Cyanidin‐3‐O‐glucoside improves non‐alcoholic fatty liver disease by promoting PINK1‐mediated mitophagy in mice
Background and Purpose Identifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic strategy for non‐alcoholic fatty liver disease. Here, we investigated the effects of cyanidin‐3‐O‐glucoside (C3G) on non‐alcoholic fatty liver...
Saved in:
Published in | British journal of pharmacology Vol. 177; no. 15; pp. 3591 - 3607 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.08.2020
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background and Purpose
Identifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic strategy for non‐alcoholic fatty liver disease. Here, we investigated the effects of cyanidin‐3‐O‐glucoside (C3G) on non‐alcoholic fatty liver disease (NAFLD) and the underlying mechanism.
Experimental Approach
Non‐alcoholic fatty liver disease was induced by a high‐fat diet for 16 weeks. C3G was administered during the last 4 weeks. In vivo, recombinant adenoviruses and AAV8 were used for overexpression and knockdown of PTEN‐induced kinase 1 (PINK1), respectively. AML‐12 and HepG2 cells were used for the mechanism study.
Key Results
C3G administration suppressed hepatic oxidative stress, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and steatosis and improved systemic glucose metabolism in mice with NAFLD. These effects of C3G were also observed in palmitic acid‐treated AML‐12 cells and hepatocytes from NAFLD patients. Mechanistic investigations revealed that C3G increased PINK1/Parkin expression and mitochondrial localization and promoted PINK1‐mediated mitophagy to clear damaged mitochondria. Knockdown of hepatic PINK1 abolished the mitophagy‐inducing effect of C3G, which blunted the beneficial effects of C3G on oxidative stress, NLRP3 inflammasome activation, hepatic steatosis and glucose metabolism.
Conclusion and Implications
These results demonstrate that PINK1‐mediated mitophagy plays an essential role in the ability of C3G to alleviate NAFLD and suggest that C3G may be a potential drug candidate for NAFLD treatment. |
---|---|
AbstractList | Background and PurposeIdentifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic strategy for non‐alcoholic fatty liver disease. Here, we investigated the effects of cyanidin‐3‐O‐glucoside (C3G) on non‐alcoholic fatty liver disease (NAFLD) and the underlying mechanism.Experimental ApproachNon‐alcoholic fatty liver disease was induced by a high‐fat diet for 16 weeks. C3G was administered during the last 4 weeks. In vivo, recombinant adenoviruses and AAV8 were used for overexpression and knockdown of PTEN‐induced kinase 1 (PINK1), respectively. AML‐12 and HepG2 cells were used for the mechanism study.Key ResultsC3G administration suppressed hepatic oxidative stress, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and steatosis and improved systemic glucose metabolism in mice with NAFLD. These effects of C3G were also observed in palmitic acid‐treated AML‐12 cells and hepatocytes from NAFLD patients. Mechanistic investigations revealed that C3G increased PINK1/Parkin expression and mitochondrial localization and promoted PINK1‐mediated mitophagy to clear damaged mitochondria. Knockdown of hepatic PINK1 abolished the mitophagy‐inducing effect of C3G, which blunted the beneficial effects of C3G on oxidative stress, NLRP3 inflammasome activation, hepatic steatosis and glucose metabolism.Conclusion and ImplicationsThese results demonstrate that PINK1‐mediated mitophagy plays an essential role in the ability of C3G to alleviate NAFLD and suggest that C3G may be a potential drug candidate for NAFLD treatment. Identifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic strategy for non-alcoholic fatty liver disease. Here, we investigated the effects of cyanidin-3-O-glucoside (C3G) on non-alcoholic fatty liver disease (NAFLD) and the underlying mechanism.BACKGROUND AND PURPOSEIdentifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic strategy for non-alcoholic fatty liver disease. Here, we investigated the effects of cyanidin-3-O-glucoside (C3G) on non-alcoholic fatty liver disease (NAFLD) and the underlying mechanism.Non-alcoholic fatty liver disease was induced by a high-fat diet for 16 weeks. C3G was administered during the last 4 weeks. In vivo, recombinant adenoviruses and AAV8 were used for overexpression and knockdown of PTEN-induced kinase 1 (PINK1), respectively. AML-12 and HepG2 cells were used for the mechanism study.EXPERIMENTAL APPROACHNon-alcoholic fatty liver disease was induced by a high-fat diet for 16 weeks. C3G was administered during the last 4 weeks. In vivo, recombinant adenoviruses and AAV8 were used for overexpression and knockdown of PTEN-induced kinase 1 (PINK1), respectively. AML-12 and HepG2 cells were used for the mechanism study.C3G administration suppressed hepatic oxidative stress, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and steatosis and improved systemic glucose metabolism in mice with NAFLD. These effects of C3G were also observed in palmitic acid-treated AML-12 cells and hepatocytes from NAFLD patients. Mechanistic investigations revealed that C3G increased PINK1/Parkin expression and mitochondrial localization and promoted PINK1-mediated mitophagy to clear damaged mitochondria. Knockdown of hepatic PINK1 abolished the mitophagy-inducing effect of C3G, which blunted the beneficial effects of C3G on oxidative stress, NLRP3 inflammasome activation, hepatic steatosis and glucose metabolism.KEY RESULTSC3G administration suppressed hepatic oxidative stress, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and steatosis and improved systemic glucose metabolism in mice with NAFLD. These effects of C3G were also observed in palmitic acid-treated AML-12 cells and hepatocytes from NAFLD patients. Mechanistic investigations revealed that C3G increased PINK1/Parkin expression and mitochondrial localization and promoted PINK1-mediated mitophagy to clear damaged mitochondria. Knockdown of hepatic PINK1 abolished the mitophagy-inducing effect of C3G, which blunted the beneficial effects of C3G on oxidative stress, NLRP3 inflammasome activation, hepatic steatosis and glucose metabolism.These results demonstrate that PINK1-mediated mitophagy plays an essential role in the ability of C3G to alleviate NAFLD and suggest that C3G may be a potential drug candidate for NAFLD treatment.CONCLUSION AND IMPLICATIONSThese results demonstrate that PINK1-mediated mitophagy plays an essential role in the ability of C3G to alleviate NAFLD and suggest that C3G may be a potential drug candidate for NAFLD treatment. Background and Purpose Identifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic strategy for non‐alcoholic fatty liver disease. Here, we investigated the effects of cyanidin‐3‐O‐glucoside (C3G) on non‐alcoholic fatty liver disease (NAFLD) and the underlying mechanism. Experimental Approach Non‐alcoholic fatty liver disease was induced by a high‐fat diet for 16 weeks. C3G was administered during the last 4 weeks. In vivo, recombinant adenoviruses and AAV8 were used for overexpression and knockdown of PTEN‐induced kinase 1 (PINK1), respectively. AML‐12 and HepG2 cells were used for the mechanism study. Key Results C3G administration suppressed hepatic oxidative stress, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and steatosis and improved systemic glucose metabolism in mice with NAFLD. These effects of C3G were also observed in palmitic acid‐treated AML‐12 cells and hepatocytes from NAFLD patients. Mechanistic investigations revealed that C3G increased PINK1/Parkin expression and mitochondrial localization and promoted PINK1‐mediated mitophagy to clear damaged mitochondria. Knockdown of hepatic PINK1 abolished the mitophagy‐inducing effect of C3G, which blunted the beneficial effects of C3G on oxidative stress, NLRP3 inflammasome activation, hepatic steatosis and glucose metabolism. Conclusion and Implications These results demonstrate that PINK1‐mediated mitophagy plays an essential role in the ability of C3G to alleviate NAFLD and suggest that C3G may be a potential drug candidate for NAFLD treatment. Identifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic strategy for non-alcoholic fatty liver disease. Here, we investigated the effects of cyanidin-3-O-glucoside (C3G) on non-alcoholic fatty liver disease (NAFLD) and the underlying mechanism. Non-alcoholic fatty liver disease was induced by a high-fat diet for 16 weeks. C3G was administered during the last 4 weeks. In vivo, recombinant adenoviruses and AAV8 were used for overexpression and knockdown of PTEN-induced kinase 1 (PINK1), respectively. AML-12 and HepG2 cells were used for the mechanism study. C3G administration suppressed hepatic oxidative stress, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and steatosis and improved systemic glucose metabolism in mice with NAFLD. These effects of C3G were also observed in palmitic acid-treated AML-12 cells and hepatocytes from NAFLD patients. Mechanistic investigations revealed that C3G increased PINK1/Parkin expression and mitochondrial localization and promoted PINK1-mediated mitophagy to clear damaged mitochondria. Knockdown of hepatic PINK1 abolished the mitophagy-inducing effect of C3G, which blunted the beneficial effects of C3G on oxidative stress, NLRP3 inflammasome activation, hepatic steatosis and glucose metabolism. These results demonstrate that PINK1-mediated mitophagy plays an essential role in the ability of C3G to alleviate NAFLD and suggest that C3G may be a potential drug candidate for NAFLD treatment. |
Author | Shui, Guanghou Wang, Zhe Loor, Juan J. Wang, Heyuan Shi, Zhen Peng, Zhicheng Du, Xiliang Li, Xinwei Shen, Taiyu Chen, Meng Liu, Guowen Fang, Zhiyuan Wang, Xinghui Zhu, Yiwei Song, Yuxiang |
AuthorAffiliation | 3 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China 1 Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine Jilin University Changchun China 2 The First Hospital of Jilin University Jilin University Changchun China 4 Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences University of Illinois at Urbana‐Champaign Urbana Illinois USA |
AuthorAffiliation_xml | – name: 3 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China – name: 4 Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences University of Illinois at Urbana‐Champaign Urbana Illinois USA – name: 1 Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine Jilin University Changchun China – name: 2 The First Hospital of Jilin University Jilin University Changchun China |
Author_xml | – sequence: 1 givenname: Xinwei surname: Li fullname: Li, Xinwei organization: Jilin University – sequence: 2 givenname: Zhen surname: Shi fullname: Shi, Zhen organization: Jilin University – sequence: 3 givenname: Yiwei surname: Zhu fullname: Zhu, Yiwei organization: Jilin University – sequence: 4 givenname: Taiyu surname: Shen fullname: Shen, Taiyu organization: Jilin University – sequence: 5 givenname: Heyuan surname: Wang fullname: Wang, Heyuan organization: Jilin University – sequence: 6 givenname: Guanghou surname: Shui fullname: Shui, Guanghou organization: Chinese Academy of Sciences – sequence: 7 givenname: Juan J. surname: Loor fullname: Loor, Juan J. organization: University of Illinois at Urbana‐Champaign – sequence: 8 givenname: Zhiyuan surname: Fang fullname: Fang, Zhiyuan organization: Jilin University – sequence: 9 givenname: Meng surname: Chen fullname: Chen, Meng organization: Jilin University – sequence: 10 givenname: Xinghui surname: Wang fullname: Wang, Xinghui organization: Jilin University – sequence: 11 givenname: Zhicheng surname: Peng fullname: Peng, Zhicheng organization: Jilin University – sequence: 12 givenname: Yuxiang surname: Song fullname: Song, Yuxiang organization: Jilin University – sequence: 13 givenname: Zhe surname: Wang fullname: Wang, Zhe organization: Jilin University – sequence: 14 givenname: Xiliang surname: Du fullname: Du, Xiliang email: duxiliang@jlu.edu.cn organization: Jilin University – sequence: 15 givenname: Guowen surname: Liu fullname: Liu, Guowen email: liuguowen2008@163.com organization: Jilin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32343398$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kcFu1DAQhi1URLeFAy-ALHGBQ1o7TmLnglRWQCsq2gOcLcee3XXl2MFOFuXGI_CMPAlud4ugAksjy5pvfv-j_wgd-OABoeeUnNB8Trthc0JrItgjtKAVb4qaCXqAFoQQXlAqxCE6SumGkNzk9RN0yEpWMdaKBZqXs_LWWP_z-w-W6yrX2k06JGsA236IYQsJ5w9zQzkdNsFZjVdqHGfs7BYiNjaBSoC7GWe6D6P1a3x98ekjzSM9GKtGMLi3Yxg2aj1j6_NDw1P0eKVcgmf7-xh9ef_u8_K8uLz6cLE8uyx0TVpWtIJw02rDu67sNOEsbyG4qlpmuALDWlORrjSUVUo0NWOs0nwlFNCGQqtUw47Rm53uMHXZjQY_RuXkEG2v4iyDsvLvjrcbuQ5byVkliBBZ4NVeIIavE6RR9jZpcE55CFOSJWvrhgh-h758gN6EKfq8niyrkjYNoyXN1Is_Hf22cp9KBk53gI4hpQgrqe2oRhtuDVonKZG3ucucu7zLPU-8fjBxL_ovdq_-zTqY_w_Kt9fnu4lfqUXCZA |
CitedBy_id | crossref_primary_10_1038_s41420_022_01022_4 crossref_primary_10_1080_1061186X_2021_1909051 crossref_primary_10_3390_antiox11050893 crossref_primary_10_1089_ten_teb_2024_0002 crossref_primary_10_3390_ijms232415931 crossref_primary_10_3389_fcell_2021_686820 crossref_primary_10_3168_jds_2020_19969 crossref_primary_10_1155_2022_8566342 crossref_primary_10_3168_jds_2021_21774 crossref_primary_10_3390_ijms242417514 crossref_primary_10_1016_j_bbadis_2024_167259 crossref_primary_10_1080_10408398_2022_2123444 crossref_primary_10_3390_cells10061395 crossref_primary_10_1016_j_foodchem_2024_140264 crossref_primary_10_1002_poh2_95 crossref_primary_10_1007_s12035_022_02873_9 crossref_primary_10_1016_j_biopha_2022_113968 crossref_primary_10_3389_fnut_2023_1207751 crossref_primary_10_3168_jds_2021_20892 crossref_primary_10_1016_j_bbadis_2025_167739 crossref_primary_10_1002_fft2_255 crossref_primary_10_1155_2021_4045819 crossref_primary_10_1002_ptr_7932 crossref_primary_10_1039_D1FO03541J crossref_primary_10_1016_j_jare_2024_01_027 crossref_primary_10_1039_D3FO02653A crossref_primary_10_1002_jcp_31069 crossref_primary_10_1590_acb381023 crossref_primary_10_1080_15548627_2022_2046457 crossref_primary_10_1126_sciadv_abj0722 crossref_primary_10_3390_molecules27165166 crossref_primary_10_1021_acs_jafc_3c04692 crossref_primary_10_1186_s13018_023_04092_x crossref_primary_10_1186_s40001_024_01809_4 crossref_primary_10_1016_j_bbrc_2025_151672 crossref_primary_10_1002_iid3_947 crossref_primary_10_3390_antiox13060729 crossref_primary_10_1016_j_actbio_2025_01_019 crossref_primary_10_1016_j_phymed_2024_156056 crossref_primary_10_1016_j_taap_2022_116074 crossref_primary_10_1111_jch_14650 crossref_primary_10_3390_nu16050694 crossref_primary_10_3390_ijms22094459 crossref_primary_10_1002_ptr_7762 crossref_primary_10_2174_0929867329666221007115809 crossref_primary_10_3168_jds_2020_19150 crossref_primary_10_3389_fphar_2021_796207 crossref_primary_10_3389_fphar_2021_775528 crossref_primary_10_1016_j_biocel_2021_106013 crossref_primary_10_1021_acs_jafc_1c05213 crossref_primary_10_1080_02648725_2023_2193482 crossref_primary_10_3389_fphar_2022_1005312 crossref_primary_10_1038_s41420_022_01021_5 crossref_primary_10_1007_s10555_025_10251_9 crossref_primary_10_1021_acs_jafc_3c09132 crossref_primary_10_4254_wjh_v15_i12_1272 crossref_primary_10_1016_j_intimp_2024_113233 crossref_primary_10_1186_s12964_024_01618_6 crossref_primary_10_3390_ijms21207704 crossref_primary_10_1080_15548627_2023_2179781 crossref_primary_10_1002_fsn3_3975 crossref_primary_10_1016_j_freeradbiomed_2024_04_214 crossref_primary_10_1016_j_freeradbiomed_2022_11_044 crossref_primary_10_1016_j_heliyon_2023_e15347 crossref_primary_10_3389_fendo_2024_1374644 crossref_primary_10_1016_j_jff_2021_104811 crossref_primary_10_1038_s41392_023_01503_7 crossref_primary_10_3390_ijms222111422 crossref_primary_10_1021_acs_jafc_0c07546 crossref_primary_10_1016_j_clnu_2024_07_004 crossref_primary_10_1016_j_jff_2024_106143 crossref_primary_10_1016_j_biopha_2023_114991 crossref_primary_10_1016_j_lfs_2023_121943 crossref_primary_10_3390_ijms26062709 crossref_primary_10_9724_kfcs_2023_39_3_178 crossref_primary_10_1016_j_abb_2025_110348 crossref_primary_10_1186_s40779_024_00536_5 crossref_primary_10_1002_ptr_8276 crossref_primary_10_1016_j_bbrc_2024_150344 crossref_primary_10_1016_j_phrs_2023_106925 crossref_primary_10_1097_CM9_0000000000002263 crossref_primary_10_1155_2021_6611126 crossref_primary_10_18632_aging_205250 crossref_primary_10_3390_ijms232315109 crossref_primary_10_1039_D2FO03019E crossref_primary_10_1038_s12276_023_01047_4 crossref_primary_10_1016_j_apsb_2021_12_012 |
Cites_doi | 10.1111/j.1476-5381.2010.00872.x 10.1073/pnas.1107332108 10.1038/cddis.2014.162 10.1152/ajpgi.00108.2015 10.1016/j.ceb.2017.03.013 10.1038/nature09663 10.1038/nature14893 10.1016/j.jnutbio.2010.12.013 10.1002/hep.28820 10.1111/bph.13844 10.1111/bph.14112 10.4196/kjpp.2012.16.4.249 10.1053/j.gastro.2015.09.042 10.1111/bph.14153 10.1111/bph.13933 10.1194/jlr.D029546 10.1146/annurev-cancerbio-030518-055835 10.1016/j.cell.2015.12.057 10.1038/nm.4153 10.1038/s41467-019-09598-9 10.1016/j.celrep.2016.02.053 10.3168/jds.2018-14546 10.1080/10408398.2014.952399 10.1111/bph.12955 10.1038/nature13961 10.1002/hep.26226 10.1016/j.cmet.2015.04.004 10.1016/j.cmet.2010.04.005 10.4161/auto.26856 10.1371/journal.pone.0142438 10.1016/j.jhep.2015.11.022 10.1002/hep.27420 10.1172/JCI74942 10.1093/nar/gkx1121 10.1002/hep4.1056 10.1016/j.freeradbiomed.2011.10.483 10.1111/liv.12975 10.4161/auto.5.8.10050 10.1111/bph.12856 10.4049/jimmunol.1601920 10.1016/j.freeradbiomed.2016.04.015 10.1016/j.jnutbio.2003.07.004 10.1038/ncb2718 10.1053/j.gastro.2015.04.043 10.1111/bph.14748 10.1002/hep.24127 10.1080/15548627.2015.1100356 10.1038/nature07976 10.1002/hep.28431 10.3168/jds.2017-13234 10.1089/jmf.2006.147 |
ContentType | Journal Article |
Copyright | 2020 The British Pharmacological Society 2020 The British Pharmacological Society. |
Copyright_xml | – notice: 2020 The British Pharmacological Society – notice: 2020 The British Pharmacological Society. |
DBID | AAYXX CITATION NPM 7QP 7TK K9. NAPCQ 7X8 5PM |
DOI | 10.1111/bph.15083 |
DatabaseName | CrossRef PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
DocumentTitleAlternate | Li et al |
EISSN | 1476-5381 |
EndPage | 3607 |
ExternalDocumentID | PMC7348088 32343398 10_1111_bph_15083 BPH15083 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Talents Cultivation Program – fundername: China Postdoctoral Science Foundation funderid: 2019TQ0115; 2019M661216 – fundername: National Key Research and Development Program funderid: 2016YFD0501206 – fundername: National Natural Science Foundation of China funderid: 31672621; 31772810 – fundername: National Key Research and Development Program grantid: 2016YFD0501206 – fundername: China Postdoctoral Science Foundation grantid: 2019TQ0115 – fundername: National Natural Science Foundation of China grantid: 31672621 – fundername: National Natural Science Foundation of China grantid: 31772810 – fundername: China Postdoctoral Science Foundation grantid: 2019M661216 – fundername: ; – fundername: ; grantid: 2019TQ0115; 2019M661216 – fundername: ; grantid: 31672621; 31772810 – fundername: ; grantid: 2016YFD0501206 |
GroupedDBID | --- .3N .55 .GJ 05W 0R~ 1OC 23N 24P 2WC 31~ 33P 36B 3O- 3SF 3V. 4.4 52U 52V 53G 5GY 6J9 7RV 7X7 8-0 8-1 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 8UM A00 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABPVW ABQWH ABUWG ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB B0M BAFTC BAWUL BBNVY BENPR BFHJK BHBCM BHPHI BKEYQ BMXJE BPHCQ BRXPI BVXVI C45 CAG CCPQU COF CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBC EBD EBS ECV EJD EMB EMK EMOBN ENC ESX EX3 F5P FUBAC FYUFA G-S GODZA GX1 H.X HCIFZ HGLYW HMCUK HYE HZ~ J5H KBYEO LATKE LEEKS LH4 LITHE LK8 LOXES LSO LUTES LW6 LYRES M1P M7P MEWTI MK0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ N9A NAPCQ NF~ O66 O9- OIG OK1 OVD P2P P2W P4E PQQKQ PROAC PSQYO Q.N Q2X QB0 RIG ROL RPM RWI SJN SUPJJ SV3 TEORI TR2 TUS UKHRP UPT WBKPD WH7 WHWMO WIH WIJ WIK WIN WOHZO WOW WVDHM WXSBR X7M XV2 Y6R YHG ZGI ZXP ZZTAW ~8M ~S- AAFWJ AAYXX AEYWJ AGHNM AGYGG CITATION PHGZM PHGZT NPM 7QP 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 5PM |
ID | FETCH-LOGICAL-c5093-9807d9cd7bb2bc07300187a493d7aed39d40b2d134a8653334c7f8ae161e9aa63 |
ISSN | 0007-1188 1476-5381 |
IngestDate | Thu Aug 21 18:20:09 EDT 2025 Thu Jul 10 19:29:52 EDT 2025 Fri Jul 25 19:31:12 EDT 2025 Thu Apr 03 06:58:34 EDT 2025 Tue Jul 01 03:00:41 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Wed Jan 22 16:33:03 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | 2020 The British Pharmacological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5093-9807d9cd7bb2bc07300187a493d7aed39d40b2d134a8653334c7f8ae161e9aa63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://bpspubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bph.15083 |
PMID | 32343398 |
PQID | 2421663121 |
PQPubID | 42104 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7348088 proquest_miscellaneous_2395608788 proquest_journals_2421663121 pubmed_primary_32343398 crossref_citationtrail_10_1111_bph_15083 crossref_primary_10_1111_bph_15083 wiley_primary_10_1111_bph_15083_BPH15083 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: Hoboken |
PublicationTitle | British journal of pharmacology |
PublicationTitleAlternate | Br J Pharmacol |
PublicationYear | 2020 |
Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
References | 2005; 290 2010; 11 2017; 1 2019; 3 2015; 149 2015; 125 2019; 10 2018; 101 2017; 45 2015; 10 2011; 53 2016; 100 2015; 309 2017; 174 2014; 2014 2012; 16 2010; 160 2017; 198 2015; 524 2007; 10 2016; 14 2016; 36 2016; 164 2012; 53 2016; 12 2012; 52 2018; 46 2009; 458 2018; 175 2015; 172 2014; 5 2013; 15 2013; 58 2011; 108 2011; 469 2015; 61 2004; 15 2017; 57 2015; 21 2016; 64 2009; 5 2012; 23 2014; 10 2019; 176 2016; 150 2016; 22 e_1_2_11_32_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 LeCluyse E. L. (e_1_2_11_29_1) 2005; 290 e_1_2_11_50_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – volume: 10 start-page: 1 year: 2019 end-page: 18 article-title: The class 3 PI3K coordinates autophagy and mitochondrial lipid catabolism by controlling nuclear receptor PPARα publication-title: Nature Communications – volume: 172 start-page: 3189 year: 2015 end-page: 3193 article-title: Implementing guidelines on reporting research using animals (ARRIVE etc.): New requirements for publication in BJP publication-title: British Journal of Pharmacology – volume: 36 start-page: 5 year: 2016 end-page: 20 article-title: Natural antioxidants for non‐alcoholic fatty liver disease: Molecular targets and clinical perspectives publication-title: Liver International – volume: 175 start-page: 407 year: 2018 end-page: 411 article-title: Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the publication-title: British Journal of Pharmacology – volume: 10 start-page: 552 year: 2007 end-page: 556 article-title: Anti‐obesity and hypolipidemic effects of black soybean anthocyanins publication-title: Journal of Medicinal Food – volume: 290 start-page: 207 year: 2005 end-page: 229 article-title: Isolation and culture of primary human hepatocytes publication-title: Methods in Molecular Biology – volume: 174 start-page: 3032 year: 2017 end-page: 3044 article-title: Morin, a novel liver X receptor α/β dual antagonist, has potent therapeutic efficacy for nonalcoholic fatty liver diseases publication-title: British Journal of Pharmacology – volume: 469 start-page: 221 year: 2011 end-page: 225 article-title: A role for mitochondria in NLRP3 inflammasome activation publication-title: Nature – volume: 5 start-page: 1213 year: 2009 end-page: 1214 article-title: Mitochondrial autophagy as a compensatory response to PINK1 deficiency publication-title: Autophagy – volume: 16 start-page: 249 year: 2012 end-page: 253 article-title: The safety and pharmacokinetics of cyanidin‐3‐glucoside after 2‐week administration of black bean seed coat extract in healthy subjects publication-title: Korean J Physiol Pharmacol – volume: 101 start-page: 9544 year: 2018 end-page: 9558 article-title: Adaptations of hepatic lipid metabolism and mitochondria in dairy cows with mild fatty liver publication-title: Journal of Dairy Science – volume: 174 start-page: 2358 year: 2017 end-page: 2372 article-title: Hydroxyeicosapentaenoic acids and epoxyeicosatetraenoic acids attenuate early occurrence of nonalcoholic fatty liver disease publication-title: British Journal of Pharmacology – volume: 14 start-page: 2611 year: 2016 end-page: 2623 article-title: Saturated fatty acids engage an IRE1α‐dependent pathway to activate the NLRP3 inflammasome in myeloid cells publication-title: Cell Reports – volume: 160 start-page: 1577 year: 2010 end-page: 1579 article-title: Animal research: Reporting in vivo experiments: The ARRIVE guidelines publication-title: British Journal of Pharmacology – volume: 149 start-page: 389 year: 2015 end-page: 397 article-title: Liver fibrosis, but no other histologic features, is associated with long‐term outcomes of patients with nonalcoholic fatty liver disease publication-title: Gastroenterology – volume: 150 start-page: 328 year: 2016 end-page: 339 article-title: Regulation of liver metabolism by autophagy publication-title: Gastroenterology – volume: 3 start-page: 203 year: 2019 end-page: 222 article-title: MiT/TFE family of transcription factors, lysosomes, and cancer publication-title: Annual Review of Cancer Biology – volume: 64 start-page: 925 year: 2016 end-page: 932 article-title: Uric acid regulates hepatic steatosis and insulin resistance through the NLRP3 inflammasome‐dependent mechanism publication-title: Journal of Hepatology – volume: 58 start-page: 1497 year: 2013 end-page: 1507 article-title: Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease publication-title: Hepatology – volume: 100 start-page: 210 year: 2016 end-page: 222 article-title: Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond publication-title: Free Radical Biology & Medicine – volume: 5 year: 2014 article-title: Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD publication-title: Cell Death & Disease – volume: 2014 start-page: 112 issue: 516 year: 2014 end-page: 115 article-title: Nutrient‐sensing nuclear receptors coordinate autophagy publication-title: Nature – volume: 64 start-page: 73 year: 2016 end-page: 84 article-title: Global epidemiology of nonalcoholic fatty liver disease—Meta‐analytic assessment of prevalence, incidence, and outcomes publication-title: Hepatology – volume: 64 start-page: 1994 year: 2016 end-page: 2014 article-title: Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice publication-title: Hepatology – volume: 101 start-page: 3476 year: 2018 end-page: 3487 article-title: High concentrations of fatty acids and beta‐hydroxybutyrate impair the growth hormone‐mediated hepatic JAK2‐STAT5 pathway in clinically ketotic cows publication-title: Journal of Dairy Science – volume: 11 start-page: 467 year: 2010 end-page: 478 article-title: Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance publication-title: Cell Metabolism – volume: 22 start-page: 1002 year: 2016 end-page: 1012 article-title: NOX4‐dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages publication-title: Nature Medicine – volume: 10 year: 2015 article-title: NRF2 regulates PINK1 expression under oxidative stress conditions publication-title: PLoS ONE – volume: 175 start-page: 987 year: 2018 end-page: 993 article-title: Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers publication-title: British Journal of Pharmacology – volume: 524 start-page: 309 year: 2015 end-page: 314 article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy publication-title: Nature – volume: 15 start-page: 647 year: 2013 end-page: 658 article-title: TFEB controls cellular lipid metabolism through a starvation‐induced autoregulatory loop publication-title: Nature Cell Biology – volume: 15 start-page: 2 year: 2004 end-page: 11 article-title: Cyanidins: Metabolism and biological properties publication-title: The Journal of Nutritional Biochemistry – volume: 108 start-page: v12920 year: 2011 end-page: v12924 article-title: Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 45 start-page: 83 year: 2017 end-page: 91 article-title: PINK1 and Parkin: Emerging themes in mitochondrial homeostasis publication-title: Current Opinion in Cell Biology – volume: 46 start-page: D1091 year: 2018 end-page: D1106 article-title: The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: Updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY publication-title: Nucleic Acids Research – volume: 53 start-page: 2002 year: 2012 end-page: 2013 article-title: Saturated fatty acids activate TLR‐mediated proinflammatory signaling pathways publication-title: Journal of Lipid Research – volume: 164 start-page: 896 year: 2016 end-page: 910 article-title: NF‐κB restricts inflammasome activation via elimination of damaged mitochondria publication-title: Cell – volume: 125 start-page: 521 year: 2015 end-page: 538 article-title: PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis publication-title: The Journal of Clinical Investigation – volume: 458 start-page: 1131 year: 2009 end-page: 1135 article-title: Autophagy regulates lipid metabolism publication-title: Nature – volume: 23 start-page: 349 year: 2012 end-page: 360 article-title: Cyanidin 3‐glucoside attenuates obesity‐associated insulin resistance and hepatic steatosis in high‐fat diet‐fed and db/db mice via the transcription factor FoxO1 publication-title: The Journal of Nutritional Biochemistry – volume: 61 start-page: 486 year: 2015 end-page: 496 article-title: ALCAT1 controls mitochondrial etiology of fatty liver diseases, linking defective mitophagy to steatosis publication-title: Hepatology – volume: 309 start-page: G324 year: 2015 end-page: G340 article-title: Parkin regulates mitophagy and mitochondrial function to protect against alcohol‐induced liver injury and steatosis in mice publication-title: American Journal of Physiology. Gastrointestinal and Liver Physiology – volume: 57 start-page: 834 year: 2017 end-page: 855 article-title: The potential of flavonoids in the treatment of non‐alcoholic fatty liver disease publication-title: Critical Reviews in Food Science and Nutrition – volume: 52 start-page: 314 year: 2012 end-page: 327 article-title: The anthocyanin cyanidin‐3‐ ‐β‐glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: Involvement of a cAMP‐PKA‐dependent signaling pathway publication-title: Free Radical Biology & Medicine – volume: 53 start-page: 810 year: 2011 end-page: 820 article-title: Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: Distinct clinicopathologic meanings publication-title: Hepatology – volume: 21 start-page: 739 year: 2015 end-page: 746 article-title: Adaptation of hepatic mitochondrial function in humans with non‐alcoholic fatty liver is lost in steatohepatitis publication-title: Cell Metabolism – volume: 12 start-page: 1 year: 2016 end-page: 222 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) publication-title: Autophagy – volume: 1 start-page: 359 year: 2017 end-page: 369 article-title: Hepatic lipophagy: New insights into autophagic catabolism of lipid droplets in the liver publication-title: Hepatology Communications – volume: 176 start-page: S21 year: 2019 end-page: S141 article-title: The Concise Guide to PHARMACOLOGY 2019/20: G protein‐coupled receptors publication-title: British Journal of Pharmacology – volume: 172 start-page: 3461 year: 2015 end-page: 3471 article-title: Experimental design and analysis and their reporting: New guidance for publication in publication-title: British Journal of Pharmacology – volume: 10 start-page: 155 year: 2014 end-page: 164 article-title: Estimating the size and number of autophagic bodies by electron microscopy publication-title: Autophagy – volume: 198 start-page: 3283 issue: 8 year: 2017 end-page: 3295 article-title: PPAR‐α activation mediates innate host defense through induction of TFEB and lipid catabolism publication-title: The Journal of Immunology – ident: e_1_2_11_23_1 doi: 10.1111/j.1476-5381.2010.00872.x – ident: e_1_2_11_32_1 doi: 10.1073/pnas.1107332108 – ident: e_1_2_11_16_1 doi: 10.1038/cddis.2014.162 – ident: e_1_2_11_49_1 doi: 10.1152/ajpgi.00108.2015 – ident: e_1_2_11_35_1 doi: 10.1016/j.ceb.2017.03.013 – ident: e_1_2_11_52_1 doi: 10.1038/nature09663 – ident: e_1_2_11_28_1 doi: 10.1038/nature14893 – ident: e_1_2_11_18_1 doi: 10.1016/j.jnutbio.2010.12.013 – ident: e_1_2_11_44_1 doi: 10.1002/hep.28820 – ident: e_1_2_11_47_1 doi: 10.1111/bph.13844 – ident: e_1_2_11_3_1 doi: 10.1111/bph.14112 – ident: e_1_2_11_22_1 doi: 10.4196/kjpp.2012.16.4.249 – volume: 290 start-page: 207 year: 2005 ident: e_1_2_11_29_1 article-title: Isolation and culture of primary human hepatocytes publication-title: Methods in Molecular Biology – ident: e_1_2_11_33_1 doi: 10.1053/j.gastro.2015.09.042 – ident: e_1_2_11_11_1 doi: 10.1111/bph.14153 – ident: e_1_2_11_17_1 doi: 10.1111/bph.13933 – ident: e_1_2_11_20_1 doi: 10.1194/jlr.D029546 – ident: e_1_2_11_38_1 doi: 10.1146/annurev-cancerbio-030518-055835 – ident: e_1_2_11_51_1 doi: 10.1016/j.cell.2015.12.057 – ident: e_1_2_11_36_1 doi: 10.1038/nm.4153 – ident: e_1_2_11_21_1 doi: 10.1038/s41467-019-09598-9 – ident: e_1_2_11_39_1 doi: 10.1016/j.celrep.2016.02.053 – ident: e_1_2_11_13_1 doi: 10.3168/jds.2018-14546 – ident: e_1_2_11_45_1 doi: 10.1080/10408398.2014.952399 – ident: e_1_2_11_34_1 doi: 10.1111/bph.12955 – ident: e_1_2_11_30_1 doi: 10.1038/nature13961 – ident: e_1_2_11_6_1 doi: 10.1002/hep.26226 – ident: e_1_2_11_26_1 doi: 10.1016/j.cmet.2015.04.004 – ident: e_1_2_11_31_1 doi: 10.1016/j.cmet.2010.04.005 – ident: e_1_2_11_5_1 doi: 10.4161/auto.26856 – ident: e_1_2_11_37_1 doi: 10.1371/journal.pone.0142438 – ident: e_1_2_11_46_1 doi: 10.1016/j.jhep.2015.11.022 – ident: e_1_2_11_48_1 doi: 10.1002/hep.27420 – ident: e_1_2_11_9_1 doi: 10.1172/JCI74942 – ident: e_1_2_11_19_1 doi: 10.1093/nar/gkx1121 – ident: e_1_2_11_41_1 doi: 10.1002/hep4.1056 – ident: e_1_2_11_53_1 doi: 10.1016/j.freeradbiomed.2011.10.483 – ident: e_1_2_11_40_1 doi: 10.1111/liv.12975 – ident: e_1_2_11_10_1 doi: 10.4161/auto.5.8.10050 – ident: e_1_2_11_12_1 doi: 10.1111/bph.12856 – ident: e_1_2_11_24_1 doi: 10.4049/jimmunol.1601920 – ident: e_1_2_11_7_1 doi: 10.1016/j.freeradbiomed.2016.04.015 – ident: e_1_2_11_15_1 doi: 10.1016/j.jnutbio.2003.07.004 – ident: e_1_2_11_42_1 doi: 10.1038/ncb2718 – ident: e_1_2_11_4_1 doi: 10.1053/j.gastro.2015.04.043 – ident: e_1_2_11_2_1 doi: 10.1111/bph.14748 – ident: e_1_2_11_8_1 doi: 10.1002/hep.24127 – ident: e_1_2_11_25_1 doi: 10.1080/15548627.2015.1100356 – ident: e_1_2_11_43_1 doi: 10.1038/nature07976 – ident: e_1_2_11_50_1 doi: 10.1002/hep.28431 – ident: e_1_2_11_14_1 doi: 10.3168/jds.2017-13234 – ident: e_1_2_11_27_1 doi: 10.1089/jmf.2006.147 |
SSID | ssj0014775 |
Score | 2.600573 |
Snippet | Background and Purpose
Identifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic... Identifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic strategy for... Background and PurposeIdentifying safe and effective compounds that target to mitophagy to eliminate impaired mitochondria may be an attractive therapeutic... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3591 |
SubjectTerms | Fatty liver Glucose metabolism Hepatocytes High fat diet Inflammasomes Liver diseases Localization Metabolism Mitochondria Mitophagy Oxidative stress Palmitic acid Parkin protein PTEN protein PTEN-induced putative kinase Pyrin protein Research Paper Research Papers Steatosis |
Title | Cyanidin‐3‐O‐glucoside improves non‐alcoholic fatty liver disease by promoting PINK1‐mediated mitophagy in mice |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbph.15083 https://www.ncbi.nlm.nih.gov/pubmed/32343398 https://www.proquest.com/docview/2421663121 https://www.proquest.com/docview/2395608788 https://pubmed.ncbi.nlm.nih.gov/PMC7348088 |
Volume | 177 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5swELa27mUv034vWzd501RVSokAmxget65VtmZtHogU9QXZ2CxIK4naRFX61-9swMCaSt1eEAKLWPk-jjv77juEPpM0Y8Ij0vG5DByquHJEBoFr4Kmh8kSauUoXOP88HY6m9McsmDXptqa6ZCUG6c3WupL_QRWuAa66SvYfkLUPhQtwDvjCERCG470wPtzwIoePj0Ocsyr5PJdKVz5eLrSaLIT2Di974OZpP-Mr3SZCJ2LU-zLa-VyWCXnFrz5E-CeeY2pJtB96kWvRAV5WBl5UOXJ_iyG1lCeWjQq2Xacfm2SBWV5cq9wu5pg-wv3zeVOFdj5fm29B3hlWWsSY55t1e3HCb1LjantKGeBOyq4sA7XlWm2Eq2YuFduClk0lQdnP6w5jL5bzgRG1b75o9S7-6VlyPB2Pk_hoFj9Ej3yIJHSTi2_fT-xGE2VGi9nOqRKf0sle9sFdl-VWHHI7nbYd5hg_JX6KnlQBBv5SsuUZeqCK52hvUmKzOcBxU3B3dYD38KSF2gu02E4pXFMKdyiFDaWwoRSuKIXFBltK4S6lsKUUzgusKfUSTY-P4sORU_XkcFJwLYkThS6TUSqZEL5ITbcDL2ScRkQyriSJJHWFLz1CeTiEUILQlGUhVxBYqIjzIXmFdmCm6g3CUmYQqyvXl2FAfRVEStEs1OZCeSz1wh7ar__2JK0E63XflN9JHbgCQolBqIc-2aHLUqVl26DdGrukejmuEp0RAU6353s99NHeBhOr9814oRZrGEP0IkLIQpjS6xJq-yvEJ5SQCO6wDgnsAC3f3r1T5HMj4651pVz9zH1Dl7snnnydjMzJ23tM8R163LyIu2hndblW78FvXokPhvl_ALyRyPE |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyanidin-3-O-glucoside+improves+non-alcoholic+fatty+liver+disease+by+promoting+PINK1-mediated+mitophagy+in+mice&rft.jtitle=British+journal+of+pharmacology&rft.au=Li%2C+Xinwei&rft.au=Shi%2C+Zhen&rft.au=Zhu%2C+Yiwei&rft.au=Shen%2C+Taiyu&rft.date=2020-08-01&rft.issn=1476-5381&rft.eissn=1476-5381&rft.volume=177&rft.issue=15&rft.spage=3591&rft_id=info:doi/10.1111%2Fbph.15083&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon |