Cyanidin‐3‐O‐glucoside improves non‐alcoholic fatty liver disease by promoting PINK1‐mediated mitophagy in mice

Background and Purpose Identifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic strategy for non‐alcoholic fatty liver disease. Here, we investigated the effects of cyanidin‐3‐O‐glucoside (C3G) on non‐alcoholic fatty liver...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of pharmacology Vol. 177; no. 15; pp. 3591 - 3607
Main Authors Li, Xinwei, Shi, Zhen, Zhu, Yiwei, Shen, Taiyu, Wang, Heyuan, Shui, Guanghou, Loor, Juan J., Fang, Zhiyuan, Chen, Meng, Wang, Xinghui, Peng, Zhicheng, Song, Yuxiang, Wang, Zhe, Du, Xiliang, Liu, Guowen
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.08.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background and Purpose Identifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic strategy for non‐alcoholic fatty liver disease. Here, we investigated the effects of cyanidin‐3‐O‐glucoside (C3G) on non‐alcoholic fatty liver disease (NAFLD) and the underlying mechanism. Experimental Approach Non‐alcoholic fatty liver disease was induced by a high‐fat diet for 16 weeks. C3G was administered during the last 4 weeks. In vivo, recombinant adenoviruses and AAV8 were used for overexpression and knockdown of PTEN‐induced kinase 1 (PINK1), respectively. AML‐12 and HepG2 cells were used for the mechanism study. Key Results C3G administration suppressed hepatic oxidative stress, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and steatosis and improved systemic glucose metabolism in mice with NAFLD. These effects of C3G were also observed in palmitic acid‐treated AML‐12 cells and hepatocytes from NAFLD patients. Mechanistic investigations revealed that C3G increased PINK1/Parkin expression and mitochondrial localization and promoted PINK1‐mediated mitophagy to clear damaged mitochondria. Knockdown of hepatic PINK1 abolished the mitophagy‐inducing effect of C3G, which blunted the beneficial effects of C3G on oxidative stress, NLRP3 inflammasome activation, hepatic steatosis and glucose metabolism. Conclusion and Implications These results demonstrate that PINK1‐mediated mitophagy plays an essential role in the ability of C3G to alleviate NAFLD and suggest that C3G may be a potential drug candidate for NAFLD treatment.
AbstractList Background and PurposeIdentifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic strategy for non‐alcoholic fatty liver disease. Here, we investigated the effects of cyanidin‐3‐O‐glucoside (C3G) on non‐alcoholic fatty liver disease (NAFLD) and the underlying mechanism.Experimental ApproachNon‐alcoholic fatty liver disease was induced by a high‐fat diet for 16 weeks. C3G was administered during the last 4 weeks. In vivo, recombinant adenoviruses and AAV8 were used for overexpression and knockdown of PTEN‐induced kinase 1 (PINK1), respectively. AML‐12 and HepG2 cells were used for the mechanism study.Key ResultsC3G administration suppressed hepatic oxidative stress, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and steatosis and improved systemic glucose metabolism in mice with NAFLD. These effects of C3G were also observed in palmitic acid‐treated AML‐12 cells and hepatocytes from NAFLD patients. Mechanistic investigations revealed that C3G increased PINK1/Parkin expression and mitochondrial localization and promoted PINK1‐mediated mitophagy to clear damaged mitochondria. Knockdown of hepatic PINK1 abolished the mitophagy‐inducing effect of C3G, which blunted the beneficial effects of C3G on oxidative stress, NLRP3 inflammasome activation, hepatic steatosis and glucose metabolism.Conclusion and ImplicationsThese results demonstrate that PINK1‐mediated mitophagy plays an essential role in the ability of C3G to alleviate NAFLD and suggest that C3G may be a potential drug candidate for NAFLD treatment.
Identifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic strategy for non-alcoholic fatty liver disease. Here, we investigated the effects of cyanidin-3-O-glucoside (C3G) on non-alcoholic fatty liver disease (NAFLD) and the underlying mechanism.BACKGROUND AND PURPOSEIdentifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic strategy for non-alcoholic fatty liver disease. Here, we investigated the effects of cyanidin-3-O-glucoside (C3G) on non-alcoholic fatty liver disease (NAFLD) and the underlying mechanism.Non-alcoholic fatty liver disease was induced by a high-fat diet for 16 weeks. C3G was administered during the last 4 weeks. In vivo, recombinant adenoviruses and AAV8 were used for overexpression and knockdown of PTEN-induced kinase 1 (PINK1), respectively. AML-12 and HepG2 cells were used for the mechanism study.EXPERIMENTAL APPROACHNon-alcoholic fatty liver disease was induced by a high-fat diet for 16 weeks. C3G was administered during the last 4 weeks. In vivo, recombinant adenoviruses and AAV8 were used for overexpression and knockdown of PTEN-induced kinase 1 (PINK1), respectively. AML-12 and HepG2 cells were used for the mechanism study.C3G administration suppressed hepatic oxidative stress, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and steatosis and improved systemic glucose metabolism in mice with NAFLD. These effects of C3G were also observed in palmitic acid-treated AML-12 cells and hepatocytes from NAFLD patients. Mechanistic investigations revealed that C3G increased PINK1/Parkin expression and mitochondrial localization and promoted PINK1-mediated mitophagy to clear damaged mitochondria. Knockdown of hepatic PINK1 abolished the mitophagy-inducing effect of C3G, which blunted the beneficial effects of C3G on oxidative stress, NLRP3 inflammasome activation, hepatic steatosis and glucose metabolism.KEY RESULTSC3G administration suppressed hepatic oxidative stress, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and steatosis and improved systemic glucose metabolism in mice with NAFLD. These effects of C3G were also observed in palmitic acid-treated AML-12 cells and hepatocytes from NAFLD patients. Mechanistic investigations revealed that C3G increased PINK1/Parkin expression and mitochondrial localization and promoted PINK1-mediated mitophagy to clear damaged mitochondria. Knockdown of hepatic PINK1 abolished the mitophagy-inducing effect of C3G, which blunted the beneficial effects of C3G on oxidative stress, NLRP3 inflammasome activation, hepatic steatosis and glucose metabolism.These results demonstrate that PINK1-mediated mitophagy plays an essential role in the ability of C3G to alleviate NAFLD and suggest that C3G may be a potential drug candidate for NAFLD treatment.CONCLUSION AND IMPLICATIONSThese results demonstrate that PINK1-mediated mitophagy plays an essential role in the ability of C3G to alleviate NAFLD and suggest that C3G may be a potential drug candidate for NAFLD treatment.
Background and Purpose Identifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic strategy for non‐alcoholic fatty liver disease. Here, we investigated the effects of cyanidin‐3‐O‐glucoside (C3G) on non‐alcoholic fatty liver disease (NAFLD) and the underlying mechanism. Experimental Approach Non‐alcoholic fatty liver disease was induced by a high‐fat diet for 16 weeks. C3G was administered during the last 4 weeks. In vivo, recombinant adenoviruses and AAV8 were used for overexpression and knockdown of PTEN‐induced kinase 1 (PINK1), respectively. AML‐12 and HepG2 cells were used for the mechanism study. Key Results C3G administration suppressed hepatic oxidative stress, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and steatosis and improved systemic glucose metabolism in mice with NAFLD. These effects of C3G were also observed in palmitic acid‐treated AML‐12 cells and hepatocytes from NAFLD patients. Mechanistic investigations revealed that C3G increased PINK1/Parkin expression and mitochondrial localization and promoted PINK1‐mediated mitophagy to clear damaged mitochondria. Knockdown of hepatic PINK1 abolished the mitophagy‐inducing effect of C3G, which blunted the beneficial effects of C3G on oxidative stress, NLRP3 inflammasome activation, hepatic steatosis and glucose metabolism. Conclusion and Implications These results demonstrate that PINK1‐mediated mitophagy plays an essential role in the ability of C3G to alleviate NAFLD and suggest that C3G may be a potential drug candidate for NAFLD treatment.
Identifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic strategy for non-alcoholic fatty liver disease. Here, we investigated the effects of cyanidin-3-O-glucoside (C3G) on non-alcoholic fatty liver disease (NAFLD) and the underlying mechanism. Non-alcoholic fatty liver disease was induced by a high-fat diet for 16 weeks. C3G was administered during the last 4 weeks. In vivo, recombinant adenoviruses and AAV8 were used for overexpression and knockdown of PTEN-induced kinase 1 (PINK1), respectively. AML-12 and HepG2 cells were used for the mechanism study. C3G administration suppressed hepatic oxidative stress, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and steatosis and improved systemic glucose metabolism in mice with NAFLD. These effects of C3G were also observed in palmitic acid-treated AML-12 cells and hepatocytes from NAFLD patients. Mechanistic investigations revealed that C3G increased PINK1/Parkin expression and mitochondrial localization and promoted PINK1-mediated mitophagy to clear damaged mitochondria. Knockdown of hepatic PINK1 abolished the mitophagy-inducing effect of C3G, which blunted the beneficial effects of C3G on oxidative stress, NLRP3 inflammasome activation, hepatic steatosis and glucose metabolism. These results demonstrate that PINK1-mediated mitophagy plays an essential role in the ability of C3G to alleviate NAFLD and suggest that C3G may be a potential drug candidate for NAFLD treatment.
Author Shui, Guanghou
Wang, Zhe
Loor, Juan J.
Wang, Heyuan
Shi, Zhen
Peng, Zhicheng
Du, Xiliang
Li, Xinwei
Shen, Taiyu
Chen, Meng
Liu, Guowen
Fang, Zhiyuan
Wang, Xinghui
Zhu, Yiwei
Song, Yuxiang
AuthorAffiliation 3 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China
1 Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine Jilin University Changchun China
2 The First Hospital of Jilin University Jilin University Changchun China
4 Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences University of Illinois at Urbana‐Champaign Urbana Illinois USA
AuthorAffiliation_xml – name: 3 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China
– name: 4 Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences University of Illinois at Urbana‐Champaign Urbana Illinois USA
– name: 1 Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine Jilin University Changchun China
– name: 2 The First Hospital of Jilin University Jilin University Changchun China
Author_xml – sequence: 1
  givenname: Xinwei
  surname: Li
  fullname: Li, Xinwei
  organization: Jilin University
– sequence: 2
  givenname: Zhen
  surname: Shi
  fullname: Shi, Zhen
  organization: Jilin University
– sequence: 3
  givenname: Yiwei
  surname: Zhu
  fullname: Zhu, Yiwei
  organization: Jilin University
– sequence: 4
  givenname: Taiyu
  surname: Shen
  fullname: Shen, Taiyu
  organization: Jilin University
– sequence: 5
  givenname: Heyuan
  surname: Wang
  fullname: Wang, Heyuan
  organization: Jilin University
– sequence: 6
  givenname: Guanghou
  surname: Shui
  fullname: Shui, Guanghou
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Juan J.
  surname: Loor
  fullname: Loor, Juan J.
  organization: University of Illinois at Urbana‐Champaign
– sequence: 8
  givenname: Zhiyuan
  surname: Fang
  fullname: Fang, Zhiyuan
  organization: Jilin University
– sequence: 9
  givenname: Meng
  surname: Chen
  fullname: Chen, Meng
  organization: Jilin University
– sequence: 10
  givenname: Xinghui
  surname: Wang
  fullname: Wang, Xinghui
  organization: Jilin University
– sequence: 11
  givenname: Zhicheng
  surname: Peng
  fullname: Peng, Zhicheng
  organization: Jilin University
– sequence: 12
  givenname: Yuxiang
  surname: Song
  fullname: Song, Yuxiang
  organization: Jilin University
– sequence: 13
  givenname: Zhe
  surname: Wang
  fullname: Wang, Zhe
  organization: Jilin University
– sequence: 14
  givenname: Xiliang
  surname: Du
  fullname: Du, Xiliang
  email: duxiliang@jlu.edu.cn
  organization: Jilin University
– sequence: 15
  givenname: Guowen
  surname: Liu
  fullname: Liu, Guowen
  email: liuguowen2008@163.com
  organization: Jilin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32343398$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFu1DAQhi1URLeFAy-ALHGBQ1o7TmLnglRWQCsq2gOcLcee3XXl2MFOFuXGI_CMPAlud4ugAksjy5pvfv-j_wgd-OABoeeUnNB8Trthc0JrItgjtKAVb4qaCXqAFoQQXlAqxCE6SumGkNzk9RN0yEpWMdaKBZqXs_LWWP_z-w-W6yrX2k06JGsA236IYQsJ5w9zQzkdNsFZjVdqHGfs7BYiNjaBSoC7GWe6D6P1a3x98ekjzSM9GKtGMLi3Yxg2aj1j6_NDw1P0eKVcgmf7-xh9ef_u8_K8uLz6cLE8uyx0TVpWtIJw02rDu67sNOEsbyG4qlpmuALDWlORrjSUVUo0NWOs0nwlFNCGQqtUw47Rm53uMHXZjQY_RuXkEG2v4iyDsvLvjrcbuQ5byVkliBBZ4NVeIIavE6RR9jZpcE55CFOSJWvrhgh-h758gN6EKfq8niyrkjYNoyXN1Is_Hf22cp9KBk53gI4hpQgrqe2oRhtuDVonKZG3ucucu7zLPU-8fjBxL_ovdq_-zTqY_w_Kt9fnu4lfqUXCZA
CitedBy_id crossref_primary_10_1038_s41420_022_01022_4
crossref_primary_10_1080_1061186X_2021_1909051
crossref_primary_10_3390_antiox11050893
crossref_primary_10_1089_ten_teb_2024_0002
crossref_primary_10_3390_ijms232415931
crossref_primary_10_3389_fcell_2021_686820
crossref_primary_10_3168_jds_2020_19969
crossref_primary_10_1155_2022_8566342
crossref_primary_10_3168_jds_2021_21774
crossref_primary_10_3390_ijms242417514
crossref_primary_10_1016_j_bbadis_2024_167259
crossref_primary_10_1080_10408398_2022_2123444
crossref_primary_10_3390_cells10061395
crossref_primary_10_1016_j_foodchem_2024_140264
crossref_primary_10_1002_poh2_95
crossref_primary_10_1007_s12035_022_02873_9
crossref_primary_10_1016_j_biopha_2022_113968
crossref_primary_10_3389_fnut_2023_1207751
crossref_primary_10_3168_jds_2021_20892
crossref_primary_10_1016_j_bbadis_2025_167739
crossref_primary_10_1002_fft2_255
crossref_primary_10_1155_2021_4045819
crossref_primary_10_1002_ptr_7932
crossref_primary_10_1039_D1FO03541J
crossref_primary_10_1016_j_jare_2024_01_027
crossref_primary_10_1039_D3FO02653A
crossref_primary_10_1002_jcp_31069
crossref_primary_10_1590_acb381023
crossref_primary_10_1080_15548627_2022_2046457
crossref_primary_10_1126_sciadv_abj0722
crossref_primary_10_3390_molecules27165166
crossref_primary_10_1021_acs_jafc_3c04692
crossref_primary_10_1186_s13018_023_04092_x
crossref_primary_10_1186_s40001_024_01809_4
crossref_primary_10_1016_j_bbrc_2025_151672
crossref_primary_10_1002_iid3_947
crossref_primary_10_3390_antiox13060729
crossref_primary_10_1016_j_actbio_2025_01_019
crossref_primary_10_1016_j_phymed_2024_156056
crossref_primary_10_1016_j_taap_2022_116074
crossref_primary_10_1111_jch_14650
crossref_primary_10_3390_nu16050694
crossref_primary_10_3390_ijms22094459
crossref_primary_10_1002_ptr_7762
crossref_primary_10_2174_0929867329666221007115809
crossref_primary_10_3168_jds_2020_19150
crossref_primary_10_3389_fphar_2021_796207
crossref_primary_10_3389_fphar_2021_775528
crossref_primary_10_1016_j_biocel_2021_106013
crossref_primary_10_1021_acs_jafc_1c05213
crossref_primary_10_1080_02648725_2023_2193482
crossref_primary_10_3389_fphar_2022_1005312
crossref_primary_10_1038_s41420_022_01021_5
crossref_primary_10_1007_s10555_025_10251_9
crossref_primary_10_1021_acs_jafc_3c09132
crossref_primary_10_4254_wjh_v15_i12_1272
crossref_primary_10_1016_j_intimp_2024_113233
crossref_primary_10_1186_s12964_024_01618_6
crossref_primary_10_3390_ijms21207704
crossref_primary_10_1080_15548627_2023_2179781
crossref_primary_10_1002_fsn3_3975
crossref_primary_10_1016_j_freeradbiomed_2024_04_214
crossref_primary_10_1016_j_freeradbiomed_2022_11_044
crossref_primary_10_1016_j_heliyon_2023_e15347
crossref_primary_10_3389_fendo_2024_1374644
crossref_primary_10_1016_j_jff_2021_104811
crossref_primary_10_1038_s41392_023_01503_7
crossref_primary_10_3390_ijms222111422
crossref_primary_10_1021_acs_jafc_0c07546
crossref_primary_10_1016_j_clnu_2024_07_004
crossref_primary_10_1016_j_jff_2024_106143
crossref_primary_10_1016_j_biopha_2023_114991
crossref_primary_10_1016_j_lfs_2023_121943
crossref_primary_10_3390_ijms26062709
crossref_primary_10_9724_kfcs_2023_39_3_178
crossref_primary_10_1016_j_abb_2025_110348
crossref_primary_10_1186_s40779_024_00536_5
crossref_primary_10_1002_ptr_8276
crossref_primary_10_1016_j_bbrc_2024_150344
crossref_primary_10_1016_j_phrs_2023_106925
crossref_primary_10_1097_CM9_0000000000002263
crossref_primary_10_1155_2021_6611126
crossref_primary_10_18632_aging_205250
crossref_primary_10_3390_ijms232315109
crossref_primary_10_1039_D2FO03019E
crossref_primary_10_1038_s12276_023_01047_4
crossref_primary_10_1016_j_apsb_2021_12_012
Cites_doi 10.1111/j.1476-5381.2010.00872.x
10.1073/pnas.1107332108
10.1038/cddis.2014.162
10.1152/ajpgi.00108.2015
10.1016/j.ceb.2017.03.013
10.1038/nature09663
10.1038/nature14893
10.1016/j.jnutbio.2010.12.013
10.1002/hep.28820
10.1111/bph.13844
10.1111/bph.14112
10.4196/kjpp.2012.16.4.249
10.1053/j.gastro.2015.09.042
10.1111/bph.14153
10.1111/bph.13933
10.1194/jlr.D029546
10.1146/annurev-cancerbio-030518-055835
10.1016/j.cell.2015.12.057
10.1038/nm.4153
10.1038/s41467-019-09598-9
10.1016/j.celrep.2016.02.053
10.3168/jds.2018-14546
10.1080/10408398.2014.952399
10.1111/bph.12955
10.1038/nature13961
10.1002/hep.26226
10.1016/j.cmet.2015.04.004
10.1016/j.cmet.2010.04.005
10.4161/auto.26856
10.1371/journal.pone.0142438
10.1016/j.jhep.2015.11.022
10.1002/hep.27420
10.1172/JCI74942
10.1093/nar/gkx1121
10.1002/hep4.1056
10.1016/j.freeradbiomed.2011.10.483
10.1111/liv.12975
10.4161/auto.5.8.10050
10.1111/bph.12856
10.4049/jimmunol.1601920
10.1016/j.freeradbiomed.2016.04.015
10.1016/j.jnutbio.2003.07.004
10.1038/ncb2718
10.1053/j.gastro.2015.04.043
10.1111/bph.14748
10.1002/hep.24127
10.1080/15548627.2015.1100356
10.1038/nature07976
10.1002/hep.28431
10.3168/jds.2017-13234
10.1089/jmf.2006.147
ContentType Journal Article
Copyright 2020 The British Pharmacological Society
2020 The British Pharmacological Society.
Copyright_xml – notice: 2020 The British Pharmacological Society
– notice: 2020 The British Pharmacological Society.
DBID AAYXX
CITATION
NPM
7QP
7TK
K9.
NAPCQ
7X8
5PM
DOI 10.1111/bph.15083
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Li et al
EISSN 1476-5381
EndPage 3607
ExternalDocumentID PMC7348088
32343398
10_1111_bph_15083
BPH15083
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Talents Cultivation Program
– fundername: China Postdoctoral Science Foundation
  funderid: 2019TQ0115; 2019M661216
– fundername: National Key Research and Development Program
  funderid: 2016YFD0501206
– fundername: National Natural Science Foundation of China
  funderid: 31672621; 31772810
– fundername: National Key Research and Development Program
  grantid: 2016YFD0501206
– fundername: China Postdoctoral Science Foundation
  grantid: 2019TQ0115
– fundername: National Natural Science Foundation of China
  grantid: 31672621
– fundername: National Natural Science Foundation of China
  grantid: 31772810
– fundername: China Postdoctoral Science Foundation
  grantid: 2019M661216
– fundername: ;
– fundername: ;
  grantid: 2019TQ0115; 2019M661216
– fundername: ;
  grantid: 31672621; 31772810
– fundername: ;
  grantid: 2016YFD0501206
GroupedDBID ---
.3N
.55
.GJ
05W
0R~
1OC
23N
24P
2WC
31~
33P
36B
3O-
3SF
3V.
4.4
52U
52V
53G
5GY
6J9
7RV
7X7
8-0
8-1
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABPVW
ABQWH
ABUWG
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACUHS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
B0M
BAFTC
BAWUL
BBNVY
BENPR
BFHJK
BHBCM
BHPHI
BKEYQ
BMXJE
BPHCQ
BRXPI
BVXVI
C45
CAG
CCPQU
COF
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBC
EBD
EBS
ECV
EJD
EMB
EMK
EMOBN
ENC
ESX
EX3
F5P
FUBAC
FYUFA
G-S
GODZA
GX1
H.X
HCIFZ
HGLYW
HMCUK
HYE
HZ~
J5H
KBYEO
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LSO
LUTES
LW6
LYRES
M1P
M7P
MEWTI
MK0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
N9A
NAPCQ
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P4E
PQQKQ
PROAC
PSQYO
Q.N
Q2X
QB0
RIG
ROL
RPM
RWI
SJN
SUPJJ
SV3
TEORI
TR2
TUS
UKHRP
UPT
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WVDHM
WXSBR
X7M
XV2
Y6R
YHG
ZGI
ZXP
ZZTAW
~8M
~S-
AAFWJ
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
PHGZM
PHGZT
NPM
7QP
7TK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
5PM
ID FETCH-LOGICAL-c5093-9807d9cd7bb2bc07300187a493d7aed39d40b2d134a8653334c7f8ae161e9aa63
ISSN 0007-1188
1476-5381
IngestDate Thu Aug 21 18:20:09 EDT 2025
Thu Jul 10 19:29:52 EDT 2025
Fri Jul 25 19:31:12 EDT 2025
Thu Apr 03 06:58:34 EDT 2025
Tue Jul 01 03:00:41 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Wed Jan 22 16:33:03 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License 2020 The British Pharmacological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5093-9807d9cd7bb2bc07300187a493d7aed39d40b2d134a8653334c7f8ae161e9aa63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://bpspubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bph.15083
PMID 32343398
PQID 2421663121
PQPubID 42104
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7348088
proquest_miscellaneous_2395608788
proquest_journals_2421663121
pubmed_primary_32343398
crossref_citationtrail_10_1111_bph_15083
crossref_primary_10_1111_bph_15083
wiley_primary_10_1111_bph_15083_BPH15083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Hoboken
PublicationTitle British journal of pharmacology
PublicationTitleAlternate Br J Pharmacol
PublicationYear 2020
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 2005; 290
2010; 11
2017; 1
2019; 3
2015; 149
2015; 125
2019; 10
2018; 101
2017; 45
2015; 10
2011; 53
2016; 100
2015; 309
2017; 174
2014; 2014
2012; 16
2010; 160
2017; 198
2015; 524
2007; 10
2016; 14
2016; 36
2016; 164
2012; 53
2016; 12
2012; 52
2018; 46
2009; 458
2018; 175
2015; 172
2014; 5
2013; 15
2013; 58
2011; 108
2011; 469
2015; 61
2004; 15
2017; 57
2015; 21
2016; 64
2009; 5
2012; 23
2014; 10
2019; 176
2016; 150
2016; 22
e_1_2_11_32_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
LeCluyse E. L. (e_1_2_11_29_1) 2005; 290
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 10
  start-page: 1
  year: 2019
  end-page: 18
  article-title: The class 3 PI3K coordinates autophagy and mitochondrial lipid catabolism by controlling nuclear receptor PPARα
  publication-title: Nature Communications
– volume: 172
  start-page: 3189
  year: 2015
  end-page: 3193
  article-title: Implementing guidelines on reporting research using animals (ARRIVE etc.): New requirements for publication in BJP
  publication-title: British Journal of Pharmacology
– volume: 36
  start-page: 5
  year: 2016
  end-page: 20
  article-title: Natural antioxidants for non‐alcoholic fatty liver disease: Molecular targets and clinical perspectives
  publication-title: Liver International
– volume: 175
  start-page: 407
  year: 2018
  end-page: 411
  article-title: Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the
  publication-title: British Journal of Pharmacology
– volume: 10
  start-page: 552
  year: 2007
  end-page: 556
  article-title: Anti‐obesity and hypolipidemic effects of black soybean anthocyanins
  publication-title: Journal of Medicinal Food
– volume: 290
  start-page: 207
  year: 2005
  end-page: 229
  article-title: Isolation and culture of primary human hepatocytes
  publication-title: Methods in Molecular Biology
– volume: 174
  start-page: 3032
  year: 2017
  end-page: 3044
  article-title: Morin, a novel liver X receptor α/β dual antagonist, has potent therapeutic efficacy for nonalcoholic fatty liver diseases
  publication-title: British Journal of Pharmacology
– volume: 469
  start-page: 221
  year: 2011
  end-page: 225
  article-title: A role for mitochondria in NLRP3 inflammasome activation
  publication-title: Nature
– volume: 5
  start-page: 1213
  year: 2009
  end-page: 1214
  article-title: Mitochondrial autophagy as a compensatory response to PINK1 deficiency
  publication-title: Autophagy
– volume: 16
  start-page: 249
  year: 2012
  end-page: 253
  article-title: The safety and pharmacokinetics of cyanidin‐3‐glucoside after 2‐week administration of black bean seed coat extract in healthy subjects
  publication-title: Korean J Physiol Pharmacol
– volume: 101
  start-page: 9544
  year: 2018
  end-page: 9558
  article-title: Adaptations of hepatic lipid metabolism and mitochondria in dairy cows with mild fatty liver
  publication-title: Journal of Dairy Science
– volume: 174
  start-page: 2358
  year: 2017
  end-page: 2372
  article-title: Hydroxyeicosapentaenoic acids and epoxyeicosatetraenoic acids attenuate early occurrence of nonalcoholic fatty liver disease
  publication-title: British Journal of Pharmacology
– volume: 14
  start-page: 2611
  year: 2016
  end-page: 2623
  article-title: Saturated fatty acids engage an IRE1α‐dependent pathway to activate the NLRP3 inflammasome in myeloid cells
  publication-title: Cell Reports
– volume: 160
  start-page: 1577
  year: 2010
  end-page: 1579
  article-title: Animal research: Reporting in vivo experiments: The ARRIVE guidelines
  publication-title: British Journal of Pharmacology
– volume: 149
  start-page: 389
  year: 2015
  end-page: 397
  article-title: Liver fibrosis, but no other histologic features, is associated with long‐term outcomes of patients with nonalcoholic fatty liver disease
  publication-title: Gastroenterology
– volume: 150
  start-page: 328
  year: 2016
  end-page: 339
  article-title: Regulation of liver metabolism by autophagy
  publication-title: Gastroenterology
– volume: 3
  start-page: 203
  year: 2019
  end-page: 222
  article-title: MiT/TFE family of transcription factors, lysosomes, and cancer
  publication-title: Annual Review of Cancer Biology
– volume: 64
  start-page: 925
  year: 2016
  end-page: 932
  article-title: Uric acid regulates hepatic steatosis and insulin resistance through the NLRP3 inflammasome‐dependent mechanism
  publication-title: Journal of Hepatology
– volume: 58
  start-page: 1497
  year: 2013
  end-page: 1507
  article-title: Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease
  publication-title: Hepatology
– volume: 100
  start-page: 210
  year: 2016
  end-page: 222
  article-title: Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond
  publication-title: Free Radical Biology & Medicine
– volume: 5
  year: 2014
  article-title: Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD
  publication-title: Cell Death & Disease
– volume: 2014
  start-page: 112
  issue: 516
  year: 2014
  end-page: 115
  article-title: Nutrient‐sensing nuclear receptors coordinate autophagy
  publication-title: Nature
– volume: 64
  start-page: 73
  year: 2016
  end-page: 84
  article-title: Global epidemiology of nonalcoholic fatty liver disease—Meta‐analytic assessment of prevalence, incidence, and outcomes
  publication-title: Hepatology
– volume: 64
  start-page: 1994
  year: 2016
  end-page: 2014
  article-title: Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice
  publication-title: Hepatology
– volume: 101
  start-page: 3476
  year: 2018
  end-page: 3487
  article-title: High concentrations of fatty acids and beta‐hydroxybutyrate impair the growth hormone‐mediated hepatic JAK2‐STAT5 pathway in clinically ketotic cows
  publication-title: Journal of Dairy Science
– volume: 11
  start-page: 467
  year: 2010
  end-page: 478
  article-title: Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
  publication-title: Cell Metabolism
– volume: 22
  start-page: 1002
  year: 2016
  end-page: 1012
  article-title: NOX4‐dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages
  publication-title: Nature Medicine
– volume: 10
  year: 2015
  article-title: NRF2 regulates PINK1 expression under oxidative stress conditions
  publication-title: PLoS ONE
– volume: 175
  start-page: 987
  year: 2018
  end-page: 993
  article-title: Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers
  publication-title: British Journal of Pharmacology
– volume: 524
  start-page: 309
  year: 2015
  end-page: 314
  article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
  publication-title: Nature
– volume: 15
  start-page: 647
  year: 2013
  end-page: 658
  article-title: TFEB controls cellular lipid metabolism through a starvation‐induced autoregulatory loop
  publication-title: Nature Cell Biology
– volume: 15
  start-page: 2
  year: 2004
  end-page: 11
  article-title: Cyanidins: Metabolism and biological properties
  publication-title: The Journal of Nutritional Biochemistry
– volume: 108
  start-page: v12920
  year: 2011
  end-page: v12924
  article-title: Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 45
  start-page: 83
  year: 2017
  end-page: 91
  article-title: PINK1 and Parkin: Emerging themes in mitochondrial homeostasis
  publication-title: Current Opinion in Cell Biology
– volume: 46
  start-page: D1091
  year: 2018
  end-page: D1106
  article-title: The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: Updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY
  publication-title: Nucleic Acids Research
– volume: 53
  start-page: 2002
  year: 2012
  end-page: 2013
  article-title: Saturated fatty acids activate TLR‐mediated proinflammatory signaling pathways
  publication-title: Journal of Lipid Research
– volume: 164
  start-page: 896
  year: 2016
  end-page: 910
  article-title: NF‐κB restricts inflammasome activation via elimination of damaged mitochondria
  publication-title: Cell
– volume: 125
  start-page: 521
  year: 2015
  end-page: 538
  article-title: PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis
  publication-title: The Journal of Clinical Investigation
– volume: 458
  start-page: 1131
  year: 2009
  end-page: 1135
  article-title: Autophagy regulates lipid metabolism
  publication-title: Nature
– volume: 23
  start-page: 349
  year: 2012
  end-page: 360
  article-title: Cyanidin 3‐glucoside attenuates obesity‐associated insulin resistance and hepatic steatosis in high‐fat diet‐fed and db/db mice via the transcription factor FoxO1
  publication-title: The Journal of Nutritional Biochemistry
– volume: 61
  start-page: 486
  year: 2015
  end-page: 496
  article-title: ALCAT1 controls mitochondrial etiology of fatty liver diseases, linking defective mitophagy to steatosis
  publication-title: Hepatology
– volume: 309
  start-page: G324
  year: 2015
  end-page: G340
  article-title: Parkin regulates mitophagy and mitochondrial function to protect against alcohol‐induced liver injury and steatosis in mice
  publication-title: American Journal of Physiology. Gastrointestinal and Liver Physiology
– volume: 57
  start-page: 834
  year: 2017
  end-page: 855
  article-title: The potential of flavonoids in the treatment of non‐alcoholic fatty liver disease
  publication-title: Critical Reviews in Food Science and Nutrition
– volume: 52
  start-page: 314
  year: 2012
  end-page: 327
  article-title: The anthocyanin cyanidin‐3‐ ‐β‐glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: Involvement of a cAMP‐PKA‐dependent signaling pathway
  publication-title: Free Radical Biology & Medicine
– volume: 53
  start-page: 810
  year: 2011
  end-page: 820
  article-title: Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: Distinct clinicopathologic meanings
  publication-title: Hepatology
– volume: 21
  start-page: 739
  year: 2015
  end-page: 746
  article-title: Adaptation of hepatic mitochondrial function in humans with non‐alcoholic fatty liver is lost in steatohepatitis
  publication-title: Cell Metabolism
– volume: 12
  start-page: 1
  year: 2016
  end-page: 222
  article-title: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
  publication-title: Autophagy
– volume: 1
  start-page: 359
  year: 2017
  end-page: 369
  article-title: Hepatic lipophagy: New insights into autophagic catabolism of lipid droplets in the liver
  publication-title: Hepatology Communications
– volume: 176
  start-page: S21
  year: 2019
  end-page: S141
  article-title: The Concise Guide to PHARMACOLOGY 2019/20: G protein‐coupled receptors
  publication-title: British Journal of Pharmacology
– volume: 172
  start-page: 3461
  year: 2015
  end-page: 3471
  article-title: Experimental design and analysis and their reporting: New guidance for publication in
  publication-title: British Journal of Pharmacology
– volume: 10
  start-page: 155
  year: 2014
  end-page: 164
  article-title: Estimating the size and number of autophagic bodies by electron microscopy
  publication-title: Autophagy
– volume: 198
  start-page: 3283
  issue: 8
  year: 2017
  end-page: 3295
  article-title: PPAR‐α activation mediates innate host defense through induction of TFEB and lipid catabolism
  publication-title: The Journal of Immunology
– ident: e_1_2_11_23_1
  doi: 10.1111/j.1476-5381.2010.00872.x
– ident: e_1_2_11_32_1
  doi: 10.1073/pnas.1107332108
– ident: e_1_2_11_16_1
  doi: 10.1038/cddis.2014.162
– ident: e_1_2_11_49_1
  doi: 10.1152/ajpgi.00108.2015
– ident: e_1_2_11_35_1
  doi: 10.1016/j.ceb.2017.03.013
– ident: e_1_2_11_52_1
  doi: 10.1038/nature09663
– ident: e_1_2_11_28_1
  doi: 10.1038/nature14893
– ident: e_1_2_11_18_1
  doi: 10.1016/j.jnutbio.2010.12.013
– ident: e_1_2_11_44_1
  doi: 10.1002/hep.28820
– ident: e_1_2_11_47_1
  doi: 10.1111/bph.13844
– ident: e_1_2_11_3_1
  doi: 10.1111/bph.14112
– ident: e_1_2_11_22_1
  doi: 10.4196/kjpp.2012.16.4.249
– volume: 290
  start-page: 207
  year: 2005
  ident: e_1_2_11_29_1
  article-title: Isolation and culture of primary human hepatocytes
  publication-title: Methods in Molecular Biology
– ident: e_1_2_11_33_1
  doi: 10.1053/j.gastro.2015.09.042
– ident: e_1_2_11_11_1
  doi: 10.1111/bph.14153
– ident: e_1_2_11_17_1
  doi: 10.1111/bph.13933
– ident: e_1_2_11_20_1
  doi: 10.1194/jlr.D029546
– ident: e_1_2_11_38_1
  doi: 10.1146/annurev-cancerbio-030518-055835
– ident: e_1_2_11_51_1
  doi: 10.1016/j.cell.2015.12.057
– ident: e_1_2_11_36_1
  doi: 10.1038/nm.4153
– ident: e_1_2_11_21_1
  doi: 10.1038/s41467-019-09598-9
– ident: e_1_2_11_39_1
  doi: 10.1016/j.celrep.2016.02.053
– ident: e_1_2_11_13_1
  doi: 10.3168/jds.2018-14546
– ident: e_1_2_11_45_1
  doi: 10.1080/10408398.2014.952399
– ident: e_1_2_11_34_1
  doi: 10.1111/bph.12955
– ident: e_1_2_11_30_1
  doi: 10.1038/nature13961
– ident: e_1_2_11_6_1
  doi: 10.1002/hep.26226
– ident: e_1_2_11_26_1
  doi: 10.1016/j.cmet.2015.04.004
– ident: e_1_2_11_31_1
  doi: 10.1016/j.cmet.2010.04.005
– ident: e_1_2_11_5_1
  doi: 10.4161/auto.26856
– ident: e_1_2_11_37_1
  doi: 10.1371/journal.pone.0142438
– ident: e_1_2_11_46_1
  doi: 10.1016/j.jhep.2015.11.022
– ident: e_1_2_11_48_1
  doi: 10.1002/hep.27420
– ident: e_1_2_11_9_1
  doi: 10.1172/JCI74942
– ident: e_1_2_11_19_1
  doi: 10.1093/nar/gkx1121
– ident: e_1_2_11_41_1
  doi: 10.1002/hep4.1056
– ident: e_1_2_11_53_1
  doi: 10.1016/j.freeradbiomed.2011.10.483
– ident: e_1_2_11_40_1
  doi: 10.1111/liv.12975
– ident: e_1_2_11_10_1
  doi: 10.4161/auto.5.8.10050
– ident: e_1_2_11_12_1
  doi: 10.1111/bph.12856
– ident: e_1_2_11_24_1
  doi: 10.4049/jimmunol.1601920
– ident: e_1_2_11_7_1
  doi: 10.1016/j.freeradbiomed.2016.04.015
– ident: e_1_2_11_15_1
  doi: 10.1016/j.jnutbio.2003.07.004
– ident: e_1_2_11_42_1
  doi: 10.1038/ncb2718
– ident: e_1_2_11_4_1
  doi: 10.1053/j.gastro.2015.04.043
– ident: e_1_2_11_2_1
  doi: 10.1111/bph.14748
– ident: e_1_2_11_8_1
  doi: 10.1002/hep.24127
– ident: e_1_2_11_25_1
  doi: 10.1080/15548627.2015.1100356
– ident: e_1_2_11_43_1
  doi: 10.1038/nature07976
– ident: e_1_2_11_50_1
  doi: 10.1002/hep.28431
– ident: e_1_2_11_14_1
  doi: 10.3168/jds.2017-13234
– ident: e_1_2_11_27_1
  doi: 10.1089/jmf.2006.147
SSID ssj0014775
Score 2.600573
Snippet Background and Purpose Identifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic...
Identifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic strategy for...
Background and PurposeIdentifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3591
SubjectTerms Fatty liver
Glucose metabolism
Hepatocytes
High fat diet
Inflammasomes
Liver diseases
Localization
Metabolism
Mitochondria
Mitophagy
Oxidative stress
Palmitic acid
Parkin protein
PTEN protein
PTEN-induced putative kinase
Pyrin protein
Research Paper
Research Papers
Steatosis
Title Cyanidin‐3‐O‐glucoside improves non‐alcoholic fatty liver disease by promoting PINK1‐mediated mitophagy in mice
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbph.15083
https://www.ncbi.nlm.nih.gov/pubmed/32343398
https://www.proquest.com/docview/2421663121
https://www.proquest.com/docview/2395608788
https://pubmed.ncbi.nlm.nih.gov/PMC7348088
Volume 177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5swELa27mUv034vWzd501RVSokAmxget65VtmZtHogU9QXZ2CxIK4naRFX61-9swMCaSt1eEAKLWPk-jjv77juEPpM0Y8Ij0vG5DByquHJEBoFr4Kmh8kSauUoXOP88HY6m9McsmDXptqa6ZCUG6c3WupL_QRWuAa66SvYfkLUPhQtwDvjCERCG470wPtzwIoePj0Ocsyr5PJdKVz5eLrSaLIT2Di974OZpP-Mr3SZCJ2LU-zLa-VyWCXnFrz5E-CeeY2pJtB96kWvRAV5WBl5UOXJ_iyG1lCeWjQq2Xacfm2SBWV5cq9wu5pg-wv3zeVOFdj5fm29B3hlWWsSY55t1e3HCb1LjantKGeBOyq4sA7XlWm2Eq2YuFduClk0lQdnP6w5jL5bzgRG1b75o9S7-6VlyPB2Pk_hoFj9Ej3yIJHSTi2_fT-xGE2VGi9nOqRKf0sle9sFdl-VWHHI7nbYd5hg_JX6KnlQBBv5SsuUZeqCK52hvUmKzOcBxU3B3dYD38KSF2gu02E4pXFMKdyiFDaWwoRSuKIXFBltK4S6lsKUUzgusKfUSTY-P4sORU_XkcFJwLYkThS6TUSqZEL5ITbcDL2ScRkQyriSJJHWFLz1CeTiEUILQlGUhVxBYqIjzIXmFdmCm6g3CUmYQqyvXl2FAfRVEStEs1OZCeSz1wh7ar__2JK0E63XflN9JHbgCQolBqIc-2aHLUqVl26DdGrukejmuEp0RAU6353s99NHeBhOr9814oRZrGEP0IkLIQpjS6xJq-yvEJ5SQCO6wDgnsAC3f3r1T5HMj4651pVz9zH1Dl7snnnydjMzJ23tM8R163LyIu2hndblW78FvXokPhvl_ALyRyPE
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyanidin-3-O-glucoside+improves+non-alcoholic+fatty+liver+disease+by+promoting+PINK1-mediated+mitophagy+in+mice&rft.jtitle=British+journal+of+pharmacology&rft.au=Li%2C+Xinwei&rft.au=Shi%2C+Zhen&rft.au=Zhu%2C+Yiwei&rft.au=Shen%2C+Taiyu&rft.date=2020-08-01&rft.issn=1476-5381&rft.eissn=1476-5381&rft.volume=177&rft.issue=15&rft.spage=3591&rft_id=info:doi/10.1111%2Fbph.15083&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon