year: 2007 publication-title: Acc. Chem. Res. – volume: 54 start-page: 1703 year: 1996 publication-title: Phys. Rev. B – volume: 54 start-page: 3 year: 2010 publication-title: Platinum Met. Rev. – volume: 113 start-page: 7756 year: 2000 publication-title: J. Chem. Phys. – volume: 3 start-page: 1750 year: 2008 publication-title: Chem. Asian J. – volume: 94 start-page: 2027 year: 1994 publication-title: Chem. Rev. – volume: 323 start-page: 96 year: 2001 publication-title: Inorg. Chim. Acta – volume: 2 start-page: 782 year: 1983 publication-title: Organometallics – volume: 135 start-page: 2604 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 47 120 start-page: 3966 4030 year: 2008 2008 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 5265 year: 2008 publication-title: Org. Lett. – volume: 20 start-page: 1216 year: 2001 publication-title: Organometallics – volume: 10 start-page: 2045 year: 1999 publication-title: Tetrahedron: Asymmetry – volume: 41 start-page: 1606 year: 2002 publication-title: Inorg. Chem. – volume: 248 start-page: 2201 year: 2004 publication-title: Coord. Chem. Rev. – volume: 345 start-page: 103 year: 2003 publication-title: Adv. Synth. Catal. – volume: 2 start-page: 820 year: 2007 publication-title: Chem. Asian J. – volume: 6 start-page: 1027 year: 2015 publication-title: Chem. Sci. – volume: 1998 start-page: 485 year: 1998 publication-title: Eur J Inorg Chem. – volume: 7 start-page: 5052 year: 2001 publication-title: Chem. Eur. J. – start-page: 2365 year: 1998 publication-title: Chem. Commun. – start-page: 3212 year: 2000 publication-title: J. Chem. Soc. Dalton Trans. – volume: 58 start-page: 1200 year: 1980 publication-title: Can J Phys – volume: 123 start-page: 1778 year: 2001 publication-title: J. Am. Chem. Soc. – volume: 92 start-page: 508 year: 1990 publication-title: J. Chem. Phys. – volume: 27 start-page: 4854 year: 2008 publication-title: Organometallics – volume: 5 start-page: 3704 year: 2015 publication-title: ACS Catal. – volume: 255 start-page: 274 year: 1996 publication-title: Chem. Phys. Lett. – volume: 92 start-page: 1051 year: 1992 publication-title: Chem. Rev. – volume: 127 start-page: 7805 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 124 start-page: 7963 year: 2002 publication-title: J. Am. Chem. Soc. – volume: 333 start-page: 1733 year: 2011 publication-title: Science – volume: 127 start-page: 4021 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 4 year: 2001 publication-title: Molecules – volume: 130 start-page: 13508 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 3641 year: 1998 publication-title: Phys. Rev. B – volume: 128 start-page: 2286 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 47 120 start-page: 3962 4026 year: 2008 2008 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 start-page: 12780 year: 2009 publication-title: Chem. Eur. J. – volume: 82 start-page: 299 year: 1985 publication-title: J. Chem. Phys. – start-page: 351 year: 1999 publication-title: Chem. Commun. – start-page: 4657 year: 2006 publication-title: Dalton Trans. – volume: 132 start-page: 8924 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 2207 year: 2001 publication-title: Organometallics – volume: 136 start-page: 10234 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 245 year: 2014 publication-title: Chem. Eur. J. – volume: 19 start-page: 8068 year: 2013 publication-title: Chem. Eur. J. – volume: 127 start-page: 14062 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 105 start-page: 9982 year: 1996 publication-title: J. Chem. Phys. – volume: 42 start-page: 1983 year: 2009 publication-title: Acc. Chem. Res. – volume: 41 start-page: 32 year: 2003 publication-title: Dalton Trans. – volume: 43 116 start-page: 788 806 year: 2004 2004 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 27 start-page: 2795 year: 2008 publication-title: Organometallics – volume: 42 start-page: 11987 year: 2013 publication-title: Dalton Trans. – volume: 120 start-page: 2082 year: 2004 publication-title: J. Chem. Phys. – volume: 346 start-page: 37 year: 2004 publication-title: Adv Synth Catal – volume: 86 start-page: 866 year: 1987 publication-title: The Journal of Chemical Physics – volume: 130 start-page: 12414 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 105 start-page: 1052 year: 1996 publication-title: J. Chem. Phys. – volume: 368 start-page: 231 year: 1994 publication-title: Nature – volume: 49 122 start-page: 7548 7710 year: 2010 2010 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 39 start-page: 5083 year: 2000 publication-title: Inorg. Chem. – volume: 26 start-page: 702 year: 2007 publication-title: Organometallics – volume: 49 122 start-page: 9777 9971 year: 2010 2010 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 457 year: 2006 publication-title: Org. Process Res. Dev. – volume: 25 start-page: 81 year: 2014 publication-title: Synlett – volume: 77 start-page: 123 year: 1990 publication-title: Theor. Chim. Acta – volume: 26 start-page: 2840 year: 2007 publication-title: Organometallics – volume: 51 start-page: 2657 year: 1969 publication-title: The Journal of Chemical Physics – volume: 7 start-page: 1247 year: 2005 publication-title: Org. Lett. – volume: 6 start-page: 2818 year: 2000 publication-title: Chem. Eur. J. – volume: 33 start-page: 449 year: 1993 publication-title: Isr. J. Chem. – volume: 50 123 start-page: 10433 10617 year: 2011 2011 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 28 start-page: 802 year: 2009 publication-title: Organometallics – volume: 47 120 start-page: 2447 2481 year: 2008 2008 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 108 start-page: 664 year: 1998 publication-title: J. Chem. Phys. – volume: 121 start-page: 9580 year: 1999 publication-title: J. Am. Chem. Soc. – volume: 122 start-page: 1466 year: 2000 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 7052 year: 2013 publication-title: Chem. Commun. – volume: 131 start-page: 14168 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 52 125 start-page: 6983 7121 year: 2013 2013 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_6_83_2 – ident: e_1_2_6_97_2 – ident: e_1_2_6_40_2 doi: 10.1002/adsc.200303152 – ident: e_1_2_6_45_2 doi: 10.1021/ic000200b – ident: e_1_2_6_126_2 doi: 10.1002/chem.201403701 – ident: e_1_2_6_113_2 doi: 10.1021/ja802415h – ident: e_1_2_6_34_2 doi: 10.1021/om010120v – ident: e_1_2_6_2_2 doi: 10.1021/cr00013a015 – ident: e_1_2_6_49_2 doi: 10.1021/ja043697n – ident: e_1_2_6_3_2 doi: 10.1055/s-1994-25625 – ident: e_1_2_6_110_2 – ident: e_1_2_6_165_2 – ident: e_1_2_6_16_2 doi: 10.1021/ja991638h – ident: e_1_2_6_151_2 – ident: e_1_2_6_43_2 doi: 10.1038/368231a0 – ident: e_1_2_6_62_2 doi: 10.1039/a805789c – ident: e_1_2_6_35_2 doi: 10.1021/om7004832 – ident: e_1_2_6_173_2 doi: 10.1063/1.448799 – ident: e_1_2_6_53_2 doi: 10.1002/chem.200601339 – ident: e_1_2_6_184_2 doi: 10.1063/1.1323224 – ident: e_1_2_6_32_2 doi: 10.1021/ja9906610 – ident: e_1_2_6_189_2 doi: 10.1016/0009-2614(96)00349-1 – ident: e_1_2_6_78_2 doi: 10.1139/v00-201 – ident: e_1_2_6_57_2 doi: 10.1002/anie.201105481 – ident: e_1_2_6_115_2 doi: 10.1002/chem.201002604 – ident: e_1_2_6_6_2 doi: 10.3390/50100004 – ident: e_1_2_6_56_2 doi: 10.1002/anie.201004263 – ident: e_1_2_6_70_2 doi: 10.1002/cssc.201000017 – ident: e_1_2_6_166_2 doi: 10.1063/1.471950 – ident: e_1_2_6_68_2 doi: 10.1021/ja100925n – ident: e_1_2_6_63_2 doi: 10.1039/b004234j – ident: e_1_2_6_159_2 doi: 10.1007/s002149900065 – ident: e_1_2_6_76_2 doi: 10.1039/c3dt50908g – ident: e_1_2_6_27_2 doi: 10.1021/ja053956o – ident: e_1_2_6_23_2 doi: 10.1039/B605838H – ident: e_1_2_6_183_2 doi: 10.1063/1.1329672 – ident: e_1_2_6_42_2 – ident: e_1_2_6_153_2 doi: 10.1063/1.2770708 – ident: e_1_2_6_89_2 doi: 10.1002/anie.200802237 – ident: e_1_2_6_137_2 doi: 10.1039/c2ee03315a – ident: e_1_2_6_1_2 – ident: e_1_2_6_90_2 doi: 10.1021/ol802016w – ident: e_1_2_6_172_2 doi: 10.1063/1.448975 – ident: e_1_2_6_120_2 doi: 10.1002/chem.201204194 – ident: e_1_2_6_169_2 doi: 10.1063/1.452288 – ident: e_1_2_6_54_2 doi: 10.1021/ar9001679 – ident: e_1_2_6_69_2 doi: 10.1021/ja910349w – ident: e_1_2_6_104_3 doi: 10.1002/ange.200300599 – ident: e_1_2_6_128_3 doi: 10.1002/ange.201500346 – ident: e_1_2_6_18_2 doi: 10.1021/ja3097674 – ident: e_1_2_6_127_2 doi: 10.1002/chem.201500016 – ident: e_1_2_6_65_3 doi: 10.1002/ange.200705972 – ident: e_1_2_6_188_2 doi: 10.1021/jp020124t – ident: e_1_2_6_176_2 doi: 10.1103/PhysRevB.58.3641 – ident: e_1_2_6_14_2 doi: 10.1595/147106709X481372 – ident: e_1_2_6_73_2 doi: 10.1002/anie.201104951 – ident: e_1_2_6_144_2 doi: 10.1002/chem.201301383 – ident: e_1_2_6_138_2 doi: 10.1002/cssc.201301414 – ident: e_1_2_6_13_2 doi: 10.1002/asia.200800196 – ident: e_1_2_6_102_2 doi: 10.1002/adsc.200390000 – ident: e_1_2_6_93_2 doi: 10.1039/C2DT31368E – ident: e_1_2_6_22_2 doi: 10.1021/ja061494o – ident: e_1_2_6_177_2 doi: 10.1103/PhysRevB.54.1703 – ident: e_1_2_6_142_2 doi: 10.1039/b100980j – volume: 41 start-page: 32 year: 2003 ident: e_1_2_6_112_2 publication-title: Dalton Trans. – ident: e_1_2_6_26_2 doi: 10.1021/ja002177z – ident: e_1_2_6_123_3 doi: 10.1002/ange.201300292 – ident: e_1_2_6_12_2 doi: 10.1039/b618340a – ident: e_1_2_6_168_2 doi: 10.1007/BF01114537 – ident: e_1_2_6_64_2 doi: 10.1002/anie.200800320 – ident: e_1_2_6_73_3 doi: 10.1002/ange.201104951 – ident: e_1_2_6_131_3 doi: 10.1002/ange.200705875 – ident: e_1_2_6_85_2 – ident: e_1_2_6_89_3 doi: 10.1002/ange.200802237 – ident: e_1_2_6_108_2 doi: 10.1002/adsc.200900719 – ident: e_1_2_6_170_2 doi: 10.1063/1.1672392 – ident: e_1_2_6_157_2 doi: 10.1063/1.478522 – ident: e_1_2_6_31_2 – ident: e_1_2_6_47_2 doi: 10.1021/ja0167856 – ident: e_1_2_6_101_2 – ident: e_1_2_6_30_2 doi: 10.1021/ja073370x – ident: e_1_2_6_174_2 – ident: e_1_2_6_41_2 doi: 10.1021/op060033k – ident: e_1_2_6_24_2 doi: 10.1021/om070169m – ident: e_1_2_6_130_2 doi: 10.1021/om800124f – ident: e_1_2_6_28_2 doi: 10.1021/ja044450t – ident: e_1_2_6_132_2 doi: 10.1002/chem.200902827 – ident: e_1_2_6_155_2 – ident: e_1_2_6_128_2 doi: 10.1002/anie.201500346 – ident: e_1_2_6_104_2 doi: 10.1002/anie.200300599 – ident: e_1_2_6_111_2 doi: 10.1002/(SICI)1099-0682(199804)1998:4<485::AID-EJIC485>3.0.CO;2-Y – ident: e_1_2_6_71_3 doi: 10.1002/ange.201101995 – ident: e_1_2_6_19_2 – ident: e_1_2_6_160_2 doi: 10.1021/j100096a001 – ident: e_1_2_6_107_2 doi: 10.2174/138527208785740283 – volume: 25 start-page: 81 year: 2014 ident: e_1_2_6_125_2 publication-title: Synlett – ident: e_1_2_6_100_2 doi: 10.1021/ja0506861 – ident: e_1_2_6_75_2 doi: 10.1007/BF02060954 – ident: e_1_2_6_123_2 doi: 10.1002/anie.201300292 – ident: e_1_2_6_146_2 doi: 10.1021/om060307s – ident: e_1_2_6_161_2 doi: 10.1063/1.464913 – ident: e_1_2_6_175_2 doi: 10.1007/s00214-005-0655-y – ident: e_1_2_6_7_2 doi: 10.1002/adsc.200390030 – ident: e_1_2_6_79_2 – ident: e_1_2_6_74_2 doi: 10.1021/ja00395a087 – ident: e_1_2_6_114_2 doi: 10.1021/om9000742 – ident: e_1_2_6_122_2 doi: 10.1039/c2gc36619c – ident: e_1_2_6_84_2 doi: 10.1021/om1009507 – ident: e_1_2_6_167_2 doi: 10.1016/0009-2614(96)00382-X – ident: e_1_2_6_33_2 doi: 10.1002/1521-3765(20000804)6:15<2818::AID-CHEM2818>3.0.CO;2-Q – ident: e_1_2_6_182_2 doi: 10.1063/1.1636455 – ident: e_1_2_6_131_2 doi: 10.1002/anie.200705875 – ident: e_1_2_6_4_2 doi: 10.1021/ar9502341 – ident: e_1_2_6_59_2 doi: 10.1021/om2010172 – ident: e_1_2_6_77_2 doi: 10.1021/om00078a022 – ident: e_1_2_6_44_2 doi: 10.1021/ja953097b – ident: e_1_2_6_80_2 doi: 10.1021/ja505241x – ident: e_1_2_6_154_2 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_6_57_3 doi: 10.1002/ange.201105481 – ident: e_1_2_6_64_3 doi: 10.1002/ange.200800320 – ident: e_1_2_6_103_2 doi: 10.1023/B:TOCA.0000003096.11191.25 – ident: e_1_2_6_149_2 doi: 10.1063/1.1316015 – ident: e_1_2_6_56_3 doi: 10.1002/ange.201004263 – ident: e_1_2_6_65_2 doi: 10.1002/anie.200705972 – ident: e_1_2_6_121_2 doi: 10.1039/c3cc41661e – ident: e_1_2_6_133_2 doi: 10.1021/ja901270f – ident: e_1_2_6_150_2 – ident: e_1_2_6_92_3 doi: 10.1002/ange.201002944 – ident: e_1_2_6_164_2 doi: 10.1063/1.475428 – ident: e_1_2_6_178_2 – ident: e_1_2_6_147_2 – ident: e_1_2_6_37_2 doi: 10.1021/acscatal.5b00645 – ident: e_1_2_6_148_2 doi: 10.1063/1.458452 – ident: e_1_2_6_71_2 doi: 10.1002/anie.201101995 – ident: e_1_2_6_8_2 doi: 10.1016/j.ccr.2004.04.007 – ident: e_1_2_6_38_2 – ident: e_1_2_6_185_2 doi: 10.1142/9789812839664_0016 – ident: e_1_2_6_58_2 doi: 10.1021/ja2035514 – ident: e_1_2_6_51_2 doi: 10.1021/om060899e – ident: e_1_2_6_21_2 doi: 10.1002/1521-3765(20011203)7:23<5052::AID-CHEM5052>3.0.CO;2-Z – ident: e_1_2_6_124_2 doi: 10.1002/chem.201303541 – ident: e_1_2_6_87_2 doi: 10.1039/c3sc50587a – ident: e_1_2_6_118_2 – ident: e_1_2_6_180_2 doi: 10.1002/ijch.199300051 – ident: e_1_2_6_20_2 doi: 10.1039/a809236b – ident: e_1_2_6_95_2 doi: 10.1021/ol802801p – ident: e_1_2_6_96_2 doi: 10.1021/om800926p – ident: e_1_2_6_134_2 doi: 10.1021/ol047353d – ident: e_1_2_6_162_2 doi: 10.1103/PhysRevB.37.785 – ident: e_1_2_6_163_2 doi: 10.1139/p80-159 – ident: e_1_2_6_156_2 doi: 10.1063/1.472933 – ident: e_1_2_6_152_2 doi: 10.1016/j.cpc.2004.12.014 – ident: e_1_2_6_186_2 doi: 10.1103/PhysRevLett.72.1124 – ident: e_1_2_6_109_2 doi: 10.1039/c1cc12326b – ident: e_1_2_6_116_2 doi: 10.1021/om101064v – ident: e_1_2_6_136_2 doi: 10.1021/ja805128x – ident: e_1_2_6_61_2 – ident: e_1_2_6_179_2 doi: 10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0 – ident: e_1_2_6_48_2 doi: 10.1021/ic010866l – ident: e_1_2_6_36_2 doi: 10.1021/om700975k – ident: e_1_2_6_129_2 – ident: e_1_2_6_88_2 – ident: e_1_2_6_98_2 doi: 10.1021/ja003630 – ident: e_1_2_6_190_2 doi: 10.1021/cr00031a013 – ident: e_1_2_6_67_2 doi: 10.1021/om900099u – ident: e_1_2_6_86_2 doi: 10.1021/ar700113g – ident: e_1_2_6_50_2 doi: 10.1039/b607993h – ident: e_1_2_6_105_2 doi: 10.1002/asia.200700081 – ident: e_1_2_6_145_2 doi: 10.1002/chem.200800559 – ident: e_1_2_6_117_2 doi: 10.1002/ejic.201100800 – volume-title: Enantioselective Hydrogenation of CN Functions and Enamines year: 2008 ident: e_1_2_6_106_2 – ident: e_1_2_6_143_2 – ident: e_1_2_6_25_2 – ident: e_1_2_6_66_2 doi: 10.1039/b914442k – ident: e_1_2_6_139_2 doi: 10.1016/S0165-022X(98)00033-5 – ident: e_1_2_6_9_2 doi: 10.1039/B513396C – ident: e_1_2_6_119_2 doi: 10.1039/c2sc21923a – ident: e_1_2_6_141_2 doi: 10.1021/om0504147 – ident: e_1_2_6_10_2 doi: 10.1039/b515269k – ident: e_1_2_6_187_2 – ident: e_1_2_6_181_2 – ident: e_1_2_6_5_2 doi: 10.1016/S0957-4166(99)00216-5 – ident: e_1_2_6_15_2 – ident: e_1_2_6_39_2 doi: 10.1021/ja00054a021 – ident: e_1_2_6_92_2 doi: 10.1002/anie.201002944 – ident: e_1_2_6_171_2 – ident: e_1_2_6_135_2 doi: 10.1002/chem.200902103 – ident: e_1_2_6_99_2 doi: 10.1021/om0303404 – ident: e_1_2_6_82_2 doi: 10.1021/om500356e – ident: e_1_2_6_72_2 doi: 10.1126/science.1206613 – ident: e_1_2_6_55_2 doi: 10.1021/ja903574e – ident: e_1_2_6_140_2 doi: 10.1016/S0020-1693(01)00615-6 – ident: e_1_2_6_29_2 doi: 10.1021/ja056402u – ident: e_1_2_6_46_2 doi: 10.1021/om000944x – ident: e_1_2_6_158_2 – ident: e_1_2_6_11_2 doi: 10.1021/ar700134q – ident: e_1_2_6_60_2 doi: 10.1038/nchem.1295 – ident: e_1_2_6_94_2 doi: 10.1039/c3cc44567d – ident: e_1_2_6_91_2 – ident: e_1_2_6_17_2 doi: 10.1021/jo010721w – ident: e_1_2_6_52_2 doi: 10.1021/cr068357u – ident: e_1_2_6_81_2 doi: 10.1039/C4SC02555E – volume: 103 start-page: 361 year: 2000 ident: WOS:000085419900060 article-title: Perspective on "Density functional thermochemistry. III. The role of exact exchange" - Becke AD (1993) J Chem Phys 98:5648-52 publication-title: THEORETICAL CHEMISTRY ACCOUNTS – volume: 135 start-page: 2604 year: 2013 ident: WOS:000315373000039 article-title: Quantum Chemical Calculations with the Inclusion of Nonspecific and Specific Solvation: Asymmetric Transfer Hydrogenation with Bifunctional Ruthenium Catalysts publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja3097674 – volume: 6 start-page: 1027 year: 2015 ident: WOS:000348147100020 article-title: Dehydrogenation of formic acid by Ir-bisMETAMORPhos complexes: experimental and computational insight into the role of a cooperative ligand publication-title: CHEMICAL SCIENCE doi: 10.1039/c4sc02555e – volume: 27 start-page: 2795 year: 2008 ident: WOS:000256643600018 article-title: Synthesis and reactivities of Cp*Ir amide and hydride complexes bearing C-N chelate ligands publication-title: ORGANOMETALLICS doi: 10.1021/om800124f – volume: 105 start-page: 9982 year: 1996 ident: WOS:A1996VW94700028 article-title: Rationale for mixing exact exchange with density functional approximations publication-title: JOURNAL OF CHEMICAL PHYSICS – volume: 7 start-page: 1976 year: 2014 ident: WOS:000340361500023 article-title: Formic Acid Dehydrogenation with Bioinspired Iridium Complexes: A Kinetic Isotope Effect Study and Mechanistic Insight publication-title: CHEMSUSCHEM doi: 10.1002/cssc.201301414 – year: 2013 ident: 000365132100036.160 publication-title: Angew. Chem – volume: 19 start-page: 8068 year: 2013 ident: WOS:000320134200008 article-title: Efficient Hydrogen Liberation from Formic Acid Catalyzed by a Well-Defined Iron Pincer Complex under Mild Conditions publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201301383 – volume: 92 start-page: 1051 year: 1992 ident: WOS:A1992JH78800016 article-title: ASYMMETRIC HYDROGEN TRANSFER-REACTIONS PROMOTED BY HOMOGENEOUS TRANSITION-METAL CATALYSTS publication-title: CHEMICAL REVIEWS – volume: 42 start-page: 1983 year: 2009 ident: WOS:000273082800014 article-title: Molecular Approaches to the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar9001679 – volume: 77 start-page: 123 year: 1990 ident: WOS:A1990DB14000004 article-title: ENERGY-ADJUSTED ABINITIO PSEUDOPOTENTIALS FOR THE 2ND AND 3RD ROW TRANSITION-ELEMENTS publication-title: THEORETICA CHIMICA ACTA – volume: 2 start-page: 65 year: 1975 ident: WOS:A1975W268400009 article-title: MECHANISM OF DEHYDROGENATION OF FORMIC-ACID BY IRIDIUM AND RHODIUM COMPLEXES publication-title: REACTION KINETICS AND CATALYSIS LETTERS – volume: 121 start-page: 9580 year: 1999 ident: WOS:000083280100013 article-title: Ru(arene)(amino alcohol)-catalyzed transfer hydrogenation of ketones: Mechanism and origin of enantioselectivity publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – year: 2004 ident: 000365132100036.23 publication-title: Angew. Chem – volume: 5 start-page: 3704 year: 2015 ident: WOS:000355964300058 article-title: Mechanistic Studies on the Alkylation of Amines with Alcohols Catalyzed by a Bifunctional Iridium Complex publication-title: ACS CATALYSIS doi: 10.1021/acscatal.5b00645 – volume: 13 start-page: 3886 year: 2007 ident: WOS:000246573200006 article-title: Carbon dioxide hydrogenation catalyzed by a ruthenium dihydride: A DFT and high-pressure spectroscopic investigation publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.200601339 – volume: 37 start-page: 785 year: 1988 ident: WOS:A1988L976200011 article-title: DEVELOPMENT OF THE COLLE-SALVETTI CORRELATION-ENERGY FORMULA INTO A FUNCTIONAL OF THE ELECTRON-DENSITY publication-title: PHYSICAL REVIEW B – volume: 19 start-page: 4021 year: 2013 ident: WOS:000316009800026 article-title: Fast Reductive Amination by Transfer Hydrogenation "on Water" publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201204194 – volume: 22 start-page: 4084 year: 2003 ident: WOS:000185506400017 article-title: Effect of chelate ring size on the rate of hydride transfer from CpRu(P-P)H (P-P = chelating diphosphine) to an iminium cation publication-title: ORGANOMETALLICS doi: 10.1021/om0303404 – year: 1000 ident: 000365132100036.37 publication-title: DALTON T – volume: 128 start-page: 14293 year: 2006 ident: WOS:000241729100037 article-title: Mechanistic study of hydrogen transfer to imines from a hydroxycyclopentadienyl ruthenium hydride.: Experimental support for a mechanism involving coordination of imine to ruthenium prior to hydrogen transfer publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja061494o – volume: 130 start-page: 12414 year: 2008 ident: WOS:000259139900055 article-title: An efficient low-temperature route to polycyclic isoquinoline salt synthesis via C-H activation with [Cp☆MCl2]2 (M = Rh, Ir) publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja802415h – start-page: 2365 year: 1998 ident: WOS:000076848200041 article-title: An efficient binuclear catalyst for decomposition of formic acid publication-title: CHEMICAL COMMUNICATIONS – volume: 11 start-page: 847 year: 2009 ident: WOS:000263299000016 article-title: Ru(II) Complexes of N-Alkylated TsDPEN Ligands in Asymmetric Transfer Hydrogenation of Ketones and Imines publication-title: ORGANIC LETTERS doi: 10.1021/ol802801p – volume: 98 start-page: 5648 year: 1993 ident: WOS:A1993KV99700048 article-title: Density-functional thermochemistry. III. The role of exact exchange publication-title: JOURNAL OF CHEMICAL PHYSICS doi: 10.1063/1.464913 – volume: 124 start-page: 7963 year: 2002 ident: WOS:000176612400027 article-title: Hydrogenation of carbon dioxide catalyzed by ruthenium trimethylphosphine complexes: The accelerating effect of certain alcohols and amines publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja0167856 – volume: 35 start-page: 226 year: 2006 ident: WOS:000235989600003 article-title: Asymmetric transfer hydrogenation: chiral ligands and applications publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/b513396c – volume: 39 start-page: 5083 year: 2000 ident: WOS:000165213200015 article-title: Formation and characterization of water-soluble hydrido-ruthenium(II) complexes of 1,3,5-triaza-7-phosphaadamantane and their catalytic activity in hydrogenation of CO2 and HCO3- in aqueous solution publication-title: INORGANIC CHEMISTRY doi: 10.1021/ic000200b – volume: 131 start-page: 8730 year: 2009 ident: WOS:000267631000006 article-title: Highly Active and Robust Cp* Iridium Complexes for Catalytic Water Oxidation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja901270f – volume: 255 start-page: 327 year: 1996 ident: WOS:A1996UQ97600017 article-title: Ab initio study of solvated molecules: A new implementation of the polarizable continuum model publication-title: CHEMICAL PHYSICS LETTERS – volume: 20 start-page: 2207 year: 2001 ident: WOS:000168917600015 article-title: Origin of the enantioselectivity in the hydrogen transfer reduction of carbonyls by a rhodium(I) complex: A theoretical study publication-title: ORGANOMETALLICS doi: 10.1021/om010120v – volume: 2 start-page: 820 year: 2007 ident: WOS:000247857700001 article-title: Recent developments in asymmetric transfer hydrogenation with Hantzsch esters: A biomimetic approach publication-title: CHEMISTRY-AN ASIAN JOURNAL doi: 10.1002/asia.200700081 – volume: 54 start-page: 3 year: 2010 ident: WOS:000273653100002 article-title: Asymmetric Transfer Hydrogenation in Water with Platinum Group Metal Catalysts publication-title: PLATINUM METALS REVIEW doi: 10.1595/147106709X481372 – start-page: 3212 year: 2000 ident: WOS:000089170200027 article-title: The interconversion of formic acid and hydrogen/carbon dioxide using a binuclear ruthenium complex catalyst publication-title: JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS – volume: 118 start-page: 344 year: 1996 ident: WOS:A1996TQ26900007 article-title: Homogeneous catalysis in supercritical fluids: Hydrogenation of supercritical carbon dioxide to formic acid, alkyl formates, and formamides publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 26 start-page: 4135 year: 2007 ident: WOS:000248729400012 article-title: Hydrogen transfer to ketones catalyzed by Shvo's ruthenium hydride complex:: A mechanistic insight publication-title: ORGANOMETALLICS doi: 10.1021/om7004832 – volume: 51 start-page: 2657 year: 1969 ident: WOS:A1969E338200047 article-title: SELF-CONSISTENT MOLECULAR-ORBITAL METHODS .I. USE OF GAUSSIAN EXPANSIONS OF SLATER-TYPE ATOMIC ORBITALS publication-title: JOURNAL OF CHEMICAL PHYSICS – volume: 50 start-page: 6411 year: 2011 ident: WOS:000292642600040 article-title: CO2-"Neutral" Hydrogen Storage Based on Bicarbonates and Formates publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201101995 – volume: 122 start-page: 1466 year: 2000 ident: WOS:000085639200025 article-title: The metal-ligand bifunctional catalysis: A theoretical study on the ruthenium(II)-catalyzed hydrogen transfer between alcohols and carbonyl compounds publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – year: 2015 ident: 000365132100036.134 publication-title: ANGEW CHE – volume: 24 start-page: 4816 year: 2005 ident: WOS:000232036000017 article-title: Aqueous transformation of a metal diformate to a metal dihydride carbonyl complex accompanied by H2 evolution from the formato ligands publication-title: ORGANOMETALLICS doi: 10.1021/om0504147 – year: 2008 ident: 000365132100036.172 publication-title: ANGEW CHEM-GER EDIT – volume: 110 start-page: 6158 year: 1999 ident: WOS:000079419000010 article-title: Toward reliable density functional methods without adjustable parameters: The PBE0 model publication-title: JOURNAL OF CHEMICAL PHYSICS – year: 2012 ident: 000365132100036.31 publication-title: THESIS – volume: 113 start-page: 7756 year: 2000 ident: WOS:000090151400006 article-title: From molecules to solids with the DMol3 approach publication-title: JOURNAL OF CHEMICAL PHYSICS – volume: 98 start-page: 11623 year: 1994 ident: WOS:A1994PQ94400001 article-title: AB-INITIO CALCULATION OF VIBRATIONAL ABSORPTION AND CIRCULAR-DICHROISM SPECTRA USING DENSITY-FUNCTIONAL FORCE-FIELDS publication-title: JOURNAL OF PHYSICAL CHEMISTRY – year: 2010 ident: 000365132100036.151 publication-title: Angew. Chem – volume: 114 start-page: 145 year: 2005 ident: WOS:000232053800020 article-title: Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals publication-title: THEORETICAL CHEMISTRY ACCOUNTS doi: 10.1007/s00214-005-0655-y – year: 1998 ident: 000365132100036.74 publication-title: Classical and Quantum Dynamics in Condensed Phase Simulations – volume: 25 start-page: 29 year: 2003 ident: WOS:000186547700005 article-title: Diastereoselective hydrogenation in the preparation of fine chemicals publication-title: TOPICS IN CATALYSIS – volume: 38 start-page: 123 year: 1999 ident: WOS:000078690100004 article-title: Ionization constants of weak acids and bases in organic solvents publication-title: JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS – volume: 2 start-page: 782 year: 1983 ident: WOS:A1983QV03800022 article-title: SYNTHESIS AND DECARBOXYLATION MECHANISM OF THE CHIRAL RHENIUM FORMATE (ETA-C5H5)RE(NO)(PPH3)(OCHO) publication-title: ORGANOMETALLICS – volume: 49 start-page: 9777 year: 2010 ident: WOS:000285211000045 article-title: A Well-Defined Iron Catalyst for the Reduction of Bicarbonates and Carbon Dioxide to Formates, Alkyl Formates, and Formamides publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201004263 – volume: 131 start-page: 14168 year: 2009 ident: WOS:000271271500021 article-title: Catalytic Hydrogenation of Carbon Dioxide Using Ir(III)-Pincer Complexes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja903574e – volume: 323 start-page: 96 year: 2001 ident: WOS:000172077100012 article-title: Preparation and structure of bis(μ-acetato)dichlorodicarbonyldiiridium(II) complexes with Group 15 ligands and ESR and density functional theory studies of electronic structure of their cationic radicals publication-title: INORGANICA CHIMICA ACTA – year: 2008 ident: 000365132100036.9 publication-title: ANGEW CHEM – volume: 4 start-page: 1234 year: 2013 ident: WOS:000314474900047 article-title: Long-range metal-ligand bifunctional catalysis: cyclometallated iridium catalysts for the mild and rapid dehydrogenation of formic acid publication-title: CHEMICAL SCIENCE doi: 10.1039/c2sc21923a – volume: 106 start-page: 6102 year: 2002 ident: WOS:000176356400019 article-title: Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules publication-title: JOURNAL OF PHYSICAL CHEMISTRY A doi: 10.1021/jp020124t – year: 2011 ident: 000365132100036.20 publication-title: Angewandte Chemie – volume: 33 start-page: 449 year: 1993 ident: WOS:A1993ND84100011 article-title: COMBINING SYNCHRONOUS TRANSIT AND QUASI-NEWTON METHODS TO FIND TRANSITION-STATES publication-title: ISRAEL JOURNAL OF CHEMISTRY – volume: 17 start-page: 3438 year: 2011 ident: WOS:000288099200020 article-title: The Scope of Ambiphilic Acetate-Assisted Cyclometallation with Half-Sandwich Complexes of Iridium, Rhodium and Ruthenium publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201002604 – year: 2008 ident: 000365132100036.47 publication-title: Angew. Chem. – volume: 72 start-page: 1124 year: 1994 ident: WOS:A1994MW25600045 article-title: QUANTUM AND THERMAL EFFECTS IN H-2 DISSOCIATIVE ADSORPTION - EVALUATION OF FREE-ENERGY BARRIERS IN MULTIDIMENSIONAL QUANTUM-SYSTEMS publication-title: PHYSICAL REVIEW LETTERS – start-page: 4657 year: 2006 ident: WOS:000241057600003 article-title: Mechanistic investigation of CO2 hydrogenation by Ru(II) and Ir(III) aqua complexes under acidic conditions:: two catalytic systems differing in the nature of the rate determining step publication-title: DALTON TRANSACTIONS doi: 10.1039/b607993h – year: 2010 ident: 000365132100036.44 publication-title: ANGEW CHE – volume: 82 start-page: 299 year: 1985 ident: WOS:A1985ABS5500035 article-title: ABINITIO EFFECTIVE CORE POTENTIALS FOR MOLECULAR CALCULATIONS - POTENTIALS FOR K TO AU INCLUDING THE OUTERMOST CORE ORBITALS publication-title: JOURNAL OF CHEMICAL PHYSICS – volume: 132 start-page: 1496 year: 2010 ident: WOS:000275084900026 article-title: Unusually Large Tunneling Effect on Highly Efficient Generation of Hydrogen and Hydrogen Isotopes in pH-Selective Decomposition of Formic Acid Catalyzed by a Heterodinuclear Iridium-Ruthenium Complex in Water publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja910349w – volume: 5 start-page: 4 year: 2000 ident: WOS:000085090200002 article-title: Recent developments in the area of asymmetric transfer hydrogenation publication-title: MOLECULES – volume: 28 start-page: 3492 year: 2009 ident: WOS:000267020700020 article-title: C-H Activation of Phenyl Imines and 2-Phenylpyridines with [Cp*MCl2]2 (M = Ir, Rh): Regioselectivity, Kinetics, and Mechanism publication-title: ORGANOMETALLICS doi: 10.1021/om9000742 – volume: 47 start-page: 3966 year: 2008 ident: WOS:000255994700021 article-title: A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200800320 – volume: 47 start-page: 3962 year: 2008 ident: WOS:000255994700020 article-title: Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200705972 – year: 2003 ident: 000365132100036.48 publication-title: GAUSSIAN 03 – volume: 368 start-page: 231 year: 1994 ident: WOS:A1994NA87000051 article-title: HOMOGENEOUS CATALYTIC-HYDROGENATION OF SUPERCRITICAL CARBON-DIOXIDE publication-title: NATURE – start-page: 485 year: 1998 ident: WOS:000072817900011 article-title: Metal complexes of biologically important ligands. CII - Organometallic complexes of iridium, palladium, chromium and iron from 2-phenyl-5(4H)-oxazolones - Organometallic labelled dipeptides publication-title: EUROPEAN JOURNAL OF INORGANIC CHEMISTRY – volume: 12 start-page: 1093 year: 2008 ident: WOS:000259447100003 article-title: Recent development on catalytic reductive amination and applications publication-title: CURRENT ORGANIC CHEMISTRY – year: 2008 ident: 000365132100036.17 publication-title: ENANTIOSELECTIVE HYD – volume: 16 start-page: 766 year: 2010 ident: WOS:000274615700005 article-title: Metal-Pyrazole Bifunction in Half-Sandwich C-N Chelate Iridium Complexes: Pyrazole-Pyrazolato Interconversion and Application to Catalytic Intramolecular Hydroamination of Aminoalkene publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.200902827 – start-page: 2449 year: 2007 ident: WOS:000247187900008 article-title: Aqueous-phase asymmetric transfer hydrogenation of ketones - a greener approach to chiral alcohols publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/b618340a – volume: 346 start-page: 37 year: 2004 ident: WOS:000189276900003 article-title: Mechanistic aspects of formation of chiral ruthenium hydride complexes from 16-electron ruthenium amide complexes and formic acid: Facile reversible decarboxylation and carboxylation publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.200303152 – volume: 43 start-page: 788 year: 2004 ident: WOS:000189101500005 article-title: Industrial methods for the production of optically active intermediates publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200300599 – volume: 49 start-page: 5408 year: 2013 ident: WOS:000319005400021 article-title: Highly efficient transformation of levulinic acid into pyrrolidinones by iridium catalysed transfer hydrogenation publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c3cc41661e – volume: 4 start-page: 2760 year: 2013 ident: WOS:000319940400006 article-title: Discovery of an iridacycle catalyst with improved reactivity and enantioselectivity in the hydrogenation of dialkyl ketimines publication-title: CHEMICAL SCIENCE doi: 10.1039/c3sc50587a – volume: 30 start-page: 6742 year: 2011 ident: WOS:000298074500026 article-title: Mechanistic Studies on the Reversible Hydrogenation of Carbon Dioxide Catalyzed by an Ir-PNP Complex publication-title: ORGANOMETALLICS doi: 10.1021/om2010172 – volume: 167 start-page: 103 year: 2005 ident: WOS:000228421500005 article-title: QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach publication-title: COMPUTER PHYSICS COMMUNICATIONS doi: 10.1016/j.cpc.2004.12.014 – volume: 127 start-page: ARTN 114105 year: 2007 ident: WOS:000249667400011 article-title: Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases publication-title: JOURNAL OF CHEMICAL PHYSICS doi: 10.1063/1.2770708 – volume: 132 start-page: 8924 year: 2010 ident: WOS:000279561200048 article-title: Iron-Catalyzed Hydrogen Production from Formic Acid publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja100925n – volume: 127 start-page: 7805 year: 2005 ident: WOS:000229447700032 article-title: Ruthenium-catalyzed ionic hydrogenation of iminium cations. Scope and mechanism publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja0506861 – volume: 255 start-page: 274 year: 1996 ident: WOS:A1996UQ97600009 article-title: The accuracy of the pseudopotential approximation: Non-frozen-core effects for spectroscopic constants of alkali fluorides XF (X=K, Rb, Ca) publication-title: CHEMICAL PHYSICS LETTERS – volume: 47 start-page: 9773 year: 2011 ident: WOS:000294122000003 article-title: Hydrogenation of imino bonds with half-sandwich metal catalysts publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c1cc12326b – volume: 20 start-page: 1216 year: 2001 ident: WOS:000167628900031 article-title: Promoting effect of water in ruthenium-catalyzed hydrogenation of carbon dioxide to formic acid publication-title: ORGANOMETALLICS – volume: 130 start-page: 13508 year: 2008 ident: WOS:000259924000001 article-title: Dynamic kinetic resolution of racemic β-haloalcohols:: Direct access to enantioenriched epoxides publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja805128x – volume: 20 start-page: 12835 year: 2014 ident: WOS:000342627300022 article-title: Versatile Iridicycle Catalysts for Highly Efficient and Chemoselective Transfer Hydrogenation of Carbonyl Compounds in Water publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201403701 – start-page: 2771 year: 2006 ident: WOS:000238616900009 article-title: Mechanistic investigation on the hydrogenation of imines by [p-(Me2CH)C6H4Me]RuH(NH2CHPhCHPhNSO2C6H4-p-CH3).: Experimental support for an ionic pathway publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/b605838h – volume: 3 start-page: 2031 year: 2001 ident: WOS:000168859400017 article-title: Solvation and kinetic isotope effects in H and D abstraction reactions from formate ions by D, H and Mu atoms in aqueous solution publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS – volume: 21 start-page: 5370 year: 2015 ident: WOS:000352504500016 article-title: A Simple Iridicycle Catalyst for Efficient Transfer Hydrogenation of N-Heterocycles in Water publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201500016 – volume: 47 start-page: 2447 year: 2008 ident: WOS:000254379500021 article-title: Aerobic oxidative kinetic resolution of racemic secondary alcohols with chiral bifunctional amido complexes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200705875 – volume: 107 start-page: 2365 year: 2007 ident: WOS:000247217000010 article-title: Transformation of carbon dioxide publication-title: CHEMICAL REVIEWS doi: 10.1021/cr068357u – volume: 52 start-page: 6983 year: 2013 ident: WOS:000320776900034 article-title: Acceptorless Dehydrogenation of Nitrogen Heterocycles with a Versatile Iridium Catalyst publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201300292 – volume: 28 start-page: 802 year: 2009 ident: WOS:000262913600020 article-title: Remarkable Positive Effect of Silver Salts on Asymmetric Hydrogenation of Acyclic Imines with Cp*Ir Complexes Bearing Chiral N-Sulfonylated Diamine Ligands publication-title: ORGANOMETALLICS doi: 10.1021/om800926p – volume: 79 start-page: 1002 year: 2001 ident: WOS:000170070900070 article-title: The role of a hydroxycyclopentadienyl ruthenium dicarbonyl formate in formic acid reductions of carbonyl compounds catalyzed by Shvo's diruthenium catalyst publication-title: CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE – volume: 123 start-page: 1778 year: 2001 ident: WOS:000167162100036 article-title: Stoichiometric, catalytic, and enantioface-selective hydrogenation of C=N bonds by an ionic mechanism publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 40 start-page: 1300 year: 2007 ident: WOS:000251787500009 article-title: Asymmetric transfer hydrogenation of ketones with bifunctional transition metal-based molecular publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar700134q – volume: 352 start-page: 753 year: 2010 ident: WOS:000276317800001 article-title: Chiral Amine Synthesis - Recent Developments and Trends for Enamide Reduction, Reductive Amination, and Imine Reduction publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.200900719 – volume: 345 start-page: 103 year: 2003 ident: WOS:000180842300008 article-title: Selective hydrogenation for fine chemicals: Recent trends and new developments publication-title: ADVANCED SYNTHESIS & CATALYSIS – volume: 14 start-page: 7699 year: 2008 ident: WOS:000259079400034 article-title: A multilateral mechanistic study into asymmetric transfer hydrogenation in water publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.200800559 – volume: 115 start-page: 152 year: 1993 ident: WOS:A1993KG95400021 article-title: MECHANISTIC ASPECTS OF THE RHODIUM-CATALYZED ENANTIOSELECTIVE TRANSFER HYDROGENATION OF ALPHA,BETA-UNSATURATED CARBOXYLIC-ACIDS USING FORMIC-ACID TRIETHYLAMINE (5-2) AS THE HYDROGEN SOURCE publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 25 start-page: 3352 year: 2006 ident: WOS:000238534400012 article-title: Ruthenium(II)-catalyzed hydrogenation of carbon dioxide to formic acid. Theoretical study of significant acceleration by water molecules publication-title: ORGANOMETALLICS doi: 10.1021/om060307s – volume: 108 start-page: 664 year: 1998 ident: WOS:000071233400033 article-title: Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters:: The mPW and mPW1PW models publication-title: JOURNAL OF CHEMICAL PHYSICS – volume: 5 start-page: 7360 year: 2012 ident: WOS:000304354900010 article-title: Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure publication-title: ENERGY & ENVIRONMENTAL SCIENCE doi: 10.1039/c2ee03315a – volume: 333 start-page: 1733 year: 2011 ident: WOS:000295121500038 article-title: Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst publication-title: SCIENCE doi: 10.1126/science.1206613 – year: 2011 ident: 000365132100036.112 publication-title: Angew. Chem – volume: 33 start-page: 3433 year: 2014 ident: WOS:000339090700024 article-title: Computational Studies Explain the Importance of Two Different Substituents on the Chelating Bis(amido) Ligand for Transfer Hydrogenation by Bifunctional Cp*Rh(III) Catalysts publication-title: ORGANOMETALLICS doi: 10.1021/om500356e – volume: 7 start-page: 1247 year: 2005 ident: WOS:000227921200013 article-title: Cycloruthenated primary and secondary amines as efficient catalyst precursors for asymmetric transfer hydrogenation publication-title: ORGANIC LETTERS doi: 10.1021/ol047353d – volume: 4 start-page: 383 year: 2012 ident: WOS:000303109700013 article-title: Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures publication-title: NATURE CHEMISTRY doi: 10.1038/NCHEM.1295 – volume: 50 start-page: 12551 year: 2011 ident: WOS:000298332700023 article-title: Carbon Dioxide Hydrogenation to Formic Acid by Using a Heterogeneous Gold Catalyst publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201105481 – volume: 127 start-page: 4021 year: 2005 ident: WOS:000227738700071 article-title: Ruthenium(II)-catalyzed hydrogenation of carbon dioxide to formic acid. theoretical study of real catalyst, ligand effects, and solvation effects publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja043697n – volume: 41 start-page: 1606 year: 2002 ident: WOS:000174492300037 article-title: In situ formation of ruthenium catalysts for the homogeneous hydrogenation of carbon dioxide publication-title: INORGANIC CHEMISTRY doi: 10.1021/ic010866l – start-page: 504 year: 2012 ident: WOS:000301489600019 article-title: Synthesis, Structures, and Transfer Hydrogenation Catalysis of Bifunctional Iridium Complexes Bearing a C-N Chelate Oxime Ligand publication-title: EUROPEAN JOURNAL OF INORGANIC CHEMISTRY doi: 10.1002/ejic.201100800 – volume: 11 start-page: 2018 year: 2009 ident: WOS:000272382200016 article-title: Highly efficient hydrogen evolution by decomposition of formic acid using an iridium catalyst with 4,4′-dihydroxy-2,2′-bipyridine publication-title: GREEN CHEMISTRY doi: 10.1039/b914442k – volume: 30 start-page: 2483 year: 2011 ident: WOS:000290001900007 article-title: On the Mechanism of Iridium-Catalyzed Asymmetric Hydrogenation of Imines and Alkenes: A Theoretical Study publication-title: ORGANOMETALLICS doi: 10.1021/om1009507 – volume: 58 start-page: 1200 year: 1980 ident: WOS:A1980KE76300015 article-title: ACCURATE SPIN-DEPENDENT ELECTRON LIQUID CORRELATION ENERGIES FOR LOCAL SPIN-DENSITY CALCULATIONS - A CRITICAL ANALYSIS publication-title: CANADIAN JOURNAL OF PHYSICS – start-page: 351 year: 1999 ident: WOS:000078821600024 article-title: Evidence for a ruthenium dihydride species as the active catalyst in the RuCl2(PPh3)-catalyzed hydrogen transfer reaction in the presence of base publication-title: CHEMICAL COMMUNICATIONS – volume: 50 start-page: 10433 year: 2011 ident: WOS:000297049300035 article-title: A Charge/Discharge Device for Chemical Hydrogen Storage and Generation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201104951 – volume: 54 start-page: 1703 year: 1996 ident: WOS:A1996UZ86100053 article-title: Separable dual-space Gaussian pseudopotentials publication-title: PHYSICAL REVIEW B – volume: 28 start-page: 4133 year: 2009 ident: WOS:000268176700021 article-title: Insights into Hydrogen Generation from Formic Acid Using Ruthenium Complexes publication-title: ORGANOMETALLICS doi: 10.1021/om900099u – volume: 15 start-page: 629 year: 2013 ident: WOS:000315356400010 article-title: Cyclometalated iridium complexes for transfer hydrogenation of carbonyl groups in water publication-title: GREEN CHEMISTRY doi: 10.1039/c2gc36619c – year: 1000 ident: 000365132100036.38 publication-title: ACC CHEM RES – volume: 7 start-page: 5052 year: 2001 ident: WOS:000172599900007 article-title: Studies on the mechanism of metal-catalyzed hydrogen transfer from alcohols to ketones publication-title: CHEMISTRY-A EUROPEAN JOURNAL – volume: 47 start-page: 8464 year: 2008 ident: WOS:000260622700025 article-title: Hydrogenation of Quinolines Using a Recyclable Phosphine-Free Chiral Cationic Ruthenium Catalyst: Enhancement of Catalyst Stability and Selectivity in an Ionic Liquid publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200802237 – volume: 248 start-page: 2201 year: 2004 ident: WOS:000225813700007 article-title: Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes publication-title: COORDINATION CHEMISTRY REVIEWS doi: 10.1016/j.ccr.2004.04.007 – volume: 127 start-page: 1883 year: 2005 ident: WOS:000226951800059 article-title: Isomerization and deuterium scrambling evidence for a change in the rate-limiting step during imine hydrogenation by Shvo's hydroxycyclopentadienyl ruthenium hydride publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja044450t – volume: 120 start-page: 2082 year: 2004 ident: WOS:000188498400003 article-title: A doubly nudged elastic band method for finding transition states publication-title: JOURNAL OF CHEMICAL PHYSICS doi: 10.1063/1.1636455 – volume: 42 start-page: 935 year: 2013 ident: WOS:000312659200016 article-title: Synthesis and X-ray structures of cyclometalated iridium complexes including the hydrides publication-title: DALTON TRANSACTIONS doi: 10.1039/c2dt31368e – volume: 3 start-page: 431 year: 2010 ident: WOS:000277669700009 article-title: A Continuous-Flow Method for the Generation of Hydrogen from Formic Acid publication-title: CHEMSUSCHEM doi: 10.1002/cssc.201000017 – volume: 42 start-page: 11987 year: 2013 ident: WOS:000322525100025 article-title: Mechanistic insights into iron catalyzed dehydrogenation of formic acid: β-hydride elimination vs. direct hydride transfer publication-title: DALTON TRANSACTIONS doi: 10.1039/c3dt50908g – volume: 113 start-page: 9978 year: 2000 ident: WOS:000165584900014 article-title: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points publication-title: JOURNAL OF CHEMICAL PHYSICS – volume: 86 start-page: 866 year: 1987 ident: WOS:A1987F591600043 article-title: ENERGY-ADJUSTED ABINITIO PSEUDOPOTENTIALS FOR THE 1ST-ROW TRANSITION-ELEMENTS publication-title: JOURNAL OF CHEMICAL PHYSICS – volume: 136 start-page: 10234 year: 2014 ident: WOS:000339471900014 article-title: Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja505241x – volume: 40 start-page: 1402 year: 2007 ident: WOS:000251787500020 article-title: Iridium-catalyzed asymmetric hydrogenation of olefins publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar700113g – volume: 94 start-page: 2027 year: 1994 ident: WOS:A1994PT13100014 article-title: MOLECULAR-INTERACTIONS IN SOLUTION - AN OVERVIEW OF METHODS BASED ON CONTINUOUS DISTRIBUTIONS OF THE SOLVENT publication-title: CHEMICAL REVIEWS – volume: 129 start-page: 11821 year: 2007 ident: WOS:000249693800032 article-title: Intramolecular trapping of an intermediate in the reduction of Imines by a hydroxycyclopentadienyl ruthenium hydride: Support for a concerted outer sphere mechanism publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja073370x – volume: 92 start-page: 508 year: 1990 ident: WOS:A1990CH55200058 article-title: AN ALL-ELECTRON NUMERICAL-METHOD FOR SOLVING THE LOCAL DENSITY FUNCTIONAL FOR POLYATOMIC-MOLECULES publication-title: JOURNAL OF CHEMICAL PHYSICS – volume: 3 start-page: 1750 year: 2008 ident: WOS:000259968700002 article-title: Broader, Greener, and More Efficient: Recent Advances in Asymmetric Transfer Hydrogenation publication-title: CHEMISTRY-AN ASIAN JOURNAL doi: 10.1002/asia.200800196 – volume: 35 start-page: 237 year: 2006 ident: WOS:000235989600004 article-title: Mechanistic aspects of transition metal-catalyzed hydrogen transfer reactions publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/b515269k – year: 2008 ident: 000365132100036.89 publication-title: ANGEW CHEM-GER EDIT – volume: 103 start-page: 1297 year: 1981 ident: WOS:A1981LF69400087 article-title: FORMATE ION AS A MONODENTATE LIGAND - SYNTHESIS, STRUCTURE, AND DECARBOXYLATION OF (ETA-5-C5H5)FE(CO)2O2CH publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 54 start-page: 5223 year: 2015 ident: WOS:000354190800046 article-title: Regioselective Acceptorless Dehydrogenative Coupling of N-Heterocycles toward Functionalized Quinolines, Phenanthrolines, and Indoles publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201500346 – volume: 49 start-page: 7052 year: 2013 ident: WOS:000321758300010 article-title: Robust cyclometallated Ir(III) catalysts for the homogeneous hydrogenation of N-heterocycles under mild conditions publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c3cc44567d – volume: 17 start-page: 49 year: 1996 ident: WOS:A1996TL10900005 article-title: Using redundant internal coordinates to optimize equilibrium geometries and transition states publication-title: JOURNAL OF COMPUTATIONAL CHEMISTRY – volume: 15 start-page: 12780 year: 2009 ident: WOS:000272509500029 article-title: Fast Racemisation of Chiral Amines and Alcohols by Using Cationic Half-Sandwich Ruthena- and Iridacycle Catalysts publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.200902103 – volume: 26 start-page: 702 year: 2007 ident: WOS:000243577000033 article-title: Simultaneous tuning of activity and water solubility of complex catalysts by acid-base equilibrium of ligands for conversion of carbon dioxide publication-title: ORGANOMETALLICS doi: 10.1021/om060899e – volume: 25 start-page: 81 year: 2014 ident: WOS:000328606500010 article-title: Cyclometalated Iridium Complexes as Highly Active Catalysts for the Hydrogenation of Imines publication-title: SYNLETT doi: 10.1055/s-0033-1340086 – volume: 10 start-page: 457 year: 2006 ident: WOS:000237654500012 article-title: Kinetic studies of the asymmetric transfer hydrogenation of imines with formic acid catalyzed by Rh-diamine catalysts publication-title: ORGANIC PROCESS RESEARCH & DEVELOPMENT doi: 10.1021/op060033k – volume: 113 start-page: 9901 year: 2000 ident: WOS:000165584900005 article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths publication-title: JOURNAL OF CHEMICAL PHYSICS – volume: 26 start-page: 2840 year: 2007 ident: WOS:000246414900008 article-title: DFT study of an inner-sphere mechanism in the hydrogen transfer from a hydroxycyclopentadienyl ruthenium hydride to imines publication-title: ORGANOMETALLICS doi: 10.1021/om070169m – volume: 10 start-page: 2045 year: 1999 ident: WOS:000081832200001 article-title: Asymmetric transfer hydrogenation of C=O and C=N bonds publication-title: TETRAHEDRON-ASYMMETRY – volume: 345 start-page: 67 year: 2003 ident: WOS:000180842300006 article-title: Rutheuium(II)-catalyzed asymmetric transfer hydrogenation of carbonyl compounds with 2-propanol and ephedrine-type ligands publication-title: ADVANCED SYNTHESIS & CATALYSIS – volume: 133 start-page: 9274 year: 2011 ident: WOS:000291915100037 article-title: Secondary Coordination Sphere Interactions Facilitate the Insertion Step in an Iridium(III) CO2 Reduction Catalyst publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja2035514 – volume: 30 start-page: 905 year: 2011 ident: WOS:000287546600028 article-title: Alkyne Insertion Induced Regiospecific C-H Activation with [Cp*MCl2]2 (M = Ir, Rh) publication-title: ORGANOMETALLICS doi: 10.1021/om101064v – volume: 66 start-page: 7931 year: 2001 ident: WOS:000172489500001 article-title: Metal-ligand bifunctional catalysis: A nonclassical mechanism for asymmetric hydrogen transfer between alcohols and carbonyl compounds publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo010721w – volume: 105 start-page: 1052 year: 1996 ident: WOS:A1996UW83600019 article-title: The accuracy of the pseudopotential approximation .2. A comparison of various core sizes for indium pseudopotentials in calculations for spectroscopic constants of InH, InF, and InCl publication-title: JOURNAL OF CHEMICAL PHYSICS – volume: 128 start-page: 2286 year: 2006 ident: WOS:000235562900047 article-title: Stereochemistry of imine reduction by a hydroxycyclopentadienyl ruthenium hydride publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja056402u – volume: 6 start-page: 2818 year: 2000 ident: WOS:000088778500015 article-title: Chiral induction effects in ruthenium(II) amino alcohol catalysed asymmetric transfer hydrogenation of ketones: An experimental and theoretical approach publication-title: CHEMISTRY-A EUROPEAN JOURNAL – volume: 49 start-page: 7548 year: 2010 ident: WOS:000283391800032 article-title: A Versatile Catalyst for Reductive Amination by Transfer Hydrogenation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201002944 – volume: 20 start-page: 245 year: 2014 ident: WOS:000328714700029 article-title: Primary Amines by Transfer Hydrogenative Reductive Amination of Ketones by Using Cyclometalated IrIII Catalysts publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201303541 – volume: 78 start-page: 1396 year: 1997 ident: WOS:A1997WH91700054 article-title: Generalized gradient approximation made simple (vol 77, pg 3865, 1996) publication-title: PHYSICAL REVIEW LETTERS – volume: 123 start-page: 1090 year: 2001 ident: WOS:000166873000009 article-title: Hydrogen transfer to carbonyls and imines from a hydroxycyclopentadienyl ruthenium hydride: Evidence for concerted hydride and proton transfer publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 10 start-page: 5265 year: 2008 ident: WOS:000260922500043 article-title: Air-Stable and Phosphine-Free Iridium Catalysts for Highly Enantioselective Hydrogenation of Quinoline Derivatives publication-title: ORGANIC LETTERS doi: 10.1021/ol802016w – volume: 82 start-page: 270 year: 1985 ident: WOS:A1985ABS5500033 article-title: ABINITIO EFFECTIVE CORE POTENTIALS FOR MOLECULAR CALCULATIONS - POTENTIALS FOR THE TRANSITION-METAL ATOMS SC TO HG publication-title: JOURNAL OF CHEMICAL PHYSICS – volume: 58 start-page: 3641 year: 1998 ident: WOS:000075616800043 article-title: Relativistic separable dual-space Gaussian pseudopotentials from H to Rn publication-title: PHYSICAL REVIEW B – volume: 127 start-page: 14062 year: 2005 ident: WOS:000232413300062 article-title: Reduction of Imines by hydroxycyclopentadienyl ruthenium hydride: Intramolecular trapping evidence for hydride and proton transfer outside the coordination sphere of the metal publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja053956o – volume: 27 start-page: 4854 year: 2008 ident: WOS:000259604200009 article-title: Theoretical analysis of the hydrogen-transfer reaction to C=N, C=C, and CC bonds catalyzed by Shvo's ruthenium complex publication-title: ORGANOMETALLICS doi: 10.1021/om700975k |
SSID | ssj0009633 |
Score | 2.3891413 |
Snippet | The mechanism of imine reduction by formic acid with a single‐site iridicycle catalyst has been investigated by density functional theory (DFT), NMR... The mechanism of imine reduction by formic acid with a single-site iridicycle catalyst has been investigated by density functional theory (DFT), NMR... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16564 |
SubjectTerms | Catalysts Chemistry Chemistry, Multidisciplinary Computer applications density functional calculations Density functional theory Formates Formations Formic acid homogeneous catalysis Hydrides Imines Ion pairs iridium Kinetics Magnetic resonance spectroscopy Methanol Methyl alcohol NMR NMR spectroscopy Nuclear magnetic resonance Physical Sciences Reaction kinetics Reduction Science & Technology transfer hydrogenation Vapor phases |
Title | Iridicycle-Catalysed Imine Reduction: An Experimental and Computational Study of the Mechanism |
URI | https://api.istex.fr/ark:/67375/WNG-7D0WMC0P-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201501074 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000365132100036 https://www.ncbi.nlm.nih.gov/pubmed/26406610 https://www.proquest.com/docview/1728253209 https://www.proquest.com/docview/2561875866 https://www.proquest.com/docview/1728667719 https://www.proquest.com/docview/1786167696 |
Volume | 21 |
WOS | 000365132100036 |
WOSCitedRecordID | wos000365132100036 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqemgvLX0HaOVKqD0F7OC8ekMpFCqBKlQEN9dPaUXJVvuQ2J74CfzG_pLOxEnYRfSh9pbE4yQej-0vzsw3hKxj4pOccRN75nQsuPCx8qmN-ZbiwuRJ4oKX72G2dyw-nqanc1H8gR-i33DDkdHM1zjAlR5vXpOGQpswkhwADfoUwiSMDluIio6u-aPAukIueZHHyMHasTayZHOx-sKqdBcVfHEb5LyxOi0C2mZF2n1IVNeW4IhytjGd6A3z_QbN4_80dpk8aOEq3Q729YjccfVjcq_qssQ9IV_2RwM7MDMo_XF5VeFm0GzsLN0_h2fSIySGxa5_R7drujOXTYCq2tKQUqLdjqTo0jijQ08Bk9IDhyHJg_H5U3K8u_O52ovbrA2xQTK-ONE2FQY-hDT3rhClFYqlnimuPbKl5VykZWlYoguuAL1Arzhr4EJRCK-FzbaekaV6WLsXhCaZMl5kTliRC2thrjEwG6eeG6YFVIxI3PWaNC2lOWbW-CoDGXMiUW-y11tE3vby3wKZxy8l3zRG0Iup0Rm6wOWpPDn8IPP37OSgYp8ki8haZyWyHf1jiTm_Esy4Ud5aDCiTw2dikWURed0XQ7_hvxpVu-E03CLL8pyXv5MpMo4uynCf58FA-_cFnAtgksP7rc9bbF_eEBGlHCO48Cgi_G_EqlbJyJcwiUjSmOwfVCmR26M_W_mXSqvkPh43IaDlGlmajKbuJWDBiX7VjPefmkNSgQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgXZQN70eggJEqWKW1U-fFrkpbZqAzQlWrsjPxSxqVZtA8JIYVn8A38iXcGydppyoPwW4mvs7E19f2ief6HEI2UPgkZVyHjlkVCi5cWLrYhHy75EKnUWR9lu8w6R2Ltx_iNpsQz8J4fohuww1HRj1f4wDHDemtc9ZQaBQeJQdEg0mF18kqynojff7u4TmDFMSXV5MXaYgsrC1vI4u2lusvrUur6OIvV4HOS-vTMqSt16T9W0S1rfGpKKeb85na1F8vET3-V3Nvk5sNYqU7PsTukGu2ukvWilYo7h752J-MzEgvoPTHt-8F7gctptbQ_hn8KD1Ebljs_dd0p6J7FwQFaFkZ6lUlmh1JilmNCzp2FGApHVg8lTyant0nx_t7R0UvbIQbQo18fGGkTCw0vAsp7mwmciNKFjtWcuWQMC3lIs5zzSKV8RIADHSLNRouZJlwSphk-wFZqcaVfURolJTaicQKI1JhDEw3Gibk2HHNlICKAQnbbpO6YTVHcY1P0vMxRxL9Jju_BeRVZ__Z83n80vJlHQWdWTk5xSy4NJYnwzcy3WUng4K9lywg622YyGYCmEqU_YpQdCO_shiAJoc3xSxJAvKiK4Z-w79rysqO5_4WSZKmPP-dTZZwzFKG-zz0Edo9L0BdwJMcnm_jYsh25TUXUczxEBd-Cgj_G7OicTJSJswCEtUx-wdXSqT36L49_pdKz8la72hwIA_6w3dPyA28Xp8IzdfJymwyt08BGs7Us3rw_wSr71ad |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgk4AX7pfAACNN8JTNzhwn4W1qV1Zg1TQxbW-e44tUjaVTLxLliZ_Ab-SXcE5ua6dxEby18XEaHx_bX9zj7yNkHYVPEsZN6JnLQ8GFD7WPbci3NBcmiSJXZfkO5O6heH8cHy-c4q_4IdoNNxwZ5XyNA_zc-s0L0lBoE54kB0CDOYXXyaqQLEPxhu7BBYEUhFclJi-SEElYG9pGFm0u119allbRw1-uwpyXlqdlRFsuSb07RDeNqTJRTjdm03zDfL3E8_g_rb1Lbtd4lW5XAXaPXHPFfXKz08jEPSAn_fHQDs0cSn98-97B3aD5xFnaP4PfpAfIDIt9_5ZuF3RnQU6A6sLSSlOi3o-kmNM4pyNPAZTSPYdnkoeTs4fksLfzqbMb1rINoUE2vjDKbSwMvAnl3LtUZFZoFnumee6RLi3hIs4yw6I85RrgC_SKswYupKnwubBy6xFZKUaFe0JoJLXxQjphRSKshcnGwHQce25YLqBiQMKm15SpOc1RWuOzqtiYI4V-U63fAvKmtT-v2Dx-afm6DILWTI9PMQcuidXR4J1Kuuxor8P2FQvIWhMlqh7-E4WiXxFKbmRXFgPM5PCemEoZkFdtMfQb_lmjCzeaVbeQMkl49jubVHLMUYb7PK4CtH1eALqAJjk83_pixLblJRNRzPEIF34KCP8bs07tZCRMmAYkKkP2D65USO7Rfnv6L5Vekhv73Z762B98eEZu4eXyOGi2Rlam45l7Drhwmr8oh_5PUyZVTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iridicycle-Catalysed+Imine+Reduction%3A+An+Experimental+and+Computational+Study+of+the+Mechanism&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Chen%2C+Hsin-Yi+Tiffany&rft.au=Wang%2C+Chao&rft.au=Wu%2C+Xiaofeng&rft.au=Jiang%2C+Xue&rft.date=2015-11-09&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=21&rft.issue=46&rft.spage=16564&rft_id=info:doi/10.1002%2Fchem.201501074&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3851513721 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |