On flexible force fields for metal–organic frameworks: Recent developments and future prospects

Classical force field simulations can be used to study structural, diffusion, and adsorption properties of metal–organic frameworks (MOFs). To account for the dynamic behavior of the material, parameterization schemes have been developed to derive force constants and the associated reference values...

Full description

Saved in:
Bibliographic Details
Published inWiley interdisciplinary reviews. Computational molecular science Vol. 8; no. 4; pp. e1363 - n/a
Main Authors Heinen, Jurn, Dubbeldam, David
Format Journal Article
LanguageEnglish
Published Hoboken, USA Wiley Periodicals, Inc 01.07.2018
Subjects
Online AccessGet full text
ISSN1759-0876
1759-0884
DOI10.1002/wcms.1363

Cover

Abstract Classical force field simulations can be used to study structural, diffusion, and adsorption properties of metal–organic frameworks (MOFs). To account for the dynamic behavior of the material, parameterization schemes have been developed to derive force constants and the associated reference values by fitting on ab initio energies, vibrational frequencies, and elastic constants. Here, we review recent developments in flexible force field models for MOFs. Existing flexible force field models are generally able to reproduce the majority of experimentally observed structural and dynamic properties of MOFs. The lack of efficient sampling schemes for capturing stimuli‐driven phase transitions, however, currently limits the full predictive potential of existing flexible force fields from being realized. This article is categorized under: Structure and Mechanism > Computational Materials Science Molecular and Statistical Mechanics > Molecular Mechanics Classical force field simulations, relying on user‐defined interaction potentials, have been used intensively to study flexibility in metal‐organic frameworks. Structural and dynamic experimental properties are generally well reproduced.
AbstractList Classical force field simulations can be used to study structural, diffusion, and adsorption properties of metal-organic frameworks (MOFs). To account for the dynamic behavior of the material, parameterization schemes have been developed to derive force constants and the associated reference values by fitting on ab initio energies, vibrational frequencies, and elastic constants. Here, we review recent developments in flexible force field models for MOFs. Existing flexible force field models are generally able to reproduce the majority of experimentally observed structural and dynamic properties of MOFs. The lack of efficient sampling schemes for capturing stimuli-driven phase transitions, however, currently limits the full predictive potential of existing flexible force fields from being realized. This article is categorized under: Structure and Mechanism > Computational Materials ScienceMolecular and Statistical Mechanics > Molecular Mechanics.
Classical force field simulations can be used to study structural, diffusion, and adsorption properties of metal–organic frameworks (MOFs). To account for the dynamic behavior of the material, parameterization schemes have been developed to derive force constants and the associated reference values by fitting on ab initio energies, vibrational frequencies, and elastic constants. Here, we review recent developments in flexible force field models for MOFs. Existing flexible force field models are generally able to reproduce the majority of experimentally observed structural and dynamic properties of MOFs. The lack of efficient sampling schemes for capturing stimuli‐driven phase transitions, however, currently limits the full predictive potential of existing flexible force fields from being realized. This article is categorized under: Structure and Mechanism > Computational Materials Science Molecular and Statistical Mechanics > Molecular Mechanics Classical force field simulations, relying on user‐defined interaction potentials, have been used intensively to study flexibility in metal‐organic frameworks. Structural and dynamic experimental properties are generally well reproduced.
Author Heinen, Jurn
Dubbeldam, David
Author_xml – sequence: 1
  givenname: Jurn
  orcidid: 0000-0001-8838-5213
  surname: Heinen
  fullname: Heinen, Jurn
  email: j.heinen@uva.nl
  organization: University of Amsterdam
– sequence: 2
  givenname: David
  surname: Dubbeldam
  fullname: Dubbeldam, David
  organization: University of Amsterdam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30008812$$D View this record in MEDLINE/PubMed
BookMark eNo9kEtOwzAQhi1UREvpggsgXyCtnXESmx2qeElFlXiIZeQ4YxTIS3ZK6Y47cENOQiKgs5j5fs2vkeY_JqO6qZGQU87mnLFwsTWVn3OI4YBMeBKpgEkpRntO4jGZef_K-hKKh8CPyBh6ISUPJ0Sva2pL_CiyEqltnOl7gWXuB0Er7HT5_fnVuBddF4ZapyvcNu7Nn9N7NFh3NMd3LJu26tlTXefUbrqNQ9q6xrdoOn9CDq0uPc7-5pQ8XV0-Lm-C1fr6dnmxCkzEFARKZ4BRniRC5ByAM4iUEhFkIbBEiSQGwbk0MgTMUWXCZFJYDVGmNbOxsDAlZ793201WYZ62rqi026X_v_aGxa9hW5S42-85S4cc0yHHdMgxfV7ePQwAPzRPaI8
CitedBy_id crossref_primary_10_1038_s41524_022_00946_w
crossref_primary_10_1002_adfm_201909062
crossref_primary_10_1080_08927022_2021_1980215
crossref_primary_10_1016_j_poly_2022_116041
crossref_primary_10_1038_s41467_024_49594_2
crossref_primary_10_1002_anie_202004535
crossref_primary_10_1002_cphc_202200257
crossref_primary_10_1021_acs_jpcc_0c06096
crossref_primary_10_1021_acs_jpcc_0c08054
crossref_primary_10_1021_acsomega_2c06978
crossref_primary_10_1002_mame_202300225
crossref_primary_10_1016_j_ces_2024_120233
crossref_primary_10_1021_acs_jctc_4c01272
crossref_primary_10_1002_adts_201900135
crossref_primary_10_1016_j_ccr_2019_03_008
crossref_primary_10_1021_acs_chemrev_0c01266
crossref_primary_10_1021_acscentsci_0c00592
crossref_primary_10_1021_acs_jctc_8b01041
crossref_primary_10_1021_acs_jpcc_8b08457
crossref_primary_10_1039_D0CC02505D
crossref_primary_10_1039_D4CS00555D
crossref_primary_10_1021_acs_jpcc_3c00451
crossref_primary_10_1002_ange_202004535
crossref_primary_10_1021_acsabm_4c01907
crossref_primary_10_1021_acs_jctc_8b01288
crossref_primary_10_1021_acs_jpcb_8b08094
crossref_primary_10_1021_acs_jpcc_1c07882
crossref_primary_10_1016_j_cjche_2020_08_048
crossref_primary_10_1021_accountsmr_4c00071
crossref_primary_10_1021_acs_jctc_4c01580
crossref_primary_10_1039_D4RA01859A
crossref_primary_10_1016_j_micromeso_2020_110765
crossref_primary_10_1016_j_micromeso_2022_112406
crossref_primary_10_1021_acs_jctc_9b00135
crossref_primary_10_1021_acs_jpcc_3c03012
crossref_primary_10_1021_acsami_1c20583
crossref_primary_10_1002_chem_201905139
crossref_primary_10_1016_j_micromeso_2022_111796
ContentType Journal Article
Copyright 2018 The Authors. published by Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 The Authors. published by Wiley Periodicals, Inc.
DBID 24P
NPM
DOI 10.1002/wcms.1363
DatabaseName Wiley Online Library Open Access
PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1759-0884
EndPage n/a
ExternalDocumentID 30008812
WCMS1363
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: The Netherlands Research Council for Chemical Sciences (NWO‐CW)
– fundername: VIDI grant
GroupedDBID 05W
0R~
1OC
1VH
24P
31~
33P
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-A
DCZOG
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
P2W
ROL
SUPJJ
WBKPD
WHWMO
WIH
WIK
WOHZO
WVDHM
WXSBR
WYJ
ZZTAW
~S-
NPM
ID FETCH-LOGICAL-c5093-9ab3e5d7744d133103599453b2307947634118c823ede9b4cb84fa35baa0f64f3
IEDL.DBID 24P
ISSN 1759-0876
IngestDate Wed Feb 19 02:43:29 EST 2025
Wed Jan 22 16:36:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords metal‐organic frameworks
modeling
flexible force fields
parameterizing
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5093-9ab3e5d7744d133103599453b2307947634118c823ede9b4cb84fa35baa0f64f3
ORCID 0000-0001-8838-5213
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1363
PMID 30008812
PageCount 15
ParticipantIDs pubmed_primary_30008812
wiley_primary_10_1002_wcms_1363_WCMS1363
PublicationCentury 2000
PublicationDate July/August 2018
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July/August 2018
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
PublicationTitle Wiley interdisciplinary reviews. Computational molecular science
PublicationTitleAlternate Wiley Interdiscip Rev Comput Mol Sci
PublicationYear 2018
Publisher Wiley Periodicals, Inc
Publisher_xml – name: Wiley Periodicals, Inc
References 2002; 14
2013b; 138
1991; 113
1980; 45
1989; 111
2004; 9
1991; 95
2014; 26
2003; 58
1999; 283
2009; 113
1972
2007; 76
2012; 13
1991; 186
2010; 22
2012; 131
1987; 195
1980; 36
2005; 184
2012; 134
2010; 1
1986; 7
2010; 114
1992; 114
2014; 16
1992; 46
2007; 3
2008; 112
2006; 442
2010; 6
2014; 10
2016; 45
1988
1993; 48
1993; 47
1989; 65
1981; 2
1984; 106
1910
1996
1999; 103
1985; 82
2016; 18
1988; 92
2011; 133
2012; 108
2016; 12
2012; 109
1987; 59
2014; 43
2016; 1
2012; 112
2016; 2
2007; 315
2015; 114
2002; 124
2008; 47
2015; 119
1961; 66
2016; 28
2017; 146
2012; 116
2008; 130
1996; 87
1996; 118
2016; 22
2009; 44
2013; 29
2017; 7
2004; 120
2017; 8
2015; 36
2009; 46
2017; 1
2003; 118
2017; 3
2015; 223
2017; 46
2008; 78
2011; 12
1983; 50
2011; 17
1999; 402
2017; 9
2009; 48
1994; 101
2007; 28
2004; 73
2014; 4
2014; 2
2001
1991; 43
1980; 72
2000; 61
2005; 309
2017; 121
2011; 27
2006; 128
1990; 93
2006; 125
1990; 94
2015; 6
1984; 80
1984; 81
2009; 21
2015; 3
2002; 295
2006; 16
2002; 35
1995; 99
1982; 76
2015; 11
1954
2009
2013a; 4
1978; 19
2016; 52
2006; 18
1940; 36
1977; 44
2005
1994; 49
2017; 29
2002
1972; 5
2011; 171
2016; 120
1957
2014; 113
1988; 4
2015; 27
2013; 39
2004; 16
2007; 111
2017; 13
1988; 8
2017
2013; 135
1988; 110
2013; 250
1995; 103
2009; 5
2011; 47
2016; 532
2003; 423
2012; 4
1998; 102
1981; 52
1998; 31
2007; 46
2009; 38
2012; 8
2003; 67
17487904 - Angew Chem Int Ed Engl. 2007;46(24):4496-9
18821758 - J Am Chem Soc. 2008 Oct 29;130(43):14294-302
26642981 - J Chem Theory Comput. 2015 Dec 8;11(12):5583-97
27841411 - Chem Soc Rev. 2017 Jan 3;46(1):126-157
19133795 - J Phys Chem B. 2009 Feb 5;113(5):1341-52
25793835 - Phys Rev Lett. 2015 Mar 6;114(9):096405
21693916 - J Phys Condens Matter. 2009 Mar 18;21(11):115401
16910652 - J Am Chem Soc. 2006 Aug 23;128(33):10678-9
28661672 - J Chem Theory Comput. 2017 Aug 8;13(8):3722-3730
26972778 - Phys Chem Chem Phys. 2016 Apr 7;18(13):9079-87
21393743 - J Phys Condens Matter. 2010 Jun 9;22(22):225404
26845644 - Chem Commun (Camb). 2016 Mar 4;52(18):3639-42
28008758 - J Phys Chem Lett. 2017 Jan 19;8(2):357-363
27580382 - J Chem Theory Comput. 2016 Oct 11;12(10):5215-5225
26538042 - J Phys Chem Lett. 2015 Nov 5;6(21):4265-9
23495719 - Langmuir. 2013 Apr 16;29(15):4866-76
28190918 - Chem Mater. 2016 Nov 22;28(22):8296-8304
21690861 - J Phys Condens Matter. 2006 Aug 16;18(32):S1737-50
10007607 - Phys Rev B Condens Matter. 1993 Nov 1;48(17):12415-12418
18729451 - J Am Chem Soc. 2008 Sep 24;130(38):12808-14
9908679 - Phys Rev A. 1992 Oct 15;46(8):4645-4649
27049950 - Nature. 2016 Apr 21;532(7599):348-52
22280456 - Chem Rev. 2012 Feb 8;112(2):673-4
23000994 - Nat Chem. 2012 Oct;4(10):810-6
26580173 - J Chem Theory Comput. 2014 Mar 11;10(3):942-52
28452388 - Chem Soc Rev. 2017 Jun 6;46(11):3185-3241
9905508 - Phys Rev A. 1991 Apr 15;43(8):4100-4103
18850600 - Angew Chem Int Ed Engl. 2008;47(46):8929-32
11799235 - Science. 2002 Jan 18;295(5554):469-72
26605731 - J Chem Theory Comput. 2012 Sep 11;8(9):3217-31
23635306 - J Am Chem Soc. 2013 May 15;135(19):7172-80
25574157 - J Chem Theory Comput. 2014 Oct 14;10(10):4644-4652
22463647 - Phys Rev Lett. 2012 Mar 2;108(9):095502
18154291 - J Am Chem Soc. 2008 Jan 16;130(2):406-7
12802325 - Nature. 2003 Jun 12;423(6941):705-14
26700628 - J Phys Chem Lett. 2010 Jan 7;1(1):445-9
28800233 - J Chem Theory Comput. 2017 Sep 12;13(9):4492-4503
20424876 - J Mol Model. 2011 Feb;17(2):227-34
26633216 - J Chem Theory Comput. 2007 Jul;3(4):1451-63
12418906 - J Am Chem Soc. 2002 Nov 13;124(45):13519-26
26465320 - Dalton Trans. 2016 Mar 14;45(10):4162-8
22313371 - J Am Chem Soc. 2012 Mar 7;134(9):4207-15
16965046 - J Chem Phys. 2006 Aug 28;125(8):084714
23215398 - Phys Rev Lett. 2012 Nov 9;109(19):195502
19384449 - Chem Soc Rev. 2009 May;38(5):1477-504
15268158 - J Chem Phys. 2004 Jun 15;120(23):11304-15
17395825 - Science. 2007 Mar 30;315(5820):1828-31
27199239 - J Phys Condens Matter. 2016 Jul 13;28(27):275201
26580059 - J Chem Theory Comput. 2014 Feb 11;10(2):880-91
22906112 - J Am Chem Soc. 2012 Sep 12;134(36):15016-21
15268177 - J Chem Phys. 2004 Jun 22;120(24):11432-41
21681315 - Chem Commun (Camb). 2011 Jul 28;47(28):7983-5
12636504 - Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jan;67(1 Pt 1):011505
29131647 - J Chem Theory Comput. 2017 Dec 12;13(12):5861-5873
11046376 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Feb;61(2):1072-80
17301955 - J Comput Chem. 2007 May;28(7):1169-76
28286598 - J Phys Chem C Nanomater Interfaces. 2017 Mar 2;121(8):4659-4673
10024237 - Science. 1999 Feb 19;283(5405):1148-50
21275013 - Chemphyschem. 2011 Feb 7;12(2):247-58
22070233 - Chem Rev. 2012 Feb 8;112(2):1105-25
27995920 - Nat Chem. 2016 Dec 20;9(1):11-16
29149545 - Adv Mater. 2017 Nov 17;:null
24964841 - Phys Chem Chem Phys. 2014 Aug 14;16(30):16060-6
25479503 - Phys Rev Lett. 2014 Nov 21;113(21):215502
26613499 - J Chem Theory Comput. 2010 Aug 10;6(8):2455-68
23656148 - J Chem Phys. 2013 May 7;138(17):174703
27557051 - J Am Chem Soc. 1988 Mar 1;110(6):1657-66
21417285 - Langmuir. 2011 Apr 19;27(8):4734-41
27731872 - Phys Chem Chem Phys. 2016 Oct 26;18(42):29316-29329
10004776 - Phys Rev B Condens Matter. 1993 Apr 1;47(13):7700-7704
27805761 - Chemistry. 2016 Dec 12;22(50):18045-18050
21553843 - J Am Chem Soc. 2011 Jun 15;133(23):8900-2
25740170 - J Comput Chem. 2015 May 15;36(13):1015-27
26631798 - J Chem Theory Comput. 2009 Oct 13;5(10):2866-78
26592125 - J Chem Theory Comput. 2012 Aug 14;8(8):2844-67
26660395 - Dalton Trans. 2016 Mar 14;45(10):4309-15
21978134 - Chem Rev. 2012 Feb 8;112(2):869-932
27877465 - Sci Technol Adv Mater. 2012 Feb 2;13(1):013001
10035704 - Phys Rev Lett. 1987 Dec 28;59(26):2987-2990
26270630 - Adv Mater. 2015 Sep 23;27(36):5432-41
24875583 - Chem Soc Rev. 2014 Aug 21;43(16):6062-96
16123294 - Science. 2005 Aug 26;309(5739):1350-4
3054871 - Proteins. 1988;4(1):31-47
26283122 - J Phys Chem Lett. 2013 Jun 6;4(11):1861-5
References_xml – volume: 1
  start-page: 1
  year: 2017
  end-page: 10
  article-title: Computation of elastic constants of solids using molecular simulation: Comparison of constant volume and constant pressure ensemble methods
  publication-title: Molecular Simulation
– volume: 94
  start-page: 8897
  year: 1990
  end-page: 8909
  article-title: DREIDING: A generic force field for molecular simulations
  publication-title: The Journal of Physical Chemistry
– volume: 99
  start-page: 9536
  year: 1995
  end-page: 9550
  article-title: Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 2. Aluminosilicates
  publication-title: The Journal of Physical Chemistry
– volume: 5
  start-page: 535
  year: 1972
  end-page: 542
  article-title: Ro1e of the elastic constants in negative thermal expansion of axial solids
  publication-title: Journal of Physics C: Solid State Physics
– year: 2005
– volume: 14
  start-page: L525
  year: 2002
  article-title: On the importance of the free energy for elasticity under pressure
  publication-title: Journal of Physics: Condensed Matter
– volume: 21
  year: 2009
  article-title: Elasticity in crystals under pressure
  publication-title: Journal of Physics: Condensed Matter
– volume: 5
  start-page: 2866
  year: 2009
  end-page: 2878
  article-title: Electrostatic potential derived atomic charges for periodic systems using a modified error functional
  publication-title: Journal of Chemical Theory and Computation
– volume: 52
  start-page: 3639
  year: 2016
  end-page: 3642
  article-title: Gate‐opening effect in ZIF‐8: The first experimental proof using inelastic neutron scattering
  publication-title: Chemical Communications
– volume: 6
  start-page: 2455
  year: 2010
  end-page: 2468
  article-title: Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials
  publication-title: Journal of Chemical Theory and Computation
– volume: 8
  start-page: 109
  year: 1988
  end-page: 151
  article-title: Elastic constants and statistical ensembles in molecular dynamics
  publication-title: Computer Physics Reports
– volume: 27
  start-page: 1905
  year: 2015
  end-page: 1916
  article-title: Responsive metal‐organic frameworks and framework materials: Under pressure, taking the heat, in the spotlight, with friends
  publication-title: Chemistry of Materials
– volume: 135
  start-page: 7172
  year: 2013
  end-page: 7180
  article-title: Investigating water and framework dynamics in pillared MOFs
  publication-title: Journal of the American Chemical Society
– volume: 47
  start-page: 7983
  year: 2011
  end-page: 7985
  article-title: Reversible pressure‐induced amorphization of a zeolitic imidazolate framework (ZIF‐4)
  publication-title: Chemical Communications
– volume: 130
  start-page: 12808
  year: 2008
  end-page: 12814
  article-title: Prediction of the conditions for breathing of metal organic framework materials using a combination of X‐ray powder diffraction, microcalorimetry, and molecular simulation
  publication-title: Journal of the American Chemical Society
– volume: 9
  start-page: 939
  year: 2004
  end-page: 942
  article-title: Synthesis and crystal structure of tetranuclear zinc benzoate
  publication-title: Wuhan University Journal of Natural Sciences
– volume: 2
  start-page: 35
  year: 2016
  end-page: 62
  article-title: Metal organic frameworks for energy storage and conversion
  publication-title: Energy Storage Materials
– volume: 109
  year: 2012
  article-title: Anisotropic elastic properties of flexible metal‐organic frameworks: How soft are soft porous crystals?
  publication-title: Physical Review Letters
– volume: 134
  start-page: 4207
  year: 2012
  end-page: 4215
  article-title: Molecular‐level characterization of the breathing behavior of the jungle‐gym‐type DMOF‐1 metal–organic framework
  publication-title: Journal of the American Chemical Society
– volume: 113
  start-page: 19317
  year: 2009
  end-page: 19327
  article-title: Method for analyzing structural changes of flexible metal‐organic frameworks induced by adsorbates
  publication-title: Journal of Physical Chemistry C
– volume: 171
  start-page: 775
  year: 2011
  end-page: 781
  article-title: Towards rapid computational screening of metal‐organic frameworks for carbon dioxide capture: Calculation of framework charges via charge equilibration
  publication-title: The Chemical Engineering Journal
– volume: 31
  start-page: 121
  year: 1998
  end-page: 127
  article-title: An easy method for the determination of Debye temperature from thermal expansion analyses
  publication-title: Journal of Applied Crystallography
– volume: 28
  start-page: 1169
  year: 2007
  end-page: 1176
  article-title: Ab initio parametrized MM3 force field for the metal‐organic framework MOF‐5
  publication-title: Journal of Computational Chemistry
– volume: 3
  start-page: 37
  year: 2017
  article-title: A universal strategy for the creation of machine learning‐based atomistic force fields
  publication-title: npj Computational Materials
– volume: 101
  start-page: 4177
  year: 1994
  end-page: 4189
  article-title: Constant pressure molecular dynamics algorithms
  publication-title: The Journal of Chemical Physics
– volume: 76
  start-page: 2662
  year: 1982
  end-page: 2666
  article-title: Strain fluctuations and elastic constants
  publication-title: The Journal of Chemical Physics
– volume: 106
  start-page: 765
  year: 1984
  end-page: 784
  article-title: A new force field for molecular mechanical simulation of nucleic acids and proteins
  publication-title: Journal of the American Chemical Society
– volume: 112
  start-page: 15934
  year: 2008
  end-page: 15939
  article-title: Understanding water adsorption in cu‐BTC metal‐organic frameworks
  publication-title: Journal of Physical Chemistry C
– volume: 18
  start-page: 29316
  year: 2016
  end-page: 29329
  article-title: A general forcefield for accurate phonon properties of metal‐organic frameworks
  publication-title: Physical Chemistry Chemical Physics
– volume: 423
  start-page: 705
  year: 2003
  end-page: 714
  article-title: Reticular synthesis and the design of new materials
  publication-title: Nature
– volume: 87
  start-page: 1117
  year: 1996
  end-page: 1157
  article-title: Explicit reversible integrators for extended systems dynamics
  publication-title: Molecular Physics
– volume: 119
  start-page: 28430
  year: 2015
  end-page: 28439
  article-title: Adsorption and diffusion phenomena in crystal size engineered ZIF‐8 MOF
  publication-title: Journal of Physical Chemistry C
– volume: 111
  start-page: 15185
  year: 2007
  end-page: 15191
  article-title: Metal‐organic frameworks provide large negative thermal expansion behavior
  publication-title: Journal of Physical Chemistry C
– volume: 95
  start-page: 3358
  year: 1991
  end-page: 3363
  article-title: Charge equilibration for molecular dynamics simulations
  publication-title: The Journal of Physical Chemistry
– year: 1972
– volume: 113
  start-page: 4792
  year: 1991
  end-page: 4800
  article-title: Molecular modeling of zeolite structure. 2. Structure and dynamics of silica sodalite and silicate force field
  publication-title: Journal of the American Chemical Society
– volume: 113
  year: 2014
  article-title: Identifying the role of terahertz vibrations in metal‐organic frameworks: From gate‐opening phenomenon to shear‐driven structural destabilization
  publication-title: Physical Review Letters
– volume: 18
  start-page: 9079
  year: 2016
  end-page: 9087
  article-title: Isoreticular zirconium‐based metal‐organic frameworks: Discovering mechanical trends and elastic anomalies controlling chemical structure stability
  publication-title: Physical Chemistry Chemical Physics
– volume: 8
  start-page: 2844
  year: 2012
  end-page: 2867
  article-title: Improved atoms‐in‐molecule charge partitioning functional for simultaneously reproducing the electrostatic potential and chemical states in periodic and nonperiodic materials
  publication-title: Journal of Chemical Theory and Computation
– volume: 46
  start-page: 126
  year: 2017
  end-page: 157
  article-title: Multifunctional metal‐organic framework catalysts: Synergistic catalysis and tandem reactions
  publication-title: Chemical Society Reviews
– volume: 58
  start-page: 105
  year: 2003
  end-page: 114
  article-title: Synthesis, morphology control, and properties of porous metal‐organic coordination polymers
  publication-title: Microporous and Mesoporous Materials
– volume: 121
  start-page: 511
  year: 2017
  end-page: 522
  article-title: Machine learning force fields: Construction, validation, and outlook
  publication-title: Journal of Physical Chemistry C
– volume: 45
  start-page: 4309
  year: 2016
  end-page: 4315
  article-title: Understanding and solving disorder in the substitution pattern of amino functionalized MIL‐47(V)
  publication-title: Dalton Transactions
– volume: 124
  start-page: 13519
  year: 2002
  end-page: 13526
  article-title: Very large breathing effect in the first nanoporous chromium(III)‐based solids: MIL‐53 or CrIII(OH)·O2C−C6H4−CO2·HO2C−C6H4−CO2Hx·H2Oy
  publication-title: Journal of the American Chemical Society
– volume: 121
  start-page: 4659
  year: 2017
  end-page: 4673
  article-title: Polarizable force fields for CO2 and CH4 adsorption in M‐MOF‐74
  publication-title: Journal of Physical Chemistry C
– volume: 283
  start-page: 1148
  year: 1999
  end-page: 1150
  article-title: A chemically functionalizable nanoporous material [cu‐3(TMA)(2)(H2O)(3)](n)
  publication-title: Science
– volume: 13
  year: 2012
  article-title: Negative thermal expansion materials: Technological key for control of thermal expansion
  publication-title: Science and Technology of Advanced Materials
– volume: 28
  start-page: 8296
  year: 2016
  end-page: 8304
  article-title: Controlling thermal expansion: A metal‐organic frameworks route
  publication-title: Chemistry of Materials
– volume: 66
  start-page: 259
  year: 1961
  end-page: 271
  article-title: The thermodynamic theory of nonhydrostatically stressed solids
  publication-title: Journal of Geophysical Research
– volume: 131
  start-page: 1153
  year: 2012
  article-title: Recent applications and developments of charge equilibration force fields for modeling dynamical charges in classical molecular dynamics simulations
  publication-title: Theoretical Chemistry Accounts
– volume: 103
  start-page: 4613
  year: 1995
  end-page: 4621
  article-title: Constant pressure molecular dynamics simulation: The Langevin piston method
  publication-title: The Journal of Chemical Physics
– volume: 43
  start-page: 4100
  year: 1991
  end-page: 4103
  article-title: Unified treatment of adiabatic ensembles
  publication-title: Physical Review A
– volume: 184
  start-page: 205
  year: 2005
  end-page: 222
  article-title: Genetic algorithms for modelling and optimisation
  publication-title: Journal of Computational and Applied Mathematics
– volume: 35
  start-page: 2827
  year: 2002
  end-page: 2834
  article-title: Phase coexistence curves for off‐lattice polymer‐solvent mixtures: Gibbs‐ensemble simulations
  publication-title: Macromolecules
– volume: 26
  start-page: 6185
  year: 2014
  end-page: 6192
  article-title: Computation‐ready, experimental metal‐organic frameworks: A tool to enable high‐throughput screening of Nanoporous crystals
  publication-title: Chemistry of Materials
– volume: 9
  start-page: 11
  year: 2017
  end-page: 16
  article-title: Interplay between defects, disorder and flexibility in metal‐organic frameworks
  publication-title: Nature Chemistry
– volume: 46
  start-page: 238
  year: 2009
  end-page: 253
  article-title: Deformation gradients for continuum mechanical analysis of atomistic simulations
  publication-title: International Journal of Solids and Structures
– volume: 49
  start-page: 2633
  year: 1994
  end-page: 2645
  article-title: Coexistence diagrams of mixtures by molecular simulation
  publication-title: Chemical Engineering Science
– volume: 4
  start-page: 810
  year: 2012
  end-page: 816
  article-title: Ab initio carbon capture in open‐site metal‐organic frameworks
  publication-title: Nature Chemistry
– volume: 47
  start-page: 8929
  year: 2008
  end-page: 8932
  article-title: Negative thermal expansion in the metal‐organic framework material Cu3(1,3,5‐benzenetricarboxylate)2
  publication-title: Angewandte Chemie, International Edition
– volume: 112
  start-page: 673
  year: 2012
  end-page: 674
  article-title: Introduction to metal‐organic frameworks
  publication-title: Chemical Reviews
– volume: 61
  start-page: 1072
  year: 2000
  end-page: 1080
  article-title: Elastic constants from microscopic strain fluctuations
  publication-title: Physical Review E
– volume: 12
  start-page: 5215
  year: 2016
  end-page: 5225
  article-title: Extension of the universal force field for metal‐organic frameworks
  publication-title: Journal of Chemical Theory and Computation
– volume: 4
  start-page: 1861
  year: 2013a
  end-page: 1865
  article-title: Investigating the pressure‐induced amorphization of zeolitic imidazolate framework ZIF‐8: Mechanical instability due to shear mode softening
  publication-title: Journal of Physical Chemistry Letters
– volume: 82
  start-page: 4243
  year: 1985
  end-page: 4247
  article-title: Statistical ensembles and molecular dynamics studies of anisotropic solids. II
  publication-title: The Journal of Chemical Physics
– volume: 532
  start-page: 348
  year: 2016
  end-page: 352
  article-title: A pressure‐amplifying framework material with negative gas adsorption transitions
  publication-title: Nature
– volume: 13
  start-page: 4492
  year: 2017
  end-page: 4503
  article-title: Machine learning force field parameters from ab initio data
  publication-title: Journal of Chemical Theory and Computation
– volume: 250
  start-page: 1128
  year: 2013
  end-page: 1141
  article-title: MOF‐FF—A flexible first‐principles derived force field for metal‐organic frameworks
  publication-title: Physica Status Solidi (b)
– volume: 116
  start-page: 13289
  year: 2012
  end-page: 13295
  article-title: Comparative guest, thermal, and mechanical breathing of the porous metal organic framework MIL‐53(Cr): A computational exploration supported by experiments
  publication-title: Journal of Physical Chemistry C
– volume: 10
  start-page: 4644
  year: 2014
  end-page: 4652
  article-title: Transferable force field for metal‐organic frameworks from first‐principles: BTW‐FF
  publication-title: Journal of Chemical Theory and Computation
– volume: 93
  start-page: 4296
  year: 1990
  end-page: 4298
  article-title: Fourth adiabatic ensemble
  publication-title: The Journal of Chemical Physics
– volume: 112
  start-page: 869
  year: 2012
  end-page: 932
  article-title: Metal‐organic frameworks for separations
  publication-title: Chemical Reviews
– volume: 111
  start-page: 8551
  year: 1989
  end-page: 8566
  article-title: Molecular mechanics. The MM3 force field for hydrocarbons. 1
  publication-title: Journal of the American Chemical Society
– volume: 52
  start-page: 7182
  year: 1981
  end-page: 7190
  article-title: Polymorphic transitions in single crystals: A new molecular dynamics method
  publication-title: Journal of Applied Physics
– volume: 78
  year: 2008
  article-title: Origin of the exceptional negative thermal expansion in metal‐organic framework‐5
  publication-title: Physical Review B
– volume: 92
  start-page: 867
  year: 1988
  end-page: 871
  article-title: Molecular dynamics studies on zeolites. 3. Dehydrated zeolite A
  publication-title: The Journal of Physical Chemistry
– volume: 112
  start-page: 1105
  year: 2012
  end-page: 1125
  article-title: Metal‐organic framework materials as chemical sensors
  publication-title: Chemical Reviews
– volume: 45
  start-page: 4162
  year: 2016
  end-page: 4168
  article-title: The flexibility of modified‐linker MIL‐53 materials
  publication-title: Dalton Transactions
– volume: 16
  start-page: 8787
  year: 2004
  article-title: Reply to comment on 'On the importance of the free energy for elasticity under pressure’
  publication-title: Journal of Physics: Condensed Matter
– volume: 309
  start-page: 1350
  year: 2005
  end-page: 1354
  article-title: Gas adsorption sites in a large‐pore metal‐organic framework
  publication-title: Science
– year: 2002
– volume: 315
  start-page: 1828
  year: 2007
  end-page: 1831
  article-title: Role of solvent‐host interactions that lead to very large swelling of hybrid frameworks
  publication-title: Science
– volume: 48
  start-page: 10479
  year: 2009
  end-page: 10484
  article-title: Computational study on the influences of framework charges on CO2 uptake in metal‐organic frameworks
  publication-title: Industrial and Engineering Chemistry Research
– volume: 2
  start-page: 274
  year: 2014
  end-page: 291
  article-title: Recent developments in first‐principles force fields for molecules in nanoporous materials
  publication-title: Journal of Materials Chemistry A
– volume: 72
  start-page: 2384
  year: 1980
  end-page: 2393
  article-title: Molecular dynamics simulations at constant pressure and/or temperature
  publication-title: The Journal of Chemical Physics
– volume: 73
  start-page: 3
  year: 2004
  end-page: 14
  article-title: Metal‐organic frameworks: A new class of porous materials
  publication-title: Microporous and Mesoporous Materials
– volume: 295
  start-page: 469
  year: 2002
  end-page: 472
  article-title: Design and synthesis of an exceptionally stable and highly porous metal‐organic framework
  publication-title: Science
– volume: 13
  start-page: 3722
  year: 2017
  end-page: 3730
  article-title: Flexible force field parameterization through fitting on the ab initio derived elastic tensor
  publication-title: Journal of Chemical Theory and Computation
– volume: 114
  year: 2015
  article-title: Molecular dynamics with on‐the‐fly machine learning of quantum‐mechanical forces
  publication-title: Physical Review Letters
– volume: 29
  start-page: 4866
  year: 2013
  end-page: 4876
  article-title: Simulating adsorptive expansion of zeolites: Application to biomass‐derived solutions in contact with Silicalite
  publication-title: Langmuir
– volume: 16
  start-page: 8783
  year: 2004
  article-title: Comment on 'On the importance of the free energy for elasticity under pressure’
  publication-title: Journal of Physics: Condensed Matter
– volume: 18
  start-page: S1737
  year: 2006
  end-page: S1750
  article-title: Elastic constants of diamond from molecular dynamics simulations
  publication-title: Journal of Physics: Condensed Matter
– volume: 18
  start-page: 4133
  year: 2016
  end-page: 4141
  article-title: Computational identification of organic porous molecular crystals
  publication-title: CrystEngComm
– volume: 114
  start-page: 10024
  year: 1992
  end-page: 10035
  article-title: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
  publication-title: Journal of the American Chemical Society
– volume: 59
  start-page: 2987
  year: 1987
  end-page: 2990
  article-title: Solid‐state amorphization of Zr$_3$al: Evidence of an elastic instability and first‐order phase transformation
  publication-title: Physical Review Letters
– volume: 113
  start-page: 1341
  year: 2009
  end-page: 1352
  article-title: Systematic first principles parameterization of force fields for metal−organic frameworks using a genetic algorithm approach
  publication-title: The Journal of Physical Chemistry. B
– volume: 18
  start-page: 4303
  year: 2016
  end-page: 4312
  article-title: Discovering connections between terahertz vibrations and elasticity underpinning the collective dynamics of the HKUST‐1 metal‐organic framework
  publication-title: CrystEngComm
– volume: 13
  start-page: 5861
  year: 2017
  article-title: Efficient Construction of Free Energy Profiles of Breathing Metal‐organic frameworks using advanced molecular dynamics simulations
  publication-title: Journal of Chemical Theory and Computation
– year: 2009
– volume: 120
  start-page: 11432
  year: 2004
  end-page: 11441
  article-title: Langevin dynamics in constant pressure extended systems
  publication-title: The Journal of Chemical Physics
– year: 1910
– volume: 36
  start-page: 3219
  year: 1980
  end-page: 3228
  article-title: Iterative partial equalization of orbital electronegativity—A rapid access to atomic charges
  publication-title: Tetrahedron
– volume: 65
  start-page: 2991
  year: 1989
  end-page: 2997
  article-title: Generalized expressions for the calculation of elastic constants by computer simulation
  publication-title: Journal of Applied Physics
– volume: 3
  start-page: 1451
  year: 2007
  end-page: 1463
  article-title: Continuous fractional component Monte Carlo: An adaptive biasing method for open system atomistic simulations
  publication-title: Journal of Chemical Theory and Computation
– year: 2001
– volume: 2
  start-page: 287
  year: 1981
  end-page: 303
  article-title: AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions
  publication-title: Journal of Computational Chemistry
– volume: 27
  start-page: 5432
  year: 2015
  end-page: 5441
  article-title: Flexible metal‐organic frameworks: Recent advances and potential applications
  publication-title: Advanced Materials
– volume: 186
  start-page: 51
  year: 1991
  end-page: 60
  article-title: Crystal structures of three basic zinc carboxylates together with infrared and FAB mass spectrometry studies in solution
  publication-title: Inorganica Chimica Acta
– volume: 1
  start-page: 445
  year: 2010
  end-page: 449
  article-title: Stress‐based model for the breathing of metal‐organic frameworks
  publication-title: Journal of Physical Chemistry Letters
– volume: 67
  year: 2003
  article-title: Improved simulation method for the calculation of the elastic constants of crystalline and amorphous systems using strain fluctuations
  publication-title: Physical Review E
– volume: 120
  start-page: 11304
  year: 2004
  end-page: 11315
  article-title: Simulation of the effects of chain architecture on the sorption of ethylene in polyethylene
  publication-title: The Journal of Chemical Physics
– volume: 28
  year: 2016
  article-title: ELATE: An open‐source online application for analysis and visualization of elastic tensors
  publication-title: Journal of Physics: Condensed Matter
– volume: 44
  start-page: 5441
  year: 2009
  end-page: 5451
  article-title: Negative thermal expansion: A review
  publication-title: Journal of Materials Science
– volume: 22
  start-page: 18045
  year: 2016
  end-page: 18050
  article-title: Predicting multicomponent adsorption isotherms in open‐metal site materials using force field calculations based on energy decomposed density functional theory
  publication-title: Chemistry ‐ A European Journal
– volume: 50
  start-page: 1055
  year: 1983
  end-page: 1076
  article-title: Constant pressure molecular dynamics for molecular systems
  publication-title: Molecular Physics
– start-page: 729
  year: 2005
  end-page: 743
– volume: 27
  start-page: 4734
  year: 2011
  end-page: 4741
  article-title: Structural transitions in MIL‐53 (Cr): View from outside and inside
  publication-title: Langmuir
– volume: 48
  start-page: 12415
  year: 1993
  end-page: 12418
  article-title: Pressure‐composition isotherms for palladium hydride
  publication-title: Physical Review B
– volume: 4
  start-page: 31
  year: 1988
  end-page: 47
  article-title: Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase‐trimethoprim, a drug‐receptor system
  publication-title: Proteins: Structure, Function, and Bioinformatics
– volume: 112
  start-page: 5795
  year: 2008
  end-page: 5802
  article-title: Force field validation for molecular dynamics simulations of IRMOF‐1 and other Isoreticular zinc carboxylate coordination polymers
  publication-title: Journal of Physical Chemistry C
– volume: 46
  start-page: 4645
  year: 1992
  end-page: 4649
  article-title: Monte Carlo simulations in the isoenthalpic‐isotension‐isobaric ensemble
  publication-title: Physical Review A
– volume: 22
  year: 2010
  article-title: A first‐principles approach to finite temperature elastic constants
  publication-title: Journal of Physics: Condensed Matter
– volume: 16
  start-page: 16060
  year: 2014
  end-page: 16066
  article-title: Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field
  publication-title: Physical Chemistry Chemical Physics
– volume: 118
  start-page: 7635
  year: 2003
  end-page: 7643
  article-title: Two general methods for grand canonical ensemble simulation of molecules with internal flexibility
  publication-title: The Journal of Chemical Physics
– volume: 116
  start-page: 25797
  year: 2012
  end-page: 25805
  article-title: Zeolite force fields and experimental siliceous frameworks in a comparative infrared study
  publication-title: Journal of Physical Chemistry C
– volume: 118
  start-page: 11225
  year: 1996
  end-page: 11236
  article-title: Development and testing of the OPLS all‐atom force field on conformational energetics and properties of organic liquids
  publication-title: Journal of the American Chemical Society
– volume: 120
  start-page: 23044
  year: 2016
  end-page: 23054
  article-title: Screening of copper open metal site MOFs for olefin/paraffin separations using DFT‐derived force fields
  publication-title: Journal of Physical Chemistry C
– volume: 47
  start-page: 7700
  year: 1993
  end-page: 7704
  article-title: Elastic instability of crystals caused by static atom displacement: A mechanism for solid‐state amorphization
  publication-title: Physical Review B
– volume: 195
  start-page: 216
  year: 1987
  end-page: 222
  article-title: Hybrid Monte Carlo
  publication-title: Physics Letters B
– volume: 442
  start-page: 31
  year: 2006
  end-page: 34
  article-title: Sound velocities, elastic constants: Temperature dependence
  publication-title: Materials Science and Engineering A
– volume: 10
  start-page: 942
  year: 2014
  end-page: 952
  article-title: A comparison of advanced Monte Carlo methods for open systems: CFCMC vs CBMC
  publication-title: Journal of Chemical Theory and Computation
– volume: 110
  start-page: 1657
  year: 1988
  end-page: 1666
  article-title: The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin
  publication-title: Journal of the American Chemical Society
– volume: 130
  start-page: 406
  year: 2008
  end-page: 407
  article-title: Understanding inflections and steps in carbon dioxide adsorption isotherms in metal‐organic frameworks
  publication-title: Journal of the American Chemical Society
– volume: 133
  start-page: 8900
  year: 2011
  end-page: 8902
  article-title: Opening the gate: Framework flexibility in ZIF‐8 explored by experiments and simulations
  publication-title: Journal of the American Chemical Society
– volume: 402
  start-page: 276
  year: 1999
  end-page: 279
  article-title: Design and synthesis of an exceptionally stable and highly porous metal‐organic framework
  publication-title: Nature
– volume: 103
  start-page: 4508
  year: 1999
  end-page: 4517
  article-title: Novel configurational‐bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United‐atom description of branched alkanes
  publication-title: The Journal of Physical Chemistry. B
– volume: 121
  start-page: 441
  year: 2017
  end-page: 458
  article-title: A transferable model for adsorption in MOFs with unsaturated metal sites
  publication-title: Journal of Physical Chemistry C
– volume: 146
  year: 2017
  article-title: First‐principles study of elastic mechanical responses to applied deformation of metal‐organic frameworks
  publication-title: The Journal of Chemical Physics
– volume: 3
  start-page: 986
  year: 2015
  end-page: 995
  article-title: Structural, elastic, thermal, and electronic responses of small‐molecule‐loaded metal‐organic framework materials
  publication-title: Journal of Materials Chemistry A
– volume: 108
  year: 2012
  article-title: Exceptionally low shear modulus in a prototypical imidazole‐based metal‐organic framework
  publication-title: Physical Review Letters
– volume: 4
  start-page: 16503
  year: 2014
  end-page: 16511
  article-title: Force field for ZIF‐8 flexible frameworks: Atomistic simulation of adsorption, diffusion of pure gases as CH4, H2, CO2 and N2
  publication-title: RSC Advances
– volume: 125
  year: 2006
  article-title: Theoretical assessment of the elastic constants and hydrogen storage capacity of some metal‐organic framework materials
  publication-title: The Journal of Chemical Physics
– volume: 10
  start-page: 880
  year: 2014
  end-page: 891
  article-title: Extension of the universal force field to metal‐organic frameworks
  publication-title: Journal of Chemical Theory and Computation
– year: 1996
– volume: 134
  start-page: 15016
  year: 2012
  end-page: 15021
  article-title: Metal‐organic framework materials with ultrahigh surface areas: Is the sky the limit?
  publication-title: Journal of the American Chemical Society
– year: 1954
– volume: 46
  start-page: 4496
  year: 2007
  end-page: 4499
  article-title: Exceptional negative thermal expansion in isoreticular metal‐organic frameworks
  publication-title: Angewandte Chemie, International Edition
– volume: 102
  start-page: 2569
  year: 1998
  end-page: 2577
  article-title: Transferable potentials for phase equilibria. 1. United‐atom description of n‐alkanes
  publication-title: The Journal of Physical Chemistry. B
– volume: 43
  start-page: 6062
  year: 2014
  end-page: 6096
  article-title: Flexible metal‐organic frameworks
  publication-title: Chemical Society Reviews
– volume: 8
  start-page: 357
  year: 2017
  end-page: 363
  article-title: Force‐field prediction of materials properties in metal‐organic frameworks
  publication-title: Journal of Physical Chemistry Letters
– volume: 81
  start-page: 3684
  year: 1984
  end-page: 3690
  article-title: Molecular dynamics with coupling to an external bath
  publication-title: The Journal of Chemical Physics
– volume: 45
  start-page: 1196
  year: 1980
  end-page: 1199
  article-title: Crystal structure and pair potentials: A molecular‐dynamics study
  publication-title: Physical Review Letters
– volume: 36
  start-page: 160
  year: 1940
  end-page: 172
  article-title: On the stability of crystal lattices. I
  publication-title: Mathematical Proceedings of the Cambridge Philosophical Society
– volume: 44
  start-page: 129
  year: 1977
  end-page: 138
  article-title: Bonded‐atom fragments for describing molecular charge densities
  publication-title: Theoretica Chimica Acta
– volume: 1
  start-page: 873
  year: 2016
  end-page: 886
  article-title: Origins of negative gas adsorption
  publication-title: Chem
– volume: 130
  start-page: 14294
  year: 2008
  end-page: 14302
  article-title: Thermodynamics of guest‐induced structural transitions in hybrid organic‐inorganic frameworks
  publication-title: Journal of the American Chemical Society
– volume: 7
  start-page: 1
  year: 2017
  end-page: 15
  article-title: Recent developments of first‐principles force fields
  publication-title: WIREs Computational Molecular Science
– volume: 29
  start-page: 7833
  year: 2017
  end-page: 7839
  article-title: Predicting the mechanical properties of zeolite frameworks by machine learning
  publication-title: Chemistry of Materials
– volume: 16
  start-page: 2464
  year: 2006
  end-page: 2472
  article-title: Loading of porous metal‐organic open frameworks with organometallic CVD precursors: Inclusion compounds of the type [LnM]a@MOF‐5
  publication-title: Journal of Materials Chemistry
– year: 1957
– volume: 36
  start-page: 1015
  year: 2015
  end-page: 1027
  article-title: QuickFF: A program for a quick and easy derivation of force fields for metal‐organic frameworks from ab initio input
  publication-title: Journal of Computational Chemistry
– volume: 38
  start-page: 1477
  year: 2009
  end-page: 1504
  article-title: Selective gas adsorption and separation in metal‐organic frameworks
  publication-title: Chemical Society Reviews
– volume: 19
  start-page: 3181
  year: 1978
  end-page: 3184
  article-title: A new model for calculating atomic charges in molecules
  publication-title: Tetrahedron Letters
– volume: 11
  start-page: 5583
  year: 2015
  end-page: 5597
  article-title: A comparison of barostats for the mechanical characterization of metal‐organic frameworks
  publication-title: Journal of Chemical Theory and Computation
– volume: 8
  start-page: 3217
  year: 2012
  end-page: 3231
  article-title: Ab initio parametrized force field for the flexible metal‐organic framework MIL‐53(al)
  publication-title: Journal of Chemical Theory and Computation
– volume: 138
  year: 2013b
  article-title: Metal‐organic frameworks with wine‐rack motif: What determines their flexibility and elastic properties?
  publication-title: The Journal of Chemical Physics
– volume: 128
  start-page: 10678
  year: 2006
  end-page: 10679
  article-title: The interaction of water with MOF‐5 simulated by molecular dynamics
  publication-title: Journal of the American Chemical Society
– volume: 12
  start-page: 247
  year: 2011
  end-page: 258
  article-title: Thermodynamic methods and models to study flexible metal‐organic frameworks
  publication-title: Chemphyschem
– year: 1988
– year: 2017
  article-title: Mechanical properties in metal‐organic frameworks: Emerging opportunities and challenges for device functionality and technological applications
  publication-title: Advanced Materials
– volume: 7
  start-page: 385
  year: 1986
  end-page: 395
  article-title: An algorithm for the location of transition states
  publication-title: Journal of Computational Chemistry
– volume: 76
  year: 2007
  article-title: Mechanical properties of cubic zinc carboxylate IRMOF‐1 metal‐organic framework crystals
  publication-title: Physical Review B
– volume: 80
  start-page: 4423
  year: 1984
  end-page: 4428
  article-title: Statistical ensembles and molecular dynamics studies of anisotropic solids
  publication-title: The Journal of Chemical Physics
– volume: 17
  start-page: 227
  year: 2011
  end-page: 234
  article-title: A force field for dynamic cu‐BTC metal‐organic framework
  publication-title: Journal of Molecular Modeling
– volume: 223
  start-page: 144
  year: 2015
  end-page: 151
  article-title: Atomic charges for modeling metal‐organic frameworks: Why and how
  publication-title: Journal of Solid State Chemistry
– volume: 39
  start-page: 1253
  year: 2013
  end-page: 1292
  article-title: On the inner workings of Monte Carlo codes
  publication-title: Molecular Simulation
– volume: 46
  start-page: 3185
  year: 2017
  end-page: 3241
  article-title: An updated roadmap for the integration of metal‐organic frameworks with electronic devices and chemical sensors
  publication-title: Chemical Society Reviews
– volume: 6
  start-page: 4265
  year: 2015
  end-page: 4269
  article-title: Softening upon adsorption in microporous materials: A counterintuitive mechanical response
  publication-title: Journal of Physical Chemistry Letters
– volume: 114
  start-page: 16181
  year: 2010
  end-page: 16186
  article-title: Elucidating negative thermal expansion in MOF‐5
  publication-title: Journal of Physical Chemistry A
– reference: 26270630 - Adv Mater. 2015 Sep 23;27(36):5432-41
– reference: 23635306 - J Am Chem Soc. 2013 May 15;135(19):7172-80
– reference: 24875583 - Chem Soc Rev. 2014 Aug 21;43(16):6062-96
– reference: 18850600 - Angew Chem Int Ed Engl. 2008;47(46):8929-32
– reference: 12418906 - J Am Chem Soc. 2002 Nov 13;124(45):13519-26
– reference: 19133795 - J Phys Chem B. 2009 Feb 5;113(5):1341-52
– reference: 27199239 - J Phys Condens Matter. 2016 Jul 13;28(27):275201
– reference: 11046376 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Feb;61(2):1072-80
– reference: 26631798 - J Chem Theory Comput. 2009 Oct 13;5(10):2866-78
– reference: 18729451 - J Am Chem Soc. 2008 Sep 24;130(38):12808-14
– reference: 22313371 - J Am Chem Soc. 2012 Mar 7;134(9):4207-15
– reference: 27995920 - Nat Chem. 2016 Dec 20;9(1):11-16
– reference: 26580173 - J Chem Theory Comput. 2014 Mar 11;10(3):942-52
– reference: 27580382 - J Chem Theory Comput. 2016 Oct 11;12(10):5215-5225
– reference: 21681315 - Chem Commun (Camb). 2011 Jul 28;47(28):7983-5
– reference: 22070233 - Chem Rev. 2012 Feb 8;112(2):1105-25
– reference: 27557051 - J Am Chem Soc. 1988 Mar 1;110(6):1657-66
– reference: 25479503 - Phys Rev Lett. 2014 Nov 21;113(21):215502
– reference: 20424876 - J Mol Model. 2011 Feb;17(2):227-34
– reference: 17395825 - Science. 2007 Mar 30;315(5820):1828-31
– reference: 18154291 - J Am Chem Soc. 2008 Jan 16;130(2):406-7
– reference: 22280456 - Chem Rev. 2012 Feb 8;112(2):673-4
– reference: 10004776 - Phys Rev B Condens Matter. 1993 Apr 1;47(13):7700-7704
– reference: 25574157 - J Chem Theory Comput. 2014 Oct 14;10(10):4644-4652
– reference: 9905508 - Phys Rev A. 1991 Apr 15;43(8):4100-4103
– reference: 28190918 - Chem Mater. 2016 Nov 22;28(22):8296-8304
– reference: 28661672 - J Chem Theory Comput. 2017 Aug 8;13(8):3722-3730
– reference: 28286598 - J Phys Chem C Nanomater Interfaces. 2017 Mar 2;121(8):4659-4673
– reference: 16965046 - J Chem Phys. 2006 Aug 28;125(8):084714
– reference: 17487904 - Angew Chem Int Ed Engl. 2007;46(24):4496-9
– reference: 26633216 - J Chem Theory Comput. 2007 Jul;3(4):1451-63
– reference: 21275013 - Chemphyschem. 2011 Feb 7;12(2):247-58
– reference: 3054871 - Proteins. 1988;4(1):31-47
– reference: 27841411 - Chem Soc Rev. 2017 Jan 3;46(1):126-157
– reference: 15268177 - J Chem Phys. 2004 Jun 22;120(24):11432-41
– reference: 22463647 - Phys Rev Lett. 2012 Mar 2;108(9):095502
– reference: 26972778 - Phys Chem Chem Phys. 2016 Apr 7;18(13):9079-87
– reference: 12802325 - Nature. 2003 Jun 12;423(6941):705-14
– reference: 27805761 - Chemistry. 2016 Dec 12;22(50):18045-18050
– reference: 26580059 - J Chem Theory Comput. 2014 Feb 11;10(2):880-91
– reference: 16123294 - Science. 2005 Aug 26;309(5739):1350-4
– reference: 19384449 - Chem Soc Rev. 2009 May;38(5):1477-504
– reference: 26538042 - J Phys Chem Lett. 2015 Nov 5;6(21):4265-9
– reference: 26465320 - Dalton Trans. 2016 Mar 14;45(10):4162-8
– reference: 26642981 - J Chem Theory Comput. 2015 Dec 8;11(12):5583-97
– reference: 29131647 - J Chem Theory Comput. 2017 Dec 12;13(12):5861-5873
– reference: 29149545 - Adv Mater. 2017 Nov 17;:null
– reference: 11799235 - Science. 2002 Jan 18;295(5554):469-72
– reference: 26283122 - J Phys Chem Lett. 2013 Jun 6;4(11):1861-5
– reference: 26700628 - J Phys Chem Lett. 2010 Jan 7;1(1):445-9
– reference: 28800233 - J Chem Theory Comput. 2017 Sep 12;13(9):4492-4503
– reference: 10007607 - Phys Rev B Condens Matter. 1993 Nov 1;48(17):12415-12418
– reference: 26660395 - Dalton Trans. 2016 Mar 14;45(10):4309-15
– reference: 21553843 - J Am Chem Soc. 2011 Jun 15;133(23):8900-2
– reference: 10024237 - Science. 1999 Feb 19;283(5405):1148-50
– reference: 27877465 - Sci Technol Adv Mater. 2012 Feb 2;13(1):013001
– reference: 26592125 - J Chem Theory Comput. 2012 Aug 14;8(8):2844-67
– reference: 9908679 - Phys Rev A. 1992 Oct 15;46(8):4645-4649
– reference: 26613499 - J Chem Theory Comput. 2010 Aug 10;6(8):2455-68
– reference: 21690861 - J Phys Condens Matter. 2006 Aug 16;18(32):S1737-50
– reference: 25740170 - J Comput Chem. 2015 May 15;36(13):1015-27
– reference: 22906112 - J Am Chem Soc. 2012 Sep 12;134(36):15016-21
– reference: 23000994 - Nat Chem. 2012 Oct;4(10):810-6
– reference: 26605731 - J Chem Theory Comput. 2012 Sep 11;8(9):3217-31
– reference: 21417285 - Langmuir. 2011 Apr 19;27(8):4734-41
– reference: 28008758 - J Phys Chem Lett. 2017 Jan 19;8(2):357-363
– reference: 23215398 - Phys Rev Lett. 2012 Nov 9;109(19):195502
– reference: 21693916 - J Phys Condens Matter. 2009 Mar 18;21(11):115401
– reference: 21978134 - Chem Rev. 2012 Feb 8;112(2):869-932
– reference: 17301955 - J Comput Chem. 2007 May;28(7):1169-76
– reference: 26845644 - Chem Commun (Camb). 2016 Mar 4;52(18):3639-42
– reference: 28452388 - Chem Soc Rev. 2017 Jun 6;46(11):3185-3241
– reference: 25793835 - Phys Rev Lett. 2015 Mar 6;114(9):096405
– reference: 27049950 - Nature. 2016 Apr 21;532(7599):348-52
– reference: 12636504 - Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jan;67(1 Pt 1):011505
– reference: 18821758 - J Am Chem Soc. 2008 Oct 29;130(43):14294-302
– reference: 27731872 - Phys Chem Chem Phys. 2016 Oct 26;18(42):29316-29329
– reference: 23495719 - Langmuir. 2013 Apr 16;29(15):4866-76
– reference: 16910652 - J Am Chem Soc. 2006 Aug 23;128(33):10678-9
– reference: 10035704 - Phys Rev Lett. 1987 Dec 28;59(26):2987-2990
– reference: 24964841 - Phys Chem Chem Phys. 2014 Aug 14;16(30):16060-6
– reference: 23656148 - J Chem Phys. 2013 May 7;138(17):174703
– reference: 15268158 - J Chem Phys. 2004 Jun 15;120(23):11304-15
– reference: 21393743 - J Phys Condens Matter. 2010 Jun 9;22(22):225404
SSID ssj0000491231
Score 2.399403
SecondaryResourceType review_article
Snippet Classical force field simulations can be used to study structural, diffusion, and adsorption properties of metal–organic frameworks (MOFs). To account for the...
Classical force field simulations can be used to study structural, diffusion, and adsorption properties of metal-organic frameworks (MOFs). To account for the...
SourceID pubmed
wiley
SourceType Index Database
Publisher
StartPage e1363
SubjectTerms flexible force fields
metal‐organic frameworks
modeling
parameterizing
Title On flexible force fields for metal–organic frameworks: Recent developments and future prospects
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1363
https://www.ncbi.nlm.nih.gov/pubmed/30008812
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWBBvCkveWBgiRpiO41hQhVVhdRSCSq6RX5OEBApYuU_8A_5JdzFTdqRxUrkZDnr7r6zvvuOkAujIB56B44UCxtxZmWUuZ6KHA5H0olzohKrHo3T4ZTfz8SsRW7qXpigD9FcuKFnVPEaHVzpsrsUDf0yryWStNgaWcfWWpzbkPBJc8EC0BeiclVw9YSMUHqtVhaKk27z90rmWUWnVXoZbJOtBS6kt-Egd0jLFbtko1-PY9sj6qGgHtUr9YujgDQNrMg-K_GFvjoA0b_fP2FIk6G-5lyV1xSQIWQWapf0oJKqwtIgJ0IhhFbtluU-mQ7unvrDaDEfITKQ5lkklWZOWABw3EKpeYVqfJILppHcLTlEDg7lg8kS5qyTmhudca-Y0ErFPuWeHZB28Va4I0KlEalkimnuwaVVTwMOsJm0DvCkNHHaIYfBSvl7EMHIGaIHQAcdclmZrdkIOshJjhbO0cL5c3_0iA_H___0hGwCMskCL_aUtOcfn-4Msv9cn1enDOt4MvoD5J-tDQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMetUoayIN6UpwcGlqglttMYsaAKVKAtSLSiW-RXJhoQKWLlO_AN-STcxU3akSVKlGQ56-5-Z53_R8iZURAPUweO1BY24MzKIHYdFTgcjqRD50QhVj0YRr0xv5-ISY1clWdhvD5EteGGnlHEa3Rw3JBuLVRDv8w0xy4ttkJWOXA5NvSF_KnaYQH2hbBcVFwdIQPUXiulhdphq_p7KfUs42mRX243yPocDOm1X8lNUnPZFml0y3ls20Q9ZjRF-Ur96iigpoErtp_l-ECnDij69_vHT2kyNC2brvJLCmgIqYXaRX9QTlVmqdcToRBDi_OW-Q4Z396Mur1gPiAhMJDnWSCVZk5YIDhuoda8QDk-yQXT2N0tOYQODvWDiUPmrJOaGx3zVDGhlWqnEU_ZLqlnb5nbJ1QaEUmmmOYp-LTqaAABG0vrACilaUdNsuetlLx7FYyEIT4AHjTJeWG26oUXQg4TtHCCFk5euoNnvDn4_6enpNEbDfpJ_274cEjWAFNi3yR7ROqzj093DCgw0yfFiv8BROuvdA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMetUiRgQbwpTw8MLFFDbKcxTKhQlUdLJajoFvk50VCRIla-A9-QT8I5btKOLFEiJ8tZd_ezc_4fQmdKQDy0BhwpZDqgRPMgMS0RGNccSUbGsEKsutePu0N6P2KjGroqz8J4fYhqw815RhGvnYNPtG3ORUO_1Dh3RVpkCS27n33OKyM6qDZYAH0hKhcLrhbjgZNeK5WFwqhZfb2QeRbptEgvnQ20PuNCfO0nchPVTLaFVttlO7ZtJJ4ybJ16pXwzGEhTwdVVn-XuAY8NQPTv949v0qSwLWuu8ksMZAiZBet5eVCORaaxlxPBEEKL45b5Dhp2bl_a3WDWHyFQkOZJwIUkhmkAOKphqXnh1Pg4ZUS64m5OIXJQWD6oJCJGGy6pkgm1gjApRGhjaskuqmfvmdlHmCsWcyKIpBZcWrQkcIBOuDbAk1yFcQPteSulEy-CkRJHD0AHDXRemK0a8DrIUeosnDoLp6_t3rO7Ofj_q6doZXDTSR_v-g-HaA0gJfElskeoPv34NMcAAlN5Ukz4H3R1rp0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+flexible+force+fields+for+metal%E2%80%93organic+frameworks%3A+Recent+developments+and+future+prospects&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Heinen%2C+Jurn&rft.au=Dubbeldam%2C+David&rft.date=2018-07-01&rft.pub=Wiley+Periodicals%2C+Inc&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=8&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fwcms.1363&rft.externalDBID=10.1002%252Fwcms.1363&rft.externalDocID=WCMS1363
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon