On flexible force fields for metal–organic frameworks: Recent developments and future prospects
Classical force field simulations can be used to study structural, diffusion, and adsorption properties of metal–organic frameworks (MOFs). To account for the dynamic behavior of the material, parameterization schemes have been developed to derive force constants and the associated reference values...
Saved in:
Published in | Wiley interdisciplinary reviews. Computational molecular science Vol. 8; no. 4; pp. e1363 - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
Wiley Periodicals, Inc
01.07.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1759-0876 1759-0884 |
DOI | 10.1002/wcms.1363 |
Cover
Abstract | Classical force field simulations can be used to study structural, diffusion, and adsorption properties of metal–organic frameworks (MOFs). To account for the dynamic behavior of the material, parameterization schemes have been developed to derive force constants and the associated reference values by fitting on ab initio energies, vibrational frequencies, and elastic constants. Here, we review recent developments in flexible force field models for MOFs. Existing flexible force field models are generally able to reproduce the majority of experimentally observed structural and dynamic properties of MOFs. The lack of efficient sampling schemes for capturing stimuli‐driven phase transitions, however, currently limits the full predictive potential of existing flexible force fields from being realized.
This article is categorized under:
Structure and Mechanism > Computational Materials Science
Molecular and Statistical Mechanics > Molecular Mechanics
Classical force field simulations, relying on user‐defined interaction potentials, have been used intensively to study flexibility in metal‐organic frameworks. Structural and dynamic experimental properties are generally well reproduced. |
---|---|
AbstractList | Classical force field simulations can be used to study structural, diffusion, and adsorption properties of metal-organic frameworks (MOFs). To account for the dynamic behavior of the material, parameterization schemes have been developed to derive force constants and the associated reference values by fitting on ab initio energies, vibrational frequencies, and elastic constants. Here, we review recent developments in flexible force field models for MOFs. Existing flexible force field models are generally able to reproduce the majority of experimentally observed structural and dynamic properties of MOFs. The lack of efficient sampling schemes for capturing stimuli-driven phase transitions, however, currently limits the full predictive potential of existing flexible force fields from being realized. This article is categorized under: Structure and Mechanism > Computational Materials ScienceMolecular and Statistical Mechanics > Molecular Mechanics. Classical force field simulations can be used to study structural, diffusion, and adsorption properties of metal–organic frameworks (MOFs). To account for the dynamic behavior of the material, parameterization schemes have been developed to derive force constants and the associated reference values by fitting on ab initio energies, vibrational frequencies, and elastic constants. Here, we review recent developments in flexible force field models for MOFs. Existing flexible force field models are generally able to reproduce the majority of experimentally observed structural and dynamic properties of MOFs. The lack of efficient sampling schemes for capturing stimuli‐driven phase transitions, however, currently limits the full predictive potential of existing flexible force fields from being realized. This article is categorized under: Structure and Mechanism > Computational Materials Science Molecular and Statistical Mechanics > Molecular Mechanics Classical force field simulations, relying on user‐defined interaction potentials, have been used intensively to study flexibility in metal‐organic frameworks. Structural and dynamic experimental properties are generally well reproduced. |
Author | Heinen, Jurn Dubbeldam, David |
Author_xml | – sequence: 1 givenname: Jurn orcidid: 0000-0001-8838-5213 surname: Heinen fullname: Heinen, Jurn email: j.heinen@uva.nl organization: University of Amsterdam – sequence: 2 givenname: David surname: Dubbeldam fullname: Dubbeldam, David organization: University of Amsterdam |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30008812$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kEtOwzAQhi1UREvpggsgXyCtnXESmx2qeElFlXiIZeQ4YxTIS3ZK6Y47cENOQiKgs5j5fs2vkeY_JqO6qZGQU87mnLFwsTWVn3OI4YBMeBKpgEkpRntO4jGZef_K-hKKh8CPyBh6ISUPJ0Sva2pL_CiyEqltnOl7gWXuB0Er7HT5_fnVuBddF4ZapyvcNu7Nn9N7NFh3NMd3LJu26tlTXefUbrqNQ9q6xrdoOn9CDq0uPc7-5pQ8XV0-Lm-C1fr6dnmxCkzEFARKZ4BRniRC5ByAM4iUEhFkIbBEiSQGwbk0MgTMUWXCZFJYDVGmNbOxsDAlZ793201WYZ62rqi026X_v_aGxa9hW5S42-85S4cc0yHHdMgxfV7ePQwAPzRPaI8 |
CitedBy_id | crossref_primary_10_1038_s41524_022_00946_w crossref_primary_10_1002_adfm_201909062 crossref_primary_10_1080_08927022_2021_1980215 crossref_primary_10_1016_j_poly_2022_116041 crossref_primary_10_1038_s41467_024_49594_2 crossref_primary_10_1002_anie_202004535 crossref_primary_10_1002_cphc_202200257 crossref_primary_10_1021_acs_jpcc_0c06096 crossref_primary_10_1021_acs_jpcc_0c08054 crossref_primary_10_1021_acsomega_2c06978 crossref_primary_10_1002_mame_202300225 crossref_primary_10_1016_j_ces_2024_120233 crossref_primary_10_1021_acs_jctc_4c01272 crossref_primary_10_1002_adts_201900135 crossref_primary_10_1016_j_ccr_2019_03_008 crossref_primary_10_1021_acs_chemrev_0c01266 crossref_primary_10_1021_acscentsci_0c00592 crossref_primary_10_1021_acs_jctc_8b01041 crossref_primary_10_1021_acs_jpcc_8b08457 crossref_primary_10_1039_D0CC02505D crossref_primary_10_1039_D4CS00555D crossref_primary_10_1021_acs_jpcc_3c00451 crossref_primary_10_1002_ange_202004535 crossref_primary_10_1021_acsabm_4c01907 crossref_primary_10_1021_acs_jctc_8b01288 crossref_primary_10_1021_acs_jpcb_8b08094 crossref_primary_10_1021_acs_jpcc_1c07882 crossref_primary_10_1016_j_cjche_2020_08_048 crossref_primary_10_1021_accountsmr_4c00071 crossref_primary_10_1021_acs_jctc_4c01580 crossref_primary_10_1039_D4RA01859A crossref_primary_10_1016_j_micromeso_2020_110765 crossref_primary_10_1016_j_micromeso_2022_112406 crossref_primary_10_1021_acs_jctc_9b00135 crossref_primary_10_1021_acs_jpcc_3c03012 crossref_primary_10_1021_acsami_1c20583 crossref_primary_10_1002_chem_201905139 crossref_primary_10_1016_j_micromeso_2022_111796 |
ContentType | Journal Article |
Copyright | 2018 The Authors. published by Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 The Authors. published by Wiley Periodicals, Inc. |
DBID | 24P NPM |
DOI | 10.1002/wcms.1363 |
DatabaseName | Wiley Online Library Open Access PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1759-0884 |
EndPage | n/a |
ExternalDocumentID | 30008812 WCMS1363 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: The Netherlands Research Council for Chemical Sciences (NWO‐CW) – fundername: VIDI grant |
GroupedDBID | 05W 0R~ 1OC 1VH 24P 31~ 33P 8-0 8-1 A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-A DCZOG DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W ROL SUPJJ WBKPD WHWMO WIH WIK WOHZO WVDHM WXSBR WYJ ZZTAW ~S- NPM |
ID | FETCH-LOGICAL-c5093-9ab3e5d7744d133103599453b2307947634118c823ede9b4cb84fa35baa0f64f3 |
IEDL.DBID | 24P |
ISSN | 1759-0876 |
IngestDate | Wed Feb 19 02:43:29 EST 2025 Wed Jan 22 16:36:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | metal‐organic frameworks modeling flexible force fields parameterizing |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5093-9ab3e5d7744d133103599453b2307947634118c823ede9b4cb84fa35baa0f64f3 |
ORCID | 0000-0001-8838-5213 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1363 |
PMID | 30008812 |
PageCount | 15 |
ParticipantIDs | pubmed_primary_30008812 wiley_primary_10_1002_wcms_1363_WCMS1363 |
PublicationCentury | 2000 |
PublicationDate | July/August 2018 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: July/August 2018 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States |
PublicationTitle | Wiley interdisciplinary reviews. Computational molecular science |
PublicationTitleAlternate | Wiley Interdiscip Rev Comput Mol Sci |
PublicationYear | 2018 |
Publisher | Wiley Periodicals, Inc |
Publisher_xml | – name: Wiley Periodicals, Inc |
References | 2002; 14 2013b; 138 1991; 113 1980; 45 1989; 111 2004; 9 1991; 95 2014; 26 2003; 58 1999; 283 2009; 113 1972 2007; 76 2012; 13 1991; 186 2010; 22 2012; 131 1987; 195 1980; 36 2005; 184 2012; 134 2010; 1 1986; 7 2010; 114 1992; 114 2014; 16 1992; 46 2007; 3 2008; 112 2006; 442 2010; 6 2014; 10 2016; 45 1988 1993; 48 1993; 47 1989; 65 1981; 2 1984; 106 1910 1996 1999; 103 1985; 82 2016; 18 1988; 92 2011; 133 2012; 108 2016; 12 2012; 109 1987; 59 2014; 43 2016; 1 2012; 112 2016; 2 2007; 315 2015; 114 2002; 124 2008; 47 2015; 119 1961; 66 2016; 28 2017; 146 2012; 116 2008; 130 1996; 87 1996; 118 2016; 22 2009; 44 2013; 29 2017; 7 2004; 120 2017; 8 2015; 36 2009; 46 2017; 1 2003; 118 2017; 3 2015; 223 2017; 46 2008; 78 2011; 12 1983; 50 2011; 17 1999; 402 2017; 9 2009; 48 1994; 101 2007; 28 2004; 73 2014; 4 2014; 2 2001 1991; 43 1980; 72 2000; 61 2005; 309 2017; 121 2011; 27 2006; 128 1990; 93 2006; 125 1990; 94 2015; 6 1984; 80 1984; 81 2009; 21 2015; 3 2002; 295 2006; 16 2002; 35 1995; 99 1982; 76 2015; 11 1954 2009 2013a; 4 1978; 19 2016; 52 2006; 18 1940; 36 1977; 44 2005 1994; 49 2017; 29 2002 1972; 5 2011; 171 2016; 120 1957 2014; 113 1988; 4 2015; 27 2013; 39 2004; 16 2007; 111 2017; 13 1988; 8 2017 2013; 135 1988; 110 2013; 250 1995; 103 2009; 5 2011; 47 2016; 532 2003; 423 2012; 4 1998; 102 1981; 52 1998; 31 2007; 46 2009; 38 2012; 8 2003; 67 17487904 - Angew Chem Int Ed Engl. 2007;46(24):4496-9 18821758 - J Am Chem Soc. 2008 Oct 29;130(43):14294-302 26642981 - J Chem Theory Comput. 2015 Dec 8;11(12):5583-97 27841411 - Chem Soc Rev. 2017 Jan 3;46(1):126-157 19133795 - J Phys Chem B. 2009 Feb 5;113(5):1341-52 25793835 - Phys Rev Lett. 2015 Mar 6;114(9):096405 21693916 - J Phys Condens Matter. 2009 Mar 18;21(11):115401 16910652 - J Am Chem Soc. 2006 Aug 23;128(33):10678-9 28661672 - J Chem Theory Comput. 2017 Aug 8;13(8):3722-3730 26972778 - Phys Chem Chem Phys. 2016 Apr 7;18(13):9079-87 21393743 - J Phys Condens Matter. 2010 Jun 9;22(22):225404 26845644 - Chem Commun (Camb). 2016 Mar 4;52(18):3639-42 28008758 - J Phys Chem Lett. 2017 Jan 19;8(2):357-363 27580382 - J Chem Theory Comput. 2016 Oct 11;12(10):5215-5225 26538042 - J Phys Chem Lett. 2015 Nov 5;6(21):4265-9 23495719 - Langmuir. 2013 Apr 16;29(15):4866-76 28190918 - Chem Mater. 2016 Nov 22;28(22):8296-8304 21690861 - J Phys Condens Matter. 2006 Aug 16;18(32):S1737-50 10007607 - Phys Rev B Condens Matter. 1993 Nov 1;48(17):12415-12418 18729451 - J Am Chem Soc. 2008 Sep 24;130(38):12808-14 9908679 - Phys Rev A. 1992 Oct 15;46(8):4645-4649 27049950 - Nature. 2016 Apr 21;532(7599):348-52 22280456 - Chem Rev. 2012 Feb 8;112(2):673-4 23000994 - Nat Chem. 2012 Oct;4(10):810-6 26580173 - J Chem Theory Comput. 2014 Mar 11;10(3):942-52 28452388 - Chem Soc Rev. 2017 Jun 6;46(11):3185-3241 9905508 - Phys Rev A. 1991 Apr 15;43(8):4100-4103 18850600 - Angew Chem Int Ed Engl. 2008;47(46):8929-32 11799235 - Science. 2002 Jan 18;295(5554):469-72 26605731 - J Chem Theory Comput. 2012 Sep 11;8(9):3217-31 23635306 - J Am Chem Soc. 2013 May 15;135(19):7172-80 25574157 - J Chem Theory Comput. 2014 Oct 14;10(10):4644-4652 22463647 - Phys Rev Lett. 2012 Mar 2;108(9):095502 18154291 - J Am Chem Soc. 2008 Jan 16;130(2):406-7 12802325 - Nature. 2003 Jun 12;423(6941):705-14 26700628 - J Phys Chem Lett. 2010 Jan 7;1(1):445-9 28800233 - J Chem Theory Comput. 2017 Sep 12;13(9):4492-4503 20424876 - J Mol Model. 2011 Feb;17(2):227-34 26633216 - J Chem Theory Comput. 2007 Jul;3(4):1451-63 12418906 - J Am Chem Soc. 2002 Nov 13;124(45):13519-26 26465320 - Dalton Trans. 2016 Mar 14;45(10):4162-8 22313371 - J Am Chem Soc. 2012 Mar 7;134(9):4207-15 16965046 - J Chem Phys. 2006 Aug 28;125(8):084714 23215398 - Phys Rev Lett. 2012 Nov 9;109(19):195502 19384449 - Chem Soc Rev. 2009 May;38(5):1477-504 15268158 - J Chem Phys. 2004 Jun 15;120(23):11304-15 17395825 - Science. 2007 Mar 30;315(5820):1828-31 27199239 - J Phys Condens Matter. 2016 Jul 13;28(27):275201 26580059 - J Chem Theory Comput. 2014 Feb 11;10(2):880-91 22906112 - J Am Chem Soc. 2012 Sep 12;134(36):15016-21 15268177 - J Chem Phys. 2004 Jun 22;120(24):11432-41 21681315 - Chem Commun (Camb). 2011 Jul 28;47(28):7983-5 12636504 - Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jan;67(1 Pt 1):011505 29131647 - J Chem Theory Comput. 2017 Dec 12;13(12):5861-5873 11046376 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Feb;61(2):1072-80 17301955 - J Comput Chem. 2007 May;28(7):1169-76 28286598 - J Phys Chem C Nanomater Interfaces. 2017 Mar 2;121(8):4659-4673 10024237 - Science. 1999 Feb 19;283(5405):1148-50 21275013 - Chemphyschem. 2011 Feb 7;12(2):247-58 22070233 - Chem Rev. 2012 Feb 8;112(2):1105-25 27995920 - Nat Chem. 2016 Dec 20;9(1):11-16 29149545 - Adv Mater. 2017 Nov 17;:null 24964841 - Phys Chem Chem Phys. 2014 Aug 14;16(30):16060-6 25479503 - Phys Rev Lett. 2014 Nov 21;113(21):215502 26613499 - J Chem Theory Comput. 2010 Aug 10;6(8):2455-68 23656148 - J Chem Phys. 2013 May 7;138(17):174703 27557051 - J Am Chem Soc. 1988 Mar 1;110(6):1657-66 21417285 - Langmuir. 2011 Apr 19;27(8):4734-41 27731872 - Phys Chem Chem Phys. 2016 Oct 26;18(42):29316-29329 10004776 - Phys Rev B Condens Matter. 1993 Apr 1;47(13):7700-7704 27805761 - Chemistry. 2016 Dec 12;22(50):18045-18050 21553843 - J Am Chem Soc. 2011 Jun 15;133(23):8900-2 25740170 - J Comput Chem. 2015 May 15;36(13):1015-27 26631798 - J Chem Theory Comput. 2009 Oct 13;5(10):2866-78 26592125 - J Chem Theory Comput. 2012 Aug 14;8(8):2844-67 26660395 - Dalton Trans. 2016 Mar 14;45(10):4309-15 21978134 - Chem Rev. 2012 Feb 8;112(2):869-932 27877465 - Sci Technol Adv Mater. 2012 Feb 2;13(1):013001 10035704 - Phys Rev Lett. 1987 Dec 28;59(26):2987-2990 26270630 - Adv Mater. 2015 Sep 23;27(36):5432-41 24875583 - Chem Soc Rev. 2014 Aug 21;43(16):6062-96 16123294 - Science. 2005 Aug 26;309(5739):1350-4 3054871 - Proteins. 1988;4(1):31-47 26283122 - J Phys Chem Lett. 2013 Jun 6;4(11):1861-5 |
References_xml | – volume: 1 start-page: 1 year: 2017 end-page: 10 article-title: Computation of elastic constants of solids using molecular simulation: Comparison of constant volume and constant pressure ensemble methods publication-title: Molecular Simulation – volume: 94 start-page: 8897 year: 1990 end-page: 8909 article-title: DREIDING: A generic force field for molecular simulations publication-title: The Journal of Physical Chemistry – volume: 99 start-page: 9536 year: 1995 end-page: 9550 article-title: Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 2. Aluminosilicates publication-title: The Journal of Physical Chemistry – volume: 5 start-page: 535 year: 1972 end-page: 542 article-title: Ro1e of the elastic constants in negative thermal expansion of axial solids publication-title: Journal of Physics C: Solid State Physics – year: 2005 – volume: 14 start-page: L525 year: 2002 article-title: On the importance of the free energy for elasticity under pressure publication-title: Journal of Physics: Condensed Matter – volume: 21 year: 2009 article-title: Elasticity in crystals under pressure publication-title: Journal of Physics: Condensed Matter – volume: 5 start-page: 2866 year: 2009 end-page: 2878 article-title: Electrostatic potential derived atomic charges for periodic systems using a modified error functional publication-title: Journal of Chemical Theory and Computation – volume: 52 start-page: 3639 year: 2016 end-page: 3642 article-title: Gate‐opening effect in ZIF‐8: The first experimental proof using inelastic neutron scattering publication-title: Chemical Communications – volume: 6 start-page: 2455 year: 2010 end-page: 2468 article-title: Chemically meaningful atomic charges that reproduce the electrostatic potential in periodic and nonperiodic materials publication-title: Journal of Chemical Theory and Computation – volume: 8 start-page: 109 year: 1988 end-page: 151 article-title: Elastic constants and statistical ensembles in molecular dynamics publication-title: Computer Physics Reports – volume: 27 start-page: 1905 year: 2015 end-page: 1916 article-title: Responsive metal‐organic frameworks and framework materials: Under pressure, taking the heat, in the spotlight, with friends publication-title: Chemistry of Materials – volume: 135 start-page: 7172 year: 2013 end-page: 7180 article-title: Investigating water and framework dynamics in pillared MOFs publication-title: Journal of the American Chemical Society – volume: 47 start-page: 7983 year: 2011 end-page: 7985 article-title: Reversible pressure‐induced amorphization of a zeolitic imidazolate framework (ZIF‐4) publication-title: Chemical Communications – volume: 130 start-page: 12808 year: 2008 end-page: 12814 article-title: Prediction of the conditions for breathing of metal organic framework materials using a combination of X‐ray powder diffraction, microcalorimetry, and molecular simulation publication-title: Journal of the American Chemical Society – volume: 9 start-page: 939 year: 2004 end-page: 942 article-title: Synthesis and crystal structure of tetranuclear zinc benzoate publication-title: Wuhan University Journal of Natural Sciences – volume: 2 start-page: 35 year: 2016 end-page: 62 article-title: Metal organic frameworks for energy storage and conversion publication-title: Energy Storage Materials – volume: 109 year: 2012 article-title: Anisotropic elastic properties of flexible metal‐organic frameworks: How soft are soft porous crystals? publication-title: Physical Review Letters – volume: 134 start-page: 4207 year: 2012 end-page: 4215 article-title: Molecular‐level characterization of the breathing behavior of the jungle‐gym‐type DMOF‐1 metal–organic framework publication-title: Journal of the American Chemical Society – volume: 113 start-page: 19317 year: 2009 end-page: 19327 article-title: Method for analyzing structural changes of flexible metal‐organic frameworks induced by adsorbates publication-title: Journal of Physical Chemistry C – volume: 171 start-page: 775 year: 2011 end-page: 781 article-title: Towards rapid computational screening of metal‐organic frameworks for carbon dioxide capture: Calculation of framework charges via charge equilibration publication-title: The Chemical Engineering Journal – volume: 31 start-page: 121 year: 1998 end-page: 127 article-title: An easy method for the determination of Debye temperature from thermal expansion analyses publication-title: Journal of Applied Crystallography – volume: 28 start-page: 1169 year: 2007 end-page: 1176 article-title: Ab initio parametrized MM3 force field for the metal‐organic framework MOF‐5 publication-title: Journal of Computational Chemistry – volume: 3 start-page: 37 year: 2017 article-title: A universal strategy for the creation of machine learning‐based atomistic force fields publication-title: npj Computational Materials – volume: 101 start-page: 4177 year: 1994 end-page: 4189 article-title: Constant pressure molecular dynamics algorithms publication-title: The Journal of Chemical Physics – volume: 76 start-page: 2662 year: 1982 end-page: 2666 article-title: Strain fluctuations and elastic constants publication-title: The Journal of Chemical Physics – volume: 106 start-page: 765 year: 1984 end-page: 784 article-title: A new force field for molecular mechanical simulation of nucleic acids and proteins publication-title: Journal of the American Chemical Society – volume: 112 start-page: 15934 year: 2008 end-page: 15939 article-title: Understanding water adsorption in cu‐BTC metal‐organic frameworks publication-title: Journal of Physical Chemistry C – volume: 18 start-page: 29316 year: 2016 end-page: 29329 article-title: A general forcefield for accurate phonon properties of metal‐organic frameworks publication-title: Physical Chemistry Chemical Physics – volume: 423 start-page: 705 year: 2003 end-page: 714 article-title: Reticular synthesis and the design of new materials publication-title: Nature – volume: 87 start-page: 1117 year: 1996 end-page: 1157 article-title: Explicit reversible integrators for extended systems dynamics publication-title: Molecular Physics – volume: 119 start-page: 28430 year: 2015 end-page: 28439 article-title: Adsorption and diffusion phenomena in crystal size engineered ZIF‐8 MOF publication-title: Journal of Physical Chemistry C – volume: 111 start-page: 15185 year: 2007 end-page: 15191 article-title: Metal‐organic frameworks provide large negative thermal expansion behavior publication-title: Journal of Physical Chemistry C – volume: 95 start-page: 3358 year: 1991 end-page: 3363 article-title: Charge equilibration for molecular dynamics simulations publication-title: The Journal of Physical Chemistry – year: 1972 – volume: 113 start-page: 4792 year: 1991 end-page: 4800 article-title: Molecular modeling of zeolite structure. 2. Structure and dynamics of silica sodalite and silicate force field publication-title: Journal of the American Chemical Society – volume: 113 year: 2014 article-title: Identifying the role of terahertz vibrations in metal‐organic frameworks: From gate‐opening phenomenon to shear‐driven structural destabilization publication-title: Physical Review Letters – volume: 18 start-page: 9079 year: 2016 end-page: 9087 article-title: Isoreticular zirconium‐based metal‐organic frameworks: Discovering mechanical trends and elastic anomalies controlling chemical structure stability publication-title: Physical Chemistry Chemical Physics – volume: 8 start-page: 2844 year: 2012 end-page: 2867 article-title: Improved atoms‐in‐molecule charge partitioning functional for simultaneously reproducing the electrostatic potential and chemical states in periodic and nonperiodic materials publication-title: Journal of Chemical Theory and Computation – volume: 46 start-page: 126 year: 2017 end-page: 157 article-title: Multifunctional metal‐organic framework catalysts: Synergistic catalysis and tandem reactions publication-title: Chemical Society Reviews – volume: 58 start-page: 105 year: 2003 end-page: 114 article-title: Synthesis, morphology control, and properties of porous metal‐organic coordination polymers publication-title: Microporous and Mesoporous Materials – volume: 121 start-page: 511 year: 2017 end-page: 522 article-title: Machine learning force fields: Construction, validation, and outlook publication-title: Journal of Physical Chemistry C – volume: 45 start-page: 4309 year: 2016 end-page: 4315 article-title: Understanding and solving disorder in the substitution pattern of amino functionalized MIL‐47(V) publication-title: Dalton Transactions – volume: 124 start-page: 13519 year: 2002 end-page: 13526 article-title: Very large breathing effect in the first nanoporous chromium(III)‐based solids: MIL‐53 or CrIII(OH)·O2C−C6H4−CO2·HO2C−C6H4−CO2Hx·H2Oy publication-title: Journal of the American Chemical Society – volume: 121 start-page: 4659 year: 2017 end-page: 4673 article-title: Polarizable force fields for CO2 and CH4 adsorption in M‐MOF‐74 publication-title: Journal of Physical Chemistry C – volume: 283 start-page: 1148 year: 1999 end-page: 1150 article-title: A chemically functionalizable nanoporous material [cu‐3(TMA)(2)(H2O)(3)](n) publication-title: Science – volume: 13 year: 2012 article-title: Negative thermal expansion materials: Technological key for control of thermal expansion publication-title: Science and Technology of Advanced Materials – volume: 28 start-page: 8296 year: 2016 end-page: 8304 article-title: Controlling thermal expansion: A metal‐organic frameworks route publication-title: Chemistry of Materials – volume: 66 start-page: 259 year: 1961 end-page: 271 article-title: The thermodynamic theory of nonhydrostatically stressed solids publication-title: Journal of Geophysical Research – volume: 131 start-page: 1153 year: 2012 article-title: Recent applications and developments of charge equilibration force fields for modeling dynamical charges in classical molecular dynamics simulations publication-title: Theoretical Chemistry Accounts – volume: 103 start-page: 4613 year: 1995 end-page: 4621 article-title: Constant pressure molecular dynamics simulation: The Langevin piston method publication-title: The Journal of Chemical Physics – volume: 43 start-page: 4100 year: 1991 end-page: 4103 article-title: Unified treatment of adiabatic ensembles publication-title: Physical Review A – volume: 184 start-page: 205 year: 2005 end-page: 222 article-title: Genetic algorithms for modelling and optimisation publication-title: Journal of Computational and Applied Mathematics – volume: 35 start-page: 2827 year: 2002 end-page: 2834 article-title: Phase coexistence curves for off‐lattice polymer‐solvent mixtures: Gibbs‐ensemble simulations publication-title: Macromolecules – volume: 26 start-page: 6185 year: 2014 end-page: 6192 article-title: Computation‐ready, experimental metal‐organic frameworks: A tool to enable high‐throughput screening of Nanoporous crystals publication-title: Chemistry of Materials – volume: 9 start-page: 11 year: 2017 end-page: 16 article-title: Interplay between defects, disorder and flexibility in metal‐organic frameworks publication-title: Nature Chemistry – volume: 46 start-page: 238 year: 2009 end-page: 253 article-title: Deformation gradients for continuum mechanical analysis of atomistic simulations publication-title: International Journal of Solids and Structures – volume: 49 start-page: 2633 year: 1994 end-page: 2645 article-title: Coexistence diagrams of mixtures by molecular simulation publication-title: Chemical Engineering Science – volume: 4 start-page: 810 year: 2012 end-page: 816 article-title: Ab initio carbon capture in open‐site metal‐organic frameworks publication-title: Nature Chemistry – volume: 47 start-page: 8929 year: 2008 end-page: 8932 article-title: Negative thermal expansion in the metal‐organic framework material Cu3(1,3,5‐benzenetricarboxylate)2 publication-title: Angewandte Chemie, International Edition – volume: 112 start-page: 673 year: 2012 end-page: 674 article-title: Introduction to metal‐organic frameworks publication-title: Chemical Reviews – volume: 61 start-page: 1072 year: 2000 end-page: 1080 article-title: Elastic constants from microscopic strain fluctuations publication-title: Physical Review E – volume: 12 start-page: 5215 year: 2016 end-page: 5225 article-title: Extension of the universal force field for metal‐organic frameworks publication-title: Journal of Chemical Theory and Computation – volume: 4 start-page: 1861 year: 2013a end-page: 1865 article-title: Investigating the pressure‐induced amorphization of zeolitic imidazolate framework ZIF‐8: Mechanical instability due to shear mode softening publication-title: Journal of Physical Chemistry Letters – volume: 82 start-page: 4243 year: 1985 end-page: 4247 article-title: Statistical ensembles and molecular dynamics studies of anisotropic solids. II publication-title: The Journal of Chemical Physics – volume: 532 start-page: 348 year: 2016 end-page: 352 article-title: A pressure‐amplifying framework material with negative gas adsorption transitions publication-title: Nature – volume: 13 start-page: 4492 year: 2017 end-page: 4503 article-title: Machine learning force field parameters from ab initio data publication-title: Journal of Chemical Theory and Computation – volume: 250 start-page: 1128 year: 2013 end-page: 1141 article-title: MOF‐FF—A flexible first‐principles derived force field for metal‐organic frameworks publication-title: Physica Status Solidi (b) – volume: 116 start-page: 13289 year: 2012 end-page: 13295 article-title: Comparative guest, thermal, and mechanical breathing of the porous metal organic framework MIL‐53(Cr): A computational exploration supported by experiments publication-title: Journal of Physical Chemistry C – volume: 10 start-page: 4644 year: 2014 end-page: 4652 article-title: Transferable force field for metal‐organic frameworks from first‐principles: BTW‐FF publication-title: Journal of Chemical Theory and Computation – volume: 93 start-page: 4296 year: 1990 end-page: 4298 article-title: Fourth adiabatic ensemble publication-title: The Journal of Chemical Physics – volume: 112 start-page: 869 year: 2012 end-page: 932 article-title: Metal‐organic frameworks for separations publication-title: Chemical Reviews – volume: 111 start-page: 8551 year: 1989 end-page: 8566 article-title: Molecular mechanics. The MM3 force field for hydrocarbons. 1 publication-title: Journal of the American Chemical Society – volume: 52 start-page: 7182 year: 1981 end-page: 7190 article-title: Polymorphic transitions in single crystals: A new molecular dynamics method publication-title: Journal of Applied Physics – volume: 78 year: 2008 article-title: Origin of the exceptional negative thermal expansion in metal‐organic framework‐5 publication-title: Physical Review B – volume: 92 start-page: 867 year: 1988 end-page: 871 article-title: Molecular dynamics studies on zeolites. 3. Dehydrated zeolite A publication-title: The Journal of Physical Chemistry – volume: 112 start-page: 1105 year: 2012 end-page: 1125 article-title: Metal‐organic framework materials as chemical sensors publication-title: Chemical Reviews – volume: 45 start-page: 4162 year: 2016 end-page: 4168 article-title: The flexibility of modified‐linker MIL‐53 materials publication-title: Dalton Transactions – volume: 16 start-page: 8787 year: 2004 article-title: Reply to comment on 'On the importance of the free energy for elasticity under pressure’ publication-title: Journal of Physics: Condensed Matter – volume: 309 start-page: 1350 year: 2005 end-page: 1354 article-title: Gas adsorption sites in a large‐pore metal‐organic framework publication-title: Science – year: 2002 – volume: 315 start-page: 1828 year: 2007 end-page: 1831 article-title: Role of solvent‐host interactions that lead to very large swelling of hybrid frameworks publication-title: Science – volume: 48 start-page: 10479 year: 2009 end-page: 10484 article-title: Computational study on the influences of framework charges on CO2 uptake in metal‐organic frameworks publication-title: Industrial and Engineering Chemistry Research – volume: 2 start-page: 274 year: 2014 end-page: 291 article-title: Recent developments in first‐principles force fields for molecules in nanoporous materials publication-title: Journal of Materials Chemistry A – volume: 72 start-page: 2384 year: 1980 end-page: 2393 article-title: Molecular dynamics simulations at constant pressure and/or temperature publication-title: The Journal of Chemical Physics – volume: 73 start-page: 3 year: 2004 end-page: 14 article-title: Metal‐organic frameworks: A new class of porous materials publication-title: Microporous and Mesoporous Materials – volume: 295 start-page: 469 year: 2002 end-page: 472 article-title: Design and synthesis of an exceptionally stable and highly porous metal‐organic framework publication-title: Science – volume: 13 start-page: 3722 year: 2017 end-page: 3730 article-title: Flexible force field parameterization through fitting on the ab initio derived elastic tensor publication-title: Journal of Chemical Theory and Computation – volume: 114 year: 2015 article-title: Molecular dynamics with on‐the‐fly machine learning of quantum‐mechanical forces publication-title: Physical Review Letters – volume: 29 start-page: 4866 year: 2013 end-page: 4876 article-title: Simulating adsorptive expansion of zeolites: Application to biomass‐derived solutions in contact with Silicalite publication-title: Langmuir – volume: 16 start-page: 8783 year: 2004 article-title: Comment on 'On the importance of the free energy for elasticity under pressure’ publication-title: Journal of Physics: Condensed Matter – volume: 18 start-page: S1737 year: 2006 end-page: S1750 article-title: Elastic constants of diamond from molecular dynamics simulations publication-title: Journal of Physics: Condensed Matter – volume: 18 start-page: 4133 year: 2016 end-page: 4141 article-title: Computational identification of organic porous molecular crystals publication-title: CrystEngComm – volume: 114 start-page: 10024 year: 1992 end-page: 10035 article-title: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations publication-title: Journal of the American Chemical Society – volume: 59 start-page: 2987 year: 1987 end-page: 2990 article-title: Solid‐state amorphization of Zr$_3$al: Evidence of an elastic instability and first‐order phase transformation publication-title: Physical Review Letters – volume: 113 start-page: 1341 year: 2009 end-page: 1352 article-title: Systematic first principles parameterization of force fields for metal−organic frameworks using a genetic algorithm approach publication-title: The Journal of Physical Chemistry. B – volume: 18 start-page: 4303 year: 2016 end-page: 4312 article-title: Discovering connections between terahertz vibrations and elasticity underpinning the collective dynamics of the HKUST‐1 metal‐organic framework publication-title: CrystEngComm – volume: 13 start-page: 5861 year: 2017 article-title: Efficient Construction of Free Energy Profiles of Breathing Metal‐organic frameworks using advanced molecular dynamics simulations publication-title: Journal of Chemical Theory and Computation – year: 2009 – volume: 120 start-page: 11432 year: 2004 end-page: 11441 article-title: Langevin dynamics in constant pressure extended systems publication-title: The Journal of Chemical Physics – year: 1910 – volume: 36 start-page: 3219 year: 1980 end-page: 3228 article-title: Iterative partial equalization of orbital electronegativity—A rapid access to atomic charges publication-title: Tetrahedron – volume: 65 start-page: 2991 year: 1989 end-page: 2997 article-title: Generalized expressions for the calculation of elastic constants by computer simulation publication-title: Journal of Applied Physics – volume: 3 start-page: 1451 year: 2007 end-page: 1463 article-title: Continuous fractional component Monte Carlo: An adaptive biasing method for open system atomistic simulations publication-title: Journal of Chemical Theory and Computation – year: 2001 – volume: 2 start-page: 287 year: 1981 end-page: 303 article-title: AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions publication-title: Journal of Computational Chemistry – volume: 27 start-page: 5432 year: 2015 end-page: 5441 article-title: Flexible metal‐organic frameworks: Recent advances and potential applications publication-title: Advanced Materials – volume: 186 start-page: 51 year: 1991 end-page: 60 article-title: Crystal structures of three basic zinc carboxylates together with infrared and FAB mass spectrometry studies in solution publication-title: Inorganica Chimica Acta – volume: 1 start-page: 445 year: 2010 end-page: 449 article-title: Stress‐based model for the breathing of metal‐organic frameworks publication-title: Journal of Physical Chemistry Letters – volume: 67 year: 2003 article-title: Improved simulation method for the calculation of the elastic constants of crystalline and amorphous systems using strain fluctuations publication-title: Physical Review E – volume: 120 start-page: 11304 year: 2004 end-page: 11315 article-title: Simulation of the effects of chain architecture on the sorption of ethylene in polyethylene publication-title: The Journal of Chemical Physics – volume: 28 year: 2016 article-title: ELATE: An open‐source online application for analysis and visualization of elastic tensors publication-title: Journal of Physics: Condensed Matter – volume: 44 start-page: 5441 year: 2009 end-page: 5451 article-title: Negative thermal expansion: A review publication-title: Journal of Materials Science – volume: 22 start-page: 18045 year: 2016 end-page: 18050 article-title: Predicting multicomponent adsorption isotherms in open‐metal site materials using force field calculations based on energy decomposed density functional theory publication-title: Chemistry ‐ A European Journal – volume: 50 start-page: 1055 year: 1983 end-page: 1076 article-title: Constant pressure molecular dynamics for molecular systems publication-title: Molecular Physics – start-page: 729 year: 2005 end-page: 743 – volume: 27 start-page: 4734 year: 2011 end-page: 4741 article-title: Structural transitions in MIL‐53 (Cr): View from outside and inside publication-title: Langmuir – volume: 48 start-page: 12415 year: 1993 end-page: 12418 article-title: Pressure‐composition isotherms for palladium hydride publication-title: Physical Review B – volume: 4 start-page: 31 year: 1988 end-page: 47 article-title: Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase‐trimethoprim, a drug‐receptor system publication-title: Proteins: Structure, Function, and Bioinformatics – volume: 112 start-page: 5795 year: 2008 end-page: 5802 article-title: Force field validation for molecular dynamics simulations of IRMOF‐1 and other Isoreticular zinc carboxylate coordination polymers publication-title: Journal of Physical Chemistry C – volume: 46 start-page: 4645 year: 1992 end-page: 4649 article-title: Monte Carlo simulations in the isoenthalpic‐isotension‐isobaric ensemble publication-title: Physical Review A – volume: 22 year: 2010 article-title: A first‐principles approach to finite temperature elastic constants publication-title: Journal of Physics: Condensed Matter – volume: 16 start-page: 16060 year: 2014 end-page: 16066 article-title: Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field publication-title: Physical Chemistry Chemical Physics – volume: 118 start-page: 7635 year: 2003 end-page: 7643 article-title: Two general methods for grand canonical ensemble simulation of molecules with internal flexibility publication-title: The Journal of Chemical Physics – volume: 116 start-page: 25797 year: 2012 end-page: 25805 article-title: Zeolite force fields and experimental siliceous frameworks in a comparative infrared study publication-title: Journal of Physical Chemistry C – volume: 118 start-page: 11225 year: 1996 end-page: 11236 article-title: Development and testing of the OPLS all‐atom force field on conformational energetics and properties of organic liquids publication-title: Journal of the American Chemical Society – volume: 120 start-page: 23044 year: 2016 end-page: 23054 article-title: Screening of copper open metal site MOFs for olefin/paraffin separations using DFT‐derived force fields publication-title: Journal of Physical Chemistry C – volume: 47 start-page: 7700 year: 1993 end-page: 7704 article-title: Elastic instability of crystals caused by static atom displacement: A mechanism for solid‐state amorphization publication-title: Physical Review B – volume: 195 start-page: 216 year: 1987 end-page: 222 article-title: Hybrid Monte Carlo publication-title: Physics Letters B – volume: 442 start-page: 31 year: 2006 end-page: 34 article-title: Sound velocities, elastic constants: Temperature dependence publication-title: Materials Science and Engineering A – volume: 10 start-page: 942 year: 2014 end-page: 952 article-title: A comparison of advanced Monte Carlo methods for open systems: CFCMC vs CBMC publication-title: Journal of Chemical Theory and Computation – volume: 110 start-page: 1657 year: 1988 end-page: 1666 article-title: The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin publication-title: Journal of the American Chemical Society – volume: 130 start-page: 406 year: 2008 end-page: 407 article-title: Understanding inflections and steps in carbon dioxide adsorption isotherms in metal‐organic frameworks publication-title: Journal of the American Chemical Society – volume: 133 start-page: 8900 year: 2011 end-page: 8902 article-title: Opening the gate: Framework flexibility in ZIF‐8 explored by experiments and simulations publication-title: Journal of the American Chemical Society – volume: 402 start-page: 276 year: 1999 end-page: 279 article-title: Design and synthesis of an exceptionally stable and highly porous metal‐organic framework publication-title: Nature – volume: 103 start-page: 4508 year: 1999 end-page: 4517 article-title: Novel configurational‐bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United‐atom description of branched alkanes publication-title: The Journal of Physical Chemistry. B – volume: 121 start-page: 441 year: 2017 end-page: 458 article-title: A transferable model for adsorption in MOFs with unsaturated metal sites publication-title: Journal of Physical Chemistry C – volume: 146 year: 2017 article-title: First‐principles study of elastic mechanical responses to applied deformation of metal‐organic frameworks publication-title: The Journal of Chemical Physics – volume: 3 start-page: 986 year: 2015 end-page: 995 article-title: Structural, elastic, thermal, and electronic responses of small‐molecule‐loaded metal‐organic framework materials publication-title: Journal of Materials Chemistry A – volume: 108 year: 2012 article-title: Exceptionally low shear modulus in a prototypical imidazole‐based metal‐organic framework publication-title: Physical Review Letters – volume: 4 start-page: 16503 year: 2014 end-page: 16511 article-title: Force field for ZIF‐8 flexible frameworks: Atomistic simulation of adsorption, diffusion of pure gases as CH4, H2, CO2 and N2 publication-title: RSC Advances – volume: 125 year: 2006 article-title: Theoretical assessment of the elastic constants and hydrogen storage capacity of some metal‐organic framework materials publication-title: The Journal of Chemical Physics – volume: 10 start-page: 880 year: 2014 end-page: 891 article-title: Extension of the universal force field to metal‐organic frameworks publication-title: Journal of Chemical Theory and Computation – year: 1996 – volume: 134 start-page: 15016 year: 2012 end-page: 15021 article-title: Metal‐organic framework materials with ultrahigh surface areas: Is the sky the limit? publication-title: Journal of the American Chemical Society – year: 1954 – volume: 46 start-page: 4496 year: 2007 end-page: 4499 article-title: Exceptional negative thermal expansion in isoreticular metal‐organic frameworks publication-title: Angewandte Chemie, International Edition – volume: 102 start-page: 2569 year: 1998 end-page: 2577 article-title: Transferable potentials for phase equilibria. 1. United‐atom description of n‐alkanes publication-title: The Journal of Physical Chemistry. B – volume: 43 start-page: 6062 year: 2014 end-page: 6096 article-title: Flexible metal‐organic frameworks publication-title: Chemical Society Reviews – volume: 8 start-page: 357 year: 2017 end-page: 363 article-title: Force‐field prediction of materials properties in metal‐organic frameworks publication-title: Journal of Physical Chemistry Letters – volume: 81 start-page: 3684 year: 1984 end-page: 3690 article-title: Molecular dynamics with coupling to an external bath publication-title: The Journal of Chemical Physics – volume: 45 start-page: 1196 year: 1980 end-page: 1199 article-title: Crystal structure and pair potentials: A molecular‐dynamics study publication-title: Physical Review Letters – volume: 36 start-page: 160 year: 1940 end-page: 172 article-title: On the stability of crystal lattices. I publication-title: Mathematical Proceedings of the Cambridge Philosophical Society – volume: 44 start-page: 129 year: 1977 end-page: 138 article-title: Bonded‐atom fragments for describing molecular charge densities publication-title: Theoretica Chimica Acta – volume: 1 start-page: 873 year: 2016 end-page: 886 article-title: Origins of negative gas adsorption publication-title: Chem – volume: 130 start-page: 14294 year: 2008 end-page: 14302 article-title: Thermodynamics of guest‐induced structural transitions in hybrid organic‐inorganic frameworks publication-title: Journal of the American Chemical Society – volume: 7 start-page: 1 year: 2017 end-page: 15 article-title: Recent developments of first‐principles force fields publication-title: WIREs Computational Molecular Science – volume: 29 start-page: 7833 year: 2017 end-page: 7839 article-title: Predicting the mechanical properties of zeolite frameworks by machine learning publication-title: Chemistry of Materials – volume: 16 start-page: 2464 year: 2006 end-page: 2472 article-title: Loading of porous metal‐organic open frameworks with organometallic CVD precursors: Inclusion compounds of the type [LnM]a@MOF‐5 publication-title: Journal of Materials Chemistry – year: 1957 – volume: 36 start-page: 1015 year: 2015 end-page: 1027 article-title: QuickFF: A program for a quick and easy derivation of force fields for metal‐organic frameworks from ab initio input publication-title: Journal of Computational Chemistry – volume: 38 start-page: 1477 year: 2009 end-page: 1504 article-title: Selective gas adsorption and separation in metal‐organic frameworks publication-title: Chemical Society Reviews – volume: 19 start-page: 3181 year: 1978 end-page: 3184 article-title: A new model for calculating atomic charges in molecules publication-title: Tetrahedron Letters – volume: 11 start-page: 5583 year: 2015 end-page: 5597 article-title: A comparison of barostats for the mechanical characterization of metal‐organic frameworks publication-title: Journal of Chemical Theory and Computation – volume: 8 start-page: 3217 year: 2012 end-page: 3231 article-title: Ab initio parametrized force field for the flexible metal‐organic framework MIL‐53(al) publication-title: Journal of Chemical Theory and Computation – volume: 138 year: 2013b article-title: Metal‐organic frameworks with wine‐rack motif: What determines their flexibility and elastic properties? publication-title: The Journal of Chemical Physics – volume: 128 start-page: 10678 year: 2006 end-page: 10679 article-title: The interaction of water with MOF‐5 simulated by molecular dynamics publication-title: Journal of the American Chemical Society – volume: 12 start-page: 247 year: 2011 end-page: 258 article-title: Thermodynamic methods and models to study flexible metal‐organic frameworks publication-title: Chemphyschem – year: 1988 – year: 2017 article-title: Mechanical properties in metal‐organic frameworks: Emerging opportunities and challenges for device functionality and technological applications publication-title: Advanced Materials – volume: 7 start-page: 385 year: 1986 end-page: 395 article-title: An algorithm for the location of transition states publication-title: Journal of Computational Chemistry – volume: 76 year: 2007 article-title: Mechanical properties of cubic zinc carboxylate IRMOF‐1 metal‐organic framework crystals publication-title: Physical Review B – volume: 80 start-page: 4423 year: 1984 end-page: 4428 article-title: Statistical ensembles and molecular dynamics studies of anisotropic solids publication-title: The Journal of Chemical Physics – volume: 17 start-page: 227 year: 2011 end-page: 234 article-title: A force field for dynamic cu‐BTC metal‐organic framework publication-title: Journal of Molecular Modeling – volume: 223 start-page: 144 year: 2015 end-page: 151 article-title: Atomic charges for modeling metal‐organic frameworks: Why and how publication-title: Journal of Solid State Chemistry – volume: 39 start-page: 1253 year: 2013 end-page: 1292 article-title: On the inner workings of Monte Carlo codes publication-title: Molecular Simulation – volume: 46 start-page: 3185 year: 2017 end-page: 3241 article-title: An updated roadmap for the integration of metal‐organic frameworks with electronic devices and chemical sensors publication-title: Chemical Society Reviews – volume: 6 start-page: 4265 year: 2015 end-page: 4269 article-title: Softening upon adsorption in microporous materials: A counterintuitive mechanical response publication-title: Journal of Physical Chemistry Letters – volume: 114 start-page: 16181 year: 2010 end-page: 16186 article-title: Elucidating negative thermal expansion in MOF‐5 publication-title: Journal of Physical Chemistry A – reference: 26270630 - Adv Mater. 2015 Sep 23;27(36):5432-41 – reference: 23635306 - J Am Chem Soc. 2013 May 15;135(19):7172-80 – reference: 24875583 - Chem Soc Rev. 2014 Aug 21;43(16):6062-96 – reference: 18850600 - Angew Chem Int Ed Engl. 2008;47(46):8929-32 – reference: 12418906 - J Am Chem Soc. 2002 Nov 13;124(45):13519-26 – reference: 19133795 - J Phys Chem B. 2009 Feb 5;113(5):1341-52 – reference: 27199239 - J Phys Condens Matter. 2016 Jul 13;28(27):275201 – reference: 11046376 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Feb;61(2):1072-80 – reference: 26631798 - J Chem Theory Comput. 2009 Oct 13;5(10):2866-78 – reference: 18729451 - J Am Chem Soc. 2008 Sep 24;130(38):12808-14 – reference: 22313371 - J Am Chem Soc. 2012 Mar 7;134(9):4207-15 – reference: 27995920 - Nat Chem. 2016 Dec 20;9(1):11-16 – reference: 26580173 - J Chem Theory Comput. 2014 Mar 11;10(3):942-52 – reference: 27580382 - J Chem Theory Comput. 2016 Oct 11;12(10):5215-5225 – reference: 21681315 - Chem Commun (Camb). 2011 Jul 28;47(28):7983-5 – reference: 22070233 - Chem Rev. 2012 Feb 8;112(2):1105-25 – reference: 27557051 - J Am Chem Soc. 1988 Mar 1;110(6):1657-66 – reference: 25479503 - Phys Rev Lett. 2014 Nov 21;113(21):215502 – reference: 20424876 - J Mol Model. 2011 Feb;17(2):227-34 – reference: 17395825 - Science. 2007 Mar 30;315(5820):1828-31 – reference: 18154291 - J Am Chem Soc. 2008 Jan 16;130(2):406-7 – reference: 22280456 - Chem Rev. 2012 Feb 8;112(2):673-4 – reference: 10004776 - Phys Rev B Condens Matter. 1993 Apr 1;47(13):7700-7704 – reference: 25574157 - J Chem Theory Comput. 2014 Oct 14;10(10):4644-4652 – reference: 9905508 - Phys Rev A. 1991 Apr 15;43(8):4100-4103 – reference: 28190918 - Chem Mater. 2016 Nov 22;28(22):8296-8304 – reference: 28661672 - J Chem Theory Comput. 2017 Aug 8;13(8):3722-3730 – reference: 28286598 - J Phys Chem C Nanomater Interfaces. 2017 Mar 2;121(8):4659-4673 – reference: 16965046 - J Chem Phys. 2006 Aug 28;125(8):084714 – reference: 17487904 - Angew Chem Int Ed Engl. 2007;46(24):4496-9 – reference: 26633216 - J Chem Theory Comput. 2007 Jul;3(4):1451-63 – reference: 21275013 - Chemphyschem. 2011 Feb 7;12(2):247-58 – reference: 3054871 - Proteins. 1988;4(1):31-47 – reference: 27841411 - Chem Soc Rev. 2017 Jan 3;46(1):126-157 – reference: 15268177 - J Chem Phys. 2004 Jun 22;120(24):11432-41 – reference: 22463647 - Phys Rev Lett. 2012 Mar 2;108(9):095502 – reference: 26972778 - Phys Chem Chem Phys. 2016 Apr 7;18(13):9079-87 – reference: 12802325 - Nature. 2003 Jun 12;423(6941):705-14 – reference: 27805761 - Chemistry. 2016 Dec 12;22(50):18045-18050 – reference: 26580059 - J Chem Theory Comput. 2014 Feb 11;10(2):880-91 – reference: 16123294 - Science. 2005 Aug 26;309(5739):1350-4 – reference: 19384449 - Chem Soc Rev. 2009 May;38(5):1477-504 – reference: 26538042 - J Phys Chem Lett. 2015 Nov 5;6(21):4265-9 – reference: 26465320 - Dalton Trans. 2016 Mar 14;45(10):4162-8 – reference: 26642981 - J Chem Theory Comput. 2015 Dec 8;11(12):5583-97 – reference: 29131647 - J Chem Theory Comput. 2017 Dec 12;13(12):5861-5873 – reference: 29149545 - Adv Mater. 2017 Nov 17;:null – reference: 11799235 - Science. 2002 Jan 18;295(5554):469-72 – reference: 26283122 - J Phys Chem Lett. 2013 Jun 6;4(11):1861-5 – reference: 26700628 - J Phys Chem Lett. 2010 Jan 7;1(1):445-9 – reference: 28800233 - J Chem Theory Comput. 2017 Sep 12;13(9):4492-4503 – reference: 10007607 - Phys Rev B Condens Matter. 1993 Nov 1;48(17):12415-12418 – reference: 26660395 - Dalton Trans. 2016 Mar 14;45(10):4309-15 – reference: 21553843 - J Am Chem Soc. 2011 Jun 15;133(23):8900-2 – reference: 10024237 - Science. 1999 Feb 19;283(5405):1148-50 – reference: 27877465 - Sci Technol Adv Mater. 2012 Feb 2;13(1):013001 – reference: 26592125 - J Chem Theory Comput. 2012 Aug 14;8(8):2844-67 – reference: 9908679 - Phys Rev A. 1992 Oct 15;46(8):4645-4649 – reference: 26613499 - J Chem Theory Comput. 2010 Aug 10;6(8):2455-68 – reference: 21690861 - J Phys Condens Matter. 2006 Aug 16;18(32):S1737-50 – reference: 25740170 - J Comput Chem. 2015 May 15;36(13):1015-27 – reference: 22906112 - J Am Chem Soc. 2012 Sep 12;134(36):15016-21 – reference: 23000994 - Nat Chem. 2012 Oct;4(10):810-6 – reference: 26605731 - J Chem Theory Comput. 2012 Sep 11;8(9):3217-31 – reference: 21417285 - Langmuir. 2011 Apr 19;27(8):4734-41 – reference: 28008758 - J Phys Chem Lett. 2017 Jan 19;8(2):357-363 – reference: 23215398 - Phys Rev Lett. 2012 Nov 9;109(19):195502 – reference: 21693916 - J Phys Condens Matter. 2009 Mar 18;21(11):115401 – reference: 21978134 - Chem Rev. 2012 Feb 8;112(2):869-932 – reference: 17301955 - J Comput Chem. 2007 May;28(7):1169-76 – reference: 26845644 - Chem Commun (Camb). 2016 Mar 4;52(18):3639-42 – reference: 28452388 - Chem Soc Rev. 2017 Jun 6;46(11):3185-3241 – reference: 25793835 - Phys Rev Lett. 2015 Mar 6;114(9):096405 – reference: 27049950 - Nature. 2016 Apr 21;532(7599):348-52 – reference: 12636504 - Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jan;67(1 Pt 1):011505 – reference: 18821758 - J Am Chem Soc. 2008 Oct 29;130(43):14294-302 – reference: 27731872 - Phys Chem Chem Phys. 2016 Oct 26;18(42):29316-29329 – reference: 23495719 - Langmuir. 2013 Apr 16;29(15):4866-76 – reference: 16910652 - J Am Chem Soc. 2006 Aug 23;128(33):10678-9 – reference: 10035704 - Phys Rev Lett. 1987 Dec 28;59(26):2987-2990 – reference: 24964841 - Phys Chem Chem Phys. 2014 Aug 14;16(30):16060-6 – reference: 23656148 - J Chem Phys. 2013 May 7;138(17):174703 – reference: 15268158 - J Chem Phys. 2004 Jun 15;120(23):11304-15 – reference: 21393743 - J Phys Condens Matter. 2010 Jun 9;22(22):225404 |
SSID | ssj0000491231 |
Score | 2.399403 |
SecondaryResourceType | review_article |
Snippet | Classical force field simulations can be used to study structural, diffusion, and adsorption properties of metal–organic frameworks (MOFs). To account for the... Classical force field simulations can be used to study structural, diffusion, and adsorption properties of metal-organic frameworks (MOFs). To account for the... |
SourceID | pubmed wiley |
SourceType | Index Database Publisher |
StartPage | e1363 |
SubjectTerms | flexible force fields metal‐organic frameworks modeling parameterizing |
Title | On flexible force fields for metal–organic frameworks: Recent developments and future prospects |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1363 https://www.ncbi.nlm.nih.gov/pubmed/30008812 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWBBvCkveWBgiRpiO41hQhVVhdRSCSq6RX5OEBApYuU_8A_5JdzFTdqRxUrkZDnr7r6zvvuOkAujIB56B44UCxtxZmWUuZ6KHA5H0olzohKrHo3T4ZTfz8SsRW7qXpigD9FcuKFnVPEaHVzpsrsUDf0yryWStNgaWcfWWpzbkPBJc8EC0BeiclVw9YSMUHqtVhaKk27z90rmWUWnVXoZbJOtBS6kt-Egd0jLFbtko1-PY9sj6qGgHtUr9YujgDQNrMg-K_GFvjoA0b_fP2FIk6G-5lyV1xSQIWQWapf0oJKqwtIgJ0IhhFbtluU-mQ7unvrDaDEfITKQ5lkklWZOWABw3EKpeYVqfJILppHcLTlEDg7lg8kS5qyTmhudca-Y0ErFPuWeHZB28Va4I0KlEalkimnuwaVVTwMOsJm0DvCkNHHaIYfBSvl7EMHIGaIHQAcdclmZrdkIOshJjhbO0cL5c3_0iA_H___0hGwCMskCL_aUtOcfn-4Msv9cn1enDOt4MvoD5J-tDQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMetUoayIN6UpwcGlqglttMYsaAKVKAtSLSiW-RXJhoQKWLlO_AN-STcxU3akSVKlGQ56-5-Z53_R8iZURAPUweO1BY24MzKIHYdFTgcjqRD50QhVj0YRr0xv5-ISY1clWdhvD5EteGGnlHEa3Rw3JBuLVRDv8w0xy4ttkJWOXA5NvSF_KnaYQH2hbBcVFwdIQPUXiulhdphq_p7KfUs42mRX243yPocDOm1X8lNUnPZFml0y3ls20Q9ZjRF-Ur96iigpoErtp_l-ECnDij69_vHT2kyNC2brvJLCmgIqYXaRX9QTlVmqdcToRBDi_OW-Q4Z396Mur1gPiAhMJDnWSCVZk5YIDhuoda8QDk-yQXT2N0tOYQODvWDiUPmrJOaGx3zVDGhlWqnEU_ZLqlnb5nbJ1QaEUmmmOYp-LTqaAABG0vrACilaUdNsuetlLx7FYyEIT4AHjTJeWG26oUXQg4TtHCCFk5euoNnvDn4_6enpNEbDfpJ_274cEjWAFNi3yR7ROqzj093DCgw0yfFiv8BROuvdA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMetUiRgQbwpTw8MLFFDbKcxTKhQlUdLJajoFvk50VCRIla-A9-QT8I5btKOLFEiJ8tZd_ezc_4fQmdKQDy0BhwpZDqgRPMgMS0RGNccSUbGsEKsutePu0N6P2KjGroqz8J4fYhqw815RhGvnYNPtG3ORUO_1Dh3RVpkCS27n33OKyM6qDZYAH0hKhcLrhbjgZNeK5WFwqhZfb2QeRbptEgvnQ20PuNCfO0nchPVTLaFVttlO7ZtJJ4ybJ16pXwzGEhTwdVVn-XuAY8NQPTv949v0qSwLWuu8ksMZAiZBet5eVCORaaxlxPBEEKL45b5Dhp2bl_a3WDWHyFQkOZJwIUkhmkAOKphqXnh1Pg4ZUS64m5OIXJQWD6oJCJGGy6pkgm1gjApRGhjaskuqmfvmdlHmCsWcyKIpBZcWrQkcIBOuDbAk1yFcQPteSulEy-CkRJHD0AHDXRemK0a8DrIUeosnDoLp6_t3rO7Ofj_q6doZXDTSR_v-g-HaA0gJfElskeoPv34NMcAAlN5Ukz4H3R1rp0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+flexible+force+fields+for+metal%E2%80%93organic+frameworks%3A+Recent+developments+and+future+prospects&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Heinen%2C+Jurn&rft.au=Dubbeldam%2C+David&rft.date=2018-07-01&rft.pub=Wiley+Periodicals%2C+Inc&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=8&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fwcms.1363&rft.externalDBID=10.1002%252Fwcms.1363&rft.externalDocID=WCMS1363 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon |